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Abstract

This paper addresses issues which affect the assessment of circular-
ity, including the derivation of a reference circle to which the circular
feature is compared, the measure of similarity between the circular
feature and its reference circle, and the representation of a circular fea-
ture. The assessment methods commonly employed in current practice
are first reviewed. Efficient algorithms that compute the assessment of
circularity are identified. Experiments with randomly generated data
are performed to compare various criteria employed in these assess-
ment methods. The difference in assessments can be attributed to the
different definitions of geometric deviations in the different methods; it
is therefore possible to choose assessment methods based on function-
ality. The notion of circularity is further decomposed into three types
— internal, external, and strong — by which families of distance metrics
are invoked to characterize similarity between the circular feature and
its reference circle.
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1 Introduction

A circular feature in a mechanical object is one of the most basic geometric
primitives. Other than its ease of specification — implicitly by a center and
a radius or explicitly by its circumference - a circular feature has several
functional advantages: it has uniform strength in any direction symmetric
to the axis, it can be manufactured by a rotary tool, and its symmetry offers
simplicity in assembly. However, due to imperfections introduced in man-
ufacturing, a produced feature will not be truly circular. In practice, even
though designs are toleranced with the intent of ensuring functionality, pro-
duced features are inspected to determined if a certain degree of circularity
has been attained.

A fundamental question then remains: Is one way of measuring circularity
superior to another, particularly in regard to its relation to functionality? If
so, under what circumstances? The lack of a clear answer to these questions
is mainly due to inconsistencies between standards and practice.

ANSI standards [2, 3] provide for both form tolerance and size tolerance.
The circularity of a feature is considered to be in form tolerance if the width
of an annulus containing the profile of the circular feature is narrower than
the form tolerance. It is considered to be in size tolerance if this annulus lies
entirely inside a size tolerance zone.

Assigning a fixed width to an annular tolerance zone may not be function-
ally acceptable in practice. The reason is seen in the exaggerated example
shown in Figure 1, where tolerance zones z; and z; are of the same width.
Yet, the standards imply that, regardless of the radii, as long as the zones
are of the same width, they yield the same circularity.

The circularity of a feature can be defined to be the difference between its
maximum and minimum radial ordinates [3]. Such a characterization is due
to historical reasons: hard gages can only detect extreme radial ordinates.
On the other hand, in employing soft gaging e.g. via coordinate measuring
machines (CMMs), it is possible that those points on a circular feature that
have extreme radial ordinates will escape being sampled. Moreover, it seems
contradictory to have a characterization of circularity which depends solely
on extreme radial ordinates while at the same time it is highly probable that
points with extreme radial ordinates may not be identifiable.

The assessment, of circularity is further complicated by computational al-
gorithms. The profile of a feature can be extrapolated into an ideal reference
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Figure 1: Tolerance zones for circularity; z; = 2,

circle. However, such a reference circle could be established by a number of
criteria, such as: the minimum circumscribed circle; the maximum inscribed
circle; the minmax circle!; the least absolute circle [29]; the least squares
circle; or the variations of least squares circle [22]. Alternatively, the center
of the reference circle can be established independently, such as by using the
minimum area difference center method [18]. Thus, with a given tolerance
specification on circularity, the same produced feature may be assessed to
be in tolerance with respect to one reference circle but out of tolerance with
respect to another. Indeed, there is no consensus among the practicianers on
assessment methods [26].

As the competition for better products increases, so does the need for
a more thorough examination of measurement practice. The standard for
evaluating the performance of the coordinate measuring machines [2] provides
specifications and procedures for ensuring the accuracy of the machines. In
addition, calibration and compensation models for CMMs are employed to
further enhance their performance {17, 27]. Yet, without an unambiguous
characterization of circularity (or any other feature), no matter how precise
of a measurement instrument is, the risk of rejecting good parts and accepting
bad parts still exists [15].

The goal of this paper is to establish a mathematical framework upon
which procedures for establishing reference circles, and metrics for measur-
ing geometric deviation (from a reference circle), can be determined unam-

1The maximum deviation from the ideal circle is minimized.



biguously. In the next section, current practice for assessing circularity is
presented. In section 3, issues concerning the notion of circularity and po-
tential discrepancies among assessment procedures employed in current prac-
tice are examined in detail. Experiments are conducted to demonstrate the
effects of employing different assessment procedures. In section 4, a general
mathematical framework for characterizing circularity is proposed. Assess-
ment methods employed in current practice are shown to be instances in this
framework. Finally, families of metrics which yield different implications
about functionality are discussed.

2 Current Practice in Soft Gaging

Conventionally, the profile of a circular feature is measured diametrically.
It is assumed that the distance between two parallel planes in contact with
the workpiece yields a “diameter”. The difference between the maximum
diameter measured and the minimum diameter measured thus is presumed
to give an indication of circularity. However, it is known [11, 23, 30] that
such diametric measurements of circularity can be deceptive. For example,
Figure 2 shows how the profile of a real feature which is decidedly not a
circle may be surrogated incorrectly. Pedagogical counter-examples aside, an
added difficulty with diametric measurements involves the determination of
a realized feature’s center: the centers computed from pairs of diametrically
opposed points will not necessarily coincide.

The profile of a circular feature can also be measured by tracing its
perimeter with a stylus or a probe. One approach is to revolve the produced
feature against a displacement transducer. An accurate reconstruction of the
polar profile then will rely on the accurate centering of the feature, which
can be laborious. A possible remedy is to employ a multiprobe which mea-
sures several coplanar points simultaneously; the errors of estimation of the
position of the center can then be reduced with the extra information [21].
Nevertheless, all CMMs measure the radial ordinates of a circular feature
about a virtual (i.e. estimated) center.

The circularity of a feature is defined in current practice to be the dif-
ference between the maximum and the minimum radial ordinates of any
measured polar profile, with respect to a pre-determined center. Such a
measure of circularity can also be obtained algorithmically from a set of



Figure 2: A Reuleaux triangle can be constructed by intersecting three arcs
of radius D, the centers of which are 120° apart. This produces the virtual
circle C. Any two points obtained by making diametrical measurements of
C will report a “diameter” of D; yet C is clearly not circular.

points by computing two concentric circles: a circumscribed (circum-) and
an inscribed (in-) circle. Conformance to circularity is then assessed by com-
paring the width of the annulus (determined by the two concentric circles)
to a given tolerance. The differences in methods (and results) essentially
depend upon the algorithm used to determine the center of these concentric
circles.

Four assessment procedures are commonly used [3, 13]: Minimum-radial-
separation (MRS), Minimum-circumscribed-circle (MCC), Mazimum-inscribed-
circle (MIC), and Least-squares-circle (LSC), all illustrated in Figure 3. In
each method?, a reference center is computed from P = {p,, p,, ..., Dn}: the
set of measured points [5, 9, 18]. Then the concentric circles circumscribing
and inscribing all p; € P are computed with respect to the reference center.

Efficient algorithms can be used to find reference circles, and thus refer-
ence centers, for the MRS, MCC, and MIC methods. Before presenting
these, we note that an algorithm’s practicality will be related to the time it
needs for computation. Reference to Table 1, based on a 1 MIPS (million

’In British Standards, the Minimum-radial-separation is called the Minimum-
zone-center, the Minimum-circumscribed-circle is called the Ring-gage-center, and the
Maximum-inscribed-circle is called the Plug-gage-center.
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Figure 3: (a) MRS: Compute two concentric circles that are the least apart,
and which enclose all the points. (b) MCC: Compute the minimum radius
circum-circle, then compute the maximum in-circle concentric with the min-
imum circum-circle. (c) MIC: Compute the maximum radius in-circle, then,
the minimum circum-circle concentric with the maximum in-circle. (d) LSC:
Compute a least-squares circle, then compute the minimum circum-circle and
the maximum in-circle concentric with the least-squares circle.



e~ 10 10° 10°
o®) 10" sec. 10° sec. 115 days
o(n*) 10 %sec. 102 sec. 11.5 days
o@®) 10°sec. 1 sec. 16.7 min.
O(n*) 10" sec. 10° sec. 1 sec.

O(n log n) 2.3x 165 sec. 46x 10-4sec. 7x 10-3sec.
om) 107 sec. 10*sec. 16 sec.

Table 1: Run time on a 1 MIPS computer as a function of algorithm com-
plexity, n = number of measured points on a realized feature.

instructions per second) computer, reveals the significance of having efficient
algorithms.

Procedures and Algorithms

The Minimum-radial-separation procedure determines the reference center
by computing an annulus, defined by a circumscribed and an inscribed circle
of P, that has the minimum width, as shown in Figure 3 (a). Concentric
circles that may have such a characteristic can be enumerated by choosing
three points for one of the two concentric circles and one point for the other,
or two points for each circle. Each of the O(n*) pairs of concentric circles
is then checked to see whether the annulus formed by them encloses all
pi € P, which makes the total computation time O(n®). It is shown by
Le and Lee [18] that the number of candidates for checking can be reduced
to O(k), where k is the number of intersections between the closest point
Voronoi diagram and the farthest point Voronoi diagram of P. Additionally,
for each candidate, there is, on average, a constant number of neighbors to
be checked. The closest point and the farthest point Voronoi diagrams of P
each takes O(nlogn) time to compute. Consequently, the concentric circles
needed for MRS can be computed in O(nlogn + k) time®. A more detailed
description of the algorithm is given in Appendix I. It is interesting to note

3In the worst case, k is equal to O(n?).



that a physical implementation of this concept uses a transparent template
with scaled concentric circles: the template is shifted to a position where two
selected concentric circles containing the entire measured polar profile are,
presumably, the least distance apart.

In the Minimum-circumscribed-circle procedure, the minimum circum-
circle containing all p; € P is computed to determine the reference center, as
shown in Figure 3 (b). Then, the maximum in-circle of P, which is concentric
with the minimum circum-circle, is computed. Rather than examining all the
O(n®) candidates, the minimum circum-circle of P can be obtained in O(n)
time with a linear programming formulation {20, 25]. Since the maximum
concentric in-circle can be computed trivially in linear time, the MCC can
be completed in linear time. The linear programming formulation is given in
Appendix II.

The procedure of Mazimum-inscribed-circle is the reverse of the MCC:
the maximum in-circle of p; € P is first computed to determine the reference
center, as shown in Figure 3 (c). Then, the minimum circum-circle that
is concentric with the maximum in-circle is computed. It is shown in [25]
that examining the vertices in the closest point Voronoi diagram of P is
sufficient for the identification of the maximum in-circle of P. As the closest
point Voronoi diagram of P can be computed in O(nlogn) time and the
minimum concentric circum-circle in O(n) time, the MIC can be completed
in O(nlogn) time. The algorithm is given-in Appendix IIL. Since the sample
points are from a feature that is, in some sense, “close” to circular, it is likely
that are the vertices of their convex hull. Aggraval et al. [1] show that the
Voronoi diagram of a convex polygon can be computed in O(n) time; which
means that in such a case, the maximum in-circle can be constructed in O(n)
time.

The Least-squares-circle procedure is commonly used because it is less
sensitive to extreme radial ordinates and is closely related to similar measures
in statistics, curve-fitting, etc. In this method, a circle is computed such that
the sum of the squares of the radial ordinates between this circle and P is a
minimum. The center of this least-squares circle is thus the reference center.
The minimum circum- and the maximum in-circles which are concentric with
this least-squares circle are then identified, as shown in Figure 3 (d).

The computing of a least squares circle, however, is not as trivial as fitting
a least squares line, for which a closed-form solution exists. Fitting a least-
squares circle requires solving a set of nonlinear simultaneous equations, or

7



assessment
method MRS MCC MIC LSC
time
com;lg;dty O(n logn + k) O(n) O(nlogn) O(n)

Table 2: Time complexity of the four referenced-center methods.

solving a nonlinear program [12]. Therefore, an approximation approach is
usually used [3], in which an approximate least-squares center is first com-
puted analytically (Appendix IV); with this center fixed, an approximate
least-squares circle can also be computed analytically.

Table 2 shows the time complexity required for the four methods (the
time complexity for LSC is based on the approximation approach).

3 Discrepancies with Soft Gaging

In this section, potential discrepancies in assessing circularity resulting from
the use of the different assessment methods discussed above are demon-
strated. To do this, we examine the yield - the fraction of circular features
satisfying a given tolerance — obtained by using the different methods. The
yield is determined by Monte-Carlo simulation: subjecting randomly gener-
ated data to each of the four methods. Note that by definition the MRS
procedure will produce the tightest yield, since it creates the minimum an-
nulus containing all points. Nonetheless, using this criterion is useful for
comparing the relative strength of the other methods.

The experimental design consisted of simulating 1000 random “circular”
features. Each feature consists of 23 points distributed uniformly in angle
with respect to an origin, and with radial distances of the points on the
same circular feature following the normal distribution N'(2.0,0.01). These
are used as input into each of the four assessment methods and then com-
pared with circularity tolerances ranging from 0.02 to 0.06. The result is
summarized in Figure 4.

It can be seen in Figure 4 (a) that MRS gives the highest yield (as ex-
pected), while, in most of the cases, LSC has the lowest. When the tolerance
is larger than 0.052, the yield resulting from LSC is higher than those from
MIC and MCC. When the tolerance is smaller than 0.035, MIC is not



different from MCC. Figure 4 (b) depicts the yields computed for MIC,
MCC and LSC, relative to the yield computed by MRS. As the tolerance
gets tighter, the gap between the yield of the MRS procedure and the others
gets wider.

The above experiments illustrate one discrepancy in employing different
assessment methods. One might be tempted to conclude that MRS gives the
most optimistic yield. Perhaps for this reason it is stated in ANSI Standard
B89.3.1, Measurement of Out-of-Roundness, that MRS should be employed
unless otherwise specified [3]. However, a more subtle issue in choosing an
assessment procedure needs to be addressed: whether the reference annulus
obtained by MRS effectively indicates an attainable functionality of the
circular feature.

Consider a simple assembly of a hole and a shaft; the circularity of the
hole is constrained so that a certain functionality generated from the coupling
of the hole and the mating shaft can be ensured. The circularity of such a
hole should be measured with respect to one of its inscribed circles, which
represents a realization of the shaft. MRS may not accurately reflect such
an attainable circularity. For example, under Maximum Material Condition
(MMC), the conformance to the position and size of a hole is usually assessed
with respect to the maximum in-circle of the hole. This is because the region
of permissible locations of a circular feature grows larger as the assessed
radius of the circular feature gets larger under MMC [4]. The relationship
between size and position tolerances of a hole and the yield, with respect
to various combinations of size and position tolerances, are illustrated in
Appendix V. Since the maximum in-circle is employed for assessing the size
of a hole and the minimum circum-circle for that of a shaft, a realization
of the assembly may consist of a shaft which is of the same size as that of
the maximum in-circle of its mating hole. This means that the attainable
circularity of the hole should be relative to the maximum in-circle rather than
the in-circle computed by MRS. Consequently, the width of the annulus
containing the profile of the hole is generally wider than the one identified
by MRS. In other words, MRS may over-estimate the circularity.

Another concern involves the fundamental nature of the metric used to
measure a circular feature for deviations from the ideal. The four assessment
methods all employ as the measure of circularity the width of the annulus
defined by concentric inscribed and a circumscribed circles of the circular
feature. While the same metric is implied by all four methods, the intended

9
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Figure 4: (a) Yield satisfying circularity as a function of circularity tolerance
for 1000 random circular features, each of which contains 23 points, for MRS,
MCC, MIC, and LSC methods. (b) Yield relative to MRS for MIC, MCC
and LSC.
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Figure 5: (a) Crevices penetrating beneath the predominant contact surface.
(b) Protruding points with maximum radial ordinates affect the determina-
tion of the predominant contact surface. MCC is clearly preferred to MIC
in order to assess rotational functionality

functionalities, however, that might be distinguished by each of these meth-
ods, should differ. For example, consider the circularity of a rotating shaft.
Crevices penetrating the contact surface, as shown in Figure 5 (a), might
have little effect on its ability to rotate. Yet, if two concentric circles — re-
gardless how their centers are determined - are fitted to enclose the profile,
the crevices may not satisfy “circularity”. Although these crevices can be ig-
nored (by changing instrument filter settings, and/or by using a probe with
a larger radius), the same cannot be said about protrusions illustrated by
Figure 5 (b), which clearly do affect rotation.

Finally, it does not appear to be reasonable to use one metric (e.g. L, in
LSC) to determine an “optimal” reference circle, and then to use another
(L), which does not have any effect on the determination of this reference
circle.

4 Characterization by Functionality

The challenge of characterizing circularity lies in the ability to relate the
various measures of circularity to different functionalities. In this section,
circularity is first classified into three types — ezternal, internal, and strong
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— corresponding to the ideal features of a disc, a hole (the complement of
a disc), and a circle. Assessment methods employed in current practice are
then seen to be instances of these three.

4.1 Distances

The notion of distance metrics, which are general measures of the “difference”
between two sets of points, can be used to provide information on geometric
similarity and subsequently circularity. A collection of distances d € D in a
metric space is defined as

{deD:PxC(®)— R}, (1)

where P is a circular feature represented by a set of sample points {py, p2, ..., pn },
and C(®) is the class of all circles in R?; the parameter ® consists of a center
¢o and a radius r, and thus uniquely defines a circle.

The distance from p; to an ideal circle C, C' € C(®), denoted by §(p;, C),

is defined as
6(pi;,C) = min | p; — q|, (2)
qeC

where || represents the Euclidean distance. From elementary geometry, c;,
the point on C which is the closest to p;, lies on the ray which emanates from
the center of C' and passes through p;. This means that ¢;, p;, and ¢ (the
center of C, which we assume is available, by definition, when C is given)
are collinear, as shown in Figure 6 (a). Furthermore, for each p; € P, there
exists one and only one ¢; such that ¢; € C' and

| pi = ci |=8(p;, C). (3)

Given P and C, a set of points {¢1,¢;,...,¢,} on C can be defined, which
has a one-to-one correspondence with points of P, as shown in Figure 6 (b).
This set of points on C is said to form a pseudo-circle, and is denoted by C.
Note that C is an implicit function of its center co. The distance from c;, a
point of C, to P can be defined similarly as

6(ci,P) = min | 6 = p; | @

It follows directly that
8(ci, P) =] ci = pi |, (5)

12
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Figure 6: (a) Points ¢; and ¢; on a circle. (b) A pseudo circle C defined by
P.

and therefore

6(ci, P) = 6(ps, 0). (6)
With the distance from a point to a set established, the distance from one
set to another set can now be defined. The distance from P to C, denoted

as d(P,C), is defined as

~

d(P,C) = maxé(pi;,C) (7
pi€P
= max ‘ pi —Ci |a (8)

and the distance from C to P, d(é , P), is defined as

d(éaP) = ma@(&(ci, P) (9)
ci€C
= max|c—pil. (10)

From equations (8) and (10), it is clear that d(P, ¢)=d(C, P).
Finally, we note that it is possible to find a center cj of a “minimizing”
ideal C*, by solving the equation

d(C*, P) = min d(C, P). (11)

13
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Figure 7: Ideal shapes for (a) external circularity, (b) internal circularity and
(c) strong circularity.

4.2 Characterization and Its Instantiations

External circularity measures the distance of a feature (the set P) from a
circum-circle (the set C'). The use of this concept implies that outward (away
from the center of a circle) protuberances of a feature affect functionality,
such as rotational stability. The MCC method can be considered to be
an attempt to measure external circularity of a feature with respect to its
minimum circum-circle, the identification of which can be formulated as
L lei—col, (12)
where D(®) denotes the disc defined by circle C(®) including the areas en-
closed. In other words, the ideal feature for external circularity is a disc
rather than a circle, as shown in Figure 7 (a). The constraint d(P, D(®)) =0
guarantees that all p; € P lie inside C(®).
On the other hand, internal circularity, which measures the distance of
a circular feature from an inscribed circle, implies that inward (toward the
center of a circle) protuberances of a feature affect functionality. For exam-
ple, the circularity of a hole to be mated with a shaft can be characterized by
internal circularity. The MIC method can be considered as an attempt to

14



measure the internal circularity of a circular feature with respect to its maxi-
mum in-circle. The identification of the maximum in-circle can be formulated
as

Bl =) w9
where D(®) denotes the complement of D(®), as shown in Figure 7 (b).
The constraint d(P, D(®)) = 0 guarantees that all p; € P lie outside D(®).
However, to ensure that C(®) is an inscribed circle, the center of C(®) must
be constrained to lie inside the convex hull of P.

Strong circularity is imposed on a circular feature if both the inward and
outward protuberances are crucial to functionality. For example, in sealing
fit, fluid is to be restrained by tight fitting. As the ideal shape for strong
circularity is a circle, as shown in Figure 7 (c), a circle C(®), such that a
certain distance between P and this circle is a minimum, is computed. MRS
and LSC can be considered to be attempts to measure the strong circularity
of a circular feature.

In MRS, the annulus contains P and has the minimum width. Finding
such an annulus is equivalent to finding a circle C(®) such that the Hausdorff
distance between C'(®) and P is minimized. By definition, the Hausdorff
distance [7] between P and C is the metric dy such that

dw(P,C) = dy(C, P) = max[d(P,C),d(C, P)]. (14)

In other words, dy (P, C) captures the maximum of the distances from points
in P to C and from points in C to P. Since d(P, C) d(C, P), dy(P,C) can

therefore be represented by either d(P,C) or d(C, P). The minimization of
the width of the annulus containing P can subsequently be found by solving

& = mindn(P,C(9)). (15)
In LSC, the distance from P to C, denoted as dLs(P, C), is defined as
dLS P C Z [5 p,, (16)

pi€P

= Zm-cit?. (17)

By such a definition, it is clear that dLs(C', P) is equal to drs(P, C’) A
pseudo circle C(®), such that the sum of the squared distances between P

15



and C(®) is a minimum, can be obtained by solving

s = mindus(P, () (18)

4.3 Generalizing the Characterization

Metrics other than those employed in the current practice are now examined.
The sum-of-squares distance (ds) employed in the LSC and the Hausdorff
distance (dy) employed in the MRS are known to be instances of a family
of metrics, the general form of which is

dy(z,y) = Vo1 — yil? + o2 = yalP + - + [0 — yul?, (19)

where z and y are two sets of points such that z = (21,2,,...,2,) and
¥ = (y1,Y2, .-, Yn) [28]. The metric space which results from these distance
functions is also known as the Minkowski space. P and C' correspond to two
points in this space. The squared root of ds can therefore be denoted as
dy, and dy can be denoted as d,,. A reference circle of P can be determined
by using d, as a measure, and conformance to circularity between P and the
reference circle can also be measured by d,.

In general, varying the value of the measure-parameter p serves to impose
different emphases or weights on the similarity between a feature and a ref-
erence circle. When d; is employed, the weights associated with individual
feature point deviations from a reference circle are proportional to the mag-
nitude of the deviation. As the value of p increases, the relative emphasis
of larger deviations increases while that of smaller deviations decreases. By
using L., only those points that deviate the most from the reference circle
are weighted. This progressive shift of relative emphasis as the value of p
varies is illustrated in Figure 8. In the figure, the deviations from an ideal
circle are scaled with respect to the maximum deviation. Note that p does
not have to be an integer.

The effect of employing different d, can also be seen in the dispersion
of the reference centers obtained by using them. The centers of 1000 ran-
dom circular features, each of which consisted of 23 points, obtained from
the (least) dy, dz, d3, and d,, methods, respectively, and are plotted in Fig-
ure 9. The least-d; method results in the least dispersion of center locations®.

16
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Figure 8: Relative importance of deviations with various p.

Dispersion increases as p increases or decreases from two.

The choice of p should be related to the effect deviation has on functional-
ity. For example, when no point departing beyond a critical distance from a
reference circle is acceptable, as in the sealing fit, d, should be used to assess
the conformance to circularity. On the other hand, if the effect on function-
ality is simply proportional to the average magnitude of the deviation, d;
should be employed.

In addition to using different values of p, different restrictions on the
circles also produce different realizations of reference circles. For example,
as indicated above, circum-circles are used when the external circularity of
a rotating shaft is to be characterized. Rather than fitting the minimum
circum-circle to a feature, as in the MCC, a least-d, circum-circle, d;f, such

that
+(P O —c P 1/p
4 (P0)= min Z | pi—cilP) (20)
can be found. Equation (20) finds a circumscribed reference circle C such
that the d, distance between the feature P and C is minimized.
Similarly, instead of fitting the maximum inscribed circle as employed in

4This is due to the way the random circular features are generated. The dispersion
of the least d, centers agrees with a known statistical property, in that dy is the most
appropriate choice for fitting data with normally distributed errors [24].
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Figure 9: Distribution of 1000 least dy, d;, d3, and d, centers. 23 sample
points were used to generate each random “circular” feature.
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the MIC, a least-d, in-circle can be fitted:

— e |P)/P,

d;(P,C) = = i ozm ci 7) (21)
Equation (21) finds an inscribed reference circle C' such that the d, distance
between the feature P and € is minimized. Note that minimizing d};, and dZ,
with respect to ¢y yields the circum- and in- circles which can be obtained
from minimizing d,, as in MRS. However, for p < oo, unlike fitting the
minimum circum-circle or the maximum in-circle, which considers only point
with extreme radial ordinates, fitting a least d or d; circle takes into account
all the sample points.

5 Summary and Conclusion

This paper shows that different assessment methods result in different con-
formance to circularity, and that different functional requirements may be
characterized by these methods. The metrics behind these characterizations
can subsequently be solicited to determine tolerance specifications, and con-
versely, to determine the firmware that should be employed for inspection.

The radial difference between an in-circle and a circum-circles has been
conventionally used for assessing circularity. We have shown that this is in
fact using the least-d, measure of circularity. Similarly, other least-d, val-
ues computed with respect to individual least-d, reference circles can also be
used as measures of circularity. It is noted that, the least-d, value between a
circular feature and a reference circle, denoted as d;, is bounded by dg,. This
means that setting a tolerance on d, would be effective only if it is less than
that set on d,. Similar use of this set of metrics has been established for ap-
proximation and alignment problems in coordinate measurement techniques
[14].

It is shown by Gupta [16] that different performance parameters of roller
bearings correspond to different functions of out-of-roundness. The distance
metrics in the Minkowski space can serve to measure these provided that the
influence on functionality is a function of the radial distance from the ideal.
For other types of relationship between geometric deviation and functionality,
different sets of distance metrics may have to be employed.

Other metrics capable of characterizing the difference between geometric
shapes have been proposed. For example, the minimum area difference center
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analyzed by Le and Lee [18] which finds two concentric circles with minimum
area difference between them. Another is a method which represents an
object by a turning function [6]. A turning function Op(s) of a feature P is
the angle of counterclockwise tangents as a function of s, where s is measured
along the circumference from a reference point on P. The distance between
a feature P and a reference circle C is defined as

4r(P,C) =] 0 ~ 8o ;= (| | 85(s) - Oc(s) " ds).

Oc(s) is clearly a straight line; the difference between O¢(s) and Op(s) can
thus be computed easily. By minimizing d7(P,C), the conformance of P to
C can be computed. We can see that this is equivalent to finding d, when the
integral is represented by a finite sum, as it must eventually if p is represented
by a finite set of points.

Finally, we stress that n, the number of sample points, affects the charac-
terization and the assessment of circularity. As illustrated in Appendix VI,
by employing different number of sample points, the estimated yield on cir-
cularity and the stability of the estimation will be different. The choice of an
appropriate value of n, and its relation to statistical stability and consistency
remains to be investigated.
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APPENDICES

I. Minimum Radial Separation

To have an O(n?) time algorithm, the closest point and farthest point
Voronoi diagrams of P need to be computed first. Both diagrams can be
constructed in O(nlogn) time with a divide-and-conquer scheme {19, 25].
Then, the two diagrams are merged to create the candidates for the centers
of the circum- and in-circles of P. The intersection of these two diagrams
are equivalent to that of O(n) line segments, which can be achieved with an
algorithm by Chazelle and Edelsbrunner [8] in O(nlogn + k) time, where &
1s the number of intersections between the two diagrams.

The ( Voronoi) edges of the Voronoi diagrams are the loci of points equidis-
tant to two given points. (For further clarification, see Appendix III.) The
intersection of an edge from the closest point Voronoi diagram and an edge
from the farthest point Voronoi diagram gives the center of a pair of circum-
and in-circles of P. The center of such a pair of circles with minimum radial
separation is selected.

IT. Minimum Circumscribed Circle

The algorithm developed by Megiddo [20] is based on a linear time al-
gorithm that identifies a constrained version of the minimum circum-circle.
As a constraint, the center of the circum-circle is forced to lie on a given
line (e.g. the z-axis). The n points in P can be grouped into n/2 pairs, the
perpendicular bisector of each of which is computed. The z-coordinates of
the intersections of these perpendicular bisectors with the z-axis are called
critical values. The optimum solution can be identified in linear time by
using the median of these critical values.

It can also be shown that the side of the given line on which the uncon-
strained center of the minimum circum-circle lies can be determined in linear
time. By utilizing this result, it is shown that the unconstrained minimum
circum-circle can also be constructed in linear time.

ITI. Maximum Inscribed Circle

To identify the maximum in-circle of a point set P in O(nlogn) time,
two procedures are employed. The closest point Voronoi diagram of P is first
constructed by using a divide-and-conquer scheme [25]. Then, the candidates
which are the vertices of the closest point Voronoi diagram are enumerated
to establish the center of the maximum in-circle.
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The closest point Voronoi diagram of P is a planar partition such that
each region in the diagram contains the locus of the points that is closer to
a point of P than to any other point of P. The edges of the diagram mark
the locus of points equidistant to two neighbors. The edges of a Voronoi
diagram intersect at vertices, which are equidistant to all the pairs of points
of P contributing the Voronoi edges. The construction for an in-circle is
immediate: Take a Voronoi vertex as the center; it must be equidistant to
all the contributing nearest points. As there are as many in-circles as there
are Voronoi vertices, the in-circle with the largest radius is chosen.

IV. Least Squares Circle

The approximate least-squares circle used in practice [3] is achieved in
two steps. An approximate least-squares center (z.,y.) is first established
from the set of sample points {(z1,1),(%2,Y2), -+, (Tn,Yn)}, Where

2 ez 2%y
T oon 7T

Le

Then, the radius of the least-squares circle is computed by finding the
average distance from the sample points to the least-squares center (z., y.),
which gives

- Yiri i \/(me — 2%+ (yi — ye)?

n n
It is clear that such a least-squares circle can be obtained in O(n) time.

V. Size and Position Tolerances under MMC The relation-
ship between size and position tolerances is illustrated in Figure 10, in which
the size tolerance ranges from zero to a given value 7. A cross-section of the
truncated cone gives the position tolerance with respect to any particular
realization of size tolerance. The MIC uses the maximum in-circle and thus
leaves more room for deviation of the location of the center. On the other
hand, the size of a shaft feature is typically assessed with MCC under CMM.

The yield which is the percentage of realized features that satisfy both
position and size tolerances under MMC is computed with respect to MRS,
MCC, MIC, and LSC methods. In this context, the four methods refer
to the four different center identification procedures. Since the tolerance on
size is under MMC, the size of a hole feature is assessed by the maximum
in-circle of the hole. For each method, yields are computed with size ranging
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Figure 10: The relationship between position and size tolerances under MMC
basis.

from 1.95 to 1.99, size tolerance from 0.00 to 0.04, and position tolerance
from 0.01 to 0.05. 1000 random circular features, each of which contains 23
points, generated as described in Section 3 are examined. The computed
yields are illustrated in Figure 11.

Each of the piecewise curves illustrates the yield of random circular fea-
tures satisfying a fixed position tolerance but different size tolerance under
MMC basis. In each curve, as size tolerance approaches to 2.0 (i.e. the mean
of the radial distances of the sample points), the chance that an inscribed
circle of a randomly generated circular feature is greater than the MMC size
decreases. As a result, the probability of the random circular features sat-
isfying both position and size tolerances decreases. It is seen that with the

same specification on size and position tolerances, MIC gives the highest
yield, while MCC has the lowest.

VI. Effect with Various Sample Sizes

The effect of employing different numbers n of sample points on the circu-
lar feature is illustrated in Figure 12. A thousand random circular features
are generated for circular features with 7, 11, 13, 17, 23, and 29 sample
points, respectively, and least-squares centers are computed for every indi-
vidual circular features. The difference in the dispersion of these least-squares
centers among circular features of different sample sizes can be easily seen,
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Figure 11: Yield, which requires satisfying both position and size tolerances,
as a function of size tolerance for LSC, MRS, MIC, and MCC. Each curve
shows the yield computed with a fixed position tolerance but with various
size tolerances under MMC basis. The sample is 1000 random circles as
described in Section 3.
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Figure 12: Location of least squares centers as a function of n.
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Figure 13: The means p and standard deviation o of the distances between
1000 least-squares centers and the origin.

in that the dispersion of centers decreases as the sample size increases. The
means and standard deviations of the radial distances of the least-squares
centers from the origin also exhibit such a reciprocal trend, as illustrated in
Figure 13.

The influence on the width of the annulus enclosing the circular feature
by employing different numbers of sample points can also be observed. The
annulus enclosing a circular feature is computed using LSC and compared
to different tolerance specifications for circularity. The yield of satisfying
circularity is computed for each set of circular features of the same number
of sample points, as illustrated in Figure 14. Each of the curves corresponds
to a specification of circularity tolerance, ranging from 0.02 to 0.06 with
a 0.005 increment. As the number of sample points on a circular feature
increases, the yield satisfying circularity decreases. This is due to the fact
that the more (random) points that are generated, the more probable it is
that larger deviations will appear.

It is clear that the less dispersion there is in the least-squares-centers,
the more stable the estimation of the center will be. This indicates that it
is desirable to have a “large” number of samples on a circular feature. On
the other hand, as the sample size increases, the estimated yield of the set of
circular features satisfying circularity decreases, which suggests the use of a
“small” number of samples. This trade off will be explored in future studies.
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Figure 14: Yield requiring satisfying circularity as a function of n = number
of sample points. The LSC method is employed to assess the conformance to
circularity. Each curve corresponds to a specification of circularity tolerance.
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