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Abstract

A linear time algorithm that computes the envelop of the offset of a mono-
tone chain is presented. The scallop hull - an extended notion of the convex
hull - of the monotone chain is first computed by using an approach similar
to the convex hull construction algorithm. The offset of the scallop hull,
which yields the desired envelop, can then be computed in linear time from

the scallop hull, giving a tool path:



Ao

(a)

Figure 1: Sectioning a surface and simplifying its geometry.
1 Introduction

The problem of finding an offset arises in the generation of tool paths for
machining a surface on a numerically controlled (NC) machine. When a
hemispherical (ball-end) cutter is used to create the surface of a workpiece,
the center of the hemispherical tip of the cutter and the resulting surface
maintain a constant distance, which equals the radius of the ball-end cutter.
The tool path (taken by the center of the cutter) can therefore be obtained
by computing an offset of the desired locus of contact points on the surface
of the workpiece.

There are in general two types of NC tool paths:“direction-parallel” [13]
and “contour-parallel”. This paper examines the former by taking the fol-
lowing view. Suppose the representation is a graph surface z = fi(z,y). (A
parametric surface P(u,v), i.e. ¢ = F(u,v), y = G(u,v), z = H(u,v) can
be implicitized as f(z,y, z) = 0; hence z = fy(z,y).) Sectioning the surface
with a plane parallel to, say, the z2-plane, gives a curve of intersection. See
Figure 1. The offset of this curve yields one of the zig-zag tool paths; the
subsequent ones are obtained similarly by taking further parallel sections.

Note that the tool paths thus generated do not have to correspond to the



constant parametric curves. And, overcut and undercut may occur since the
surface normals are not necessarily in the section plane. This when cast in
the framework of a coordinate measuring machine (CMM), seems not unrea-
sonable. The probe of a CMM is spherical. The manner in which it acquires
data is by contact, via small deviations from the computed tool path.

In the literature on NC tool path generation, most researchers [2, 3, 5,
7,6, 11,10, 15, 16, 17] deal with sculptured surfaces and are concerned with
tool collision (due to the possible self-intersection of the offset). This paper
offers a novel concept, the scallop hull — a generalization of the familiar
convex hull [19], and applies it to the computation of a collision-free tool
path, all in linear time, i.e. in time linearly proportional to the number of
segments in the input curve. So that this novel idea is un-encumbered by
analytic or numerical techniques, the input is assumed to be composed of n
line segments, a chain. While there is a selection of 3-, 4-, and 5-axis NC
machines, the simplest of them, 3-axis, is adopted. Because of the limited
degrees of freedom, the chain must be monotone, i.e. it is single-valued in
the z direction [4].

The tool path for a monotone chain can be obtained by first computing
an initial offset and then eliminating the portions that cause gouging. The
initial offset is the concatenation of the offsets of every individual line seg-
ment and vertex in the chain, as shown in Figure 2 (a). The offset of a line
segment is simply a parallel line segment at a given distance. The direction
is understood to be away from the material side. A vertex can be thought
of as a degenerate line segment, a constant-distance offset from which is a
circular arc. The extent of the arc is determined by the perpendiculars of
the line segments that meet at the vertex. (See Figure 3.) To eliminate
self-intersection in the initial offset, two methods are applicable: one uti-

lizes the closest points Voronoi diagram [13, 18, 20] of the chain to identify
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Figure 2: The intersection-free scallop hull.

Figure 3: Initial offset of a vertex and of an edge.



self-intersections of the initial offset, and the other utilizes an algorithm de-
veloped by Hershberger [14] for constructing the envelop for a set of line
segments. Both methods require O(nlogn) time [1]. In this paper, rather
than dealing with the initial offset, the tool path is computed by offsetting
the scallop hull of the monotone chain, which is free of self-intersection. The
scallop hull is similar to a—hull defined by Edelsbrunner, Kirkpatrick, and
Seidel [9] for capturing the “shape” of a set of points. The parameter « is
a real number. When it is positive, the a—hull of a set of points is defined
as the intersection of all the discs that have radii 1/a and contain all the
points in the set. When « is negative, the a—hull is the intersection of all
closed complements of the discs (with radii equal to —1/a) that contain all
the points in the set. The case of @ < 0 is analogous to a scallop hull for a
set of points. The a—hull of a set of n points can be computed in O(nlogn)
time [9].

The scallop hull of a monotone chain is computed by sliding a circle
against the boundary of the chain from its non-material side. See Figure
2 (b). The monotonicity of the chain facilitates the amortized complexity
for backtracking hence enabling the develo\pment of a linear time algorithm.
The scallop hull has three kinds of elements: convex vertices, circular arcs
substituting the portions of the chain that cannot be reached by the circle,
and the portions of the chain that are in contact with the circle. Notice
that there is no concave vertex in a scallop hull, which gives rise to a self-
intersecting offset. When the radius of the circle is infinite, the scallop hull
of the chain becomes its convex hull.

The tool path is simply the locus of the center of the circle, which can be
stored during the process of constructing the scallop hull. This takes O(n)
storage, where n is the number of segments. In this paper, the tool path is

computed by offsetting the scallop hull, without costing in storage, as illus-



Figure 4: Offset of a scallop hull.

trated in Figure 4. This takes O(n) time since there is no self-intersection
in the scallop hull. The total time is O(n) + O(n) = O(n).

2 Preliminaries

Let C = (v,v2,...,V,) be a chain that is monotone with respect to the
z-axis and let C be represented by an array of its n vertices. The line
segment joining two successive vertices v; and v;4+; is called an edge of C
and is denoted by e;. Assume that e; is directed such that z; < z;41, for all
1 <1< n-1. Two downward vertical rays with the endpoints at v; and v,
are added to the chain C so as to permit the offset of the first and the last
vertices.

Sliding a circle of radius r against the left side (the non-material side)
of C makes contacts at points p. The portion of C' that does not come
in contact with the circle is called a deficiency. The two contact points
Pk-1 and pg, bounding the deficiency (px-1,vj,px), shown in Figure 5, are
the supporting points of the circle. A supporting point can also be at a
vertex in the chain, such as pg4; shown in Figure 5. The concave upward
portion of the circle between two supporting points pg+1 and pr4o is called
the lid of the deficiency, and is denoted by Ag4;. Since C is monotone with

respect to the z-axis and since the circle slides against the upper side of



deficiencies

Figure 5: Examples of the defined terminologies.

Figure 6: Pairs of supports: (a) slope-slope, (b) peak-peak, (c) peak-slope.

C, only the lower half of the circle may come in contact with C. Let the
lower semi-circle containing the lid Ax4; be denoted as m¢4+;. An edge or
a partial edge of C which comes in contact with the circle between p; and
Ph+1 (supporting points or vertices of C) is called a link and is denoted by
Ix. The concatenation of lids A; and links [; forms the scallop hull of C.
The supporting points of the circle on a pair of edges can be computed
analytically. Consider the edges e; and e;, as shown in Figure 6. Let the
extensions of e; and e; intersect at ¢, and let Zv;qv;4; denote the angle
between the non-material sides of these two lines and equal 26, where 8 <
90°. Let the distance between q and v; be denoted as d;, and likewise for

distances to the other vertices. There are three combinations of supporting



points — slope-slope, peak-peak, and peak-slope — as shown in Figure
6. When it is a slope-slope pair, as shown in Figure 6 (a), the supporting
points pg and pi41 are two interior points of e; and e; such that dy = diy1 =
r/tanf. The center and the two endpoints of the lid thus defined can then
be computed. When it is a peak-peak pair, as shown in Figure 6 (b), the
center of the lid lies on the perpendicular bisector of v; and v;41 such that its
distances from v; and v;4+; equal 7. When, it is a peak-slope pair, as shown
in Figure 6 (c), the center of the lid lies on the parabolic curve defined with
v; as the focus and edge e; as the directrix such that its distance from v;
equals 7. With the center of the lid identified, the supporting point px+; on
e; can then be computed.

However, the determination of the combination of supporting points re-
quires testing all the possible cases. When (d;4; -tanf) < r < (d; - tan#)
and (d; - tanf) < r < (d;41 - tanf), only a slope-slope pair of supporting
points can be realized. Otherwise, i.e., if » and the distances of ¢ to the
four vertices of e; and e; do not satisfy the above relationship, whether it
is a peak-peak or peak-slope pair can be determined by checking the valid-
ity for the rest of possible cases. Note that vertices v;4; and v; may also
be the peak. Additionally, in the proposed algorithm, if e; and e; are not
successive edges, supporting points are computed only when the two edges
are detected to support the sliding circle. Therefore, by enumerating all
the seven possible pairs, the combination of the supporting points can be

verified, and the center and the endpoints of the lid can then be computed.

3 Construction of a scallop hull

The algorithm for constructing the scallop hull is analogous, in spirit, to

the Graham scan algorithm [12] for computing the convex hull of a set of



points, though they differ in details. The Graham scan starts by sorting the
given set of points lexicographically by their polar angles with respect to an
arbitrary point in the interior of the convex hull of the set. Interior points
are eliminated one by one by comparing three successive points. For the
scallop hull, the deficiencies are equivalent to the “interior points”. They
are eliminated by comparing successive edges of the given monotone chain,
and therefore no sorting is required.

Algorithmically, the monotone chain is traversed and, during the process,
lids and links of the scallop hull are constructed and/or updated. A current
scallop hull is maintained by a stack. Two procedures — forward inclusion
and backward ezxclusion — are executed during the traversal. As suggested
by their names, forward inclusion identifies segments (lids and links) that
may be pushed into the stack, whereas backward exclusion removes or up-
dates the segments in the stack. The lids and links remaining in the stack

when the algorithm terminates constitute the scallop hull of the chain.

Algorithm (Scallop_Hull).

(v1,v9,...,V,): a monotone chain

S: the stack maintaining the segments in the current scallop hull
k—1,p « vy, TOP(S) « Link

fori=2ton-1do

Forward Inclusion(S,e;_1,¢;)
OUTPUT(S).

The details in the two procedures are now discussed individually. The
procedure Forward Inclusion first determines if two successive edges, e;-
and e;, support a circle. At step 1, if the exterior angle of v;, formed by

e;—; and e;, is less than 180°, as shown in Figure 7 (a), the two edges
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Figure 7: Cases in procedure Forward_Inclusion.
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form a support. A lid thus computed is called the active lid. Procedure
Backward_Exclusion is then invoked to determine if the active lid agrees
with its preceding lids and links, and resolve the disagreement if there is
any.

If the exterior angle of v;, formed by e;_; and e;, is greater than or equal
to 180°, as shown in Figure 7 (b), (c), and (d), e;—; and e; do not support
the circle. Step 2 begins. If px # v;, either the entire edge e;_; (which occurs
when the segment obtained in the previous iteration is a link, say lx_, as
shown in Figure 7 (b)) or the part of e;_; between v; and the supporting
point pg (which occurs when the segment obtained in the previous iteration
is a lid, say Ak-1, as shown in Figure 7 (c)) is pushed into the stack as
a link /. When p; = v;, as shown in Figure 7 (d), no link is generated.
This corresponds to step 2.2.2. However, if 74_; intersects e;, as shown in
Figure 7 (e), Ak—1, the lid at the top of the stack, needs to be updated, and
procedure Backward_Exclusion is then invoked with the updated Ax—; as

the active lid.

Procedure (Forward_Inclusion(S$,e;_;,e;)).

S: the stack maintaining the segments in the current scallop hull
As: the active lid
1. if [’U,'_l’l),'vi+1 < 180° then
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Compute Ay, such that ps € e;_1 and psy; € €;
Backward_Exclusion(5,\;)
2. else [Lv;—v;vi41 > 180°]
2.1. if TOP(S) = Link then
Pk < Vi1 Pk41 < U
PUSH(lk, S)
k—k+1
2.2. else [TOP(S) = Lid = A\—q]
2.2.1. if px # v; then
Dk+1 < U
PUSH(lk, S)
k—k+1
2.2.2. else [p = vj]
if Te_1Ne; # 0 then
UPDATE(A—1), such that p; € e;
Ps < Pk-1, Ps+1 < Pk
k—k-1
Backward_Exclusion(S,),).

Procedure Backward_Exclusion is responsible for checking if the active
lid A,, supported by e;_; and e;, agrees with the segment at the top of the
stack. TOP(S) can only be a lid or a link. If the segment at the top of the
stack is a lid Ax_1, then the intersection between 7;_; and e; is checked.
If the intersection is empty, the active lid is pushed into the stack; if there
exists a part of the edge e;—; between A\¢_; and the active lid, as shown in
Figure 8 (a), this partial edge pip, is pushed into the stack as a link before
the active lid is. This corresponds to step 1.1. If, on the other hand, the

intersection between semi-circle m,—; and the edge e; connecting v; and v;4;
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Figure 8: Some cases illustrating procedure Backward_Exclusion.

is not empty, as shown in Figure 8 (b), a new active lid supported by the
edge containing the support pr_; and e; is computed. This corresponds to
step 1.2. Procedure Backward_Exclusion continues with the new active
lid. However, if 7m¢—; and the active lid coincide, as shown in Figure 8
(c), the lid A¢—; is extended to p,+;, and procedure Backward_Exclusion
terminates.

If the segment at the top of the stack is a link lx_;, the side of the active
lid to which x_, lies is determined. At step 2.1, if [;_, lies to the concave
side of the lower semi-circle containing the active lid, the active lid is pushed
into the stack. Again, if there exists a part of the edge e;_1 between [;_;
and the active lid, as shown in Figure 8 (d), this partial edge pxp, is pushed
into the stack as a link before the active lid is. At step 2.2., if, on the other
hand, a portion of [x_; lies to the conver side of the active lid, as shown
in Figure 8 (e), a new active lid supported by the edges containing pr—,
and e; is computed, and the link /,_; is updated accordingly. Procedure

Backward_Exclusion then continues with the new active lid.
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Procedure (Backward_Exclusion(S,);)).

S: the stack maintaining the segments in the current scallop hull
As: the active lid
while TOP(S) # nil do
1. if TOP(S) = Lid = Ax—; then
1.1. if 7,y Ne; =0 then
if px # ps then
Pk+1 < Ps
PUSH(lk, S)
k—k+1
Pk < DPss Pk+1 < Ps+1
PUSH(A¢, S)
k—k+1
EXIT
1.2. else [mx_y Ne; # 0]
if COINCIDE(7g-1,7,) then
Ak-1 &= A1 U A
EXIT
else
UPDATE(A-1,5), such that px € ¢;
Ps < Pk-15 Ps+1 < Pk
k—k-1
2. else [TOP(S) = Link = lx_1]
2.1. if [y_; C CONCAVE(r,) then
if pr # ps then
Pk+1 < Ps
PUSH(lk, S)
k—k+1

13



Pk = Psy Pk+1 — Ps+1
PUSH(Ak, S)
k—k+1
EXIT
2.2. else [lx-;N CONVEX(r,) # 0]
Compute Ag, such that ps € [ and psyq € €;
UPDATE(lj-1).

That the algorithm gives a correct scallop hull is now discussed. Forward
inclusion computes, for all pairs of successive edges, circular arcs and line
segments which may become the lids and links in the scallop hull. When
a newly created link conflicts with the lid at the top of the stack (the only
possible conflict between a link and the current scallop hull), as shown in
Figure 7 (e), a new lid is computed as the active lid, which reduces this case
to the case of having a newly created lid. Therefore, backward exclusion
only needs to ensure that there is no conflict between an active lid and the
current scallop hull. There are two cases of possible conflict. If the top of
the stack is a lid Ax—y, a conflict occurs when 74_; intersects e;, the second
of the pair of successive edges in question, as shown in Figure 8 (b). On the
other hand, if the top of the stack is a link /t_q, a conflict occurs when a
portion of /,_; lies to the convex side of the active lid, as shown in Figure
8 (e). A new active lid is computed in both cases. The following lemma
formalizes that if neither of these two cases occurs, there will not be any
conflict between the active lid and any lids or links already in the stack.

Lemma Suppose an active lid )\, is identified in Forward_Inclusion. If
the segment at the top of the stack is
(1) a lid A~y such that Ty does not intersect e;, or

(ii) a link lx_y such that it lies to the concave side of A,
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Figure 9: Termination conditions for Backward_Exclusion.

then, e; N1 =0 and T N1y =0, for all j < k.

Proof. (i) Since C is monotonic with respect to the z-axis, the z coordinates
of the centers of the tentative lids are ordered with respect to the z-axis.
If 74—, does not intersect e;, then m;_y, for j < k, which is to the concave
side of m¢_, as shown in Figure 9 (a), cannot intersect e; either. On the
other hand, by induction, Tx_; does not intersect [;_;, for j < k - 1, for,
otherwise, Ax_1; would have been updated in an earlier iteration. Moreover,
since z; < Tg-1 < T4 (aé shown in Figure 9 (b)), for j < k — 1, it is not
possible for 7, to intersect /;_;.

(ii) This part of the lemma can be established with reasoning similar to
those for (i). O

The lemma establishes the stopping condition for Backward Exclusion.
When the stopping condition is met, the active lid will be a lid of the scallop
hull for the chain from the beginning of the chain to e;. By induction,
the Scallop_Hull algorithm described above gives the scallop hull of the
monotone chain C.

The time complexity of the algorithm for computing the non-gouging
tool path for a monotone chain is now analyzed. There are only (n + 1)
iterations for forward inclusion since there are only (n + 1) successive pairs
of edges (including the two downward vertical rays). Updating the stack,

which is the main task for backward exclusion, takes O(n) time in total,
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since there are at most (n — 1) lids and (n + 2) links in the scallop hull
and each segment is stacked or unstacked at most once. Therefore, the time
complexity for computing the scallop hull is bounded linearly by the total
number of vertices in the chain. The offset of a scallop hull can be computed
by concatenating the offset of the links and the vertices in the scallop hull.
The offset of a lid is its center and can therefore be ignored. Since the offset
of a scallop hull can also be computed easily in O(n) time, the tool path for
a monotone chain can be constructed in linear time. This establishes the
following theorem:

Theorem A non-self-intersecting tool path by offsetting a monotone

chain of n vertices can be computed in O(n) time.

4 Summary and Conclusion

The scallop hull of radius r is a generalization of the convex hull (for which
r equals infinity). An O(n) time algorithm for computing the scallop hull
of a monotone chain of n edges has been given; the algorithm is therefore
optimal.

Application for the reported work includes NC machining and CMM
inspection. That the mechanisms are 3-axis is underscored by the assump-
tion of the moil(;tdnicity of the two-dimensional data. In three dimensions,
monotonicity ramifies as a terrain surface (8], for which each point (z,y, z)
on the surface is visible from “above”, e.g., from z = co. Computing the off-
set for such a terrain surface has obvious utility in geographical information

systems as well.
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