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A GENERALIZATION OF THE
HAUSDORFF-YOUNG THEOREM

M. S. RAMANUJAN (Ann Arbor) and N. TANOVIC-MILLER (Sarajevo)

Abstract. Considering mixed-norm sequence spaces £7°9, p, g 2 1, C. N. Kel-

logg proved the following theorem: if 1 < p £ 2 then Ir c 072 and 2 ¢ IT;',
where 1/p + 1/p' = 1. This result extends the Hausdorff-Young Theorem.

We introduce here multiple mixed-norm sequence spaces 791292 +9n oxam-
ine their properties and characterize the multipliers of spaces of the form goleinha
with the index s repeated n times. By an interpolation-type argument we prove

that L¥ C (E“‘[Q‘“]‘Q,BP"D‘"]J) for 1 < p = 2. Using these results we obtain a
further generalization of the Hausdorff-Young Theorem: if 1 < p £ 2 then e

! 1920m oeml o 3 .
< ¢#37 and ¢» C L' for each n = 0,1,2,.... The spaces £ *" decrease
and 737 jncrease properly with nfor 1< p< 2 and 1/p+1/p' =1. We also

extend a theorem of J. H. Hedlund on multiplers of Hardy spaces (]/{\P, P/I\Z) and
deduce other results.

1. Introduction

For p 2 1, LP denotes the Banach space of all 27-periodic real or com-
plex valued integrable functions with norm ||f||;, = (51; / |f|p) , where the
integral is taken over any interval of length 27. L° is the Banach space
of all 27-periodic real or complex valued essentially bounded functions with
the essential supremum norm. If the series ), 4 cg %% is the Fourier series

of a function f € L' we write ? = (?(k)) vz for the sequence of coefficients
(ck)rez and s, f for the partial sums sp, 1w =0,1,... . Let [P := {? . felP}.
Clearly, L? is a Banach space of two-way sequences, under the induced norm
“fl‘f} := ||fll;»- For p 2 1, Hardy spaces and the spaces of their Fourier
coefficients are denoted by HP and H? respectively, i.e., H? = { fer?:
F(k)y=0for ke Z~} and HP = {f : f € H?}.

We refer to the following standard sequence spaces of two-way, respec-
tively, one-way sequences: cq — the space of all null sequences and (> — the
space of all bounded sequences, under the norm |||y = supy |cxl; €7, 1 <p

1
< 00, — the space of all sequences (c}) such that |lcll» = (chz lcklp) e
is finite.
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280 M. S. RAMANUJAN and N. TANOVIC-MILLER

One of the unfortunate facts in Fourier analysis is that there are no suit-
able characterizations of the spaces LP. p 21, except for p =2, in which
case it %s well knf)vm that L2 = ¢2. All available descriptions of these spaces
of Ff)urler coefficients, in terms of sequences alone, involve only one-way in-
clusions. A classical result is the Hausdorff-Young Theorem: for 1 < p < 2,
LP C 7 and 7 C LV

Here, and throughout the paper we will assume that for p21,1/p+1/p
=1 where p’ is interpreted to be co whenever p=1

The inclusions of phe Hausdorff-Young Theorem are only interesting for
I <p<2. Namely, for p =2 they clearly reduce to the above mentioned
equality L2 = £2, and for p = 1 to the inclusions LI C £ and ¢! ¢ L. Com-
pared to the well known facts that ! C ¢g and ¢ ¢ ;1, the latter inclusions
are too weak. Here .A denotes the space of absolutely convergent Fourier se-
ries. It is also well known that the analogue of the Hausdorff- Young Theorem
for p > 2 does not hold, see for example [6, 14.4].

C. N. Kellogg gave a first proper generalization of the Hausdorff-Young
Theorem by proving the following result {10, Theorems 3 and 4[:

THEOREM K. If 1 <p <2 then L9 C 72 and P2 C LY,

Here, /"%, p,g=21, is a mixed-norm space of all sequences
c= (Ck)kez such that the sequence of P-norms of the dyadic sections of c,
Pe=73 0 <pj<ai+t cre®, belongs to the space £9, ie., (HdJC“ep);io e (.
Since for 1 < p < 2, £¢2 C ¢¢' and 7 C 72 hold properly, Kellogg’s theo-
rem is a proper extension of the Hausdorff-Young ngorem. For p = 2 the
statements of Theorem K also reduce to the equality L2 = ¢2 because clearly
022 = g2

REMARK 1. The inclusions of Theorem K are not valid for p = 1.

Kellogg remarked in [10, p. 125] that the restriction p > 1 is necessary
for the inclusion IP C (72 proving that there exists a function f € L! such
thatf ¢ ¢,

We supplement Kellogg’s remark by showing that the restriction p > 1
is also necessary for the second inclusion ¢P2 C LP', ie., there exists
¢ € £%2 such that ¢ ¢ L. Namely, let ¢ = (cg),cz be an even sequence with
cp =c_p = 1/(klogk) for k =2,3,... and 0 otherwise. Then (d’c|[|n S 1/j
and therefore ¢ € £?. The corresponding trigonometric series with coeffi-
cients ¢ = (cg)pez i the cosine series 3 ;2 ,coskz/(klogk). It converges
pointwise for all z 3 0 (mod 27) to a function f € L' and is therefore the
Fourier series of that function [6, 7.3.1]. However, as explained in [6, 12.8.3]

f & L*°. Consequently ¢ = Tel?andc=f¢L>.
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A GENERALIZATION OF THE HAUSDORFF-YOUNG THEOREM 281

Kellogg proved Theorem K by giving a characterization of the multipliers
(£m#,£%") [10, Theorem 1] and by appealing to the following result of J. H.
Hedlund on multipliers of Hardy spaces [8, Theorem 1]:

THEOREM H. If 1 <p <2 and q=2p/(2 — p) then {2°° C (I/{\Z’,I?\'Z).

Our aim is to extend these results to multiple mixed-norm sequence
spaces of type 791,929 Jeading to a generalization of Kellogg’s, and there-
fore of the Hausdorff-Young Theorem for 1 < p < 2, with 7*, respectively
#P replaced by multiple mixed-norm spaces P17 where [2;n] stands for the
index 2 repeated n times. The spaces 7992+~ are defined inductively by
requiring that ¢ € ¢79:929 if and only if the sequence of (9192 dn=1[d ]
norms of the dyadic sections d’c belongs to the space £2°. Precise delinitions
of these spaces are given in Section 2.

Characterizing the multipler spaces (E“[t;"]’s,ﬁu’[w‘”]’”) and extending
some of the ideas used in the proof of the Marcinkievicz’s theorem for op-
erators of weak type to such operators on multiple mixed-norm spaces, we
derive a new generalization of the Hausdorft-Young Theorem. We prove
that for 1 < p £ 2 and for each n=1,2,..., L? c #"[Z"] and pZ7 C LV,
where 727 decrease and 7™ increase properly with n. Consequently,
T A 27 and (U, p20) © LY.

We also deduce that the above statement on multipliers of Ilardy spaces,
i.e.,, Theorem H, can be properly extended for 1 < p < 2 to the inclusion
galoom] ¢ (I/{\P,Hz) valid for all n = 1,2,... with a remark that the spaces
(ol increase properly with n. We observe that for p =1 not only does
the above generalization of Theorem K fail if n 2 1, but also that the cor-
responding generalization of Theorem H fails for p =1 and n > L. Hence,
our approach turns out to be quite different from that of Kellogg [10], which
relies on properties of operators of strong type, i.e., in this case on the cor-
responding properties of Hardy spaces for p =1 and p = 2, and a result of
Hedlund on operators of strong type [8, Theorem 2].

We discuss also other properties of the multiple mixed-norm spaces, in
particular the inclusion relations, observe that they are BK spaces, but that
the above intersections and uuions are not, except for p = 2, and deduce
several implications of our results.

2. Multiple mixed-norm spaces

In this section we give the basic definitions and discuss some of the es-
sential properties of multiple mixed-norm sequence spaces. '

Letdg = {—1,0,1} and for j =1,2,... letd; = {k € Z : 2 S |k| < 2i+1}
be the j-th dyadic block of Z. Clearly (dj);-io forms a partition of the inte-
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gers, i.e., Z = U]o'io d;. This allows breaking any sequence ¢ = (¢ )5 into a
sequence of dyadic sections (djc);io, where d/¢ = Zkedj cre® and e* denotes

the sequence with 1 at the kth place and 0 elsewhere.
For 1 £ p,q £ oo the mixed-norm space ¢ is defined as the set of all

¢ = (Ck)ez Such that (||djc||g,,);.)i0 € £7 with the norm

< ] 1/q ,
el :=(§judﬂcu‘§p) L 1£g<00r el = sup | dellp.
j=0 ?

The multiple mixed-norm spaces introduced here are defined using fur-
ther dyadic partitions of the blocks 4; and multiple refinements of the dyadic
sections of sequences ¢ = (cg),cz- More precisely, we consider n-fold dyadic
subblocks of d; defined for j =1,2,... as follows:

djoo..0 = {k €Z : |k| =27,27 +1},
djiyigo-0 = {k €Z s [k =27 +2% 4 42 2 420 4. 42" 41}
for 1 < i <ipoy <0 <y <jym=12...,n—1and

djiyoiy = {h€Z : 27 420 - 4201 4 20 S |k

<97 4911 4 ... 4 Qin-1 +2in+1}

for 1 £4, <in_1 <+ <11 < J. For j =0 we define dg..q := dg. The (n+1)-
fold refinements of the form dj;;...4,,0..0 can be termed ‘degenerate’. We may
observe that each block d; of index j < n is partitioned precisely into these
degenerate subblocks. This of course is not the case if 7 > n.

Since for a fixed n=1,2,... and for each j the blocks dj;,..;, form a
partition of the d; block we can write dj;,..c,_, = Uz:;lo_l djiyoipy - - and

=1 i—-1 tp—1—1

(2.1) d=U U U i

11=043=0 in=0
Here, if %,, =0 for some m =1,2,...,n — 1, the unions over the indices
Tm»bmals - - - 5 in contain only the corresponding 0 members, i.e., degenerate

blocks. Clearly,

in—1—1

1—1
2=0

in=0

oo Jj—1l1
z=UJ U
7=041=01

i.e., the set of all integers Z is partitioned into (n + 1)-fold blocks.
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For a sequence ¢ = (ci ),z We define the (n + 1)-fold dyadic section of ¢
by

(2.2) @it = Z ek er.
kEdjig . ip
For 1 £p,q1,q9,...,0, & oo the n-fold mixed-norm space £P7:92:9 ig

defined as the set of all sequences ¢ = (cx ),z such that

(2.3) “CHEP,QLQ%MJIn = (Z (Z ( Z— e

370 Ni1—0 “4p—0

1/gn

in—o—1 - - N q2/q1 Qn—l/Qn—Q Qn/Qn~1
( Z ”d‘ju...zn—lcllﬁp) ) < 00.

in-1=0

Here, if j = 0 or i,, = 0 for some m, then all lower indices range only over
0. The corresponding norms and summations are to be properly modified if
any of the parameters p,qi,...,gn 18 OC.

Restricting the domain of a sequence c to a fixed finite block of integers
d;, we define £P91:92:+9n[d;] as the space of ¢ = (Ck)kedj with the norm

(2‘4) ”C“é'P)‘Hy‘IQw-:Qn [dj]
j=1 ,41-1 in—1—1 o a/a gn/dn-1 1/gn
= Z (Z ( Z “d]ll---’lncHZ;) ) ) < 0.
i1=0 ‘=0 $n=0

the former norm is obtained through the n-fold dyadic partition of d;,
which is the (n + 1)-fold dyadic partition of Z, and the latter through
the (n —1)-fold partition of d’, i.e., the n-fold partition of Z. However,
| || gp.a1.92,--0 an[d;] = ld? ¢|| pp.a1 990 -am,r fOr any r 2 1.

REMARK 2. From the above definitions it follows that c € fP-41,42-dn
if and only if the sequence of (P91:92:+4=—1[d.l-norms of d’c belongs to the
space {7, i.e., (I|dj(_f”£p,q1,q2,‘.,,qn_1[dj])]o,ozo € (9. Consequently, ¢P-91:920n jg
a composed space in the terminology of Jakimovski and Russell [9], com-
posed from ¢7* and the sequence of spaces { (79192 dn=1 [d]])ji , and we can
write 790929 — {4 (€P7ql:‘12x~--»q-u—1 [d]])

The last remark exhibits the inductive nature of our definition of n-fold
mixed-norm spaces. It allows applications of rather general results proved

0
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284 M. S. RAMANUJAN and N. TANOVIG-MILLER,

in [9], from which we can immediately deduce that these are BK spaces and
obtain their duals.

A‘sequence space E is a BK space if F is a Banach space with continuous
coordinatewise functionals and E contains all finite sequences. We say that
a normed sequence space E has the property AK if for each ¢ € E we have
lis"e —cllp — 0 as n — oo, where s"c = S°p_ cx €. We say that E is solid
ifce B,z €wand |zk| £ || for each k imply that 2 € E and lzll 5 < lefl &
The corresponding definitions are similar for spaces of two-way sequences.
As usual by E* we will denote the functional dual to £.

PRrOPOSITION 1. Let 1 2p,¢1,42,...,qn-1 S 00 and 1 < g, < cc. Then

1) (P1192ntn gpd (P9GS0 0] with the norms (2.3) and (2.4), respec-
twely, are BK spaces, each is solid and has the property AK.

ii) (P98t )" gpd (P00 d,]) " can be identified with 4P 71:950n
and (799290 [d;], respectively, where 1/p+1/p' =1 and 1/q;+1/¢. =1 for
1=1,2,...,n.

ProoF. Both statements follow by induction from [9, Theorems 1 and 2].

Clearly ¢7 is a BK space, #7 is solid and has the property AK. Furthemore,
by Remark 2, {P:91:428n — fn (fP41:92:4n-1[d 1) Hence, in this composed
space, the outer space €9 satisfics the assumptions of Theorems 1 and 2 in
[9]. Since (€P[d;]) ;‘;0 is a sequence of BK spaces by [9, Theorem 1], it fol-
lows that £P-¢ and ¢9[d;] are BK spaces. So, suppose that ¢P-9::92:»4n=1 and
£pang2:0n-1(d.] are BK spaces. Then from the above observations and (9,
Theorem 1] it follows that £P-91.92:-4» and ¢P91:92-4n 4] are BK spaces. The
claim that each of these spaces is solid and that it has the property AK is
almost obvious form (2.3) and (2.4). This verifies i).

Since (£9)* can be identified with ¢¢ and (£)* with £ from [9, The-
orem 2] it follows that (£29)* can be identified with ¢*'¢. Assuming
that ii) holds for n — 1, from the above argument and [9, Theorem 2] it
follows that the dual of the space (P:9L92:4n ig given by (£P1:92--Gn)"
= (¢9n)* ((gparaeedni[d]) ) which can be identified with

'gq‘;‘L (Ep’:qﬂaq{z,..r,q;_l[dj]) — Epl’qll»qéa-r-,q;-

Thus statement ii) is valid for all n.

REMARK 3. If 1 £ p.¢1.¢2. ... g <00, p<u and ¢; S v; for i =
...,n then P12mGn C fUP1V2¥n gnd (P12 ] C V120 Un
This follows immediately from (2.3) and (2.4).

That the above inclusions are also proper whenever at least one pair of
indices satisfies a proper inequality can be shown by considering appropri-
ale examples. Since we are interested in the multiple mixed-norm spaces of
special type, namely the case when g1 = g2 = -+ = g1 = 2z and g, = ¢, de-
noted by 7[#n14, the following result verifies the proper inclusions only for

15 3
[

il
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these spaces. We recall that by (2.3) the corresponding norm in this case
can be written as

< ,j-lig=1l dnoa-l q/=\ 4
(25) el e = (Z(ZZ"' > de“““cllep) ) < o0,

=0 Ni1=01y=0 in==0

oo N . g 1/q
HCHEP,IOO;HJ,q = (Z ( sup ||dﬂ1mlnc||ﬁp> ) < Q.

§=0 I lp—1<11<J

Finally we remark that for the sake of simplicity we shall sometimes write

(; (Z > Z ”djilwinc“zp>q/z) 1/

[SU

for the expression defining ||¢|| .m0 10 (2.5) and use similar abbreviations
for other such expressions.

PROPOSITION 2. Let p,q,z,7,5 € [1,00]. Then

i) eplznda o grlenls if p < and g < s; the inclusion is proper if p < r
or q < §;

ii) erlEn—e c plandd properly if 1 < p < z; gplEnba C gplEn—lla prop.
erly if p > z and ¢9F 10 = g2,

In order to get on with our main theorems we defer the proof of Propo-
sition 2 to the Appendix.

3. Multipliers of mixed-norm spaccs

In this section we characterize the multipliers of multiple mixed-norm
spaces of the type considered in Proposition 2, i.e., multipliers of the form
(ET’[t?”]’s, E"’[w;”}’”) for arbitrary indices r, s,t,u, v, w € [1,00]. Our result ex-
tends the wentioned theorem of Kellogg [10, Theorem 1] in a desirable fash-
ion. Naturally, the proof goes along the standard lines, with somewhat more
involved calculations. Since for the purpose of this paper it suffices to char-
acterize the multiplers of mixed-norm spaces of the above type we do not
present here a more general result which could be proved similarly.

THEOREM 1. Let 1 S 7,5, t,u,v,w S oo and let the indices p, q, z be
defined by 1/p=1/u—1/r, if r>u, p=oco if r Su; 1/g=1/v—1/s, if
s>v,q=00 if sSu; 1/z=1/w—1/t,if t > w, w=00 4L 2 w. Then

(Zr,[t;n],s: fu,[w;n],v> — gp,[z;n},q.
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PROOF. Suppose that 1SrSuloo, 1SsSvSoo and 1StSw
< 0o. Then by Proposition 2 clearly ¢"tnls ¢ gwlwnlv We shall verify
that

2 C (gr,[t;n],s’gu,[w;n],v) C e,

The first inclusion follows immediately observing that ¢rltnls is solid, by
Proposition 1. To verify the second inclusion let A € (ET’[“”]’S,EU’{‘”;”}’”) and
define Ty by Thc = Ac for ¢ € 1157 Then by the Closed Graph Theo-
rem T} is a bounded linear operator from £ into f-wnlv and it is triv-
ial to see that ||T)|| = |[A]|;e, SO that A € £>°. Observing that for p,¢ = oo,
(> = ¢P1%n14 the proof is complete in this case.

We suppose now that » > u, v > s and ¢ > w and that p, ¢, z are as
defined above. We first verify that ¢Plznle (ET’[“”}’S,E“’[’”;”L”). So let

X e il and ¢ e mEnhs. Then from (2.5), applying Holder’s inequality
first to the innermost sum, with respect to the index r/u > 1, then to the
next outer sum, with respect to the index t/w > 1, and finally to the outer-
most sum, with respect to the index s/v > 1 we obtain

(31) el feme = (i(ZZ (s Mmtu)w/u)v/w) o

7=0 11=0 in=0 kedﬁlu.in
oo j—1 tn-1—1 w/p wiry v/w 1/
(EE T (E ()
7=0 11==0 in=0 kedjil'--in kedji1~-'in
oo j—1 tn-1-1 z/p v/
g[ (Z S ) )
7=0 \i1=0 1n=0 ked;i ip
j=1 i1l t/r\ ¥/t /Y
€ Sz
i1=0 1 =0 kedjil-“in
oo fj=1  in-1-1 2/p\ 97\ V4
[SEE (2T
7=0 11:==0 in=0 kedjil'“in
o j—1 fnoq—1 tir s/t11/s
'(Z(Z--‘ > ( 5 ar) ) ] = Il
j=0 \i1=0 in=0 kedsiy...ip

Hence, Ac € £%[wnlv . Consequently #7154 (87"’[“”]’37 €“’[w‘“]’”).
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To verify the reverse inclusion let A € (¢n[6mhe gwlnhv) and define, as
before, The = Ac for ¢ € (ntnls. By the Closed Graph Theorem Ty is a
bounded linear operator from ¢"[57b¢ into (»[*l*  with the norm ||7}].
Now, for each positive integer J define a bounded linear operator T/\J from
grltnls o gwnly by the equation

2]
ad
T/{’c———sz Ac = E A o €.
k=0

Applying the inequality (3.1) to the above product of sequences s? "X and ¢
we see that

97 J
18 Acllgwm s S 152 Allgpssntallellgnint.s-

Consequently,

(3.2) 1T | < 1152 Mllgs toimta-

We shall show now that the reverse inequality also holds for J 2 Jy where
the integer Jy is chosen for the above sequence A so that HSQJO)\H@ #0.

To prove the reverse of (3.2), for a fixed J 2 Jy we define a sequence
¢ = (ck)pez as follows:

7., —qfs . —zft, i t—
(33)  cp=|s? A»up,[m],q||dun‘”s.Z/ AP

¢piizinly

for k € d;, with ||d? \|| gp.(eim) »# 0,and ¢ =0 0therw1se

We will verify now that ||c||gT,[t;n s =1 and HT,\ o)l pustesnr,e = l8° )\”gp,[z;n],q;

which imply the reverse inequality of (3.2) and therefore the conclusion that
for all J 2 Jy,

J
(3.4) HT){H = ”32 Mg tzintia-
From (2.5) and (3.3) after performing simple calculations we see that

7 Q/S
llell grieints = 118%" Allgouis

J-1 i1 ~1
[Z ”d])\“q sz/tgp zin], (Z Z ”d]“ Zn/\Ht( z/t—p/r)

i=Jo i1=0 tr =0

t/r s/t 1/s
( T w) ) }
ked;

J’l Sin
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q/s l a7 #/p izt
1 [ S (E S (5 wr)”)
j=dg \i1=0 =0 kEdjiq..ip
tre1—1 2/p sft71/s
(5 (x wr)") ]
11=0 ip=0 k€djiy ep

I =4/ 74l
= ]|-92 /\Hep,[z:n],qHSQ Mlgpesnte = 1.

This verifies the first claim, i.e., that ||¢||mem.. = 1.

Similarly, from (2.5) and (3 3) we have

7 v
1T ellutwmo = 118> Al gpinn.a

tn—1—1 A E_E)
pAt T
Sl (S5 (5 w)
j=Jo 11=0 1n=0 Aedj,l i
uy
> o))
k&dj,l...,'n

Observing that w/u — w/r + (w/p)(z/t) = z/p and that vg/s —vz/t + vz/w
= ¢, we obtain

175 el i

1/v
Q/s s§—2z t 5J
= {52 Al|gofernt. (anﬁ/\ngﬁ’ O N ) = 118> Al isine

J=Jo

which is the second equality claimed above.
Thus (3.4) has been established to hold for all J = Jy. But clearly, by
i) of Proposition 1, the right side of (3.4) converges t0 ||Al|gpzsmlq- Further-

more, since T is a bounded operator and ||77| £ ||7)||, the last observa-
tion and (3.4) imply that ||A||,pi:m,q is finite, ie., that A € 71579, Henee,
(,67"[“'“]@,E““[“’?‘”]’”) C pl5nhe . Consequently (KT’[““]’S,E‘“’[w;”]f'“) = (rlnla iy
this case.
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The equality (ET’[“”]’S,KU’[W?”]’“) = (P59 in the other remaining cases
is verified in almost precisely the same way, just interpreting in the above
argument the corresponding indices p, # or ¢ as oo and the corresponding
NOTms as sup-norms.

Remark 4. Taking n = 0 in Theorem 1 we obtain Theorem 1 in [10].
We conjecture that a similar characterization holds for multipliers of gen-
eral (n 4 1)-fold mixed-norm spaces, namely that (751,52 8n 81,0200 )
= [(PIr92:497 where p and ¢; for i = 1,2,...,n are defined similarly as in
Theorem 1.

4. A generalization of the Hausdorff-Young Theorem

Our next task is to prove the following result concerning multipliers of
special mixed-norm spaces which, combined with Theorem 1, yields an ex-
tension of the first inclusion of Theorem K and consequently a desired gen-
eralization of Theorem K.

THEOREM 2. Let 1 < p< 2. Then for eachn=0,1,2,...

Z?’ C (ﬁm@:n},?’ EP'.[l:n],l) .

Cororrary 1. Letl < p 22, Then Ir C e#h[2im]2 foreachn =0,1,2,...
Proor. Corollary 1 is a direct consequence of Theorems 1 and 2.

REMARK 4. The statement of Theorem 2 does not hold for p = 1. Sup-
pose on the contrary that 71c (EOO’[2?”]E21[{°°S[1?”]’1) . Then hy Theorem 1,
It C 72 1f = this yields a contradiction in view of the fact that
It ¢ ¢°? by Remark 1. Let » = 1. Then from the assumption and Theo-
rem 1 it follows that L1 C (£2’[°°;”]’°°,€2) and consequently with a restriction
to scquences whose terms are zero on Z~,

loomloo o (T %) ¢ (H1, %) = (H1, H?).

Now by [8, Proposition 1] and the remark stated there, (1:1’\1]/1\2) = (?°°,
Thus the above assumption leads to the inclusion (2720 ¢ ¢2:20 which is

clearly false for n > 1 since the spaces ¢2:[°1,2° increase properly with n by
Proposition 2.

From what wec have just shown we extract
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REMARK 5. If n 2 1 then (2[lnloc ¢ (H1 H2),

The last remark shows that the correspondmg generalization of Theo-
rem H, i.e., the inclusion ¢9loomnlee (HP H2) where ¢ = 2p/(2 — p), does
not hold for p=11if n 2 1. This points to difficulties in the proof of Theo-
rem 2, since Kellogg’s approach involving the use of the operators of strong
type on Hardy’s spaces and the result of Hedlund [8, Theorem 2] for operators
of strong type, cannot be applied here. Instead, we shall prove Theorem 2
and consequently a corresponding generalization of Theorem H for 1 < p < 2
by employing an interpolation-type argument for operators of weak type, ex-
tending the latter notion to operators on multiple mixed-norm spaces, using
parts of the proof of the Marcinkiewicz’s theorem [6, 13.8.1] and the original

Hausdorffi-Young Theorerm, i.e., the inclusion P c ' for 1 < ps2

PRrOOF OF THEOREM 2. The claim in the case p = 2 is trivially true
since, from Theorem 1, it follows that L2 = (% = ((>&n)2 2[lnll) 8o sup-
pose that 1 < p < 2. Let § € (%272 and for this fixed g let T be a linear

operator defined on L? by the equation Tf =g - f We shall prove that for
some constants A and o, determined only by p and g,

(4.1) 1T f g piima < AlfIIZ,  for every f € LP,

thatis §- f € ¢P"[1ml1 for all f € LP, which clearly verifies the above claim.

To prove (4.1) we shall use interpolation between properly selected pairs
of indices (po, go) and (2,q1) with 1 < pgp < p < 2. We begin by choosing the
index pg in the following way:

1< py< i if p? > 2,
(4.2) p(d—p—
p*) p+1 ..
———< < f <2,
L +p—py PUSTT B =

From the assumption that p > 1 and (4.2) it is trivial to scc that
(4.3) 1 <pg<p.

Let go := p}, and let the index g; be defined by the equation
g Po Y

(1+3)%(2-1)

(4.4) g =y e :
(-8 (G- 1) +B(E- 1)

Next we observe that the right side of the inequalities (4.2) implies that

1
(4.5) 1+l B
p o7
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Using this in (4.4) we see immediately that

1
(4.6) Bz
p p

Finally, we shall establish that the above definitions also imply the inequality

(4.7) 4
P

Using (4.4), a simple calculation shows that (4.7) is equivalent to

pofp 1 1 1 p
G (S —[1+=){1=-2=),
p’<2 ) > +p ( 2)’

ie.,
(4.8) 0p? —2) > p? +p — 4.

Thus, it suffices to show that (4.2) implies (4.8). Suppose first that p* > 2.
Then it is easy to see that

1 p’+p—4
1+->2 TP
+p> 23

so in this case (4.8) follows immediately from (4.5), and therefore from (4.2).
Next, suppose that p? £ 2. Then (4.8) is trivial if p? = 2; and if p* < 2, (4.8)
is equivalent to

4__2
P  4=p—p

4 2-p?

which in turn is equivalent to

p(t—p—p?)
P74 p— )
and this is clearly implied by (4.2). Hence (4.8) holds under either case of
(4.2), and this completes the verification of (4.7).
We now proceed with the main part of this proof referring to some of the
concepts and notation used in [6, 13.7 and 13.8].
Let v denote the ordinary counting measure on Z and u the Lebesgue
measure on the circle group, i.e., normalized by 2x. For the (n + 1)-tuple
of integers (4,i1,...,1,) and f € L' let d?"*"i» f denote the function whose
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Fourier coefficients coincide with /f(k) for k € d;;,..5, and are zero otherwise.

Let D;dj,-l._‘inf denote the corresponding distribution function (in the sense

of [6, 13.7.2]) of its T image with respect to the counting measure v, i.e.,
Faiinin f(0) 1= V{k € djiy, ¢ | F(R)G(R)] > B}

For f € L, let Déf denote the the distribution function of f with respect
to the Lebesgue measure p, i.e.,

Dh(b) = pu{z €[0,27) : |f(x)] > b}.
Using the result cited in [6, 13.7.3] we can write
> IFWEmIT = [y Dh, L b
k€djiy.in 0
1 2w » 00 T
— dy = P~ D% (D) db.
2#/0 S dp /0 p ()

Furthermore, just as in the proof of Marcinkiewicz’ theorem [6, 13.8.1], we
consider truncations of f. Namely for a € (0, 00) we define

fra(z) = f(z), if ]f(:v)] Sa and fio(z):=a, otherwise;
f2,a = f - fl,a-

Clearly, |f14| = min(|f|,a) and f = fia + fo.a-
To prove (4.1) we first observe that from the above and (2.5),

o0 , 1/p’
(4-9) HTf“ep’,[lsn},l = Z Z e Z (/U p/bp —IDIU“djilminf(b) db) :
i ou in

Choosing a = a(b) € (0,00) to be the value a(b) of a monotonically decreas-
ing function of b € (0, 00), that will be suitably selected later, we may write
f = fia + fou Noticing as in [6, (13.8.4)] that

f(2b) g Dfl{ﬂdjilu.infl‘a(b) + D%d‘iln.infg’a(b)’

v
Drq, 2

jig - vin

from (4.9) it follows that

0 , 1/p'
(410) ”Tf”ﬂ"![l;n]’l =92 ZZ P Z (A p/bp _—1D7V~dji1--»inf1,a (b) db)
¥ 21 in
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.00 . 1/p'
1 p —
RE S S ([ Db, . 0B) =2 D)
7 %1 in

We now estimate I; and I; using the fact that for ¢g = p}, and ¢; given

by (4.4), the operator T is of weak type (pg, o) and (2, ¢;) uniformly on each
(n + 1)-tuple block dj;,..,. Namely, we have

b Dy o n® S 0GR DD [ Fak)|

kedji1--»in
PO DY, () S g ST Rk,
k€dji . .ip

In view of the fact that by (4.7),

), g1/p" 2 1 so that ¢; = p’ > 2 the above
inequalities yield

Dy op pra® SO0 [ gl Fra 2,

D%djil---in f2.a (b) § b~Po

(4.11)

g 2 i T4

To estimate I; we use (4.11) to obtain
D3> SE Ol AP Ca Tl A s )"
i i 70
< Z Z . Z /Oop’l/P' pl—a/p'-1/p' H dﬁr%gll jpi ” d]h“'ln'f’l:luz%j db
— = - 0

/°° A POy T
0 .

Using the fact that by (4.7) the exponent is greater than or equal to 1, i.e.,
q1/p’ 2 1, and applying Holder’s inequality to the above sum it follows that

S5 Tl i

A

|| Mflﬂ”ﬂ

4

(STl 12)” (Zz---;\|dji1'-'inﬁ;||§2)2

= 3l o ol

]

&
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Consequently,

L= 39|

a1 0 —_—
Forena f, 0700 E

LY 1 o0 1_a_ a(b) o)
=1L ar® [0 ([T 2enp01e) T
0 0

Assuming a{-) to be monotonically decreasing we observe that in this case
the characteristic function x satisfies the equation X[g () (@) = X[o,b() (%)
where b(-) denotes the inverse of a(-).

Noticing that the index 1 + }D - %}— is positive by (4.6), due to our choice
of q1, comparing the double integral appearing above with the similar ex-

pression in [6, 13.8.1] and applying an analogous argument as in the proof of
Marcinkiewicz’ theorem [6, (13.8.5) through (13.8.8)], we conclude that

2
4 oo <1+l—i¥>3i 27
;oo,[z;nm(/ CD}L(C)Z) PR/ dc) ‘
0

We now define b(a) to be of the form b(a) = Ka”. In order that the above
estimate for I}, and a similar estimate for I, should yield (4.1) we see that
p must be chosen so that

1 2p'
1+p<1+qf> Popo,
por/a

I £ Ay 9

i.e., p should be given by

__p2-1 a
1+1/p—q/p' P

Clearly, p defined by (4.12) is negative, due to (4.6) and the assumption
that p < 2. Hence, the function b(-) is indeed monotonically decreasing as
it was assumed in the above argument. Furthermore, we obtain the desired
inequality for I of the form

(14.12) P

T TP S
w13) n<akU g1t L

We now proceed to estimate I5 for the above choice of @ = a(b) and other
parameters. From (4.11) we clearly have

o© s . ! . . — ’
I g z Z . Z (/0 plbpl—ph_l‘l d]u.»znml?& “ dﬁlwlnf?,a”igs db) P
J onu in
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!
< / I ard 9) D I LAl FA P N
0 A ' |
J oa ‘n

5~

LN

db.

]
(o}

&
]

Consequently, applying Holder’s inequality to the (n + 1)-tuple sum and in-
dices p’ and p we obtain

/

i}
*od

© a-t-3 o de:
ws [THE (ST Tl ald ) 1l
3 u in

Observing from (4.5) that pj/p’ > 2/p, the last inequality implies that

' . '
P R— Pg
T

Lo 1ty ,
B S PP al e [ Pl

i
o

From Hausdorff-Young Theorem it then follows that

N Pg oo 1 Ph 1 e rg
L A e P

’

! , EQ
1 E—Q o< 1_Pg o 7
Tl P 1+=2——%—1 _ P
=7 |9 o2 N poc™® 1D?(c) db.
¢ 0 a(b)

Since a(b) is monotonically decreasing the characteristic function satisfies the
equality X(a(s),00)(T) = X[b(c),00) (7). Hence, recalling (4.5), the corresponding
argument used in [6, (13.8.5)-(13.8.8)] can also be applied to the above dou-
ble integral, yielding the estimate

Pt o0 __1:' ! E-O,EL
I = A2“§Hfi,[2m],z</ cpo_lef(c)b(c)<1+; ;('l)a’%"o& dc) o
0

But from the definition of ¢ given by (4.4) and the definition of p given by
(4.12) a simple calculation shows that p also satisfies the equation

1+ 1/p—po/p' P

Hence

1 / 0‘I
po—1+p(1+——p—?)p;p =p-1,
p P/ p
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and therefore

'ﬁ\lg\

1 /
(414) BB g g,
¢

Taking K = “f”p for a properly chosen 3, and combining the estimates
(4.13) and (4.14) with (4.10) we obtain (4.1). A simple calculation shows
that by letting 8 satisfy S(p§ — ¢;) po/po - q1/2 the parameter o appearing
in (4.1) is given by a = pﬁ(l +5 L ;;0) + ﬁf}f This completes the proof of
Theorem 2.

We are now ready to state and prove our main results, i.e. the claimed
generalizations of Theorem K and Theorem H.

THEOREM 3. Let 1 <p <2 Then for eachn=0,1,2,..., [P C Ep' (2in]
and 27 ¢ ¥ Consequently LP C N2 P 120 and | o2 é/p’ Znl 17

PROOF. The inclusion LP C £2":2n] for each n=10,1,2,..., is the state-
ment of Corollary 1 of Theorem 2. Consequently Ir C nee ﬁp' 2m],

To prove the second inclusion we first observe that L1 * LP C LP, see
for example [6, 3.1.6]. Let f € L' and g € L?. Then, from what was just

observed and the already proved inclusion we have fﬁ € L C 2127 anq
therefore L' C (LP, fp"p;"1) . By well known properties of multipliers and ap-

plying Proposition 1, the last inclusion yields . - (Ep’p"”],l/,;' ) and there-
fore €p [2in] (L1 7 ), for each n = 0,1,2,... . Recalling that by [6, 16.3.4],
(L1 LP) LP we conclude that (P12 ¢ i;' for each n=0,1,2,... and
hence | J2%, 7127 v,

REMARK 6. Since by Proposition 2 the spaces ¢ 12n] decrease and £P-[2n]
increase properly with n, whenever 1 < p < 2, the above result clearly gener-
alizes Theorem K. Furthermore, just as in the case of the Hausdorff-Young
Theorem, the statement cannot be extended to p > 2. Namely, if p > 2, then
by Proposmon 2 we can choose a sequence ¢ = (k)7 such that ¢ € 2 and

¢ & 127 Now from [6, 14.3.2] it is possible to choose signs in Y #cg e™**
such that the latter series is a Fourier series of a function g € L, for any
p < oo. Hence, Ir Z 527 for any 2 < p < 0o. Similarly the example con-
sidered in [6, 14.4 that is 14.3.6] shows that this is also the case when p = co.
As for the dual inclusion in Theorem 3, it also fails for p > 2 for the same
reasons as argued in [6, 14.4] with the observation that by Proposition 2,
2 c 2] holds properly in this case.

REMARK 7. The result in the above theorem can also be deduced, some-
what briefly and admittedly with greater elegance, by using the Littlewood—
Paley theory and the results of Gaudry, namely Theorem 4.1 and Lemma 3.4
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in [7]. This was recently suggested to us. However, we have chosen to retain
the above approach in keeping with the spirit of this paper.

THEOREM 4. Let 1 <p<2 and let ¢ =2p/(2—p). Then for each
n=0,12,..., (oleomleo = (Hp H2)  gnd  consequently U, galeoin]
C (HP,H?).

REMARK 8. Theorem 4 is also a direct consequence of Theorems 1 and 2,

that is of Corollary 1 of Theorem 2. As was pointed out in Remark 5 the
statement is not valid for p = 1.

PROOF. Suppose that 1 <p <2 and let ¢ =2p/(2 —p). Then from
Theorem 1 we have ¢l = (Eq=[°°;"],€2) for each n =0,1,2,... . Conse-
quently by Corollary 1 of Theorem 2 it follows that Ir C (Eqv[oo‘”]?@) S0
that also HP C (Eq'[‘”?”],ﬁ\?), which in turn implies the claimed inclusion

(aloom) ¢ (P, H?).
In view of Theorems 3 and 4 we are now able to derive other results
giving sufficient conditions for sequences to belong to multiplier spaces of

the form (E\P, Z\q) and (I/{\P, I/{\‘I). The following theorem extends Theorems 5
and 6 in [10].

THEOREM 5. Suppose that 1 <p <2< g<ocandletl/s=1/p—1/q.
Then (> ¢ (Lr | L9) and ¢s:loon] (HP, H9).

PROOF. We first note that the second inclusion follows from the first, by

properties of Fourier coefficients of functions in Hardy spaces.
To prove the first inclusion let A € ¢5:°") and f € LP. By Theorem 3

then ? e (*"[27], But by Theorem 1 clearly s:lom] = (Ep"p?”],éq’*p?”]) and
therefore A - ? € (4-12n] Since by assumption we have 1 < ¢ £ 2, from the
last observation and Theorem 3 we see that A- ? € L9. This shows that
gslooin] < (I, La).

We improve on the conclusions in Theorem 3 by showing that the lin-
ear space E = ﬂfzoﬁpl‘[z”’] strictly contains LP and that the linear space

F = J2, 727 is strictly contained in 73
THEOREM 6. For1<p<2, E#Lp and F # L7

PROOF. Let p be fixed and 1 < p < 2, so that p’ > 2. Clearly L?, I ?“ZF
= || fll» and L¥", |

For convenience, write E, = (#"%" and F, = P for n=0,1,2,... .
Let E =NX,E, and F =J;2, F.. From Theorem 3 we have LP C E and

?“ﬁ := || fll;» are Banach spaces.
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F C LP, We shall prove that the linear spaces E and F' cannot be Ba-
nach spaces, undei\ any norm. Consequently, by the preceding observation,
E#Lpand F £ L7,

We first prove that E cannot be a normed linear space. Suppose on the
contrary, that (E, |||E) is a normed space. Recall, by Propositions 1 and
2, that for each n, E, is a Banach space, E,4] is a proper subspace of E,
and that the inclusion (identity) map is clearly continuous. For each n let
in : E — E, denote the canonical injection or identity map. Clearly, for
each n, E C E, and the identity map i, from (E, ||| ;) into the Banach

space (En, || ||z, ) is continuous. Observe that the || ||z topology on E is a
locally convex topology. Now, equip E with the projective limit topology T,
see [11 or 13]. By definition, see [13, p. 52], 7 is the coarsest locally convex
topology which makes each i, continuous, and hence 7 is weaker than the
|| | ; topology. Furthemore, (E,7) is a Fréchet space and therefore E is a
Fréchet space under two comparable topologies. By a corollary of the Open
Mapping Theorem, see [17, 5.2.7, p. 59] the two topologies are equivalent and
therefore (F, 7) is a normed space. We shall show next that this contradicts
Proposition 2.

Let U and U,, for each n, denote the open unit balls in £ and E,,
respectively, under their respective norms. Then U is a bounded set and
a 0-neighborhood. Note that, by definition of 7, a(ENU,) = EnNal,,
n=0,1,... and o > 0 rational, form the 0-neighborhood base of (E, ).
Hence by properties of the neighborhood base, there exists an n € N such
that Enl, C A-U for a suitable X > 0. Since U is bounded there exists
g > 0 such that U C p- (ENUpyr). Consequently ENU,11 CENU, C Au
-(ENUpt1). The last relation shows that E, and F, ) induce the same
topology on E. Recalling that the space of finite sequences & is dense in E,,
(because, by Proposition 1, each E, has AK), by taking closures of ®, we
obtain that F,, = E,,.1. However, as shown in Proposition 2, this is clearly
false. Thus we have proved that £ cannot be a normed space and therefore
E #£ Lpr.

Next, we show that F' cannot be a Banach space, under any norm. Recall
that Fyg C Fy C Fy C -+ where each F, is a Banach space. By Proposition
2 each inclusion is strict and it can be easily seen that the inclusion maps
are also continnous. Equip F = (]2, F, with the inductive limit topol-
ogy (indn—oo Fy), see [11, 12 or 13]. In the notation of the Grothendieck’s
factorization theorem, see [12, p. 271], let u : F — w and u, : F — w,
n=0,1,2,..., be the canonical inclusion maps, where w is the locally convex
space of all complex-valued sequences with its usual Frechet topology. If a
norm can be assigned to F so that ( F, || || ) becomes a Banach space then by
Grothendieck’s factorization theorem [12], there exists ng such that F is con-
tinuously injected into Fy, and thus F = F,, for each n = ngp, topologically.
By Proposition 2, this last assertion that F, = F,,, for all n 2 ng is clearly
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false and hence F' cannot be a Banach space under any norm. Consequently
F#Lr.

REMARK 9. From the above proof it follows that none of £ and F' are
Banach spaces.

This completes the presentation of our main results. The following sec-
tion contains a detailed proof of Proposition 2 that was stated in Section 2
and that is so essential in the above discussion.

5. Appendix

PROOF OF PROPOSITION 2. i) The inclusion is obvious by (2.5). To
see that it is proper, suppose that p < r or ¢ < s and consider the sequence
¢ = (Ck)yez Whose terms are defined by

(5.1)
1 1 1
JUPHalogl/a(j + 1) /= lF (k20 2k o 2ie )P

Cr —

for k € djiy4,-4, and cx = 0 otherwise. Then, on the one hand, from (2.5)
and (5.1) it can be is easily verified that

1

1 oo
iq/p _
- j¥P = const. E , : =
U+1) = ilog(j+1)

0g

oC
q
el Z const. 3 iy
=1

so that (ci) & (P[#712. On the other hand, from (2.5) and (5.1) we have

“c“qr [zin],s
[e s} 1 (] 1i-1 tp-1—1 2in 1 z/'r S/Z
3> (5T 2 (2H))
= g5(1/p+1/a) logs/q(] +1 Pt gt — yrip
from which it can be deduced that (cx)icz € grlznls - Namely, if r/p > 1
then 32" 1 —75 is bounded, and observing that s(1/p+1/¢) > 1, from the

above inequality it follows that

1

¢ < const. log™/%(i +1) < 0o
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If s/q¢ > 1, then, since

2in 1 zfr L

v=1

and s(1/p+1/¢ —1/r) > 1, the above inequality yields

1
¢ < const. <
|| ”g‘r z nls = 1 ; js(l/P+1/q) logs/q(j + 1)] >

Hence, in either case (¢x),ez € ¢rlzmls | This shows that the inclusion £P:[znla
c ¢rlznks i proper whenever p<rors<g.
ii) Suppose that 1 £ p < z. From z/p > 1 and (2.5) we clearly have

0o tn—2=1 ,ip—1-1 z/p 9/
”C“Zp,[z;n}.q é ( Z Z ( Z Z |Ck |p) )
Jj=

11=0 in-1=0 in=0 k€dji ..,
o0 - ln 2—1 z/p q/z
— p —. q
(T w)) e,
j=0 i1=0 in—1=0 }”edﬂl i1

which shows the inclusion ¢P[zn—1le ¢ gp.lzinlg,
We shall prove now that this inclusion is also proper. Let ¢ = (k)7 be
given by
1 1
GY910g TV % 5 (3 iy 4 oo 4, )TV 2H/P

(5.2) cr =

fork=24214... 42 wherej2n+landl<i, <ip_y < - <i1 < J,
aud ¢, = 0 otherwise. Observing that this sequence has only one non-zero
term inside the block dj;;..4,, from (2.5) and (5.2) it follows that

o0}

1 1
k'S . 1442
(n—242)% ;S dlog =)

7-1 tn-2—1 1 q/z
.( e Z . . . )TL—2+%>

i1=n+l  dn_1=3 (1 +ig+ - +ip

el zime =

[e o]

1 1 e N
:(n——2+%)!ljz ' 1+2'( Z _> ‘

* jentr2J 1087 7

A
A

i1=n+411
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Since by the assumption z/p > 1 and 1+ ¢/z > 1, the latter series clearly
converges and therefore ¢ = (cx )z € Pl

On the other hand, observing that i + 5 + -+ + 1%, < niy, from (2.5) and
(5.2)

HC”Zp [z;n—
2 ———— (15— —2)5)
= n 1+ n—1
oy log TG\ S (m frmn a1
> 1 i 1
> - -
. 144 . ( . —14=
j=nt2J log * iy=n+1 (nll)n P

i1—1 in—3—1 o0

PIREDI

ip=n in— 2—4]‘

o log?;
e ————— z = o
. 1 .
j=4n2 7 1Og1+ .]

s\ Y2
(in—g — 3)5“) > const.

Consequently ¢ = (ck)pez € ¢Plz=n=114 which completes the argument
that P[zn)e ¢ ¢plzn—114 holds properly whenever p < z.
Suppose now that p > 2. Then, since z/p < 1, (2.5) yields the inequality

oo ip—2—-1 ,in-1—1 zfp a/z
||cnz,,,[m_u,q=2( 2 ( > 2 "”"p) )
11=0

7=0 ipn—1=0 in=0 kedﬁl"‘in

q/z

(Z TYE(x lc:cip)z/p) = lell e

11=0 tn—1=0 1,=0 kEdjil---in

A

Hence ¢P[=mle ¢ gplzn=11a in this case. To see that this inclusion is also
proper consider the sequence ¢ = (¢ )z 8iven by

1 1
3/ al0g" IV j iy iy + -+ i)

(5.3)

n/z

fork=27+20 4+ ... 42 wherej 2 n+landl <i, <ipg < <ip <J,
and ¢, = 0 otherwise. Then, arguing similarly as in the preceding example
we have

o

1
Hc“(ép,[z;n——l],q é Z . 1+9.

j=n+42 ] log # ]
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( Ji ni:—l 1 1 )‘Z/Z

1=+l n_1=3 (ng — 1) Pty +dgt - Fip_g)

o0 j—1 =3
1 1 L — L\
< > (X ) <o
= 7 Z 144 - 9_Z )
(n2—-1)r (n—1-2)% S, ilog 25\, 5X iy 7

since 2 —z/p > 1 and 1+ ¢/z > 1. Hence, ¢ = (c3) ez € (P15
On the other hand,

o] i1—~1 In— 2—1 q/z
||C”gp,[z;n],q Z ( Z (n@l Z Z ?/n 1= 2 )

=n+2 J ]‘Dg i1=n-1 i9=n fn_1=3

2 ——% PRI gli—n) )
n*(n —1)!= j=n+2J logHZ J Niy=ng g
1 1 & 1
__—10 ]—

Consequently, ¢ = (¢x) ez & (Pl5719 which completes the proof that (Plnla
C ¢pil=n 14 holds properly.

Finally we verify the equalities of statement ii). If z = p then from (2.5)
we see that

[e’e} in—2—1 q/z I/q
[ p— ZZ(Z( (= ) ) = el
i1=0 ked

j=0 inp—1=0 i vin—1

so that ¢#lzn—1la = gz.q,
The same arguments can be applied if any of the above parameters is oc.
In particular, it can be easily seen that the first inclusion of statement ii)

holds for z = oc, i.e., that ¢P[0n—1La — gp[ooinl
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