
Appl. Sci. Res. 25 December 1971 

DYADIC GREEN'S  FUNCTIONS FOR CYLINDRICAL 

WAVEGUIDES W I T H  MOVING MEDIA 

C. F. STUBENRAUCH and C-T. TAI 

The University of Michigan Radiation Laboratory 
Department of Electrical Engineering 

Ann Arbor (Michigan 48108) USA 

Abstract 
The dyadic Green's function for cylindrical waveguides of circular or rec- 
tangular cross section with a moving, isotropic, homogeneous medium is 
developed using the method of eigenfunction expansion. The orthogonality 
properties of the vector mode functions are discussed. In contrast to wave- 
guides with a stationary medium, it is seen that the normalization factor in 
the case of the E mode introduces a pole in the integral representation for 
the Green's function which must be excluded from the integration contour. 

§ 1. Introduction 

The  solution for the  modes  in a cylindrical  waveguide  containing a 

mov ing  isotropic homogeneous  m e d i u m  is well known and has  been 
discussed b y  several  au thors  in recent  years  [1-6]. P rob lems  in- 
volving forced exci ta t ions  are easily solved if the  dyadic  Green 's  
funct ion for the  par t icu lar  sys t em is known.  Seto ~7] has  given a 
fo rmula t ion  for tile dyadic  Green 's  funct ion in eigenfunct ion form. 
I t  is our  purpose  here to present  an a l t e rna te  and  more  compac t  
der iva t ion  b y  ex tending  the m e t hod  of Ohm and Rayle igh  to the  
wave  equa t ion  satisfied b y  the  dyadic  Green 's  funct ion.  The  resul ts  
so ob ta ined  for the  rec tangula r  and  circular waveguide  appea r  to be 
more  explicit  t h a n  those ob ta ined  b y  Seto. The  same m e t h o d  can 
be readi ly  appl ied to elliptical waveguides  if so desired. 

§ 2. Development of the theory 

For  a moving  m e d i u m  the cons t i tu t ive  relat ions can be put  in 
compac t  fo rm [8], 
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= d .  g + g x ~ (2) 

where e and # are permi t t iv i ty  and permeabi l i ty  respectively of the 
medium at rest 

n 2 - -  1 F 
~ 9  = D ~  - -  

1 - -  n2/~2 c2 

0 ---- vL veloci ty of the moving medium 

c : (/~oeo) -~  

u = ( #e - ~ ,  index of refraction of the medium at rest 
\ #oeo / 

73 

C 

= a ( ~  + yy) + ~e 

1 - -  f12  

1 - -  n2/~ 2 

I t  is assumed tha t  the veloci ty of the moving medium is constant ,  
otherwise the const i tu t ive  relations described b y  (I) and (2) will no 
longer be valid. We note tha t  for v = 0 or n = 1 the const i tu t ive  
relations reduce to the  familiar ones for free space. Limiting our- 
selves to harmonical ly  oscillating fields (e -i~°t) and subst i tu t ing (I) 
and (2) into Maxwell 's  equat ions gives 

g x ?; = i ~ ( ~ .  u - ~ x ~) (3) 

g × H = Y --  ico(e~. E q- K × H--). (4) 

Two auxil iary field vectors E(b) and H(b) are in t roduced such tha t  

= e -i°~az b .  H(b )  (6) 

where 

= - - 1  (2~q-YY) q - ~  or b . ~ =  
a 

Subst i tu t ing  these into (3) and (4) we obtain  the following equat ions 

for the reduced fields E(b) and H(b) • 

17 × (~-E(b)) = ko/~t~(b) (7) 
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V × ( b ' H  (°)) = J e  *~°a - -  icoeE --'(b). -(8) 

It  is to be noted that the auxiliary fields E(b) and H(~) are not the 
same as the auxiliary fields introduced in a previous paper [8]. For 
analytical reasons we found it more convenient to deal with the 

two auxiliary fields as defined by (5) and (6). Elimination of H(b) 
between the two equations yields the wave equation 

V × [ b . V  × _ (9) 

where k 2 = co2#e the free space wave number. In view of the 

structure of (9) we introduce the dyadic Green's function G(b) 
wh{ch satisfies the wave equation 

V × b ' E V  × (b 'G(° ) ) ]  - -  k 2~(°) = I-6(R - -  R--'). (10) 

For waveguides made of perfectly conducting walls the function 
must satisfy the Dirichlet condition 

× G(D)(RIR ') = 0 (10a) 
on the walls. 

Applying the vector Green's theorem to (9) and (10) and em- 
ploying the symmetry properties of dyadic Green's functions, it can 

be shown that the electric field excited by a current f o r  an aperture 

field Ea is given by  

E(R) = ico#o III b'G(°)( R IR').J(R') e-iO'o(a-a') d r ' ÷  
v 

+ 55b 'V × Eb7G~°)(RIR')I'E~ × Ea(R ' ) ]  e-i~#(z-z') ds'. (11) 
A 

To solve for the Green's function G(b) we will use the method of 
Ohm and Rayleigh (eigenfunction expansion) as described by  Som- 
merfeld [9] but  extend it to the vector case. The advantage of this 
method is that  it allows us to by-pass the determination of the 
excitation coefficient by  a tedious consideration of the discon- 
tinuity due to the singular source. We begin by  finding a solution 
to the homogeneous vector wave equation corresponding to (10), 
that  is, 

V X [~'V X (b'Y)] - -K2F- -=  0 (12) 

where K is a constant to be determined by the eigenvalues. The 
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vector wave functions which are solutions to (12) can be wri t ten 
in the form 

M.(h) = V x [¢%(h).~] (13) 
o 0 

and 
- -  1 - 1 

Ne(h ) = - - I  7 x Lb'Me(h)] = I 7 X V x E,d,o(h)-~] (14) 
o K o K .~  o 

where ~bo(h) is a solution of 
o 

1 
2 Vt¢o + 

o a 
az~ + ~2a¢~ = O. (15) 

The significance of the subscripts t will be explained later. We note 
tha t  the vector wave functions sat isfy the mutua l  relations 

o 0 

v x (/,. Xo)= ,,~ 
o o 

and tha t  M functions correspond to H-modes and N functions 
correspond to E-modes if these functions are used to represent the 
electric field. 

§ 3. Rectangular waveguide 

We consider a rectangular  waveguide bounded by  perfectly con- 
duct ing walls at  x = 0 and x = x0 and at  y : 0 and y = Y0. We 
assume tha t  the medium inside the guide is moving in the z- 
direction corresponding to the longitudinal  axis of the guide. The 
eigenfunctions which sat isfy (15) are given by  

: 

~b~ m~(h) ~s in j  - ~ 0  l s i n j  Y0 

where o e indicates tha t  the corresponding tr igonometric functions 
are either even or odd, and 

h 2 = K2a 2 _ ak2e 

k c  \ Xo / \ Yo / " 

The atpl icat ion of the boundary  conditions ~ × M -= 0 and/i  × N = 
= 0 ap the guide walls gives the following permissible vector wave 
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functions for the eigenfunction expansion of the dyadic Green's 
function under consideration. 

Mremn(h) = V × [~bemn(h) ~ (17) 

1 
Nomn(h) = - -  I 7 × V X [¢omn(h) ~]. (18) 

These two sets of vector wave functions exhibit the following 
orthogonality properties: 

f f f-Memn(h, ' lN, om,n,(--h') d v = O  (19) 

f f f M e m n ( h )  "Mem'n '@-h ' )d r=  

0; m @ m '  or n @ n '  

= 1 q- 8o rck~xoYod(h-- h'); m = m', n = n' (20) 
2 

where 

80=-{7; m,n  ~ 0  

/ o t t o  o r  n - - O  

also 

Nomn(h) ore',* ~--,~ j dv = 

0; m # m '  or n ~ n '  

2 ~(h - h')" ~-  kJoYo h2 + ak~ 
t n*.  

(21) 

Following the method of Ohm and Rayleigh we proceed to expand 
the dyadic Green's function in terms of the vector wave function 
starting with an expansion of the dyadic delta function 

I~(R --  R--') = ~ dh X: X E~emn(h) aemn(h) + Nomn(h) Bo~n(h)J 
C+ or C- m n 

(22) 

where C+ and C- are illustrated in Fig. 1. It  will be shown later 
why we choose the particular contours shown in the figure where 
::hike denotes two poles which are characteristic of the integrand. 
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Im h 

Fig .  1. C o n t o u r  of  I n t e g r a t i o n .  

Re h 

By taking an anterior scalar product of (22) with Mem'n'(--h') 
and integrating the result over the waveguide volume we can de- 

termine 71emn(h) as a result of the orthogonality relations stated by 

(19) and (20). Solving in like fashion for Boron(h) we find that  

2 - -  6 0  --, 
Aemn(h)-  ~xoYok2e Mem~(--h) (23a) 

-- 2 - -  6o h 2 + ak~ ~om~(__h) (23b) 
Bomn(h) = =x0y0k~c h2 + k~ 

where the prime on M and ~r indicate that  they are functions of 
y' z'. the primed coordinates x', and 

It  is observed that  the expression for Boron(h) contains poles at 
h ~ ~zikc. If the contour in the h-plane does not exclude these 
poles it would give rise to a term of the form e -k°l~-~'E which clearly 
cannot be part of an expression for a delta function since it does 
not vanish for z = z'. In fact, it does not satisfy the homogeneous 
wave equation. Thus the contour of integration so deformed is the 
proper contour to be used in this formulation. 

Once the expansion of the dyadic delta function is known, we 
can expand the Green's function in a similar manner, that  is 

- 1 /"  2 - -  (~o 
G(O)(R[R ')= J dh Z X ~  × 

x X O y O  m n k e 
C+ or (J- 
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h2 + ~k~ Nov.(h) Nom.(--h)} (24) - -  t - -  ~ t  

× ~ o H ( h )  M;~(--h)  + ~ h2 + k~ 

where the coefficients a and fi are to be determined. Substitution 
of (24) into (I0) shows that  

1 
( Z  = ~  - -  

K2 _ k2  

÷ 

where 

which determines completely the integral representation of the 
Green's function. The integration with respect to h can be per- 
formed through the Cauchy integral theorem which gives 

- -  i (2  - -  6o)a 2 { (~kg) 
- mom~(+kg) + G(°) (R I R') xoYo 2m 2~ k2ka -Mere;, - - '  -- 

a2k z __ __ ) 
a2k 2 + (1 -- a) k2c Nomn( jn kg) N°mn( T ke) l forz ~ z' (25) 

§ 4.  W a v e g u i d e  o f  c i rcu lar  c r o s s - s e c t i o n  

In cylindrical coordinates the function ~b(h) takes the form 

c o s  
~bg~,(h) = Jn(~Tr) . ndp eihz 

Sln 

o r  

(26a) 

o r  

Yn(~ro) = 0 (27b) 

where r0 denotes the radius of the guide. Thus the vector wave 

functions for this configuration are M~n ~ and No% ~ defined in (13) 

and (14). The orthogonality relationships of interest are 

N M s ~ ( h  ). o%.~.(--h) dv = 0 (28) 

~8~(h) = Jn(~r) cos. n4 eih~" (26b) 
sin 

The boundary condition in turn defines the value of ~ and ~ ac- 
cording to 

o y,@ro) 
-- 0 (27a) 

c~r o 
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ff 

f f, 

Mg~(h) .M-o%,~,(--h') dv = 

0 ;  n=An'  or r/:/=~' 

~o) (ro~ 2 - n~) - h ¢) J,~(~ro) (5(h ; 

N?,~(h) . N?,¢a,(--h' ) dv = 

h 2_ + f i e ( . o J n ( ~ r o )  ) 2 d ( h _ h , ) ;  
~r~( l  + cSo) h2 - / a ~  2 \ aro 

O; n=/:n'  or ~ =/=~' 

(29) 
! ¢ r t = n ,  r ] = ~  

(30) 

The expansion of the Green's function is carried out in exactly the 
same fashion as for the rectangular case. Again a pole appears in 
the case of the E-mode  wave and the integration path must be 
deformed in such a fashion as to eliminate the contribution. The 
final result in this case is 

---- i 
G@(RIR') ---- ~ - = E  a2(2-~0)  × 

7~ n 

a2k 2 1 1 
+ E  

~ = ~  k~ [a'~k 2 + ( 1 - - a )  ~21 r~ l ~J~(~ro).l 2 - 
L ] ~ r o  

X Nenn,(:~2]~)N' Z' o~n~(~-k~) for z X (31) 

where 
k~ = (a2k2 - a~2) ,  k~ = (a~k2 - a~2).  

§ 5. Conclusion 

The method used in the derivation of the dyadic Green's function 
is useful in a wide variety of situations involving both moving and 
stationary media. Explicit results for the circular and rectangular 
cross section waveguides with a moving isotropic medium are de- 
rived in this paper. These functions are useful in the investigation of 
the fields arising from current and aperture sources in these wave- 
guides. 
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