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Abstract 

The tu rbu len t  f low character is t ics  in the  inlet  regions of circular pipes and 
paral le l  plates are considered separate ly  in this paper .  The m o m e n t u m  
integral  equa t ion  of the boundary  layer  near  the  wall  and the  overal l  conti-  
nu i t y  equa t ion  for the  flow are solved. The var ia t ion  of the  shape factor  is 
t aken  into considerat ion in the  solution by  supplement ing  the  two basic 
equat ions  by  an en t r a inmen t  equat ion.  Numer ica l  solutions and avai lable  ex- 
pe r imenta l  results show t h a t  the  present  theory  is in good agreement  wi th  
exper imenta l  da ta  for flow in bo th  pipe and paral le l  plates.  

Nomenclature 
al l . . .a84 defined in (30) 
A1...A14 defined in (17) 
bn...b2a defined in (30) 
H the  shape factor,  ~*/0 
L half wid th  be tween  parallel  plates 
n cons tan t  in ve loc i ty  dis t r ibut ion 
r radial  coordinate  
R radius of pipe 
Re  Reynolds  number ,  2RUpo/V for pipe flow, and 2LUpo/v for flow 

be tween  paral lel  plates  

* All opinions or assertions made in this paper are those of the authors and are not 
to be eonstrued as official or necessarily refleeting the views of the Navy or the naval 
service at large. 
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u velocity component in x-direction 
Up center line velocity 
v velocity component in r- or y-direction 
x flow direction coordinate 
y coordinate perpendicular to x 
p density 

shearing stress 
d boundary layer thickness 
~* displacement thickness 
0 momentum thickness 
v dynamic viscosity 

A defined in (31) 

Subscripts 
o inlet to channel 
w condition at wall 
fd fully developed condition 
f condifion at location where the boundary layers join 

Superscript 
- dimensionless quantities 

§ 1. I n t r o d u c t i o n  

This paper considers the turbulent flow in the inlet region of circu- 
lar pipes and parallel plates. The flow at the entrance is assumed 
to be uniform. Owing to viscous friction, however, a boundary 
layer will be formed on the wall of the pipe and its width will in- 
crease in the downstream direction. The velocity profile consists of 
a boundary layer profile near the wall joined in the center by a line 
of constant velocity. Due to the fact that  the volume of flow taust 
remain the same for every cross section, the de¢rease in the rate 
of flow near the wall must be compensated by a corresponding 
increase in velocity near the center line. Thus, the boundary layer 
is formed under the influence of accelerated external flow. At large 
distance from the entrance, the boundary layer gradually occupies 
the whole pipe. At the point where the boundary layer reaches the 
center line, the velocity profile has not reached a fully developed 
distribution. A short distance further downstream, the flow be- 
comes fully developed. 

Analytical prediction of flow characteristics in the inlet region is 
difficult due to the Iact that  the region consists of two sections and 
the treatment by the boundary layer approach ean only lead to 
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solutions to the first section. No theory has been proposed for the 
solution of the second section where the boundary layer has merged 
at the center line, hut fully developed turbulent flow has not been 
established. 

In the present paper, the first sektion of the inlet region is solved 
by using a more detailed boundary layer treatment. The pressure 
gradient and variation of the shape factor, neglected by other 
analyses [1-5], have been considered. Comparisons are made with 
the experimental data of Barbin and Jones [63 for the flow in 
circular pipes and Byrne, Hatton, and Marriott [77 for the flow 
between parallel plates. The dose agreement with experimental 
data in comparison with results from other theories shows that the 
analysis presented in the present paper better predicts the flow 
characteristics in the inlet section of channels. The two cases of 
circular pipe flow and parallel plate flow are treated separately. 

§ 2. Inlet region of eircular pipes 

The steady, ineompressible axisymmetric boundary layer equations 
are well-known and can be written as (Fig. 1) 

Ou 1 ~(rv) 
- - +  - - 0  (1) 
~x r ~r 

au au 1 ä(rT) dUp 
u ~ x  ÷ v - - - - ,  (2)  - -  ôr pr ôr + Up dx  

i R 

Fig. 1. Schemat ic  d iagram of the  pipe. 

where the velocities are the time-averaged quantities. By non- 
dimensionalizing the variables by 

u Up(x)  _ x _ r 
» » 

ü -  U » ( x ) '  Ü » ( ~ ) -  Upo ~ R ~" R (3) 
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and integrating over the pipe radius, eqs. (1) and (2) become 

a Üp üe d = 0 (4) Oe 

fo 2 dU» fò ü(1-ü),d, ÷ ä l ü ( l _ ü )  e d e ÷  Üp de ae 

1 dÜp .f~ t rw 
÷ Üp de -~  (1 - -ü)  e d e - -  pÜ~" (5) 

The next step is to select a velocity profile and a proper law of 
Ifiction. In the work of Bowlus and Brighton [51, a 1/7-power law 
velocity profile and the Schultz-Grunow wall shear relation for flat 
plate Ilow with zero pressure gradient were selected [8J. Such a 
choice simplifies the mathematics in that  two equations will suf- 
fice for the solution of the problem, since the shape factor H (=d*/0) 
has a constant value of 9/7, thus eliminating one differential equa- 
tion for the solution of H. 

Since the flow in the entrance region is an accelerating flow which 
does create a nonzero pressure gradient, the use oB Schultz-Grunow's 
friction law is inherently in error due to the fact that  it can only be 
applied to boundary layer flow over flat plates without a pressure 
gradient. Furthermore, the local Reynolds number in the boundary 
layer far exceeds the upper lirnit of the Reynolds nurnber for the 
1/7-power law velocity profile to apply. Therefore, both equations 
have to be replaced by equations without such limitations. In this 
work, the velocity profile chosen is the general power law profile 
defined by 

U » -  or ü =  , (6) 

where d is the boundary layer thickness, and the coordinate y is 
related to the radial axis r by y = R -- r. The dimensionless form 
of these new variables is defined similar to eq. (3) as 

y ~ = --.d (7) Y=-ff' R 

For the velocity profile given by eq. (6), it can be shown that  
the displacement and momentum thicknesses are given by 



T U R B U L E N T  FLOW D E V E L O P M E N T  CHARACTERISTICS 49fi) 

B* n 0 n 
-- and - -  = (8) 

Õ n +  1 ~ ( n +  1 ) (2n+  1) 

Thus, the power n can be related to the shape factor by the following 
equation 8" 

H . . . .  2 n  + 1. (9) 
0 

For turbulent boundary layer flow with a pressure gradient, the 
shearing stress at the wall can be approximated quite well by the 
well-known empirical formula of Ludwieg and Tillman [8] * as 

/ UpO \-o.26s 
Tw 10_0.67SH ~ ~ )  (10a) pU~ -- 0.123 X 

o r  

Tw ~ ( _  2-Re \-0.~68 
- o . 1 2 3  x lO-O.678ù,u, ö) , ( l o b )  pU~ 

where Re is defined as 2RUpo/V, and Õ ---- 0/R. 
The introduction of the shape factor H necessitates another 

equation for its solution. This equation is usually referred to as 
the entrainment equation. Various forms of this equation have 
been proposed (see, e.g., the review article by Rotta [9] for a 
summary of these equations). It  was decided, however, that  the 
equation by von Doenhoff and Tetervin [8] would be used in this 
work for its proven accuracy in predicting boundary ]ayer charac- 
teristics. This equation can be written as 

_dH =e4.6S0(H_2.97») [ Õ dÜp(pU~'~_2.035(H_l.286)], 
0 d-~-" Üp d~ \ ~'o / 

(11) 
where the quanti ty "ro/pU~ in eq. (11), according to Doenhoff and 
Tetervin [8], is evaluated from the equation by Squire and Young 
[8~ 

~'o 0.0288 

• For fully developed flow, we have Blasius'  law [8]. 

~'w 0.03955 . . . .  Ooc) 
pu~a 2 (Re) °-~~ 

In the calculation, eq. (10a) was used first unt i l  Vw dropped to the fully deve]oped 
value given by eq. (10c). From tha t  seetion on, eq. (10c) was used. 
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Combining eqs. (11) and (12), we obtain the final form of the en- 
trainment equation 

0- dHd~ = e4"680(H-2"975) { ÜpÖ dÜPd2 [l°g(2"0375ReÜpÖ)]20.0288 q- 

-- 2 . 0 3 5 ( H -  1.286)}. (13) 

By substituting the velocity profile, eq. (6), into eqs. (4) and (5) 
and, together with eq. (13), solving for the three differentials 
d3/d:~, d Üp/d2, and dH/d~, the following system of differential 
equations is obtained 

dUp 2A2AsAlo + 2A2ATAla + AaA14A6 
- -  ( 1 4 )  

d2 

d3 

2A1A«Alo + 2A2(ATAla --  A9Alo) + AaAlaA« 

where 

1 

d:~ A cA 10 
- -  [AsAlo + AvA14 -- (ATAla -- AgAlo) A15] (15) 

dH A 14 A laA 15 
- -  - -  , ( 1 6 )  
d2 Alo + Alo 

A1 = 1(1 -- 3) 2 -{- 3 ( 1 
u + l  

Up 
A 2  m 

n @ 2  

23Up 
Up(1 -- 3) 

n +  1 n + 2  

Aa--  
Üp3 Üp3 2 

(n -{- 1)~ (n + 2) 2 

A4--  - -  
1 I 3 3 - - +  

n + l  2 n + l  n + 2  2 n + 2  

3 2 1 3 3 2 
AT-- + 

2(n + 2) 2 2(n + 1) 2 (2n + 1) 2 4(n + 1) 2 

3 3 
A t = A 4  + 

n - l - 2  2 ( n +  1) 

As=a(- *' a a ) 
n + 1  2 + nq -2  
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TO 
1 8 - -  pu~ 

2dA4 A5 
A g - -  Up -k Ü» 

( Re )~ 
A lo = Ü» ~ - -  ö 

All  = Alo/Up 

A12 ----- 0.0135(H -- 1.4) 

Ala ~ ea(H-L4) A n  

A14 : e 5(H-1"4] A12. (17) 

§ 3. Starüng condition 

In the experimental work of Barbin and Jones [6], turbulence was 
promoted by a 1-inch strip of sparsely distributed sand grains 
glued to the pipe wall 2 inehes downstream of its leading edge. At 
a distance of 2 inches, the local Reynolds number is 9.7 × 104 (for 
their data with ReD = 3.88 × 105) which is slightly below the 
generally recognized critical Reynolds number for transition. I t  is 
therefore reasonable to assume that  the boundary layer is laminar 
from the leading edge to the distance of 2 inches and from there on, 
due to the effect of roughness, it becomes turbulent. At the dis- 
tance of 2 inches (corresponding to £ = 0.5), the momentum thick- 
ness for the laminar boundary layer immediately upstream of tran- 
sition can be estimated by Blasius' solution as 

0(lam) = 0.664 ~--Re2£ = 0.00107. (18) 

/ 

On the other hand, the momentum thickness for the turbulent 
boundary layer immediately downstream of transition can be esti- 
mated by the 1/7-power law tor flat plate as 

Ö(tur) = 0.0362tr R e  ~tr 

= 0.00315£~r/», 

where £tr is a pseudodistance. 

(19) 
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At transition, the first condition to be satisfied is that  the mo- 
mentum thickness remains constant. Equating Õ from eqs. (18) and 
(19), we ger 

25tr ~--~ 0.258. 

At this value of ~tr, the boundary layer thickness is estimated to be 

B(tur) = (72/7) Ö = 0.011. 

The shape factor upstream of transition is estimated by Blasius' 
solution as 2.586. Across transition, the decrease in the shape 
factor is estimated to be 1.3, based on Fig. 22.13 of Schlichting's 
book [8J. Thus, the shape factor downstream of transition is 1.286.* 
Due to the short distance from entrance to transition, Up is taken 
to be approximately unity. The starting eonditions for the inte- 
gration of eqs. (14), (15), and (16) are then 

= 0 . 5 :  ~ :  0.011 

H = 1.286 

Üp = 1. (20) 

It  should be emphasized that, in the integration process, Xtr  ~--" 0.268 
is actually used in eq. (20). However, the results are presented in 
terms of the physieal distance 2. 

§ 4.  Comparison with data of barbin and jones 

Equations (14), (15), and (16), subjected to the initial conditions 
given by eq. (20), are integrated by Runge-Kutta 's  method. The 
results give Üp, ~, and H as functions of 2. Fig. 2 shows a com- 
parison between the theory and the experimental data of Barbin 
and Jones [6]. The solid line represents the calculated Üp as a 
function of 2. It  is seen to correlate more closely with the data 
than that  of Bowlus and Brighton [5J. The results show that  the 
turbulent boundary layer thickness equals the radius of the pipe 
at an axial distance of 57 radii, beyond which point the solution 
based on a boundary layer assumption ceases to apply. If the 
center line velocity and pressure at this point are denoted by Upr 

* The  va lue  of H = 1.286 cor responds  to a 1/7-power l aw ve loc i ty  profi le  (see, e.g., 
eq. (21.6) of [8]). 
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1.1 

/ 

I 1 I 
• • .  DATA OF BARBIN & JONES [6] 

PRESENT RESULTS 

THEDRY OF BOWLUS & BRIGHTON [5] ~ ~_~ 

/ 
,/" 

/ 

2O 40 60 
x 
R 

Fig. 2. Comparison of Üp(~) with experimental data. 

and pf, respectively, Bernoulli's equation can be used to obtain 

pü 2 2ü 2 
1 E 2  _ _  - ~ ( u ~ ,  Ü~).  (21) 

Experimental data of Barbin and Jones [6] are again compared 
with the results calculated by eq. (21) and are shown in Fig. 3. The 
agreement is extremely dose. 

0.3  

02 ~'~. 
0.] • • • DATA OF BARBIN ETAL[61 

- -  PRESENT RESULTS 

I i I 

X/2R 

Fig. 3. Comparison of pressure variation with experimental data 
(Re ~ 3.88 × 10õ). 
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The ratio of wall skin friction to its fully developed value is 
given by 

0.123 X 10 -0"678H Üp Õ pU2p 
T W  

~'w,, 0.03955(Re -°'25) pS~a 
= 3 .75(10)  -0'678~ R e  -O'01s Ü~'73~0 -0"268 (22) 

for rw/rw,, _> 1. Fig. 4 shows the ratio calculated from eq. (22) com- 
pared with experimental data. Fully developed friction was found 
to be reached at an axial distance of approximately 17 diameters 
which is very close to the value obtained by Barbin and Jones. 

1.25 

1.20 

1.15 

1.10 

1.05 

1.0C 

Fig. 4. Comparison of axial 

ù . t 

"~ . . . DATA OF BARBIN ET AL [6] 

PRESENT RESULTS 

i 

5 10 15 20 2 5  

Y2R 

~riction distribution with experimental d a t a  
(Re = 3.88 x 105). 

1.35 

1.30 - -  

= ~ 

].25 

5 10 ]5 20 25 30 

Y2R 

Fig. 5. Variation of H with ~ (Re = 3.88 x 105). 

Finally, the shape factor variation in the fiow direction is plotted 
in Fig. 5. This shows that  the shape factor H changes from 1,286 to 
1.25. Since these values of H correspond to velocity distributions 



T U R B U L E N T  F L O W  D E V E L O P M E N T  C H A R A C T E R I S T I C S  435 

varying continuously trom 1/7-power to 1/8-power laws, the as- 
sumptions of 1/7-power velocity distribution and constant shape 
factor at 1.286 are bound to lead to error. 

§ S. Inlet region of parallel plates 
Following exactly the same steps as in the analysis of the inlet 
region of a circular pipe, the theory is applied to flow between 
parallel plates. In terms of the dimensionless quantities 

u , Üp--  u , __----x , - - - -Y (23) 
ü -  U» Upo 2 L Y L 

Yl 

Fig. 6. Schematic diagram of parallel plates. 

and Fig. 6, the momentum, continuity, and entrainment equations, 

dH 

d~ 

can be written as 

O~ ü(1--ü) d y +  Üp de ü(1--ü) d 9 +  

1 dÜPd~ ~o t q- Üp (1- -ü)  d y - -  

~ ~ e 4"680(H-2"975)  X 

X 

TW pu~ (24) 

dÜp ogl0 2.0375Re Up H(H q- 1) 
+ 

Üp d~ 0.0288 

(25) 

H(H + 1) 
- -  2 . 0 3 S ( H - -  1.286)  ~ ( H  - -  1) (26) 
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where Tw is given by Ludwieg and Tillman's relation 

~'w ( Re \-0.268 
= 0.123 X 10 -°.678H \ÜP - ~ - - õ )  

p U---~p 
« 

= 0.123 × 10 =o.67sH Üp 2 H(H -1- 1) " 

By using the general velocity distribution given by 

g = U n, 

where n is related to the shape factor H through the relation H = 
= 2n + 1, eqs. (24), (25), and (26) can be solved to obtain the 
following system of differential equations 

dUp 1 
d2 -- A (b14a22- a12b28) (27) 

d(~ l 
d ~  = Ä (bllb2a -- b21b14) (28) 

dH dÜp 
d---2-= a34 --  aas d---~' (29) 

where 

a l l  - -  
H(H + 1) 

H - - 1  
a12 

H(H + 1) 

B [ 2 ( H - -  1) 3 
ala = H(H + 1) 

a14 = 0.123 × 10 -o-67sH 

23 
a21 = - - U p  (H + 1) 2 

_ 1 - - H  
a22 ~~- U p  H + 1 

a23-~ 1 ( H -  1)3 
H + l  

( H - -  1) 3 
HT(ff~: õ~ (2H + 1) 

+ (H--1) 3]H+I 

B Re (H--1) 31-0"268 
Üp 2 H(H + 1) 
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a 3 1  : 1 

1 
a33 : e4"680(H-2"975) - -  

Up 

[, ( / - - ' , ' )T  
ogl0 2.0375Re Up H(H + 1) " 

a34 = - - e  4"680(/-/-2"975) 2.035(H -- 1.286) 

b l l  = ~ a l l a 3 3  @ a13 

0.0288 

H(H + 1) 

(I-I- z)~ 

b14=a14--alla34 

hg1 = --a21a33~- a23 

b 2 3 =  - -~21a34 (30) 

and 

011 a12 . (31) 

A = b21 a22 

The starting conditions were estimated by  following the same 
reasoning as used in the case of circular pipes. The experimental 
data [7] used in checking the present theory have a transition at 

---- 1, and the Reynolds number Re = 2UpoL/v is 110,500. The 

0.192 

0 . 1 4 4  

i 

! i I | 

PRŒSENT SOLUTIONS 
«oQ DATA OF BYRNE, ET AL [7] 
- - -  THEORY OF BYRNE FT AL[.7] 

/ f  
f I I I 

16 32 48 64 

-7 

80 

Fig. 7. Comparison of d isplacement  thickness  var ia t ion  wi th  exper imenta l  
da t a  (Re = 110,500). 



4 3 8  T . Y .  NA AND Y. P. LU 

0.144 

0.09~ 

I I I t 

PRESENT SOLUTION5 
* * * DATA OF BYRNE, ET AL[7] 
- - - - - -  THEORY 0FBYRNE, E/AL[7] 

00,~/il 
I I I I 

16 32 48 64 80 
¥ 

Fig.  8. C o m p a r i s o n  of  m o m e n t u m  t h i c k n e s s  v a r i a t i o n  w i t h  e x p e r i m e n t a l  

d a t a  (Re = 110,500). 

starting conditions are found to be* 

= 1: H =  1.286, 3 - -0 .0291 ,  Üp--- 1. 

Numerical solutions are obtained by  forward integration, similar 
to that  used in the case of circular pipes. The same degree of accu- 
racy was obtained, as shown in Figs. 7 and 8 for typical results. 
Solutions by  the present method are in better  agreement with ex- 
perimental data than those of Byrne, Hatton,  and Marfiott [7]. 
The boundary layers from the walls meet at an axial distance of 
approximately 2 = 55, beyond which the boundary layer model 
ceases to apply. 

Received 1 March 1972 
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