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Abstract. The problem of laminar,  natural  convection flow over a vertical f rus tum of a 

cone is treated in this paper. The thermal boundary  condition at the wall include both 

the constant wall  temperature and the constant wall  heat flux cases. The governing 

differential equations are solved by a combinat ion of quasilinearization and finite- 

difference methods.  Numerical  solutions are obtained for a range of Prandtl  numbers .  

The solutions are found to approach to the solutions for a full cone if the flow is far 

downst ream or the radius of the cross-section at the leading edge is very small. 

Introduction 

In a recent study of the effect of slenderness on the natural convection 
flow over a slender frustum of a cone [1, 2], the authors found that the 
problem of natural convection flow over a frustum of a cone without 
transverse curvature effect (i.e., large cone angles when the boundary 
layer thickness is small compared with the local radius of the cone) has 
not been treated in the literature, even though the problem for a full 
cone has been treated quite extensively [3-11] .  It is therefore the 
purpose of this paper to present an analysis of this problem (see Fig. 1) 
when the thermal boundary condition on the wall is constant either in 
the wall temperature or in the wall heat flux. 

The physical model  and the coordinate system are shown in Figure 
1. Similar to the analysis of the natural convection flow over a slender 
circular cylinder by Sparrow and Gregg [12], the boundary layer is 
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Fig. 1 The Coordinate system 

assumed to develop at the leading edge (x = Xo), which means the 
temperature  at the circular base is assumed to be at the same tempera- 
ture as the temperature  of the surrounding fluid. Due to the difference 
in temperature  between the surface and the surrounding fluid, an 
upward flow is created as a result of buoyancy. As in similar analyses 
of such problems, the boundary layer approximations are assumed to 
be valid. The flow is steady and fluid-property variations are assumed 
negligible except for the density variation necessary to create the 
buoyancy force. 

The boundary layer equations for the problem under consideration 
can therefore be written in dimensionless quantities as: 

a(~o~) a(~o~) 
- - +  = 0 ( 1 )  a~ a~ 

Ot~ Ot~ 02~ 
a - -  + z3-- - 0 (2) 

o; + 

O0 O0 1 020 
a - - + ~  . . . .  (3) 

O~ Of Pr Of 2 
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The dimensionless quantities in Equations (1), (2) and (3) are related 
to their corresponding physical variables through the following defini- 
tions: 

nj 

x - x o u D 
x -  n " ~¢=Y-- R'J-ffe-L; f i = - - "  ~=--~,/-ffeeL; 

' L uc ' uc 

r T - T ~  r = g  R4R4~ ro = ~ ; 0 - 0r ' 

(4) 

R e t  = ueL ( 5 )  
b/ 

where, for the case of constant wall temperature, 

uc = [gd3 Cos a (Zw - TDL]  1~2 

O,=Tw-T~ 

(6) 
(7) 

nJ-ll2 

nj-i 

~n-1 

14 k n ~ 

~n-i/2 

and 

hj 

~n 

Fig. 2 A typical grid point 
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and, for the case of constant wall heat flux, 

u~ = ge/3 COS Ot (Lv) in (8) 

q°L (9) 
°r= k R$-R--e~ 

If the characteristic length, L, is chosen as the distance Xo (see Fig. 
1), then the Reynolds number can be expressed in terms of the 
Grashof number. For the case of constant wall temperature,  we have: 

ReL -- UcXo-- { C°s a(Tw-v2 T~)x3} 1/2 = --•rl/2xo (10) 

and, for the case of constant wall heat flux, we have 

ReL = UcXO=v {gd3 Cos a(qoxo/k )x3] J = Gr~/oS (11) 

where Gr~o is the Grashof number based on Xo. 
The boundary conditions are: 

~ = 0 :  f i = 0 ;  ~ = 0  

0 = 1 (for the case of constant wall temperature) 

00 
. . . .  1 (for the case of constant wall heat flux) 

~=oo: t i = 0 ;  0 = 0  

We will now seek solutions of the differential equations for the two 
cases. The numerical method used in this paper is identical to the one 
used in reference 15 and will therefore not be discussed here. A very 
brief outline is given in the appendix. 

N u m e r i c a l  S o l u t i o n s  

Case 1. Constant Wall Temperature  
Let  us define the stream function as 

• ( 1 2 )  r°~ =0-~ ' r°v~- OX 
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and the transformation 

f (¢  n) = ~z3/%, 

: 1 / 4  

g(~, ,7)= 0 

where, for cones, ro is related to x by 

ro = x Sin a 

Equations (1), (2) and (3) then become: 

r 

g,,+(R+3)prfg,=~(f, Og , Of'~ 

subject to the boundary conditions: 

f(~, 0) = f ' G  0) = 0; g(~, 0) = 1 

f'(~, o~)= o; g(~, o~) = o 

where 

(13) 

(14) 

(15) 

(16) 

R = ---{-~ (17) 
1+~  

At ~ = 0, the ratio is zero and Equations (15) and (16) are reduced 
t o :  

f,,+~//,, ½(f)2+ g = 0 ( i s )  

g"+¼ Pr fg' = 0 (19) 

subject the boundary conditions: 

f ( 0 ) = f ( 0 ) = 0 ;  g ( 0 ) = l  

f '(~) = 0; g(~) = 0 

On the other hand, as ~ becomes very large, the ratio R approaches 
to 1 and the solutions are expected to approach to the similarity 
solutions of the natural convection flow over a full cone [3], namely, 

m 7 tt 1 t 2 f + fff - ~(f ) + g = 0 (20) 

g"+z4 Pr f g ' =  0 (21) 
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subject to the boundary conditions: 

f(0) = f'(0) = 0; g(0) = 1 

f'(oo) = 0; g(oo) = 0 

Equations (20) and (21) can also be obtained by setting R = l into the 
left-hand side of equations (15) and (16) and equating the right-hand 
sides of these equations to zero. Actual computations of the solutions 
of equations (!5) and (16) bears out this prediction. 

The heat transfer rate is given by: 

k 0 

k(Tw - T~) rl14 - l / 4 _ , t ; -  
- G x o ~  ~t¢,O) 

Xo 

= hx(Tw - T~) (22) 

The Nusselt number is therefore: 

hxx* 
Nu~. = k 

= Grlx/o4~3/4[-g'(~, 0)] 

= G r ~ [ - g ' ( ~ ,  0)] (23) 

where x* = x -Xo, and 

gd3 Cos ot(Tw - T~o)x .3 
Gr~. = v2 (24) 

First, [-g'(~, o)] are tabulated in Table 1 for the two limiting cases 

TABLE 1. [-g'(0,0)] and [-g'(¢%0)] for various 
Prandtl numbers 

Pr 

[-g'(0, 0)] [-g '(~,  0)] 
solutions of (18) solutions of (20) 
and (19) and (21) 

0.01 0.05742 0.07493 
0.70 0.35320 0.45101 
1.00 0.40110 0.51039 

10.00 0.82690 1.03397 
100.00 1.54930 1.92197 
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TABLE 2. [-g'(~, 0)] for various Prandtl numbers 

415 

[ -g% o)] 

Pr= 0.01 Pr= 0.70 Pr= 1.0 Pr= 10. Pr= 100. 

0.00 
0.25 
0.75 
1.75 

3.75 
7.75 

15.75 

31.75 

63.75 
127.75 

0.05742 0.35320 0.40110 0.82690 1.54930 

0.06135 0.37202 0.42185 0.86336 1.61215 
0.06536 0.39204 0.44404 0.90293 1.68088 
0.06895 0.41366 0.46830 0.95023 1.76690 
0.07148 0.42893 0.48525 0.98229 1.82496 
0.07307 0.43958 0.49749 1.00866 1.87572 

0.07397 0.44462 0.50312 1.01835 1.89189 
0.07444 0.44822 0.50726 1.02848 1.91286 

0.07468 0.44916 0.50827 1.02889 1.92150 
0.07481 0.45052 0.50987 1.03369 1.92189 

0.07493 0.45101 0.51039 1.03397 1.92197 

defined by equations (18)-(21).  The complete solutions (from ~ = 0 to 
= ~) are tabulated in Table 2 and Fig. 3 for the same Prandtl 

numbers. It is seen that the solutions start at ~ = 0 from solutions of 
equations (18) and (19) and approach to the similarity solutions of 
natural convection over a full cone, Eqs. (20) and (21), as ~ becomes 
very large. 

v 

! 

PR=IO0 

I ! 

0,01 

I I 

Fig. 3 

-1 0 
loglo 

-G'(~,  O) -vs  - ~ for various Prandtl numbers 
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Case 2. Constant Wall Heat  Flux 
Introducing the stream function defined in Eq. (12) and the transfor- 

mation defined by: 

'~ = x, n = ~l/s (25) 

g, o 

Equations (1), (2) and (3) become: 

f,,,+(R +4)ff,,_3(f,)2+g=~(f,O f' f,, Of) ~--~- ~ (26) 

/ ,Og g, of) 
g " + ( R +  4) P r f g ' - ~ P r f ' g  = ~ Pr ~f ~-~- ~-~ (27) 

subject to the boundary conditions: 

f(~, 0) = f'(~, 0) = 0, g'(~, 0) = - 1  

f'(~, ~) = 0, g(~, ~) = 0 

where R is defined in equation (17). 
At  ~ = 0 (where  R = 0), equations (26) and (27) become: 

f,,, + 4if,, _ 3(f,)2 + g = 0 (28) 

g"+4 Pr fg ' -½ Pr f 'g  = 0 (29) 

subject to the boundary conditions: 

f(0) =f ' (0)  = 0, g'(0) = - 1  

f ' (~)  = o, g(~) = 0 

As ~ becomes large, the ratio R approaches to 1 and the right-hand 
sides of equations (26) and (27) become negligible. Equations (26) and 
(27) then become: 

ttt 9 It 3 t 2 f + # I  - s ( f )  + g = 0 (30) 

g,,+9 Pr fg ' -½ Pr f 'g  = 0 (31) 

subject to the boundary conditions: 

f(0) = f'(0) = 0, g'(0) = - 1  

f'(~) = 0, g(o~) = 0 



LAMINAR NATURAL CONVECTION 417 

TABLE 3. g(0,0) and g(% 0) for ,carious Prandtl 

numbers 

G(O, 0), solutions of g(% 0), solutions of 
Pr (28) and (29) (30) and (31) 

0.1 3.7952 3.2781 

1.0 1.8729 1.6329 
10.0 1.0589 0.9336 

100.0 0.6425 0.5738 

Equations (30) and (31) are the similarity solutions for flows over a 
full cone [8]. The solutions of equations (26) and (27) are expected to 
change from the solutions of equations (28) and (29) to the solutions of 
equations (30) and (31) as ~ is increased from zero to infinity. 

For the case of specified constant wall heat flux, the wall tempera- 
ture is the physical quantity sought. In terms of the transformed 
variables, the wall temperature is given by: 

( qoxo/ k ) ~ 1/ 5 
T w ( x ) -  T= = {.ge~ 3 COS oL(qoX, o/k)X3]~ J 1/5 g(~' 0) (32) 

In order to see the role of x0 as Xo approaches to zero, we write 

TABLE 4. g(~, 0) for various Prandtl numbers 

g(¢, O) 

Pr = 0.1 Pr = 1.0 Pr = 10. Pr = 100. 

0.00 

0.25 
0.75 
1.75 
3.75 

7.75 
15.75 
31.75 

63.75 
127.75 

3.7952 1.8729 1.0589 0.6425 
3.6970 1.8282 1.0363 0.6294 
3.5954 1.7841 1.0142 0.6168 
3.4876 1.7325 0.9855 0.5995 

3.4016 1.6930 0.9642 0.5870 
3.3454 1.6649 0.4473 0.5764 
3.3128 1.6498 0.9393 0.5718 

3.2950 1.6406 0.9333 0.5678 
3.2864 1.6368 0.9317 0.5671 
3.2813 1.6339 0.9295 0.5654 
3.2781 1.6329 0.9336 0.5738 
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PR=O, 1 

:------.__ 1,0 

i0, 

i00, 

,, I ] 

-1 0 

LOGIO 

Fig. 4 G(~, 0) - v s  - ~ for various Prandfl numbers 

equation (32) as: 

T w ( x ) -  To = 

1 

qo(x - Xo)/k  tqotx- o J l x-   
First, g(~, 0) are tabulated in Table 3 for the two limiting cases 

defined in equations (28)-(31). The complete solutions (from ~ = 0 to 
= ~) are tabulated in Table 4 and Figure 4 for the same Prandtl 

numbers. It is seen that the solutions start at ~ = 0 from solutions of 
equations (28) and (29) and approach to the similarity solutions of 
natural convection over a full cone, equations (30) and (31), as 
becomes very large. 

Concluding Remarks 

Based on the analyses above and the numerical solutions sum- 
marized in Tables 2 and 4 and Figures 3 and 4, the following are 

observed: 

1. For both cases, the governing differential equations are non- 
similar from x = 0 to approximately x = 100x0. This means solu- 
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. 

tions based on a full cone is in error in calculating either the wall 
heat flux or the wall temperature. Instead, equations (23) or (33) 
and the numerical solutions should be used. This justifies the 
need for the present analysis. 
From the definition of ~, namely, ~ = (x -Xo)/Xo, a large value of 
implies either a large x (i.e., the flow far downstream) or a small 
Xo. In either case, the flow is expected to approach to the flow 
over a full cone. The numerical solutions tabulated in Tables 2 
and 4 (also in Fig. 3 and Fig. 4) demonstrate clearly this point. 
Also, equations (23) and (33) are in such forms that when Xo is 
set to zero, the expressions are reduced to those of the case of a 
full cone. 

For the natural convection of a given fluid over a given frustum of a 
cone, the physical properties of the fluid, Xo and a are given quantities. 
If, in addition, the wall temperature and the fluid temperature are both 
given, equation (23) gives the local heat transfer coefficient as a 
function of the location (x -x0)  along the surface of the cone. On the 
other hand, if the wall heat flux is the known quantity, equation (33) 
gives the wall temperature as a function of the location (x-x0)  along 
the surface of the cone. 

Appendix  Method of so lut ion 

To solve equations (15) and (16) [or, equations (26) and (27)], they 
are first written as a first-order system. The derivatives are then 
approximated by centered-difference gradients and averages centered 
at the mid-points of the net rectangles defined by: 

~o=0, ~ , = ~ , _ l + k , ,  n = l ,  2 , . . . , N  

7/0=0, ~lj=~/j_l+h# j = l ,  2 , . . , J ;  ~ = ~  

as shown in figure 2. A non-uniform grid hj defined by: 

hs =Kh,-1 

where the ratio of adjacent intervals, K, is a constant. The distance 
from the surface to the yth station is then given by: 

K j - 1 
* l j=hJK_ l ,  / '= 1 , 2 , . . . , J  
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The ~-direction grid kn is arbitrary. Linearization is achieved by the 
method of quasilinearization and the resulting system of algebraic 
equations are then solved by a block-tridiagonal factorization techni- 
que described in reference 15. The scheme is unconditionally stable 
and second-order accurate. The reader is referred to references 13 and 
14 for extensive discussions of this method and its application to 
viscous flow problems. 

Nomenclature 

f dependent  variable, defined in equation (13) or (25) 
g dependent  variable, defined in equation (13) or (25) 

ge gravitational acceleration 
h heat transfer coefficient, or ,q-grid 
k heat conductivity, or ~-grid 
L characteristic length 
Nu Nusselt number 
Pr Prandtl number 

q heat flux 
r radial distance from the axis of the cone 

r 0 radius of the cone 
Re Reynolds number 
T temperature 
u, v velocity components in the x- and y-directions 

x, y rectangular coordinates 

Greek Letters 

0 dimensionless temperature,  defined in equation (4) 

/3 bulk modulus 
a cone angle 
v dynamic viscosity 

~0 stream function 
~, 'q independent  variables, defined in equation (13) or equation (25) . 

Subscripts 

w condition at the surface 
condition far from the surface 

r reference condition 
o wall condition 
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