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Abstract 

The paper reviews the method of complex potential functions developed by Green and 
Collins as applied to axisymmetric mixed boundary value problems in elasticity for the 
half-space. It is shown how the method can be applied to problems in several coupled 
potential functions such as adhesive and frictional contact problems, to problems involving 
annular regions and to problems in thermoelasticity. Attention is given to the question of 
choosing a formulation which leads to a well-behaved numerical solution. 

Tables are given of the most commonly needed inversion formulae and of expressions 
for total load and stress intensity factor. 

1. Introduction 

The author has recently solved a number of axisymmetric mixed boundary 
value problems [1-5] in elasticity using the harmonic potential function 
representation developed by Green and Collins. This method is less 
popular than the Hankel transform representation pioneered by Sneddon 
[6,7], but it has two significant advantages: (i) it leads directly to an 
integral equation formulation and (ii) the representations can be chosen 
to have the correct asymptotic behavior at the edges of the several regions 
so that the resulting integral equations are well suited to a rapidly 
convergent numerical solution. 

The two methods are of course very closely related and can also be 
used in combination. A number of interesting and illuminating interrela- 
tionships are given by Keer [8], Sneddon [6] and Gladwell [9]. 

In this paper, we shall discuss the method in more detail and general- 
ity than could be justified in the solution of a particular problem and 
record various results and relationships which facilitate the use of the 
method. 
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2. Historical background 

The method can be traced back to Love's solution [10] of the Boussinesq 
frictionless punch problem. He showed that a series of complex harmonic 
potential functions can be generated from real Legendre polynomial 
solutions in cylindrical coordinates (r, 0, z) by substituting (z + ia) for z. 
The real and imaginary parts of the resulting functions are separately 
harmonic and have discontinuities at r = a on the plane z = 0. 

Functions of this type can be used in combination with the 
Papcovich-Neuber or the Green-Zerna potentials for the equations of 
elasticity to give elegant solutions to the classical frictionless punch and 
crack problems. Several examples are treated by Green [11], who uses 
Copson's solution in terms of Abel integrals [12] to obtain the complete 
surface values of the potentials, but uses Love's method semi-intuitively 
to extend these results to the rest of the half-space. 

Green and Zerna [13] extended the method to give a general solution 
for the axisymmetric frictionless punch using the integral representation 

Rfo a g( t )  dt 1 +a g( t )  dt (r2+(z+i,12)lj2= f_o q, 

where g(t) is an even function of t. It can be shown that Eq. (1) satisfies 
identically the condition Oq~/Oz = 0, r >  a, z = 0 and the remaining 
boundary condition in 0 _< r < a, z = 0 will yield an Abel integral equa- 
tion for the unknown function g(t). 

In effect, Eq. (1) is a superposition of solutions of the form 
R @2 + ( z + i t ) 2 ) - a / 2  derived from the 'point  source' solution 
(r  2 + z 2 )  - 1/2. We could therefore describe ~ as the potential due to an 
arbitrary distribution g(t) of point sources along the imaginary z axis 
between z = 0 and z = ia. It is therefore a logical development of the 
classical method of obtaining axisymmetric potential functions by dis- 
tributing singularities along the axis of symmetry. A closely related 
solution is given by Segedin [14] who develops it as a convolution integral 
of an arbitrary kernel function with the classical potential solution of 
Boussinesq. He uses this method to obtain the solution for a power law 
punch (u z - r" )  and treats more general problems by superposition after 
expanding the punch as a power series in r. It should be noted that 
Segedin's solution is restricted to indentation by a punch of continuous 
profile, in which case the contact radius a is not known a priori. In 
practice, a can be prescribed provided the rigid body indentation of the 
punch is allowed to float. The idea of representing a general solution by 
superposition of Boussinesq type solutions for different values of the 
radius has also been used as a direct numerical method by Maw et al. 
[151. 

Green's method was extensively developed by Collins who used it to 
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treat many interesting problems including the indentation problem for an 
annular punch [16] and a problem with radiation boundary conditions 
[17]. 

We should also note the significant contribution of Keer [8,18,19] who 
extended the integral representation to include non-axisymmetric prob- 
lems, and the application to thermoelastic problems involving two or 
more potential functions by Shail [20] and the present author [1-5]. 

3. Basic  forms and surface values 

For axisymmetric elasticity problems in the half-space, a convenient 
representation of the displacement u can be obtained from Green and 
Zerna potentials [13] as 

(1 - ~) z 3 ~ ,  ( 3 -  4u) u - - ~ 7 ~ ,  1 + ~7 - -  k o~k! 
I ~ ~ Oz 21~ 3z 

+ (1 -21 , )  z 3+2 ( 3 -  4P) k3+2 
2 ~  V~d2 q- ~ V OZ 2~ Oz (2) 

where ~l, ~d2 are axisymmetric harmonic functions. 
At the surface, z = 0, the stress and displacement components reduce 

to 

02~dl 02~2 
or" = 3rOz ' °z- . ~ OZ2 

oK, (1-2.)  0+2 
U r ~ - - -  I~ Or 21~ Or 

uz 2/~ 3z /~ 3z " 

(3) 

(4) 

To represent the potential functions ~b 1, ~2 we use suitable combina- 
tions of the four basic forms 

e& = R foagl( t )F(  r, z, t) dt 

q~2 = R L ~ g 2 ( t ) F (  r, z, t) dt 
(5) 

(?3 = Imfoago(t)F( r, z, t) dt 

ep4 = I m L ~ g 4 ( t ) F ( r ,  z, t) dt 

where 

z, t) = log((r 2 + (z + it)2) 1/2 F(r,  + (z + it)) (6) 
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is a complex harmonic function obtained on the pattern of Eq. (1) from 
the real potential function log (V/~-r2 + z 2 + z). 

The square root in (6) is interpreted as 

( r 2 + ( z + i t ) 2 ) l / 2 = p e  iv/2 (7) 

where 

p___0; 0_<v<~r .  (8) 

Table 1. Surface values of derivatives of the functions ~, (Eqs. (5)) 

O < r < a  r > a  

1 t "a ( t ' d t  1 f a t g l ( t )  dt 
Od~l/Or ; JO gl ) --;  Jr ~ t 2 ~  

O#,,/3z forg l ( t )  dt 

1 d / d r [ a t g ~ ( t )  dt 32~bl/~Z 2 
r Jr t z ~ _  r z 

1 ~ 1 ~ ( t ) d t  
Oe~2/Or r L g 2 ( t ) d t -  7 L tg2 ~ --r 2 

O~2//OZ 0 

O 2(~2/322 __1 a/ort" "" f ~  tg2(t)--= =dt 
r Ja 4 ~ _ ~  

! f r t g 3 ( t )  dt 

Oq~3/O z - f ag3 ( t )  dt 
r V / ~  

O2t~3/OZ 2 __1 u / o r ~  ~ "~ frtg3(t)----dt 

O~4/Or 0 

O~4/Oz 

~ 2~4//OZ 2 0 

_ L ~  g4( t )  dt 

Ct _ r 2 

1 a 

r fo gl(t) dt 

oagl ( t )  dt 

0 

1 L ~  l ~ t ~ 2 t ( 2 t ) ~ t  r g2(t) d t -  r 

L 
rg2( t  dt 

! d /dr f f  *g2(t) dt 
r t2¢~_r 2 

1_ foa t g 3_Z~ '_) d__, 
r 

0 

,~ r ~ ( ) at 3 t ` 1 dt 
- -  o / o r l  - - z  z 
r JO ~ r 2 _ t  2 

l f f t ~ t  
r __ 

1 d / d r L r t g 4 ( t )  dt 
r ~ r 2 t  2 
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Equations (5) 

and 

can be written in two alternative forms which for ~ are 

fo a 
eOl=½ g t ( t ) [ F ( z , r , t ) + F ( z , r ,  - t ) ]  a t  (9) 

g , ( t ) F ( z , r , t ) d t .  (10) 
--a 

We note that (10) is exactly equivalent to (5) if and only if gl is an 
even function of t. If  the boundary values of (~, O4~/Oz, 02¢p/Oz 2 etc. 
specified at z = 0 are all even in r, it will be found that g~, g2 are even 
and g3, g4 odd functions of t and forms like (10) can be used. The 
majority of problems fall into this category, but there are important  
exceptions such as the conical punch (where u~ is proportional to r )  and 
problems with Coulomb friction for which orz is proportional to azz in 
some region. In these problems, forms like (10) can only be used if g;(t) 
is extended into t < 0 by a definition with the required symmetry. 

At the surface z = 0, the important  derivatives of the functions ~bi are 
given in Table 1. 

In certain cases, higher derivatives are required - notably in thermo- 
elastic problems (1-5,  20) where heat flux is proportional to 03e~/Oz 3. 
Higher derivatives are most easily obtained by differentiating within the 
plane z = 0, making use of the fact that for an axisymmetric harmonic 
function f ,  

O V _  1 0 Of ( l l )  
0z 2 r ~rr t Or" 

The reader can verify that this result permits the expressions for 02~i/Oz 2 
in Table 1 to be obtained from those for Oe~i/Or. 

4. Two-part boundary value problems - examples 

The results of the previous section give a direct solution to any axisym- 
metric two-part boundary value problem in a single potential function. 
For example, to find a harmonic function satisfying 

¢o = f ( r ) ;  O < r < a  (12) 

= 0; r > a (13) 

we choose the form ~ - Oq,3/Oz. Table 1 shows that (13) is then satisfied 
identically and (12) gives the Abel equation 

fr a g3(t)  dt  - f ( r ) ;  O ~ r < a  (14) 

to determine the  unknown function g~. The Abel equations obtained in 
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such problems have only four possible forms and the appropriate inver- 
sions are given in Table 2. Notice that these equations can be inverted if 
and only if their range of application includes the entire range of the 
unknown function. 

If Eq. (12) is replaced by a condition on the derivative 

--~-z = h ( r )  ; O < r < a  (15) 

we then find 

L d / d r f o r t g s ( t ) d t = h ( r ) ;  O < r < a  (16) 
r 

from Table 1. In such cases, we multiply by r and perform an integration 
in the range 0 - r or r - oo to reduce the equation to Abel form. As a 
second example, if condition (12) is replaced by the radiation condition 

Oz H*0=f(r);  O < r < a  (17) 

Table 1 gives immediately the integro-differential equation 

1 , , ,  t "~ tg3(t) dt [a  g3(t)  dt  
r a / O r J o  ~ +Hj~ f ( r ) ;  O < r < a  (18) 

l - -  r 2 

which is Eq. 3.7 of Gladwell et al. [21]. Methods of solving such 
equations are discussed below. 

4.1. Problems with no zero boundary values 

If non-zero boundary values are prescribed in both parts of the boundary, 
we decompose the solution into two parts, each of which can be rep- 
resented in the form of Eq. (5). For example, if 

2*0 
w = f , ( r ) ;  O<r<_a: ~ z  = f 2 ( r ) ;  r > a  (19) 

we write .0 -= w~ + ~o 2 where ,01 satisfies 

Oco 1 
*0, = f , ( r ) ;  O < r ~ a :  

Oz 

and w 2 satisfies 

- 0 ;  r > a ( 2 0 )  

~002 
~ 2 = 0 ;  O < r < a :  Oz = f 2 ( r ) '  r>a .  (21) 

The solution can then be obtained by representing .01, °°2 by Oqh/Oz, 
Oq~2/az respectively. 

This decomposition is not unique - for example we could define 

o:, = f , ( r ) ;  O<r<_a: ~1 = 0 ;  r > a  (22) 
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OCO 2 OCO 1 . 
o~ 2 = 0 ;  O < r < a :  3z - f 2 ( r ) -  3z ' r > a  (23) 

and use 3~3/~z for col. Notice that in this case col appears in the 
boundary conditions (23) for co2 and hence we must solve for col first 
f rom (22). 

5. Choice of form-continuity considerations 

Each of the functions ~i in Table 1 has a zero in Oq~/Oz or  02q~//0z 2 either 
in 0 < r < a or in r > a. Thus in the above examples it would have been 
possible to choose co - O2qh/Oz2 instead of co - 3ep3/Oz. 

The choice is best made by examining the requirements of continuity 
imposed at r = a, z --- 0 by the physical problem. It can be shown that, if 
gl(a) is bounded, the expressions in Table 1 will define continuous values 
of Oq~i/Oz through r = a, z --- 0, but 02q, i/Oz 2 wilt be discontinuous unless 
g i ( a ) =  0. Thus, if the function co represents a physical quantity like 
temperature or electrical potential which is required to be continuous, it 
is appropriate to choose co -- O~3/Oz. The alternative choice co = ~2~1/~z2 
is not inadmissible, but it would then be necessary to impose the 
continuity requirement through the auxiliary condition g~(a) = O. 

In elasticity problems, we require continuity of displacements and this 
is achieved by expressing q~l, +2 in (2) in terms of the ~ rather than their 
derivatives. This is why we use the logarithmic form for ~ ,  in equations 
(5) in preference to Green's  'po in t  source' form (1), which requires a 
subsequent stage of partial integration. 

In problems involving contact between continuous surfaces - such as 
the Hertzian problem of a half-space indented by a frictionless 
paraboloidal punch - the normal traction ozz must also be continuous at 
the edge of the contact region. The most straightforward treatment of 
such problems is to use the formulation described above ( ~  in terms of 
~g) in which case continuity of normal tractions furnishes an extra 
condition to determine the radius of the contact region which is not 
known a priori. However, it is also possible to force the required 
continuity through the formulation by defining O~/Oz in terms of ~i in 
which case the contact radius is prescribed and the rigid body indenta- 
tion of the punch must be allowed to float. This is essentially the 
technique used by Segedin [14] in his treatment of the indentation of a 
half-space by a spherical punch. 
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6. Problems involving several coupled potential functions 

We next consider the application of the method to problems involving 
several potential functions coupled through the boundary conditions. 
Typical problems in elasticity are the interface crack and frictional or 
adhesive punch problems. The procedure is best explained by way of an 
example for which we use the adhesive indentation of a half-space by a 
rigid flat-ended cylindrical punch, first solved by Mossakovskii [22]. 

6.1. The adhesive punch problem 

The boundary conditions on z = 0 are 

u: = d, U r = 0; 0 < r < a (24) 

Ozz = Orz = O; r > a (25) 

where d is the depth of indentation and a is the radius of the punch. 
To solve this problem, we satisfy (25) by setting +1 -= e&, +2 =- ffl (see 

Eq. (3) and Table 1), in which case (4) and (24), and Table 1 give the two 
simultaneous equations 

(1 - 2v) f a  g3(t)  dt  
2 ;  Y r ~ r ~ F  2 

(l~rV) frtg3(t  ) dt 
d 0 ~ r a = t  2 

O<_r<a. 

(1 - v) [r gl(t) dt 

_ _ + m  

_ _  - d ;  O < r < a  

(26) 

21~r &(t)  d t -  ~ _  = 0; 

(27) 

We now treat (26) as an Abel equation for gl, carrying the g3 integral on 
to the right hand side and using the inversion rules (Table 2) to obtain 

2d# 2fl f a  ----:_-- dt 
gl (x)  = O < x < a  (28) 

7 r ( 1 - v )  ~r J0 (x2 - - t z )  ; 

where fl = (1 - 2v)/2(1 - v) is Dundurs constant for this material com- 
bination [23]. 

We note from Table 1 that only four basic forms occur in the surface 
values of the derivatives aepi/ar, aOyOz, 32epi/Oz2. These are the discon- 
tinuous functions 



144 

~ l ( g , r , a )  =fo" r2~-t dt ," O<_r<a' 

=fa g(,)d !_ , ,>~  
o r~5~-- t ~ 

%(g,r,a) =f° g(,)d, 
jr t2V~_Ty, O<_r<a 

=0; r > a  
~ 3 ( g , r , a )  =0; O<_r<_a 

=~" g( t )  at . 
, r > a  

~4(g , r ,a  ) = ~  g( t )  dt O < r < a  
t2~5-~_ r£ ' 

= fr ~ g( t )  at , r > a .  

(29) 

(The expressions for Oq~i/Or also contain constants in certain cases.) In 
Table 3 we give the specific inversions for all the combinations of 
integrals of this type which can occur in the form of Eq. (26). Using this 
table, Eq. (28) can be written down from case 2 with i = 1, j = 2, a = b 
and case 3 with i = 1, whilst the corresponding inversion of (27) for g3 
follows from the same two results as 

2fix f a  gl( t )  dt . 0 z x <_ a. (30) 
g3(x) =-g--j0 (x--~Tta), 

Notice that gl is even and g3 odd as anticipated above (Section 3). 
The two Eqs. (28) and (30) can now be solved in a variety of ways, one 

of which is to substitute (28) into (30) and rearrange the resulting double 
integral to obtain the Fredholm equation 

0 . - 

2 fl d t~ ( a + x ] ;  0 < x < a  (31) 
'~'2(1 --  V) log a -  x j - - 

for g3, which can be solved numerically. 
Other techniques for treating Eqs. (28), (30) and (31) will be discussed 

below (Section 7). 



Table 3. (1) Inversions of the equation ~'i(g, r, a) = ~j(h, r, b); 0 _< r < a 
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j . = ~ =  If a < b g(r) = 

1 

1 h(r )  

2 ( b  th( t )  dt 
2 7 Jo (r  ~ - t ~) 

3 0 

2 ~ th( t )  dt 
4 7 ( t 2 _ r  2) 

2~ ,'h(,)V~a ~- ," d, 

h(r)-~ 2r f b h ( t ) ~  dt 
~ T  J~ ( ' ~ -  r ~) 

0 

2r [ ~ h ( t )  t ~ - a  2 dt 

r r ~ 2 -  "b (t 2 - r 2 ) 

j•= If a > b, g(r) = 

1 2 

1 h(r)H(b - r) 

2 2 [b  th( t )  d t  
¢r Jo ( r2 - - t  2) 

3 h ( r ) H ( r -  b) 

2 ~  :~ th( t )  at 
rr ( t Z _ r  2) 

2~ f ~ h ( t ) ~ - t  2 d, 
" / r ~  a0 ( r2 -- 12) 

h ( r ) H ( b -  r) 

2r [ a h ( t ) ~ t 2  dt 

~ J~ ( r 2 - t  ~) 

2r f ~ h ( t ) ~ - t _ _  2 dt 

(2) Inversions of the equation ~i(g, r, a) = ~j(h, r, b); r > a 

j = ~ =  If a > b, g(r) = 

3 4 

2 0 0 

3 h(r)q 2r a h ( t ) ~ ' - t  2 dt 2rf~ h ( t ) , t t  
r r ~  fb ~r2- - t  2) ~ ab ( t2 - - r2 )  

2r [ ~ h ( t ) f ~ - a :  dt h(r) 
4 ~ r ~  da ( t 2~- '~r  2S 
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Table 3 (continued) 

If a < b,g(r)  = 

3 

2r [ a h ( t ) ~ - I _ ~  2 dt 

~ Jo ( r2 - , ~) 

+ h ( r )H(b  - r) 

2r [ b h ( t ) ~  dt 

~ Jo ( t2 - ~ 2) 

h ( r ) H ( r -  b) 

2r f ~ h ( t ) V ~ - a  2 dt 

2 j  fob h ( t ) d t 
( r 2 _ , 2 )  

h ( r ) H ( b -  r) 

2__r [ ~  h ( t )  dt 
~r Jb ( t 2 - - r  z) 

h ( r ) H ( r -  b) 

(3) Inversions of the equation ~i(g, r, a) = C; 0 < r < a 

2C 
i = 1  g ( r ) = - -  

~7 

2C r 
i = 2 g(r)  = 

(4) Inversions of the equation ~i(g, r, a) = C; r > a 

2C r 
i = 3  g(r) 

a2¢a~__ r2 

i ="4 g(r) = 0 * 

* Note however that the inversion of an equation containing ~4 is only possible if the fight 
hand side tends to zero as r ---, oo. In certain problems this must be imposed as an auxiliary 
condition (see e.g. [5]) 

6.2. T h e  e x t e r n a l  in ter face  c r a c k  

T h i s  m e t h o d  can  still be  used  if the  ranges  of d e f i n i t i o n  of  the func t i ons  
g l ,  g3 are d i f ferent .  F o r  example ,  if i n s t ead  of  the flat  r igid p u n c h ,  we 
b o n d  a r igid  ha l f - space  to the elast ic  ha l f - space  in  0 < r < a,  z = 0 a n d  tr3 r 

to separa te  the  bod ies  b y  a tens i le  force a long  the  axis, we shou ld  
an t i c ipa t e  a n  a n n u l a r  co n t ac t  r eg ion  s u r r o u n d i n g  the  b o n d ,  by  ana logy  
wi th  the t r e a t m e n t  of  the  p e n n y - s h a p e d  in te r face  crack b y  Keer  et al [24]. 
A s s u m i n g  this  c o n t a c t  r eg ion  to be  f r ic t ionless  a n d  d e n o t i n g  its ou te r  
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radius by b, we obtain the boundary conditions 

u z = d; 0 < r < b; (32) 

U r = 0  ; O<r<_a; (33) 

%z = 0; r > b; (34) 

orz = 0; r > a .  (35) 

The solution is still obtained as with Eqs. (24) and (25), except that the 
function gl must now be defined in the range 0 < r < b, whilst g3 is still 
defined in 0 < r < a. Equations (26) and (27) are now replaced by 

(1 - 2v) f a  g3(t)  dt (1 - v) f r  g , ( t )  dt 
-i; jo 7=d; O_<r__b 

(36) 

(1-v)~.r J° r2~ -~2-t2 dt (1-2v)2/~r b g i ( t ) d t - f ~  t~_~r2 j = O ;  

0 < r < a (37) 

where the first integral in (36) is to be interpreted as zero for r > a. 
Table 3 has been constructed to include this more general case a ~ b. 
Notice that Eq. (37) applies only in the range 0 < r < a and hence can be 
solved for g3 but not for g~. By contrast, both of Eqs. (26) and (27) could 
have been solved for either g~ or g3- Following the same procedure as 
before we arrive at the Fredholm equation 

2 f l2 fa[x  , , { b + x  g3(t)dt_ 
I, 

_ 2Bd~ / b + x X  (38) 
~r2(1 ~ - v ) l o g [  b _--7-~) ; O < x < a .  

In this problem, the radius b defining the extent of the contact region is 
not known a priori, but must be found by requiring the normal contact 
traction o~z to be bounded at r = b. This requirement gives a side 
condition which can be used with (38) to obtain a solution for g3 and b 
by iteration as in reference [24]. Notice that the kernels in both Eqs. (31) 
and (38) are bounded at x = t. 

It is beyond the scope of this paper to discuss the solution of 
equations like (38), but we note that the solution might be obtained by 
direct numerical quadrature [24], by representing the function g3 by a 
truncated power series or Fourier series [25] or a series of orthogonal 
polynomials [21], or by iteration in the parameter a/b  if this is suitably 
small [ 16]. 
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6.3. Choice o f  formulation 

In the above examples, two of the boundary conditions were satisfied 
identically by the choice of form and the other two furnished coupled 
Abel integral equations for the two unknown functions gi. In all such 
problems we have to choose which conditions to satisfy identically. If any 
of the boundary values are zero, the formulation will be simplified by 
choosing these, but an alternative choice can always be made at the cost 
of subtracting out one or more two-part solutions as in Section 4.1. 

Wherever possible, the choice should be made in such a way that the 
ranges of the two unknown functions do not overlap, since, if they do, 
certain of the Abel equation inversions give discontinuous expressions 
(see, for example, Table3 case 1 with i =  1, j = l  and a > b ) .  This 
requires that one function be defined in 0 < r < a and the other in r > b, 
where b > a. Thus, we try to satisfy identically those conditions which 
hold in the complementary regions r > a and 0 < r < b. 

For the external crack problem of Section 6.2, this means satisfying 
(32) and (35) identically. To do this, we first have to choose a new 
elasticity solution (Eq. (2)) in order to isolate different single harmonic 
functions in the expression for o=, u z. Thus, if we write 

42 = +3 --  /3+1 (39) 

where ~b 3 is a new harmonic function, Eqs. (3) and (4) become 

02~1 . ~02+1  02+3 . 

o~ -- OrOz ' %~ =/.s -~-z2 Oz: ' 

u r = ( 1 - / 3 2  ) ( l - v )  0K, + ( 1 - 2 v )  043 ] 
/.t O~-. ~ 0r 

(1 - v )  0+3 
U z /~ 0 z "  

(40) 

(41) 

Equation (35) is satisfied as in Section 6.2 by choosing +~ = q53. For (32). 
following Section 4.1, we subtract an elementary two-part solution from 
+3 by writing 

+3 = +30 + +31 (42) 

where +30 is defined by 

0+so t~d 
0 - - - ~ - = -  ( l - v ) '  O < r < b  

0%30 
= 0 ;  r > b  

0z 2 

(43) 

and can easily be found by the methods of Section 4. Equation (32) then 
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becomes 

O~P31 
8z = 0 ;  O _ < r < b  (44) 

which is satisfied by choosing ~P3 ~ ~2" It is easily verified that this 
procedure leads to a pair of equations in two functions g~, g2 defined in 
the ranges 0 _< r _< a, r > b respectively, as desired. 

7. Extension of ranges 

Some simplification in the algebra and in numerical computation can 
usually be achieved by using the symmetry of the functions g~ to extend 
the range of integration in the final equations. It is easily shown that if 
f ( t )  is even 

fo" f(t)dt _ 1 f+.f(t)dt (45) 

whilst if f ( t )  is odd 

fo a ,f(t)dt l f+aa~xt)_~) (46) 
( x ' - t ' )  2 _ 

For example, using these results in Eq. (38), noting that g3 is odd, we 
obtain the more concise equation 

/~ 2 " + a  [(b+t)(b-x)lg3(t)dt (1-fl2)g3(x)+~j_~ log (b--t) (b+x) (t-x) 

- 2fidlz(--p) ( b+xl;b-x] Trz,1---"  log - a < _ x < a .  (47) 

Apart from the simplification of the kernel, this equation lends itself to 
numerical solution using the Chebyshev quadrature which is usually 
defined in the range - 1 to + 1. 

The same procedure permits Eqs. (28) and (30) to be reduced to a 
singular integral equation. Extending the range, we find 

B f+ag~( t )  dt 2a~ . 
g~(x )= -g j  . ~ - t )  ~r(1-p)' 

g'3(X'=gJ_a (--~2-_~ ; 

and hence 

d_____Z' = -2S  
° ( t - x )  ~ ( 1 - . ) '  

- a < x <  +a ,  (48) 

- a < x <  +a ,  (49) 

- a < x <  +a, (50) 
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where 

g ( x )  = ga(x)  + ig3(x ). (51) 

The reduction of Mossakovskii 's problem to the solution of Eq. (50) was 
given by Gladwell [9], Section 10.4. 

If  the forms II, IV of Table 1 are used, the resulting equations will 
generally involve integrals in the range a < x < ~ .  In this case, the most 
convenient procedure is to make the change of variable y = 1 / x  to 
convert the range to 0 < y < 1/a  after which the range can generally be 
extended to - 1 / a  < x < + 1/a  using (45) and (46). If the problem is 
well formulated, the behavior of the functions gi as x ~ m will permit 
this change of variable without introducing singularities at zero. 

We note that the forms such as Eq. (10) lead directly to equations in 
the extended range, but further algebraic manipulation is sometimes then 
required to express the final results in the most concise form. 

8. Problems involving annular regions 

We now consider the application of the method to problems in which 
boundary values are specified over an annular region, the classical 
example being the three part  problem defined by 

3~o/3z = 0; 0 < r < a (52) 

¢0 = / ( r ) ;  a < r < b  (53) 

3~o/3z = 0; r > b (54) 

and solved by Collins [16]. The solution can be used with Eqs. (2)-(4) for 
the indentation of an elastic half-space by an annular cylindrical punch. 

The solution technique is to express ~o as the sum of a number  of 
components  satisfying two part  boundary conditions and hence expressi- 
ble in the forms of Eq. (5). For example, we can write ~ = ~01 + 6)2 where 

¢0, = f ( r ) ;  O<_r<b (55) 

3o~,/3z= -3Wz/3Z;  r > b (56) 

0092 /0Z  ~--- - -  0 0 ) I / O Z  ; 0 < r < a (57) 

~02 = 0; r > a. (58)  

It  is easily verified that this decomposition satisfies Eqs. (52)-(54) and 
the function ~02 can be represented by 3q~3/3z (see Table 1). However, the 
prescribed values of ~01 are non-zero for all r and a further decomposition 
is necessary as in Section 4.1. In fact Eqs. (41) and (42) are of the same 
form as (19) and can be treated in the same way. 

When the boundary conditions are written in terms of the expressions 
of Table 1, it will be found that Eqs. (56) and (57) give two coupled Abel 
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equations for two unknown functions gi in the ranges r > b, or 0 < r < a 
respectively. The solution and reduct ion to a single Fredholm equat ion 
then proceeds as in Section 6. 

Notice that the annular  condit ion (53) is met by 'over lapping '  the two 
part  condit ions (55) and (58) on o~1, %,  respectively. In  effect, ~1 
'extends '  (53) to zero and ~2 is chosen to relax this overprescription of  
the problem in 0 < r < a, whilst leaving ~ unchanged in a < r < b. For  
more  complex examples of this procedure,  the reader is referred to 
references [3], [4], [5] and [26]. A difficulty arises if the funct ion f ( r )  in 
Eq. (53) is not  defined in 0 < r < a or if it has undesirable singularities in 
this range (possibly at r = 0). Collins treats this problem by decomposing 
f ( r )  into two series - one in powers of  r and one i n p o w e r s  of  1/r. The 
latter is then treated by a process similar to that described above except 
that  (53) is now extended into the range a < r < ~ with a corresponding 
change in the range of  definition of  %.  

Alternatively, we can avoid this difficulty by using any convenient  
cont inuat ion of f ( r )  into 0 < r < a at the cost of somewhat  greater 
complexity in the subsequent manipulations.  However,  the numerical  
solution of  the final equation will generally be more  convergent  if we 
choose a cont inuat ion which in cont inuous with f ( r )  at least to the first 
derivative at r = a. 

9. Total load and stress intensity factors 

In  the solution of  elastic contact  and crack problems, the quantities of  
most  practical interest are the total normal  load transmitted at the 
interface and the stress intensity factors at the crack tip. 

The total normal  load transmitted through the region 0 < r < a, z = 0 

Table 4. Expressions for calculating total load 

i farO2d?i dr fa ~r 02~i dr 
J0 az 2 az 2 

f0 ° 1 - g ~ ( t )  d t  0 

t _(~tg2(t  ) dt 

a ~  atg3(t ) dt 
' Yo _ ' fo -7 

4 0 Lt( ) 
t ~  
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is 

f0 a P =  2~r roz~ dr  (59) 

and this will generally involve integrals of the form f~r(O2~i/Oz 2) dr. 
These integrals can be expressed in terms of gi by substituting from 
Table 1 and reversing the order of integration and the results are given in 
Table 4. Also in Table 4 we give the expressions faO°r(~2dpi/~Z 2) d r  which 
will appear in computations of the load transmitted through the region 
r>a , z=O.  

Notice that sum of the two expressions for if3 is zero, indicating that 
this representation does not permit any net normal load to be transmitted 
across the plane z = 0 (and hence across any parallel plane). This result is 
a consequence of the boundary condition if3 = 0, r > a (see Table 1). It is 
shown in (21) that the same result holds with the weaker condition 

0~, (60) h~3+---~-z = 0 ;  z = O , r > a  

for any h > 0. 
Stress intensity factors in mode I (o~.) and mode II (Orz) can arise 

f rom square root singularities in 02~i/Oz 2 a n d  02~y3rOz respectively. 
The asymptotic behavior of these derivatives near r = a can be examined 
by integrating by parts the expressions from Table 1. For example, we 
find 

2q~ 3 

~z 2 
g3(O) f ~  g~(___~t)_ d__t_t 0 _< r < a (61) 

r Jo rzf~-~Y_t2 ' 

g3(0) + g3(a) fo a g ~ ( t )  d t  . 
T r~__a 2 ~ ,  r>a  (62) 

f rom which 

Lt ~ ~2~3 
r~a  + ~Z 2 

=g3(a) .  (63) 

We note that the integral terms in Eqs. (61) and (62) will also be 
singular if g3(t) contains a term which behaves like (a - t) ~ near t = a, 
where 0 < a < 1/2. However, this singularity will be dominated by the 
square root term in Eq. (62) unless g 3 ( a ) =  0. In particular, if a = 1/2, 
both Eqs. (61) and (62) are logarithmically singular at r = a. This type of 
singularity occurs in the heat flux at the transition between perfect and 
imperfect contact [2,5,10]. By contrast, if g3 has a Taylor series expansion 
at r = a with non-zero g3(a), 02~b3/OZ2 is square root singular in r ~ a +, 
but bounded in r ~ a . 

Stress intensity factors for both 32q~/3z2 and ~2dpi/OrOz are given for 
the four forms ~i in Table 5. Notice that each function is singular in 
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320i/Oz2 on one side of r = a  and in 02~i/OrOz on the other. The 
implication of this result will depend upon the solution of the elasticity 
equation which is used. If the same function +i appears in the expression 
for both % and % - as with +1 in the solution of Eqs. (40) and (41) - 
stress intensity factors in modes I, II  will tend to occur on opposite sides 
of r = a and be related in magnitude. By contrast, the function used to 
represent +1 in Eqs. (2)-(4) will not introduce a stress intensity factor in 
mode I, even if it has an appropriate singularity in 02~i/OZ 2. 

With this in mind, it is generally desirable to use a solution which 
isolates the discontinuous behaviour of the tractions at each transition in 
a different function. For example, the solution (40) and (41)) is well 
suited to the external crack problem, because the boundary conditions 
(43) ensure that the function ~P3 is continuous through the crack tip, 
r = a. Thus, the sing,alarities associated with the crack tip are isolated in 
+1 and comprise stress intensity factors of -Bgl(a) in compression in 
r ~ a + (since a < r < b is a region of contact) and -gl(a)  in shear in 
r ~ a - .  This relationship between stress intensity factors in modes I and 
II  on opposite sides of the crack tip is typical of interface crack problems 
with a contact region at the crack tip. In this problem there is also a 
discontinuity in the slope of the contact tractions at r = b and this is 
isolated in the function +3. 

10. Thermoelastic problems 

The method is easily adapted to the solution of boundary value problems 
in steady-state thermoelasticity b y  the inclusion of a third potential 
function related to temperature. A suitable solution is obtained by 
adding 2~k (O+3/Oz) -~V+3 into the right hand side of Eq. (2), corre- 
sponding to the temperature field 

T =  1 02~b3 
k 0z 2 (64) 

where 

8 = + (6s) 
is the distortivity of the material and a, k are respectively the coefficient 
of thermal expansion and thermal conductivity. This solution is due to 
Williams [27]. 

With the additional function +3, Eqs. (3) are unchanged, and Eqs. (4) 
become 

(l - ~,) 8+f, (1 - 2~,) 8~b 2 u r -  - -  + - -  6 3+3 (66) 
Ix Or 2Ix Jr Or 

(1 - 2v) 0+ l (1 - v) 3+ 2 343 
uz 2Ix 8z Ix Oz + 8 O--z- (67) 
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Also, the heat flux 

kOT 03~3 
q~ ~--  - az 3 (68) 

from Eq. (64). 
Steady-state heat conduction in the half-space is formally equivalent 

to the potential problems associated with frictionless contact, as can be 
seen by comparing Eqs. (64) and (68) with (3) and (4) when +1 -= 0. 
Notice, however, that the comparable quantities in this analogy are 
0q~2/0z (normal displacement) and ~2+3/0z2 (temperature). Both of 
these quantities are required to be physically continuous at r = a, z = 0 
and following the arguments of Section 5 we should represent O~3/3z - 
4'i. However, in order to do this we have to obtain further partial 
integrals of the expressions in Table 1 and these are complicated and 
cumbersome to use. A more algebraically convenient approach is to 
choose ~3 - ~i, in which case the physical requirement of continuity of 
temperature must be imposed as an extra condition. It  is clear from the 
discussion of stress intensity factors and Table 5 that this condition will 
always require &(a) = 0, though there may be supplementary conditions 
if g[ is unbounded at r = a. For examples of the use of these conditions, 
the reader is referred to references [1]-[5]. 

A further difficulty with the representation ~3 -= q'i is that it is liable to 
lead to unbounded integrals if the problem is such that the net heat flow 
across the plane z = 0 is non-zero. This arises from the fact that a point 
heat source gives a temperature which is inverse with r and hence 
displacements which are logarithmically unbounded at infinity (28). The 
most important  class of problems exhibiting this behavior is the indenta- 
tion of a half-space by a heated punch, the non-contact region surround- 
ing the punch being assumed insulated (qz = 0). However, we note from 
Section 9 that the total heat flow across the plane will be constrained to 
be zero if the external boundary condition is T =  0 or OT/Oz + hT= 0 
(i.e. if there is radiation into a medium at zero). This question is further 
discussed by Gladwell et al. [21]. For the same reason, the problem of a 
uniform flow of heat obstructed by an internal crack automatically 
satisfies the condition of zero total heat flow, provided it is formulated as 
a perturbation of the solution for an unflawed solid. By contrast there 
will be a non-zero heat flux if heat is generated at the crack face or if the 
crack is external. 

For problems with a non-zero total heat flow it is essential to use a 
representation which can accommodate  logarithmically unbounded dis- 
placements at infinity. This can be done by subtracting out an arbitrary 
multiple of a classical solution with the appropriate behavior at infinity. 
For example, we can write 

~3--q~i + A{(z  + ia) log[(r2 + (z + ia)2)1/2+ (z + ia)] 

- - ( r  2 + (z + ia)2) '/2} (69) 
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w h e r e  A is a n  a r b i t r a r y  c o n s t a n t  w h i c h  wil l  b e  d e t e r m i n e d  f r o m  the  

c o n d i t i o n s  i m p o s i n g  c o n t i n u i t y  o f  t e m p e r a t u r e .  
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