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Abstract 

A solution is given for the frictionless indentation of an elastic half-space by a flat-ended 
cylindrical punch with a central circular recess, when the load is large enough to establish a 
circular region of contact in the recess. The problem is reduced to two simultaneous 
Fredholm equations using the method of complex potentials due to Green and Collins. 
Results are presented for the relationship between load, contact radius and penetration for 
various punch geometries. 

Introduction 

In the preceeding paper  [1], it was shown how the method of complex 
potential functions due to Green and Collins provides an elegant solution 
of a wide range of boundary value problems for the half-space. In the 
present paper  we shall use the method to treat an elastic indentation 
problem which leads to a four-part  boundary value problem - the 
frictionless indentation of an elastic half-space by a rigid, flat-ended 
cylindrical punch, a central circular region of which is recessed as shown 
in Fig. 1. 

The radius of the punch is c and the central recess has radius b and 
depth e. The punch is pressed into the half-space to a depth d under the 
action of an axial force P. 

For small values of P, we anticipate contact only over the annular 
region b < r _< c and the resulting problem has been discussed by Collins 
[2], Shiguya et al. [3] and others. For further discussion of this three-part 
problem and additional references, see Gladwell [4]. In this paper, we 
concentrate on the situation when the load P is large enough to establish 
a circular region of contact whose radius we denote by a. Intuitively we 
anticipate that a ~ b  as P ~ c  and that in the limit a ~ 0  we shall 
recover the solution for the annular punch. 
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Fig. 1. Indentation of a half-space by a recessed punch 

Mathematical formulation 

The  b o u n d a r y  condi t ions  of the p r o b l e m  as i l lus t ra ted in Fig. 1 are 

u~ = ( d - c ) ;  O<r<_a 
, ( i )  

= d ;  b<r<_c 

%z = 0; a < r < b and r > c; z = 0 (2) 

and  

Orz = 0, all r ;  z = 0, (3) 

since the contac t  is assumed to be frictionless.  
In  view of  (3), we use the so lu t ion  of  Eqs. (2) - (4)  of [1] with ~ l  =- 0. in 

which  case, the b o u n d a r y  condi t ions  on +2 become  

3z ( l - v )  ' O<__r<_a,z=O, (4) 

32~b2=0; a < r _ < b , z = 0 ,  (5) 
0z 2 

3~b 2 _-_ _ /zd 
Oz ( l ~ v )  ; b < r < c , z = O ,  (6) 

02~2 
= 0 ;  r > c , z = O .  (7) 

az 2 
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C h o i c e  of  representat ion  

As discussed by the present  au thor  ([ 1], Section 8), the general s t rategy in 
t reat ing p rob lems  with annular  regions is to extend the ' annu la r '  condi- 
t ion either to r = 0 or to r = ~ and relax the consequent  overprescr ipt ion 
by  superposi t ion of an addi t ional  two-par t  solution. In the present  case, 
the simplest  p rocedure  is to extend (5) to zero and (6) to infinity. 
However ,  the extension of (6) to infinity in its present  fo rm would lead to 
i l l -condit ioned integrals since the representat ions  used force the ap- 
propr ia te  derivatives to zero at infinity when the weight funct ions gi are 
bounded.  We therefore subtract  out a classical solution - the Boussinesq 
indenta t ion  solution for a depth  of penet ra t ion  d - before  carrying out 
the extension. We then obtain  the solution 

~k2 = 4,0 + 4'1 + 4'2 + 4'3 + 4'4 (8 )  

where the functions 4'i satisfy the bounda ry  condit ions listed in Table  1. 
The  solution for 4'0 can be obta ined  easily by  s tandard  methods  - here 

we merely record the result 

324'0 = 2 # d  
_ _  , O < r < c , z = O  (9) 

3z 2 Tr(l - p ) V f c 2 - r  2 

which is needed in the subsequent  calculations. With this representa t ion 
it is easily verified that  Eqs. (4)-(7)  will be satisfied provided 

a4'i 34'3 34 '4_  /~ , 
0----z- + --O-~z + Oz ( l - v )  ' O < r < a , z = O  (10) 

024'2 + a24'3 " --a24'4 =0; r>c,z=O, (11) 
Oz--7 az--y + az 2 

• 3 4'3 0; O < r < b , z = O ,  (12) 
024' 0 + 324' 2 2 

az--- ~ az-- 5- + 3z---- 5- = _ _ 

Table 1 

r =  0 a b c 

~o 

a2@j 
,~ Eq. (10) = 0 

~z 2 

e~2 

3q~ o /zd 32q~° = 0 
az ( 1 - ~ )  az 2 

0q,2 
a~-=o Eq. (11) 

aq,3 % Eq. (12) a~- = 0 

~2q'-~4 = 0 Eq. (13) 
q'4 az 2 
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0---~- + = 0 ;  r > b , z = O .  (13) 

The zero boundary conditions on 0i (i = 1 to 4), written explicitly in 
Table 1, are the same as those satisfied by the corresponding functions in 
Table 1 of reference [1] and hence they can be satisfied by writing 

O, = R f o a g , ( t ) F ( r , z ,  t) dt 

~2 = R f c ~ g 2 ( t ) F ( r , z ,  t) dt 

~3 =Imfobg3( t )F(r , z , t )  dt 

~4=Imfb~g4( t )F(r ,  z , t )  dt 

(14) 

where 

F(r,  z, , ) =  log((r  2 + (z + / , )2 ) , /2  +z  + it). (15) 

Each of the Eqs. (10)-(13) is complementary in range to one of the 
conditions so satisfied and is used to furnish an Abel equation which can 
be solved for the corresponding &. Thus, using the results from Table 1 
of reference [1] we have 

frgl(t)_dl frb g3(/) d/ fb°° g4(/)d/ ~ - -  + - - + - - ; O < r < a  
So 2 V ' i 2 _ r 2  ( 1 - . /  - - 

oo tg2(t) dt _ [b tg3(t ) dt 

fr ~ t 2 - ~ 2  JO ~ r 2 ~ t  2 

rtg3(t) dt ~ t g 2 ( t ) d t  

(16) 

fbrlg4(t) dt 
r2~/~5~_t 2 + C , ; r > c  (17) 

dv/c 2 -- r 2 

f ~  ~ g 4 ( t )  dt = fo a ~gl(t) dt ; r > b 

- 
+ C2; 0 ~ r ~ b (18) 

(19) 

from (10, (11), (12) and (13) respectively. Note that (17) and (18) are 
obtained after integrating with respect to r and C~, C 2 are constants of 
integration. We require continuity of displacement at r = 0 and hence 

f ~  dc (20) C 2 = g2(t) dt ~r(1 - u ) '  

from (18). We now write down the solutions of Eqs. (16)-(19) using 
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Tables 2 and 3 of reference [1], substituting for C 2 from (20) to obtain 

2 tg3__._( t_) 
g, ( ~ )  = _ fo ~ 

dr 

2 L ~ tg4(t) dt 2elz . 
+ g v (t  2 - x 2) - ~ ( l  - ~ ) '  0 _< x _< a. (20) 

. . . . . .  2 fbtg3(t )dt  ~---2L ~ tg4(t)dt gx(x) 
"/7 dO (X 2 -  t 2) 57 ( ~ X - ~  ' X > C, 

2x  ~-= g 2 ( t )  dt 2 d .  
g3( X ) 

(21) 

log( C + X];o<_x <_b, 
c - - x ]  

(22) 

, O < x < a  

(24) 

g , ( x )  = 2 ~ ( a  g , ( t )  dt  . 
J0 (x  2 - t ' )  ' x > b. (23) 

Finally, we substitute (22) and (23) into (20) and (21), obtaining two 
simultaneous Fredholm equations in gl, g2 which are 

2 far 1 [b+t  l o g ( b + x i ]  gl(t)dt  ~, (x)~JoL ~ o g ~ ) - x  b-~jj(,-~-_~,-) 

+3<?[.,o,(,+x ,+,  
(7--;i 

(c+,)d, 
2c~ 4 d~ b t log c ---~ 

+ ~ ( 1 - , )  ~ ' ~ - - , ) f o  ( , 2 - x ' )  

(25) 

g 2 ( x ) = ~ 2  xlog ~ - t l o g ~ t _ -  ~ ( t Z - x 2 )  

+-~Jo [xl°g~Z-b-b) - t l °g  b - t ] ] ( x 2 _ t :  ) 

4 d/~ b t log c ---~ 

+ ~3~-~)fo (x2-'t 2) ,x>c. 

Load, penetration and contact radius 

Equations (24) and (25) define the solution of the problem in which the 
penetrations d, c and the contact radii a, b, c are all prescribed. This 
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Fig. 2. Indentation of a half-space by an annular punch and a concentric circular punch 

would be the case, for example, if a circular punch of radius a and a 
concentric annular punch were independently pressed into the surface * 
as illustrated in Fig. 2. 

However, for the problem of Fig. 1, the contact radius is not known a 
priori, but has to be found from the condition that there is no singularity 
in contact pressure at r =  a. From Eq. (14) and Table 5 of [1]. we 
anticipate a sqaure root singularity of strength g~ (a) at r --* a'  and hence 
the required condition is 

g , ( a )  = 0. (26) 

To avoid iteration, we interchange the roles of a and ~, regarding the 
former as prescribed and allowing the latter to float, its value being 
obtained by substituting (26) into (24) with x = a, i.e. 

2¢1a 2 ca[ . { b + t ~  { gl_ (t._) 

t"°g  J - ( t 2 _ a  2) 

o~ t + b  
( t 2 - a  2 ) 

[ c + t \  
4 dlz b t log~ ~-~-  t ) a t  

~r371= p) fo  ( t : - a  2) (27) 

* The function ~ 2 / a z ,  defined through Eqs. (8) and (14) can also be used for the 
electrostatic potential field due to a circular disc and a surrounding annular disc. 
maintained at different potentials. 
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The expression for the load P on the punch is obtained by integrating 
the expressions for 024)i/8z2 over the surface, using Table 4 of [1]. The 
most natural approach is to perform these integrals only over the loaded 
region 0 < r _< a and b < r_< c, but it proves more efficient to integrate 
over the whole surface 0 < r < oo. The same result is obtained, since the 
only load transmitted across the surface is that exerted by the punch. A 
further simplification follows from the result mentioned in Section 9 of 
[1]: that the condition O~/Oz = 0 in an external region (e.g. in r >  b) 
ensures that the integral of O2q)/Oz2 over the surface is zero. We can use 
this result to prove that neither (~1 + ~4) nor ~'3 make any contribution 
to the total load because of (13) and Table 1 respectively. Using these 
results and Table 4 of [1] and Eq. (9), we find that the total load is 

P = 4~/~ 7r(i - ~) + g2( t )  dt  . (28) 

Numerical  solution and results 

For the numerical solution, it is convenient to eliminate the infinite 
range in Eqs. (24) and (25) by the change of variable s = c / t  in (24) and 
x = c /y  in (25). The term in (24) containing ~ (now treated as unknown) 
is eliminated using Eq. (27) and the range of integration is extended as in 
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Fig. 3. Contact radius as a function of indentation 
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Fig. 4. Ratio between the applied load P and the Boussinesq load 4 ~ c d / ( 1  - ~,) 

Section 7 of [1] resulting in kernels similar to Eq. (47) of [1]. The 
remaining integrals are then normalized to the range - 1  to 1 and the 
equations are reduced to a system of simultaneous algebraic equations 
using the Chebyshev quadrature. 

Finally, the value of e is recovered by substitution of the solution for 
g2 into (27) and P is calculated from (28). 
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Fig. 5. Load non-dimensionalized with respect to the recess depth c 
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Numerical results for various values of the annular radius ratio b/c 
are presented in Figs. 3, 4 and 5. Figure 3 shows the relationship between 
old and a/c. Notice that e/d tends to a limit at a/c = 0 and hence there 
is a value of the penetration d, below which the geometry of Fig. 1 is 
impossible. In this range, only the annulus b < r < c will make contact 
with the half-space and the solution is given in [2 and 3]. We should 
normally regard the geometrical properties of the punch b, c, E as given, 
in which case the loading condition is defined through either the penetra- 
tion d or the applied load P. In the former case, the appropriate contact 
radius can be found from Fig. 3 and the load P from Fig. 4 which 
represents P ( 1 -  ~,)/4#cd as a function of a/c. The non-dimensional 
load P( l  - ~)/41~cd is in fact the ratio between P and the Boussinesq 
load for the same penetration d and we note from Fig. 4 that this ratio is 
close to unity except when the annulus is thin and the central contact 
small. 

If  the load P is specified, a/c can be found from Fig. 5, where P is 
plotted in the dimensionless group P(1 - p)/41~cc. The penetration d is 
then recovered from Fig. 3. 
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