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Abstract
We develop general methods to obtain fast (polynomial time) esti-
mates of the cardinality of a combinatorially defined set via solving
some randomly generated optimization problems on the set. Exam-
ples include enumeration of perfect matchings in a graph, linearly in-
dependent subsets of a set of vectors and colored spanning subgraphs
of a graph. Geometrically, we estimate the cardinality of a subset
of the Boolean cube via the average distance from a point in the
cube to the subset with respect to some distance function. We derive
asymptotically sharp cardinality bounds in the case of the Hamming
distance and show that for small subsets a suitably defined “random-
ized” Hamming distance allows one to get tighter estimates of the
cardinality.

1 Introduction

A general problem of combinatorial counting can be stated as follows: given
a family F ⊂ 2X of subsets of the ground set X, compute or estimate
the cardinality |F| of the family. We would like to do the computation
efficiently, in polynomial time. Of course, one should clarify what “given”
means, especially since in most interesting cases |F| is exponentially large
in the cardinality |X| of the ground set. We assume that the family F is
defined by its Optimization Oracle:

1.1 Optimization Oracle defining a family F ⊂ 2X .
Input: A set of integer weights γx : x ∈ X.
Output: The number minY ∈F

∑
x∈Y γx.

That is, for any given integer weighting {γx} on the set X, we should
be able to produce the minimum weight of a subset Y ∈ F . The following
example was our main motivation.
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Example 1.2. Perfect matchings in a graph. Let G = (V,E) be a
graph with the set V of vertices and set E of edges. We assume that G
has no loops (edges whose endpoints coincide). A set Y ⊂ E of edges is
called a matching in G if every vertex of G is incident to at most one edge
from Y . A matching Y is called perfect if every vertex of G is incident to
precisely one edge from Y . Let F ⊂ 2E be the set of all perfect matchings
in G. The problem of computing or estimating |F| efficiently is one of the
hardest and most intriguing problems of combinatorial counting, see, for
example, [LoP], [JS1,2], [J] and [JSV]. It is known that the problem of exact
counting of perfect matchings is hard. It belongs to the class of # P-hard
problems, see Chapter 18 of [P] for discussion of computational complexity
in enumeration problems. Recently, Jerrum, Sinclair and Vigoda [JSV]
found a way to estimate |F| within any prescribed relative error ε > 0 in
time polynomial in n and ε−1 when G is a bipartite graph (in fact, they
solved a more general problem of approximating the permanent of a non-
negative matrix). However, for general graphs G the problem of efficient
approximation of |F| remains open.

We observe that Optimization Oracle 1.1 can be efficiently constructed.
Indeed, if we assign integer weights γe: e ∈ E to the edges of the graph, the
minimum weight of a perfect matching can be computed in O(|V |3) time,
see, for example, Section 11.3 of [PS] .

The following example shows that sometimes optimization is nearly triv-
ial but counting is still hard.

Example 1.3. Linearly independent subsets. Let F be a field and
let X ⊂ Fd be a finite set of vectors. Given a number k ≤ d, let F ⊂ 2X be
the set of all linearly independent k-subsets of X. Optimization Oracle 1.1
for F is supplied by the following greedy algorithm: given integer weights
{γx} on X, we construct a linearly independent k-subset Y ⊂ X of the
minimum weight by successively choosing vectors x1, x2, . . . , xk of the min-
imum possible weight such that each set {x1}, {x1, x2}, . . . , {x1, . . . , xk} is
linearly independent. When F = Q, special cases of the counting problem
for F include counting forests (acyclic subgraphs) with k edges in a given
graph and counting spanning subgraphs (connected subgraphs containing
all the vertices of the graph) with k edges in a given connected graph. The
last problem has interesting relations to percolation and network reliabil-
ity. These counting problems appear to be difficult, except in some special
cases, see [JS2] for a discussion, generalization to counting in matroids and
some interesting conjectures and Section 12.4 of [PS] for optimization via
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greedy algorithms.

Finally, we give an example of a more complicated structure, where no
existing approaches to efficient counting seem to work.

Example 1.4. Colored spanning subgraphs. Let G = (V,E) be a
connected graph with the set V of vertices and set E of edges. Suppose
that the edges of G are colored in r colors (that is, the set E is represented
as a union E = E1 ∪ . . .∪Er of r non-empty disjoint subsets). Let F ⊂ 2E

consist of all subsets of edges such that the underlying graph is a spanning
subgraph of G containing precisely one edge of each color. Optimization
Oracle 1.1 for F can be efficiently constructed using the matroid intersec-
tion algorithm (see, for example, Section 7.5 of [GLS]). The problem of
counting or estimating |F| appears to be rather difficult.

Next, we would like to discuss what “polynomial time” means. Typi-
cally, we are dealing with an infinite family of counting problems (Fi,Xi) :
i ∈ I (for example, Xi may range over the sets of edges of all finite graphs
Gi and Fi ⊂ 2Xi may be the set of all perfect matchings in Gi). We would
like to construct an algorithm which works for every particular instance
(Fi,Xi). If there exists a univariate polynomial poly such that the running
time of the algorithm on the instance (Fi,Xi) is bounded by poly(|Xi|), we
say that the algorithm is polynomial time. Our algorithms are randomized,
that is, the algorithms rely on some coin tossing on the way, so the outcome
is a random variable, which, with some high probability (say, 0.9) satisfies
the desired properties. The probability of success can be made arbitrarily
close to 1 by running the algorithm several times and taking a version of
the majority vote (cf. Theorem 3.6 and remark that follows). For a general
reference in the area of computational complexity and algorithms, see [P] .

The most general approach to combinatorial counting has been via
Monte Carlo method. The key component of the method is the ability
to sample a random point from the (almost) uniform distribution on F .
Often, to achieve this, a Markov chain on the set F is generated, so that it
converges rapidly to the uniform distribution on F (see [JS2] for a survey).
Spectacular successes of this approach are finding a polynomial time ran-
domized algorithm to count matchings of all sizes in a given graph [JS1] and
to count perfect matchings in a given bipartite graph [JSV] , both within
any prescribed relative error. When the Markov chain approach works, it
produces incomparably better results than the method of this paper. How-
ever, for many important counting problems, some of which are mentioned
above, it is either not clear how to generate a rapidly mixing Markov chain
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(as in Example 1.4) or, when there is a natural candidate (as in Exam-
ple 1.3, see [JS2] ), it seems to be extremely hard to prove that the chain
is indeed converging rapidly enough to the steady state. In contrast, our
approach produces very crude bounds, but it is totally insensitive to the
fine structure of F , so it is ready to handle a broad class of problems. A
slight modification of the problem (for example, given small integer weights
on the edges of the graph in Example 1.2, estimate the number of perfect
matchings of the prescribed total weight) may lead to drastic changes in
the construction of the underlying Markov chain but has almost no effect
in our approach.

1.5 The distance approach. The main idea of our approach is as
follows. Given a family F , we identify it with a subset F of a metric
space (Ω, d), such that for any given point x ∈ Ω the distance d(x, F ) =
miny∈F d(x, y) can be quickly computed using Optimization Oracle 1.1
for F . Then we estimate the cardinality |F | from the distance d(x, F ) for
a typical x ∈ Ω. Intuitively, if |F | is small, we expect the distance d(x, F )
from a random point x ∈ Ω to be large and vice versa. In this paper, Ω
is the Boolean cube {0, 1}n and d is either the Hamming distance or its
modification, although as we discuss in section 5, some other possibilities
may be of interest. Thus our approach can be considered as a refinement
of the classical Monte Carlo method: we do not only register how often
a randomly sampled point x ∈ Ω lands in the target set F , but also take
into account the distance d(x, F ). This allows us to get non-trivial bounds
even when |F | is exponentially small with respect to |Ω| so that x typically
misses F .

The paper is organized as follows.
In section 2, we introduce a “geometric cousin” of Optimization

Oracle 1.1. Distance Oracle 2.2 describes a subset F of the Boolean cube
{0, 1}n by computing a suitably defined distance d from a given point in the
cube to the set. We show how to construct embeddings φ : F → {0, 1}n,
so that the Distance Oracle for the image F = φ(F) is derived from the
Optimization Oracle for F . We show that in some important cases (for ex-
ample, when F is the set of Example 1.2 of perfect matchings in a graph or
the set of colored spanning subgraphs of Example 1.4), we can “squeeze” F
into a substantially smaller cube than we would have expected for a general
family F .

In section 3, we describe the bounds obtained by choosing d to be the
Hamming distance in the cube. The bounds are sharp, meaning that we
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can’t possibly estimate (in polynomial time) the cardinality of a subset
F ⊂ {0, 1}n better if the only information available is the Hamming dis-
tance from any given point a ∈ {0, 1}n to the set F .

In section 4, we describe how to get better bounds for small sets by
using a suitably defined “randomized Hamming distance”, which ignores
a (random) part of the information contained in the standard Hamming
distance. The isoperimetric problems arising here seem to be interesting
in their own right. The proofs are not complicated but somewhat lengthy
and therefore postponed till section 6.

In section 5, we discuss the types of estimates which can be obtained for
particular counting problems (such as in Examples 1.2–1.4), possible ram-
ifications of our approach and its relations with the Monte Carlo method.

2 Distance Oracle and Cubical Embeddings

The idea of our method is to represent F geometrically as a subset F of the
Boolean cube and then derive estimates of |F| using the average distance
from a point in the cube to F .
Definitions 2.1. Let Cn = {0, 1}n be the Boolean cube and let dist be
the Hamming distance in Cn, that is

dist(a, b) =
∑

i:αi �=βi

1 for a = (α1, . . . , αn) , b = (β1, . . . , βn) ∈ Cn .

More generally, let us fix n functions di : {0, 1} × {0, 1} → Z, i = 1, . . . , n,
which we interpret as penalties. We assume that di ≥ 0 and that d(0, 0) =
d(1, 1) = 0. Finally, let

d(a, b) =
n∑

i=1

di(αi, βi) where a = (α1, . . . , αn) and b = (β1, . . . , βn)

be the L1 distance function determined by the penalties {di}. If di(α, β) = 1
whenever α �= β then d(a, b) = dist(a, b).

For a subset B ⊂ Cn and a point a ∈ Cn, let
d(a,B) = min

b∈B
d(a, b)

be the distance from a to B. In particular, let
dist(a,B) = min

b∈B
dist(a, b)

be the Hamming distance from a point a to the subset B.
We will be working with the following “geometric cousin” of Optimiza-

tion Oracle 1.1.
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2.2 Distance Oracle defining a set F ⊂ Cn.
Input: A point a ∈ Cn and penalties di : {0, 1} × {0, 1} → Z, i = 1, . . . , n.
Output: The number d(a, F ).

There is an obvious way to associate a subset F ⊂ Cn with a family
F ⊂ 2X , n = |X|, of the Boolean cube.
2.3 Straightforward embedding. Let us identify the ground set X
with the set {1, . . . , n}, n = |X|. Let F be a family of subsets of {1, . . . , n}
given by its Optimization Oracle. For a subset Y ∈ F let us define the
indicator y ∈ Cn, y = (η1, . . . , ηn) by

ηi =

{
1 if i ∈ Y ,
0 if i /∈ Y .

Let F = {y ∈ Cn : Y ∈ F} be the set of all indicators of subsets Y ∈ F .
Let us construct the Distance Oracle for the set F ⊂ Cn. Given a point

a = (α1, . . . , αn) ∈ Cn and penalties di, i = 1, . . . , n, let us define weights γi

by γi = di(αi, 1)−di(αi, 0). Then for a set Y ⊂ {1, . . . , n} and its indicator
y = (η1, . . . , ηn) ∈ Cn, we have∑

i∈Y

γi =
∑
i∈Y

(
di(αi, 1) − di(αi, 0)

)

=
n∑

i=1

di(αi, ηi)−
n∑

i=1

di(αi, 0) = d(a, y)− d(a, 0) .

Hence, given the output
λ = min

Y ∈F

∑
i∈Y

γi

of Oracle 1.1 for the family F , we can easily compute the output
d(a, F ) = λ+ d(a, 0)

of Oracle 2.2 for the set F . Thus, given an Optimization Oracle 1.1 for a
family F ⊂ 2X , we can efficiently construct a Distance Oracle 2.2 for a set
F ⊂ Cn, n = |X|, such that |F | = |F|.

To be able to estimate the cardinality |F| with better precision, we
would like to embed F into a smaller Boolean cube. Sometimes this is
indeed possible.

2.4 Economical embedding. Suppose that the ground set X can be
represented as a union X = X1 ∪ · · · ∪ Xk of (not necessarily disjoint)
parts Xi, so that |Y ∩ Xi| = 1 for every subset Y ∈ F and every Xi.
In other words, every member of F is a transversal of the cover of X by
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X1, . . . ,Xk. Let

mi =
⌈
log2 |Xi|

⌉
and m =

k∑
i=1

mi .

We construct an embedding F → Cm as follows.
First, we index the elements ofXi by distinct binary strings of length mi,

that is, we choose an embedding φi : Xi → Cmi . Thus for any x ∈ Xi the
point φi(x) is a binary string of length mi and φi(x) �= φi(y) provided
x �= y.

Let us identify
Cm = Cm1 × . . .× Cmk

.

For a subset Y ∈ F , let us define y ∈ Cm as
y = (y1, . . . , yk), where yi = φi(Y ∩Xi) ∈ Cmi .

Note that y is well defined, since every intersection Y ∩ Xi consists of a
single point. Let F = {y ∈ Cm : Y ∈ F}. Clearly, |F | = |F|.

Given an Optimization Oracle 1.1 for F , let us construct a Distance
Oracle 2.2 for F . The input of Oracle 2.2 consists of a point a ∈ Cm

(binary string of length m) and penalty functions {di : i = 1, . . . m}. We
view a as

a = (a1, . . . , ak), where ai ∈ Cmi .

The penalties di, i = 1, . . . ,m give rise to the L1 distance function d on
binary strings, cf. Definition 2.1. For a point x ∈ X, let us define its weight
γx by

γx =
∑

i: x∈Xi

d
(
ai, φi(x)

)
. (2.4.1)

Let Y ∈ F be a set and let y ∈ Cm be the point representing Y . We observe
that ∑

x∈Y

γx =
∑
x∈Y

∑
i: x∈Xi

d
(
ai, φi(x)

)
=

k∑
i=1

d(ai, yi) = d(a, y) .

Hence, the outputs of Oracles 1.1 and 2.2 coincide:

min
Y ∈F

∑
x∈Y

γx = min
y∈Y

d(a, y) .

Thus, given an Optimization Oracle 1.1 for a family F ⊂ 2X , we can
efficiently construct a Distance Oracle 2.2 for a set F ⊂ Cm, such that
|F | = |F|. More precisely, given a point a ∈ Cm and penalties {di}, we
compute weights {γx} on X by (2.4.1) in O(k|X| ln |X|) time and then
apply Optimization Oracle 1.1 to find the minimum weight λ of a subset
Y ∈ F in this weighting. The distance d(a, F ) is equal to λ.
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Example 2.5. Embedding perfect matchings and colored span-

ning subgraphs. Let F be the family of all perfect matchings in a graph
G = (V,E), see Example 1.2. The straightforward embedding 2.3 identi-
fies F with a subset F of the Boolean cube {0, 1}|E| and provides us with
Distance Oracle 2.2 for F . We will be better off using the economical em-
bedding 2.4. Indeed, for a vertex v ∈ V of G, let Ev be the set of edges
of G incident with v. Then E =

⋃
v∈V Ev and every perfect matching has

exactly one edge in every set Ev. Hence the embedding 2.4 identifies F
with a subset F of the Boolean cube {0, 1}m, where

m =
∑
v∈V

⌈
log2 |Ev|

⌉
and provides us with Distance Oracle 2.2 for F . Given a point a ∈ Cm, by
(2.4.1) we compute weights γe on the edges E in O(|E| ln |E|) time (since
every edge e ∈ E belongs to exactly two sets Ev) and then find the minimum
weight λ of a perfect matching in G in O(|V |3) time. The distance d(a, F )
from a to F is equal to λ. Typically, if the graph has |V | = n vertices and
Ω(n2) edges, the dimension of the straightforward embedding will be Ω(n2),
whereas the dimension of the economical embedding will be O(n lnn).

Similarly, if F is the set of properly colored spanning subgraphs of Ex-
ample 1.4, the partition E = E1∪. . .∪Er gives rise to the economical embed-
ding of F into the Boolean cube {0, 1}m of dimension m =

∑r
i=1�log2 |Ei|�,

as opposed to the dimension |E| = ∑r
i=1 |Ei| of the straightforward embed-

ding.

3 Estimating Cardinality from the Hamming Distance

In this section, we obtain estimates of the cardinality of a subset F ⊂ Cn

if we choose di(0, 1) = di(1, 0) = 1, i = 1, . . . , n in Distance Oracle 2.2.
In other words, we estimate |F |, provided we can compute the Hamming
distance dist(x, F ) to F from any given point x ∈ Cn, cf. Definitions 2.1.
Our main tool is the average Hamming distance from a point to the set.
Definition 3.1. Let A ⊂ Cn be a subset of the Boolean cube. Let

∆(A) = 1
2n

∑
x∈Cn

dist(x,A)

be the average Hamming distance from a point in the cube to the set A.
Obviously, ∆(A) ≤ ∆(B) if B ⊂ A.

Example 3.2. Set consisting of a single point. Suppose that the set
A is a point. Without loss of generality we assume that A = {(0, . . . , 0)}.
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Then, for x = (ξ1, . . . , ξn) we have dist(x,A) = dist(x, 0) = ξ1 + . . . + ξn
and

∆(A) = 1
2n

∑
x∈Cn

dist(x,A) = 1
2n

∑
x∈Cn

(ξ1 + . . .+ ξn) = n
2 .

It follows then that ∆(A) ≤ n/2 for any non-empty A ⊂ Cn and that
∆(A) = n/2 if and only if A consists of a single point.

Our first objective is to present a probabilistic algorithm that computes
∆(A) approximately by averaging dist(x,A) for a number of randomly cho-
sen x ∈ Cn.

3.3 Algorithm for computing ∆(A).
Input: A set A ⊂ Cn defined by its Distance Oracle 2.2 and a number
ε > 0.

Output: A number α approximating ∆(A) within error ε.

Algorithm: Let k = �3n/2ε2�. Sample k points x1, . . . , xk ∈ Cn in-
dependently at random from the uniform distribution in the cube Cn.
Apply Distance Oracle 2.2 to find dist(xi, A), i = 1, . . . , k. Compute
α = 1

k

∑k
i=1 dist(xi, A). Output α.

To prove that Algorithm 3.3 indeed approximates ∆(A) with the desired
accuracy, we need a couple of technical results. The first lemma supplies
us with important concentration inequalities for the Boolean cube.

Lemma 3.4. Let ξ1, . . . , ξN be independent random variables taking values
in {0, 1}. Let f : CN → R be a function such that |f(x) − f(y)| ≤ 1
whenever dist(x, y) ≤ 1 and let η be the random variable f(ξ1, . . . , ξN ).
Then for any δ > 0

P
{
η : |η − E (η)| ≥ δ} ≤ 2 exp

{
−2δ2

N

}
.

Proof. This is a special case of Lemma 1.2 of [M] . ✷

The next lemma provides a useful “scaling” trick.

Lemma 3.5. Let us fix positive integers k and n and let N = kn. Let us
identify CN = Cn × · · · × Cn = (Cn)k. Thus a point x ∈ CN is identified
with a k-tuple x = (x1, . . . , xk), where xi ∈ Cn for i = 1, . . . , k.

For a subset A ⊂ Cn, let B = A× . . . ×A = Ak ⊂ CN . Then

dist(x,B) =
k∑

i=1

dist(xi, A) for any x = (x1, . . . , xk) ∈ CN

and
∆(B) = k∆(A) .
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Proof. Clearly,

dist(x, y) =
k∑

i=1

dist(xi, yi) for all x, y ∈ CN ,

hence the first identity follows. Next,

∆(B) =
1
2N

∑
x∈CN

dist(x,B) =
1
2N

∑
x1,...,xk∈Cn

k∑
i=1

dist(xi, A)

=
k2n(k−1)

2nk

∑
x∈Cn

dist(x,A) =
k

2n

∑
x∈Cn

dist(x,A) = k∆(A) . �

Now we can prove correctness of Algorithm 3.3.
Theorem 3.6. With probability at least 0.9, the output α of Algorithm 3.3
satisfies the inequality |∆(A)− α| ≤ ε.
Proof. Let N = nk and let us identify CN = (Cn)k as in Lemma 3.5.
Let B = Ak ⊂ CN . Let f : CN → R be defined by f(x) = dist(x,B).
Interpreting x = (ξ1, . . . , ξN ) as a vector ofN independent random variables
ξi uniformly distributed on {0, 1}, applying Lemma 3.4 with δ = kε and
observing that E (f) = ∆(B), we conclude that

P
{
x : |dist(x,B)−∆(B)| ≥ kε} ≤ 2 exp

{
−2(εk)2

N

}
= 2exp

{
−2ε2k

n

}
≤ 0.1 .

Since by Lemma 3.5

∆(B) = k∆(A) and
1
k

k∑
i=1

dist(xi, A) =
1
k
dist(x,B)

for x = (x1, . . . , xk), we conclude that

P
{
x1, . . . , xk :

∣∣∣∣1k
k∑

i=1

dist(xi, A)−∆(A)
∣∣∣∣ ≥ ε

}

= P
{
x : |dist(x,B)−∆(B)| ≥ kε} ≤ 0.1 ,

and the proof follows. ✷

Remark. Hence to evaluate ∆(A) within error ε we have to average
O(nε−2) values dist(xi, A). By doing that, we allow probability 0.1 of fail-
ure. As usual, to attain a lower probability δ > 0 of failure, one should run
Algorithm 3.3 O(ln δ−1) times and then select the median of the computed
α’s (cf. [JVV] ). For all applications, choosing ε = 1 will suffice and in many
cases ε =

√
n will do (cf. section 5.1). Hence, often we will have to apply

Oracle 2.2 only a constant number of times.
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We would like to relate the value of ∆(A) to the cardinality |A|.
Definition 3.7. Entropy function. For 0 ≤ x ≤ 1/2 let

H(x) = x log2
1
x
+ (1− x) log2

1
1− x .

We agree that H(0) = 0. Thus H is an increasing concave function on the
interval [0, 1/2].

We use the following estimate (see, for example, Theorem 1.4.5 of [Li])
r∑

k=0

(
n

k

)
≤ 2nH(r/n) for r ≤ n/2 . (3.7.1)

Also, we remark that around x = +0 we have

H(x) = x log2
1
x +O(x) and H

(
1
2 − x) = 1− 2

ln 2x
2 +O(x3) (3.7.2)

We will use the classical isoperimetric inequality for the Boolean cube
(see, for example, [L]).

Theorem 3.8 (Harper’s theorem). Let A ⊂ Cn be a set such that

|A| ≥
r∑

k=0

(
n

k

)

for some integer r. Then, for any non-negative integer t

∣∣{x ∈ Cn : dist(x,A) ≤ t}
∣∣ ≥ r+t∑

k=0

(
n

k

)
.

We are going to obtain an estimate of the cardinality of a set A ⊂ Cn

in terms of the average Hamming distance ∆(A) from a point x ∈ Cn to A.
It is convenient to express the estimate in terms of a related quantity

ρ = ρ(A) = 1
2 − ∆(A)

n .

As follows from Example 3.2, for every non-empty set A ⊂ Cn we have
0 ≤ ρ(A) ≤ 1/2. We observe that ρ(A) = 0 if and only if A consists of a
single point and that ρ(A) = 1/2 if and only if A is the whole cube Cn.

Theorem 3.9. Let A ⊂ Cn be a non-empty set. Let

ρ = 1
2 − ∆(A)

n .

Then

1−H
(
1
2
− ρ

)
≤ log2 |A|

n
≤ H(ρ) .

Before we proceed with a formal proof, we would like to highlight some
ideas.
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3.10 The idea of the proof. Extremal sets. Let A ⊂ Cn be a set.
Concentration inequalities (Lemma 3.4) imply that the average distance
∆(A) is approximately equal to the distance dist(x,A) from a “typical”
point x ∈ Cn to A (see also Sections 6.2 and 7.9 of [MiS] ). For a given
positive integer t, let us consider the t-neighborhood At = {x ∈ Cn :
dist(x,A) ≤ t} of A. We expect that ∆(A) ≈ t1, where t1 is the smallest
value of t such that At covers “almost all” cube Cn. The neighborhood At

grows the slowest when A is a ball in the Hamming metric, that is when
A = {x : dist(x, x0) ≤ r} for some x0 ∈ Cn and some r > 0, as follows from
Harper’s theorem 3.8, cf. also [L] . Hence the upper bound for n−1 log2 |A|
in Theorem 3.9 is attained (up to an O(n−1/2) error term) when A is a ball.
The neighborhood At grows the fastest when the points of A are spread
around in Cn. In any case, the size |At| does not exceed the sum of sizes of
the balls of radius t centered at the points of A. Thus the lower bound for
n−1 log2 |A| in Theorem 3.9 is obtained from this “packing” type argument.
One can show that if the points of A are chosen at random in Cn, then with
high probability the lower bound is indeed attained asymptotically. More
precisely, let us fix a number 0 < β < 1 and let A be the set of �2βn�
points chosen at random from Cn. Then with the probability that tends
to 1 as n grows to infinity, β = 1 − H(

1
2 − ρ) + O(n−1/2). The proof is

straightforward, but technical and therefore omitted.
Finally, we note that using average distance ∆(A) and the scaling trick

(Lemma 3.5) allows us to get rid of O(n−1/2) error terms in the proof.

Proof of Theorem 3.9. Let us choose a positive even integer m, let N = mn
and let us identify CN = (Cn)m, as in Lemma 3.5. Let B = Am ⊂ CN . Let
us fix the uniform probability measure P on CN .

Let α = log2 |A|/n, so |A| = 2αn and |B| = 2αN . Let 0 ≤ γ ≤ 1/2 be a
number such that H(γ) = α and let r = �Nγ�. Then by (3.7.1)

|B| = 2N ·H(γ) ≥
r∑

k=0

(
N

k

)
.

Then Theorem 3.8 implies that

∣∣{x ∈ CN : dist(x,B) ≤ N/2 − r}∣∣ ≥ N/2∑
k=0

(
N

k

)
= 2N−1 .

Therefore,
P

{
x ∈ CN : dist(x,B) ≤ N

2 − r} ≥ 1
2 .

We have that x = (x1, . . . , xm) for some xi ∈ Cn and that dist(x,B) =
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dist(x1, A) + · · ·+ dist(xm, A) (see Lemma 3.5). Therefore,

P
{
(x1, . . . , xm) :

1
m

m∑
i=1

dist(xi, A) ≤ N

2m
− r

m

}
≥ 1
2
. (1)

Now we observe that
N
2m − r

m −→ n
2 − nγ as m→ +∞ . (2)

Furthermore, by the Law of Large Numbers,
1
m

m∑
i=1

dist(xi, A) −→ ∆(A) in probability as m→ +∞ . (3)

Hence the assumption that ∆(A) > n/2 − nγ would contradict (1)–(3).
Thus we must have ∆(A) ≤ n/2−nγ, which implies that γ ≤ ρ(A). Hence
α = H(γ) ≤ H(ρ) and the upper bound is proven.

Let us prove the lower bound. We observe that for every point b ∈ CN

and any N/2 ≥ s ≥ 0∣∣{x ∈ CN : dist(x, b) ≤ s}∣∣ = s∑
k=0

(
N

k

)
≤ 2N ·H(s/N) .

Therefore,∣∣{x ∈ CN : dist(x,B) ≤ s}∣∣ ≤ |B|2N ·H(s/N) = 2N ·(H(s/N)+α) .

Hence
P

{
x ∈ CN : dist(x,B) ≤ s} ≤ 2N ·(H(s/N)+α−1) .

Therefore,

P
{
(x1, . . . , xm) :

1
m

m∑
i=1

dist(xi, A) ≤ s/m
}

≤ 2N ·(H(s/N)+α−1). (4)

If ∆(A) = n/2 then A is a point and the lower bound in Theorem 3.9 is
satisfied. Otherwise, let us fix an ε > 0 such that (1+ ε)∆(A)/n < 1/2 and
let s = �m(1 + ε)∆(A)�. We have
s/m −→ (1 + ε)∆(A) and s/N −→ (1 + ε)∆(A)/n as m→ +∞ . (5)
Hence the assumption that H

(
(1+ ε)∆(A)/n

)
+α−1 < 0 would contradict

(3)–(5). Therefore, H((1 + ε)∆(A)/n) + α − 1 ≥ 0 for any ε > 0 and
H(∆(A)/n) + α− 1 ≥ 0. Since ∆(A)/n = 1

2 − ρ, the proof follows. ✷

For applications, the most interesting case is when n−1 log2 |A| is small,
that is ρ ≈ 0.
Corollary 3.11. There exist positive constants c1 and c2 such that for
any non-empty set A ⊂ Cn and for ρ = 1

2 − ∆(A)
n we have

c1 · ρ2 ≤ ln |A|
n

≤ c2 · ρ ln 1
ρ
.
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In particular, for any c1 < 2 and any c2 > 1, the inequality holds in a
sufficiently small neighborhood of ρ = 0.

Proof. Follows from Theorem 3.9 by (3.7.2). ✷

3.12 Discussion. Figure 1 depicts the feasible region for n−1 log2 |A|
as described by Theorem 3.9. Thus possible values of n−1 log2 |A| with the

0
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0.8

1

0.1 0.2 0.3 0.4 0.5
ρ

log2 |A|
n H(ρ)

1−H
(
1
2 − ρ

)

Figure 1

given value of ρ form a vertical interval between the two curves. As we
discussed in section 3.10, asymptotically both bounds are sharp. Remark-
ably, the bounds converge at ρ = 0 and ρ = 0.5. On the other hand, the
difference is the greatest when ρ = 1/4. Thus, if the average Hamming
distance from a point x ∈ Cn to a set A ⊂ Cn is n/4, the set A can contain
as many as 20.811n points and as few as 20.189n points. We note that if A is
a face (subcube) of the Boolean cube then the corresponding point lies on
the straight line n−1 log2 |A| = 2ρ(A).

Corollary 3.11 (with somewhat weaker constants and stated in different
terms) together with the observation that the distance dist(x,A) for a ran-
domly chosen point x ∈ Cn allows one to estimate ρ up to an O(n−1/2) error
constitute the main result of the earlier paper [B]. Consequently, the main
conclusion of [B] is equivalent to stating that the Hamming distance to A
from a random point x in the Boolean cube allows one to decide whether
|A| is exponentially large in n. In this paper, we make improvements in sev-
eral direction. The most important one is that the optimization functionals
of [B] are recognized as distances, which allows us to establish connections
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with isoperimetric inequalities. In particular, Theorem 3.9 provides us with
sharp bounds valid for all 0 ≤ ρ ≤ 1/2. Also, using Algorithm 3.3 and The-
orem 3.6 we get rid of the O(n−1/2) error term. This allows us to obtain
meaningful cardinality estimates for sets with small values of ρ. Curiously,
we can even distinguish in polynomial time between a set consisting of a
single point (ρ = 0) and a set having more than one point (one can show
that ρ = Ω(1/n) in that case), although apparently we can’t distinguish
between sets consisting of 2 and 3 points respectively. Finally, construction
2.4 of “economical embedding” allows us to obtain tighter bounds for a
wide class of problems by lowering the dimension of the ambient Boolean
cube.

In section 4, we show how using “randomized Hamming distance” allows
one to get better estimates for sets A with n−1 log2 |A| small, which is the
case in most applications. Essentially, the randomized Hamming distance
will allow us to “sandwich” such a set between a random set and a face
(subcube), as opposed to a random set and a Hamming ball in the case of
the standard Hamming metric, cf. section 3.10.

4 Randomized Hamming Distance

Let us fix a number 0 < p ≤ 1 and let q = 1 − p. In this section, we
construct a quantity ∆(A, p), which measures the cardinality of “small”
subsets A ⊂ Cn of the Boolean cube in a somewhat more precise way
than the average Hamming distance ∆(A) discussed in section 3. In fact,
∆(A, 1) = ∆(A), so ∆(A) is a particular case of ∆(A, p).
Definitions 4.1. Let Λn be a copy of the Boolean cube {0, 1}n. We make
Λn a probability space by letting

P {l} = p|l|qn−|l| , where |l| = λ1 + . . .+ λn for l = (λ1, . . . , λn) .
Hence a vector l = (λ1, . . . , λn) from Λn is interpreted as a realization
of n independent random variables λi such that P {λi = 1} = p and
P {λi = 0} = q.

For x, y ∈ Cn and an l ∈ Λn, where x = (ξ1, . . . , ξn), y = (η1, . . . , ηn)
and l = (λ1, . . . , λn), let

dl(x, y) =
∑

i:ξi �=ηi

λi .

In other words, we count disagreement in the i-th coordinate of x and y if
and only if the value of λi is 1. Thus if l = (1, . . . , 1), we have dl(x, y) =
dist(x, y), the usual Hamming distance.
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For l ∈ Λn and a set A ⊂ Cn, let
dl(x,A) = min

y∈A
dl(x, y) .

Finally, let

∆(A, p) =
∑
l∈Λn

∑
x∈Cn

dl(x,A)
p|l|qn−|l|

2n
.

In other words, ∆(A, p) is the expected value of dl(x,A), where x =
(ξ1, . . . , ξn) and l = (λ1, . . . , λn) are vectors of independent random vari-
ables such that
P {λi = 1} = p, P {λi = 0} = q and P {ξi = 0} = P {ξi = 1} = 1/2.
Obviously, ∆(A, p) ≤ ∆(B, p) if B ⊂ A.

It follows that for a fixed non-empty A ⊂ Cn, the value ∆(A, p) is a
polynomial in p of degree at most n.

Example 4.2. Set consisting of a single point. Suppose that the
set A consists of a single point. Without loss of generality we assume that
A = {(0, . . . , 0)}. Then for x = (ξ1, . . . , ξn) and l = (λ1, . . . , λn),

dl(x,A) =
n∑

i=1

λiξi .

Interpreting λi and ξi, i = 1, . . . , n as independent random variables such
that P {ξi = 1} = P {ξi = 0} = 1/2 and P {λi = 1} = p, P {λi = 0} = q,
we get

∆(A, p) = E
n∑

i=1

λiξi =
n∑

i=1

(E λi)(E ξi) =
np

2
.

It follows then that for any non-empty set A ⊂ Cn we have ∆(A, p) ≤
np/2 and that ∆(A, p) = np/2 if and only if A consists of a single point
(we agreed that p > 0).

As was the case with ∆(A), the functional ∆(A, p) can be easily com-
puted by averaging. For a set A ⊂ Cn defined by its Distance Oracle 2.2
and any l = (λ1, . . . , λn) the value of dl(x,A) is computed by choosing the
penalties di(0, 1) = di(1, 0) = 1 when λi = 1 and di = 0 when λi = 0.

4.3 Algorithm for Computing ∆(A, p).
Input: A set A ⊂ Cn given by its Distance Oracle 2.2, a number 1 ≥ p > 0
and an ε > 0.
Output: A number α approximating ∆(A, p) within error ε.
Algorithm: Let k = �3n/ε2�. Sample k points x1, . . . , xk ∈ Cn inde-
pendently at random from the uniform distribution in Cn and k points
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l1, . . . , lk ∈ Λn independently at random from the distribution in Λn. Ap-
ply Distance Oracle 2.2 to compute dli(xi, A), i = 1, . . . , k. Compute
α = 1

k

∑k
i=1 distli(xi, A). Output α.

Theorem 4.4. With probability at least 0.9, the output α of Algorithm 4.3
satisfies the inequality |∆(A, p)− α| ≤ ε.

We postpone the proof till section 6.
We are going to obtain estimates of the cardinality |A| of a set A ⊂ Cn

in terms of the quantity ∆(A, p). As in section 3, it is convenient to work
with a related quantity

ρ = ρ(A, p) =
p

2
− ∆(A, p)

n
.

From Definitions 4.1, for any non-empty A ⊂ Cn, the function ρ(A, p)
is a polynomial in p of degree at most n. As follows from Example 4.2,
0 ≤ ρ ≤ p/2 for any non-empty set A ⊂ Cn. Our estimate will be useful
for “small” sets A where n−1 ln |A| is close to 0.
Theorem 4.5. Let A ⊂ Cn be a non-empty set. Let

ρ =
p

2
− ∆(A, p)

n
.

Then
ρ2

p
≤ ln |A|

n
. (4.5.1)

Suppose that ρ ≤ 1/4 and that

p ≥ ln 2 + ln(1− 2ρ)
ln(1− 2ρ)− ln(2ρ) . (4.5.2)

Then
ln |A|
n

≤ 2ρ ln
1
2ρ
+ (1− 2ρ) ln 1

1− 2ρ . (4.5.3)

We obtain the following counterpart of Corollary 3.11.

Corollary 4.6. Let us choose any c3 < 1/(ln 2) ≈ 1.44 and any c4 > 2.
Then there exists a δ > 0 such that for any non-empty A ⊂ Cn with
n−1 ln |A| ≤ δ there exists a 0 < p ≤ 1 such that for ρ = p

2 − ∆(A,p)
n one has

c3 · ρ2 ln 1
ρ
≤ ln |A|

n
≤ c4 · ρ ln 1

ρ
.

Proof. By (4.5.1), we have ρ ≤ √
n−1 ln |A| ≤ √

δ, so ρ(A, p) is small if
δ is small, no matter what p is. We observe that for small positive ρ the
right-hand side of (4.5.2) is of the order (ln 2) ln−1(1/ρ) and the right-hand
side of (4.5.3) is of the order 2ρ ln(1/ρ).
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Given c3 < (ln 2)−1 and c4 > 2, let us choose 1/16 > δ > 0 in such
a way that the right-hand side of (4.5.2) does not exceed (c3)−1 ln−1(1/ρ)
and the right-hand side of (4.5.3) does not exceed c4ρ ln(1/ρ) for all 0 <
ρ <

√
δ < 1/4.

We recall that |A| = 1 if and only if ρ = 0, in which case the bounds
of Corollary 4.6 are satisfied by default. If |A| > 1, one can see (cf. also
section 4.7 below) that ρ(A, p) = Ω(p/n). Given a set A ⊂ Cn, |A| > 1,
let us choose the smallest p ≥ 0 that satisfies the inequality (4.5.2). Then
0 < p < 1 since the right-hand side of (4.5.2) is Ω(ln−1(n/p)) (and therefore
goes to 0 slower than p), and smaller than 1 for 0 < ρ < 1/4. Since ρ(A, p)
depends continuously on p, we must have equality in (4.5.2) (otherwise, we
could have taken a smaller p). Thus p ≤ (c3)−1 ln−1(1/ρ) and the proof
follows by (4.5.1)–(4.5.3). ✷

4.7 Extremal sets. Let us fix a 0 < p ≤ 1 and an ε > 0. Then there
exists an α = α(p, ε) > 0 with the following property: if A ⊂ Cn is a set
of �2αn� points randomly chosen from the Boolean cube, then with the
probability that tends to 1 as n grows to infinity, n−1 ln |A| < (2 + ε)ρ2/p.
Hence for any p > 0 the bound (4.5.1) is tight up to a constant factor for
sufficiently small random sets. The proof is rather technical and therefore
omitted.

One can show that the bound (4.5.3) is asymptotically tight on small
faces of the cube Cn. More precisely, let us fix a δ > 0 (to be adjusted
later), let m = �δn� and let A ⊂ Cn be an m-dimensional face of the
Boolean cube

A =
{
(ξ1, . . . , ξn) : ξi = 0 for i = m+ 1, . . . , n

}
.

Thus |A| = 2m. Moreover, a computation similar to that of Example 4.2
shows that ρ(A, p) = pm/2n. Hence we have

ln |A|
n

=
2 ln 2
p
ρ(A, p) .

We observe that ρ(A, p) ≤ δ/2. Hence for any small ε > 0 one can find
δ = δ(ε) > 0 such that there exists p satisfying (4.5.2) and such that
p < (1 + ε)(ln 2) ln−1(1/ρ). For such a p, we have

ln |A|
n

≥ 2
1 + ε

ρ ln
1
ρ
,

so the bound (4.5.3) is indeed asymptotically tight for small sets.
Apparently, the sets A having the largest cardinality among all sets with

the given value of ρ(A, p) evolve from the balls in the Hamming metric
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for p = 1 (see section 3.10) to faces at p → 0. Since faces are packed
somewhat less tightly than balls, we gain in Corollary 4.6 as compared to
Corollary 3.11.

The proof of Theorem 4.5 is postponed till section 6.

4.8 Discussion. Corollary 4.6 implies that for small sets A by “tuning
up” p we can get an additional logarithmic factor which brings the lower
bound for n−1 ln |A| a little closer to the upper bound compared to the
bound of Corollary 3.11. Any p which is only slightly bigger than the
bound (4.5.2) will do. Suppose, for example, that A ⊂ Cn is a set such
that n−1 ln |A| ∼ n−α for some 0 < α < 1. By applying Algorithm 3.3 to
approximate ∆(A) = ∆(A, 1) and Theorem 3.9 to interpret the results, the
worst lower bound we can get for n−1 ln |A| is ∼ n−2α/ ln2 n (this happens
when A is a ball in the Hamming metric, but we think it is a “random set”,
see section 3.10) and the worst upper bound we can get is ∼ n−α/2 lnn
(this happens when A is a “random set” but we think that it is a ball).
Now, by (4.5.1) it follows that ρ(A, p) = O(n−α/2) for any p. Then we can
choose some p = O(ln−1 n) that satisfies (4.5.2). Applying Algorithm 4.3 to
approximate ∆(A, p) and Theorem 4.5 to interpret the results, for n−1 ln |A|
we would obtain a lower bound of the form ∼ n−2α/ ln n at worst (this
happens when A is a face but we think it is a random set) and an upper
bound of the form∼ n−α/2

√
lnn at worst (this happens when A is a random

set but we think it is a face).
To find a particular suitable p for a small set A, we note that if n−1 ln |A|

≤ δ for some δ < 1/4, the value of p obtained by substituting ρ = √
δ into

the right-hand side of (4.5.2) would satisfy the inequality since the right-
hand side is an increasing function of ρ and since ρ(A, p) ≤ √

δ for any p
by (4.5.1). It is interesting that an improvement in the cardinality estimate
can be achieved by simply ignoring a (random) part of the information
contained in the standard Hamming distance.

5 Corollaries, Remarks and Possible Ramifications

5.1 Testing emerging exponential growth. As an illustration, we
show that our approach allows one to test in polynomial time whether
the number of perfect matchings (Example 1.2) is exponentially large in
the number of vertices of the graph (in the sense defined below). Let
G = (V,E) be a graph with |V | = n vertices and let F be the set of all
perfect matchings in G. Economical embedding 2.4 allows us to identify
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F with a subset F of the Boolean cube {0, 1}m with m ≤ n(log2 n + 1)
and to construct efficiently Distance Oracle 2.2 for F . Suppose that |F| ≤
exp{nα} for some α < 1. Corollary 3.11 implies that ρ(F ) = O(nα/2m−1/2).
Thus using Algorithm 3.3 to compute ∆(F ) within error ε =

√
n and then

Corollary 3.11 to interpret the result, we will be able to conclude that
|F| = O(exp{nβ}) for any β > (1 + α)/2. Similarly, if |F| ≥ exp{nα} for
some α > 0, our method would allow us to conclude for any β < 2α − 1
that |F| = Ω(exp{nβ}). The estimate is, of course, void for α < 1/2 but it
improves as α approaches 1. For example, if |F| has the order of exp{n0.95},
our method would allow us to conclude that |F| is greater than exp{n0.89}
and smaller than exp{n0.98}. Thus we can tell the order |F| ≈ exp{n0.99}
from the order |F| ≈ exp{n} and to distinguish them we have to solve the
minimum weight matching problem a constant number of times. Bounds
of this type for perfect matchings in general graphs are new.

Similarly, we can test whether the number of colored spanning sub-
graphs is exponentially large in the number r of colors (see Example 1.4).

Implementing our approach, Ryckman [R] wrote an experimental C++
code to estimate the number of perfect matchings in a given bipartite graph
(or, equivalently, to estimate the permanent of a 0-1 matrix). In the case of
a bipartite graph, Optimization Oracle 1.1 is especially easy to construct.
In this case, the corresponding problem, known as the Assignment Problem,
is not only “theoretically easy”, but in practice large instances are routinely
solved as particular cases of the minimum cost network flow problem, see
for example Section 11.2 of [PS]. Theoretically, the algorithm can not com-
pete in precision with the recent polynomial time approximation scheme
of [JSV]. However, in practice the code appears to be working extremely
fast on fairly large graphs (it was tested on graphs with up to 256 vertices)
and produces estimates which, although crude, are often non-trivial. Gen-
erally speaking, we think that our approach can be useful for problems of
large size where some fairly crude estimates of the cardinality are needed
and where the underlying optimization problem is especially easy (as in
Example 1.3).

5.2 Connections to Monte Carlo methods. The main idea of our
approach can be described as follows: given a (finite) ambient space Ω and
a set A ⊂ Ω, we estimate the cardinality |A| by choosing a certain distance
function d in Ω and estimating the average distance

∆(A) = 1
|Ω|

∑
x∈Ω

d(x,A) where d(x,A) = min
y∈A

d(x, y)
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from x ∈ Ω to A. We get the classical Monte Carlo method if the distance
function d is the simplest possible:

d(x, y) =

{
1 if x �= y
0 if x = y .

In this case, ∆(A) = 1−|A|/|Ω|, so there is a direct relation between ∆(A)
and |A|. It is well understood that the main difficulty with the Monte Carlo
method is that if |A| is “exponentially small” compared to |Ω| then to get
a non-trivial bound for |A|, we have to compute ∆(A) with exponentially
high precision. In this paper, we showed that in many interesting cases
one can choose a different distance function d, so that the distance d(x,A)
from a point x ∈ Ω to A is efficiently computable and to get a meaningful
estimate of |A| even for exponentially small sets A, one needs to compute
∆(A) with a polynomial precision. Hence our approach can be considered
as a natural extension of the Monte Carlo method.

In this paper, we choose Ω to be the Boolean cube endowed either with
the standard Hamming distance (section 3) or with its randomized version
(section 4). In many cases, other embeddings might be of interest. In Ex-
ample 1.3, all subsets Y ∈ F have the same cardinality k. Straightforward
embedding 2.3 identifies F with a subset F of the section

Ω =
{
(ξ1, . . . , ξn) ∈ {0, 1}n :

n∑
i=1

ξi = k
}

of the Boolean cube {0, 1}n. Tighter estimates for |F | can be obtained by
considering F to be a subset of Ω and not of the whole cube {0, 1}n.

In Example 1.4, the set F of properly colored spanning subgraphs can be
naturally identified with a subset F of the direct product Ω = E1 × . . .× Er.
Let di be a distance function on Ei for i = 1, . . . , r and let d be the cor-
responding L1 distance on Ω. One can show that Distance Oracle 2.2
can be efficiently constructed for any choice of di. How should we choose
di to get the best possible estimates for the cardinality |F |? Note, that
looking for such di, we are trying to satisfy two competing requirements:
neighborhoods of “small” sets F ⊂ Ω should be as small as possible while
neighborhoods of “large” sets F ⊂ Ω should be as large as possible. Per-
haps one should use a whole family of distance functions di and combine
the resulting estimates. The general isoperimetric inequality of [ABS] can
be very useful for investigating that. Note, that economical embedding
2.4 results in choosing di so that Ei becomes isometric to a subset of the
Boolean cube {0, 1}mi with mi = �log2 |Ei|�.
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5.3 Weighted counting. Let F ⊂ 2X be a family of subsets of the
ground set X = {1, . . . , n} and let µ(i) = pi/qi > 0 be a rational weight of
i ∈ X, where pi, qi ∈ N. Let us define

µ(Y ) =
∏
i∈Y

µ(i) for Y ∈ F and µ(F) =
∑
Y ∈F

µ(Y ) .

We may be interested to estimate µ(F). There are several ways to extend
our methods to problems of this type, here we sketch one. For every i ∈ X,
let mi = �log2(pi + qi)�. Let us choose subsets Ai ⊂ Cmi and Bi ⊂ Cmi

such that |Ai| = pi, |Bi| = qi and Ai ∩Bi = ∅. Let m = m1+ . . .+mn and
let us identify

Cm = Cm1 × . . .× Cmn .

For Y ⊂ F let ZY ⊂ Cm be the direct product of n factors, the i-th factor
being Ai if i ∈ Y and Bi if i /∈ Y . Finally, let F ⊂ Cm be the union of
all ZY for Y ∈ F . We see that µ(F) = (q1 · · · qn)−1|F |. Moreover, one can
define subsets Ai and Bi in such a way that Optimization Oracle 1.1 for F
gives rise to Distance Oracle 2.2 for F . This construction corresponds to
the straightforward embedding 2.3. In some cases, there is a way to come
up with an economical embedding in the spirit of 2.4.

6 Proofs of Theorems 4.4 and 4.5

Definition 6.1. We recall that CN is the Boolean cube {0, 1}N endowed
with the uniform probability measure and that ΛN is the Boolean cube
{0, 1}N endowed with the probability measure of Definition 4.1. Let ΩN =
CN × ΛN . We consider the product measure on ΩN , so
P {(x, l)} = p|l|qN−|l|2−N where |l| = λ1 + . . .+ λN for l = (λ1, . . . , λN ) .
Hence a point (x, l) ∈ ΩN is interpreted as a vector of 2N independent ran-
dom variables (ξ1, . . . , ξN ;λ1, . . . , λN ), where P {ξi=0} = P {ξi=1} = 1/2,
P {λi = 1} = p and P {λi = 0} = q. We observe that

∆(A, p) = E dl(x,A) . (6.1.1)
Lemma 6.2. Let A ⊂ CN be a set. Then for every δ ≥ 0

P
{
(x, l) ∈ ΩN : |dl(x,A)−∆(A, p)| ≥ δ

} ≤ 2e−δ2/N .

Proof. Since dl(x,A) is a function of 2N independent random variables,
the proof follows by Lemma 3.4. ✷

Next, we need an analogue of the scaling trick 3.5.
Lemma 6.3. Let us fix positive integers k and n and let N = kn. Let
us identify CN = (Cn)k, ΛN = (Λn)k and ΩN = (Ωn)k. Thus a point
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(x, l) ∈ ΩN is identified with x = (x1, . . . , xk; l1, . . . , lk), where xi ∈ Cn and
li ∈ Λn.

For a subset A ⊂ Cn, let B = Ak ⊂ CN . Then

dl(x,B) =
k∑

i=1

dli(xi, A) and ∆(B, p) = k∆(A, p) .

Proof. Clearly,

dl(x, y) =
k∑

i=1

dli(xi, yi) for all x, y ∈ CN

and the first identity follows. Now, by (6.1.1)

∆(B, p) = E dl(x,B) =
k∑

i=1

E dli(xi, A) = k∆(A, p) . �

Now we are ready to prove Theorem 4.4.
Proof of Theorem 4.4. Let N = nk and let us identify CN = (Cn)k,
ΛN = (Λn)k and ΩN = (Ωn)k. Let B = Ak ⊂ CN as in Lemma 6.3.
Applying Lemma 6.2, we get

P
{
(x, l) ∈ ΩN : |dl(x,B)−∆(B, p)| ≥ δ

} ≤ 2e−δ2/N

for any δ ≥ 0. Using Lemma 6.3, we conclude:

P
{
(x, l) ∈ ΩN :

∣∣∣∣1k
k∑

i=1

dli(xi, A)−∆(A, p)
∣∣∣∣ ≥ δ/k

}
≤ 2e−δ2/N .

Let us choose δ = εk. Hence

P
{
(x, l) ∈ ΩN :

∣∣∣∣1k
k∑

i=1

dli(xi, A)−∆(A, p)
∣∣∣∣ ≥ ε

}
≤ 2e−ε2k/n .

Since k ≥ 3n/ε2, the proof follows. ✷

Next, we need a (crude) version of inequality (3.7.1).
Lemma 6.4. Let ε ≥ 0, let r(ε) = pN(1 − ε)/2. Let y ∈ CN be a point.
Then

P
{
(x, l) ∈ ΩN : dl(x, y) ≤ r(ε)

} ≤ e−ε2pN/4 .

Proof. Without loss of generality we may assume that y = 0. Then

P
{
(x, l) ∈ ΩN : dl(x, 0) ≤ r(ε)

}
= P

{
(x, l) ∈ ΩN :

N∑
i=1

ξiλi ≤ r(ε)
}
,

where x = (ξ1, . . . , ξN ) and l = (λ1, . . . , λN ). Let ζi = ξiλi. Then ζi,
i = 1, . . . , N are independent random variables such that P {ζi = 1} = p/2
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and P {ζi = 0} = 1− p/2. Hence
P

{
(x, l) ∈ ΩN : dl(x, y) ≤ r(ε)

}
= P

{
ζ1 + · · · + ζN ≤ r(ε)} ≤ e−ε2pN/4

by a corollary of Hoeffding’s inequality (see Corollary 5.6 of [M]). ✷

Now we are ready to prove the first part of Theorem 4.5.
Proof of inequality (4.5.1). Let us choose a positive integer m, let N = mn,
let CN = (Cn)m, and let ΛN = (Λn)m. Let B = Am ⊂ CN as in Lemma 6.3.

Let us choose an α > 0. Applying Lemma 6.4, we obtain

P
{
(x, l) ∈ ΩN : dl(x,B) ≤ pN(1−

√
α)/2

} ≤ |B|e−αpN/4 = (|A|e−αpn/4)m.

Therefore, by Lemma 6.3

P
{
(x, l) ∈ ΩN :

1
m

m∑
i=1

dli(xi, A) ≤ pn(1−
√
α)/2

}
≤ (|A|e−αpn/4)m .

The right-hand side of the inequality tends to 0 provided α > 4 ln |A|/pn.
Since by the Law of Large Numbers

1
m

m∑
i=1

dli(xi, A) −→ ∆(A, p) in probability as m→ +∞ ,

we must have

∆(A, p) ≥ pn(1−√
α)/2 for any α > 4 ln |A|/pn .

Hence
∆(A, p) ≥ pn(1−√

α)/2 for α = 4 ln |A|/pn ,
which is equivalent to (4.5.1). ✷

In section 3, we used the sharp isoperimetric inequality (Theorem 3.8)
for the Hamming distance in Cn to get a sharp upper bound for n−1 log2 |A|.
Unfortunately, we don’t know of a similar result for the randomized Ham-
ming distance. To prove (4.5.2)–(4.5.3), we proceed by induction on n in a
way resembling that of [T] (see also Remark 6.9).

We start with a simple technical result.
Lemma 6.5. For any 0 ≤ ε ≤ 1, any γ ≥ 0 and any 0 < p ≤ 1 and q = 1−p
we have

min
{
pγ

2
+ ln

1
1 + ε

, p ln
1

1− ε + q ln
1

1 + ε

}

≤ max
{
0, ln(1 + eγ/2)− qγ

2
− ln 2

}
.

Proof. Fixing p, q and γ, let

f(ε) =
pγ

2
+ ln

1
1 + ε

and g(ε) = p ln
1

1− ε + q ln
1

1 + ε
.
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Then f(0) ≥ 0 and f(ε) is decreasing whereas g(ε) behaves as follows:
g(0) = 0 and if p ≥ q then g(ε) is increasing and if p < q then g(ε) is
decreasing for 0 < ε < q− p and increasing for q− p < ε < 1. Furthermore,
f(ε0) = g(ε0) at the single point ε0 = (eγ/2 − 1)/(1 + eγ/2), where f(ε0) =
g(ε0) = ln(1 + eγ/2)− qγ/2− ln 2. The proof now follows. ✷

Definition 6.6. Let µn (or simply µ) denote the uniform probability
measure in Cn. Hence µ(A) = |A|/2n.

The induction is based on the following lemma.
Lemma 6.7. Let A ⊂ Cn+1 be a set. Let

A0 =
{
x ∈ Cn : (x, 0) ∈ A

}
and A1 =

{
x ∈ Cn : (x, 1) ∈ A

}
.

For l ∈ Λn let (l, 0) ∈ Λn+1 denote l appended by λn+1 = 0 and let
(l, 1) ∈ Λn+1 denote l appended by λn+1 = 1. Let

∆0(A, p) = E d(l,0)(x,A) and ∆1(A, p) = E d(l,1)(x,A) ,

where the expectation is taken with respect to a random (x, l) ∈ Cn+1×Λn.
Then

µn(A0) + µn(A1)
2

= µn+1(A) ; (6.7.1)

∆(A, p) = q∆0(A, p) + p∆1(A, p) ; (6.7.2)
∆0(A, p) ≤ ∆(Ai, p) for i = 0, 1 ; (6.7.3)

∆1(A, p) ≤ ∆(Ai, p) + 1
2 for i = 0, 1 ; (6.7.4)

∆1(A, p) ≤ ∆(A0, p) +∆(A1, p)
2

. (6.7.5)

Proof. The proof is straightforward, cf. also proof of Lemma 2.1.2 of [T]
and proof of Lemma 2.5 of [B]. ✷

Now we use induction to get a preliminary bound.
Lemma 6.8. Suppose that for some γ ≥ 0, 0 < p ≤ 1 and q = 1− p,

ln(1 + eγ/2)− qγ
2 − ln 2 ≥ 0 .

Then for any non-empty set A ⊂ Cn we have

γ∆(A, p) + lnµ(A) ≤ n
(
ln(1 + eγ/2)− qγ

2 − ln 2
)
.

Proof. We proceed by induction on n. If n = 1 then two cases are possible:
A consists of a single point, µ(A) = 1/2 and ∆(A, p) = p/2 (see

Example 4.2);
A = {0, 1}, µ(A) = 1 and ∆(A, p) = 0.
In either case, the inequality holds.
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Suppose that the inequality holds for non-empty subsets of Cn. Let us
prove that it holds for non-empty A ⊂ Cn+1. Let us define A0, A1 ⊂ Cn as
in Lemma 6.7. From (6.7.1) it follows that either

µn(A0) = (1− ε)µn+1(A) and µn(A1) = (1 + ε)µn+1(A)

or
µn(A1) = (1− ε)µn+1(A) and µn(A0) = (1 + ε)µn+1(A)

for some 0 ≤ ε ≤ 1.
Let B be the one of the sets A0, A1 that has a bigger measure µn (either

of the two if µn(A0) = µn(A1)) and let D be the one of the sets A0, A1

that has a bigger value of ∆(·, p) (either of the two if ∆(A0, p) = ∆(A1, p)).
Then

µn(B) ≥ (1 + ε)µn+1(A) and µn(D) ≥ (1− ε)µn+1(A) .

Furthermore, by (6.7.3)

∆0(A, p) ≤ ∆(B, p) and ∆0(A, p) ≤ ∆(D, p)

whereas by (6.7.3) and (6.7.5)

∆1(A, p) ≤ ∆(B, p) + 1
2 and ∆1(A, p) ≤ ∆(D, p) .

Hence we get

γ∆0(A, p) + lnµn+1(A) ≤ γ∆(B, p) + lnµn(B) + ln
1

1 + ε
and

γ∆1(A, p) + lnµn+1(A) ≤ min
{
γ∆(B, p) + lnµn(B) + ln

1
1 + ε

+
γ

2
,

γ∆(D, p) + lnµn(D) + ln
1

1− ε
}
.

Clearly, B is non-empty. Assume first, that D is non-empty as well.
Applying the induction hypothesis to B and D, we conclude that

γ∆0(A, p) + lnµn+1(A) ≤ n
(
ln(1 + eγ/2)− qγ

2
− ln 2

)
+ ln

1
1 + ε

and

γ∆1(A, p) + lnµn+1(A)

≤ n
(
ln(1 + eγ/2)− qγ

2
− ln 2

)
+min

{
ln

1
1 + ε

+
γ

2
, ln

1
1− ε

}
.

Adding the first inequality multiplied by q and the second inequality mul-
tiplied by p and using (6.7.2), we get
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γ∆(A, p) + lnµn+1(A) ≤ n
(
ln(1 + eγ/2)− qγ

2
− ln 2

)
+min

{
pγ

2
+ ln

1
1 + ε

, p ln
1

1− ε + q ln
1

1 + ε

}
.

The desired inequality follows by Lemma 6.4.
If D is empty then µn(B) = 2µn+1(A) and we obtain

γ∆0(A, p) + lnµn+1(A) ≤ γ∆(B, p) + lnµn(B)− ln 2
and

γ∆1(A, p) + lnµn+1(A) ≤ γ∆(B, p) + lnµn(B)− ln 2 + γ
2

Adding the first inequality multiplied by q to the second inequality multi-
plied by p and using (6.7.2) and the induction hypothesis, we get

γ∆(A, p) + lnµn+1(A) ≤ γ∆(B, p) + lnµn(B)− ln 2 + pγ
2

≤ n
(
ln(1 + eγ/2)− qγ

2 − ln 2
)
+

(γ
2 − qγ

2 − ln 2)
≤ (n+ 1)

(
ln(1 + eγ/2)− qγ

2 − ln 2
)
,

which completes the proof. ✷

Now we are ready to complete the proof of Theorem 4.5.

Proof of (4.5.2)–(4.5.3). By Lemma 6.8,
ln |A|
n

=
lnµn(A)
n

+ln 2 ≤ ln(1+eγ/2)−qγ
2
−γ∆(A, p)

n
= ln(1+eγ/2)−γ

2
+γρ

provided
ln(1 + eγ/2)− qγ

2 − ln 2 ≥ 0 .

We optimize the inequality on γ ≥ 0. Let

γ = 2 ln
(

1
2ρ − 1

)
.

Since we assumed that ρ ≤ 1/4, we have γ ≥ 0. Furthermore,

ln(1 + eγ/2)− qγ
2 − ln 2 = ln 1

2ρ − q ln
(

1
2ρ − 1

)
− ln 2

= − ln(1− 2ρ) + p(ln(1− 2ρ)− ln(2ρ)) − ln 2 ≥ 0 ,

because of (4.5.2). Therefore,
ln |A|
n

≤ ln
1
2ρ

− ln 1− 2ρ
2ρ

+ 2ρ ln
1− 2ρ
2ρ

= 2ρ ln
1
2ρ
+ (1− 2ρ) ln 1

1− 2ρ
and (4.5.3) follows. ✷

Remark 6.9. Our proof of (4.5.2)–(4.5.3) can be considered as an “ad-
ditive” version of Talagrand’s method [T] . Indeed, Talagrand’s approach
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very roughly can be stated as follows. Let Ω be a space with the dis-
tance function d and probability measure µ. To prove an isoperimetric
inequality for A ⊂ Ω, we first find a uniform bound for the expression
µα(A) · E exp{τd(x,A)} and then adjust parameters α > 0 and τ > 0.
This way tight inequalities are obtained in [T] for sets A of large measure,
most often with µ(A) ≥ 1/2. We are mostly interested in sets of a small
measure. One can check that for “small sets” A the inequalities of [T] are
very far from sharp, which is, of course, should not be perceived as a “fault”
of the method, since the method was designed for totally different problems.
We find a uniform bound for the expression lnµ(A) + τE d(x,A), which
looks like Talagrand’s functional with “exp” removed. Our method seems
to produce reasonably good bounds for small sets A but it fails miserably
for large A, with µ(A) = 1/2, say. As should have been expected, the case
of “middle-sized” sets is the most complicated.
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House of the Hungarian Academy of Sciences), Budapest, 1986.

[M] C. McDiarmid, On the method of bounded differences, in “Surveys in
Combinatorics 1989 (Norwich, 1989)”, London Math. Soc. Lecture Note
Ser. 141, Cambridge Univ. Press, Cambridge (1989), 148–188.

[MiS] V.D. Milman, G. Schechtman, Asymptotic Theory of Finite-
Dimensional Normed Spaces (with an Appendix by M. Gromov), Springer
Lecture Notes in Mathematics 1200, 1986.

[P] C.H. Papadimitriou, Computational Complexity, Addison-Wesley,
Reading, Mass., 1994.

[PS] C.H. Papadimitriou, K. Steiglitz, Combinatorial Optimization: Al-
gorithms and Complexity, Dover, NY, 1998.

[R] E.M. Ryckman, Code for permanent approximations, experimental C++
code, available at
http://www.math.lsa.umich.edu/∼barvinok/papers.html

[T] M. Talagrand, Concentration of measure and isoperimetric inequalities
in product spaces, Inst. Hautes Études Sci. Publ. Math. 81 (1995), 73–205.

Alexander Barvinok, Department of Mathematics, University of Michigan,
Ann Arbor, MI 48109-1109,USA barvinok@math.lsa.umich.edu

Alex Samorodnitsky, Institute for Advanced Study, Einstein Drive, Princeton,
NJ 08540, USA asamor@ias.edu

Submitted: June 2000
Revised version: January 2001


