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1 Introduction

In our earlier paper [BuK] (see also McMullen’s paper [M]), we constructed
examples of separated nets in the plane R

2 which are not biLipschitz equiv-
alent to the integer lattice Z

2. These examples gave a negative answer to
a question raised by H. Furstenberg and M. Gromov.

Furstenberg asked this question in connection with Kakutani equiva-
lence for R

2-actions, [F]. Return times for a section of an R
2-action form a

separated net, and to represent the returns of an R
2-action by a Z

2-action,
one has to have a biLipschitz identification of the return times for each
point with Z

2 (depending measurably on the point). As was pointed out
to us by A. Katok, one can use a standard construction of R

2-actions to
represent our example as the set of return times for points from a set of
positive measure, thus showing that not every section can be used (it is
worth mentioning here that an old result of Katok [K] asserts that every
R

2-action admits a section whose return times are biLipschitz equivalent
to Z

2).
Gromov’s motivation for the question came from large scale geome-

try, and the definition of quasi-isometries. Two metric spaces are quasi-
isometric if they contain biLipschitz equivalent separated nets; hence one
would like to know if the choice of separated net matters, and if a given
space can contain nets which are not biLipschitz equivalent. This question
is particularly interesting for spaces with cocompact isometry groups.

The counterexample in [BuK] was based on a counterexample to another
question which had been posed by J. Moser and M. Reimann in the 60’s,
namely whether every positive continuous function on the plane is locally
the Jacobian of a biLipschitz homeomorphism. Using well-known proper-
ties of quasi-conformal homeomorphisms, one can actually show that any
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function that is not the Jacobian of a biLipschitz homeomorphism cannot
be the Jacobian of a quasi-conformal homeomorphism either.

The resolution of the original question suggested several intriguing prob-
lems, which we present below. These questions came from our discussions
with C. McMullen and several other mathematicians.

1. If two finitely generated groups are quasi-isometric, are they biLip-
schitz equivalent (see [G, p. 23])? Here the groups are assumed to be
equipped with word metrics. Several special cases of this question are
striking. Can G × Z2 ever fail to be biLipschitz to G? More generally: is
every finite index subgroup of G biLipschitz to G? By [W], [S] (see also [P],
[B]) it is known that the answers are always affirmative when the group is
nonamenable.

2. If G1 and G2 are uniform lattices in the same connected Lie group,
must they be biLipschitz equivalent? (Logically speaking, this is a subcase
of problem 1.) Again this is known in the nonamenable case, i.e. the case
of nonsolvable Lie groups. Lattices with the same covolume are biLipschitz
equivalent by an argument using Hall’s marriage lemma (see Lemma 4.1). A
similar argument shows that the problem has an affirmative solution when
the Lie group admits biLipschitz homeomorphisms with constant Jacobian t
for every t > 0. For instance, graded nilpotent Lie groups and the isometry
group of 3-dimensional Solv geometry admit biLipschitz automorphisms
which scale volume by an arbitrary factor.

3. If one forms a separated net in the plane by placing a point in the cen-
ter of each tile of a Penrose tiling, is the resulting net biLipschitz equivalent
to Z

2? More generally, one can consider nets constructed as follows. Let
P ⊂ R

n be a 2-plane with irrational slope, and let B ⊂ R
n be a bounded

subset with nonempty interior. Take the set of points z ∈ Z
n for which

the intersection (z+B)∩P is nonempty, and project it orthogonally to P .
When B has small diameter this example can also be described dynamically
as the set of return times for a linear R

2-action on an n-torus to a section.
4. How can one characterize Jacobians of biLipschitz homeomorphisms

R
2 → R

2? Several authors have studied the prescribed Jacobian problem
in other regularity classes [R], [DM], [RiY], [Y]. This question is already
nontrivial if one restricts one’s attention to nonconstant functions which are
locally constant on the complement of a simple closed curve; for instance it
seems plausible that in the case of a closed snowflake curve such a function
is never the Jacobian of a biLipschitz homeomorphism. On the other hand
it seems likely that a function that assumes one value on the subgraph of
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a continuous function R → R and another value elsewhere is always the
Jacobian of a biLipschitz homeomorphism. One can reduce the n = 3 case
of problem 3 to a situation similar to this.

In the remainder of this paper, we settle the n = 3 case of problem 3
for planes with Diophantine slope. More precisely, let α ∈ R satisfy the
Diophantine condition ∣∣α− p

q

∣∣ > C
qd (1.1)

for some C > 0, d > 2 and all p, q ∈ Z; recall that the set of such α has
full measure, and contains all algebraic irrationals. Now take P ⊂ R

3 to
be the graph of the linear function αx + βy. Let X ⊂ P be the separated
net obtained by projecting the set {z ∈ Z

3 : (z+B)∩P �= ∅} orthogonally
to P .

Theorem 1.2. X is biLipschitz homeomorphic to Z
2.

We prove Theorem 1.2 via a general criterion which shows that a sep-
arated net is biLipschitz to Z

2 provided its density in large subsets ap-
proaches a limiting value rapidly enough:

Theorem 1.3. Suppose Y ⊂ R
2 is a separated net. For ρ > 0 and each

measurable subset U ⊂ R
2, define eρ(U) to be the density deviation

max
(

ρ|U |
#(U ∩ Y )

,
#(U ∩ Y )

ρ|U |

)
. (1.4)

Then define Eρ : N → R by letting Eρ(k) be the supremum of the quantities
eρ(U), where U ranges over all squares of the form [i, i + k]× [j, j + k] for
i, j ∈ Z. If there exists a ρ > 0 such that the product

∏
m Eρ(2m) converges,

then Y is biLipschitz to Z
2.

Remark 1.5. The technique from [BuK] can be used to produce separated
nets which have uniform asymptotic density (i.e. limk→∞E(k) = 1), but
which are not biLipschitz to Z

2.

In outline, the proof of Theorem 1.3 goes as follows. First we associate
a Voronoi type tiling with the net, and then introduce a function u whose
value on each tile is the reciprocal of the area of the tile. We then use Hall’s
marriage lemma to show that the net is biLipschitz to Z

2 if the function u is
the Jacobian of a biLipschitz homeomorphism R

2 → R
2. To construct such

a homeomorphism, we let Si be the image under scaling by 2i of the usual
tiling of R

2 by unit squares, and then we let ui : R
2 → R be a function

whose value of each square of Si is equal to the average of u over that square.
We define a sequence of biLipschitz homeomorphisms φi : R

2 → R
2 such
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that Jac(φi) = u/ui, and we show that φi subconverges to a biLipschitz
homeomorphism φ by showing the the infinite product

∏
i biLip(φi ◦ φ−1

i−1)
converges. The biLipschitz homeomorphism φ has Jacobian u/ρ, and we
get the desired homeomorphism by composing φ with the scaling x �→ √

ρx.
The paper is organized as follows. In section 2 we show in Corollary 2.2

that nets in Theorem 1.2 satisfy the hypotheses of Theorem 1.3. In section 3
we give a sufficient condition for a function u : R

2 → R to be the Jacobian
of a biLipschitz homeomorphism R

2 → R
2. In section 4 we use the main

result from section 3 to prove Theorem 1.3.

Acknowledgements. We would like to thank the anonymous referee for
correcting many inaccuracies in the original version of the paper. We are
grateful to C. McMullen and G. Margulis for stimulating discussions.

2 Density Estimates for the Net X

Our objective in this section is to estimate the deviation of the density of
X in squares from the asymptotic density of X in R

2.
Note that X is biLipschitz to its vertical projection X̄ to the xy-plane.

It is easy to see that in the 3 dimensional situation it is enough to consider
the case when B is a ball; indeed, the set of points that we project to P
to obtain X is the intersection of Z

3 with a slab W parallel to P . We
will assume that the radius of B is small enough that W does not contain
a vertical interval of length 1. The general case can be reduced to this
one by splitting the slab W into a union of thin slabs, and observing that
our density estimates are additive. (Finicky readers may note that the
discrepancy between the density estimate for closed slabs and for open
slabs is negligible.)

Observe that Z := W ∩ Z
3 can be represented as the set of points

(x, y, z) ∈ Z
3 satisfying |z−αx−βy| < δ for an appropriate δ. SinceW does

not contain vertical intervals of length 1, it follows that δ < 1/2, Z projects
to the xy-plane injectively, and hence X̄ is biLipschitz homeomorphic to
the vertical projection of Z to the xy-plane, by a bijection which displaces
points by a distance at most 1/2. We denote the projection of Z to the
xy-plane by Z̄. Since there is a bounded displacement bijection between
Z̄ and X̄, the reader may verify that it suffices to obtain density estimates
for Z̄; the discrepancy between the densities in large squares is due to
boundary effects which do not affect the convergence of the product in the
statement of Theorem 1.3.
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Pick constants r, δ < 1/2. Set

S :=
{
i ∈ Z

∣∣ d(r + iα,Z) < δ
}
.

Proposition 2.1. There are constants C0 and c > 0 such that for any j
and k, ∣∣ 1

k#(S ∩ [j, j + k))− 2δ
∣∣ ≤ C0

kc .

Let ρ = 2δ, and for any measurable U ⊂ R
2, let eρ(U) be as in the

statement of Theorem 1.3, with Y = Z̄.
Corollary 2.2. For all j1, j2 ∈ Z, k ∈ N, if U is a square of the form
[j1, j1 + k] × [j2, j2 + k], then |eρ(U) − 1| ≤ C1/k

c for some constant C1.
It follows that the product

∏
i Eρ(2i) converges, where Eρ is defined as in

Theorem 1.3.

The corollary can be deduced from the proposition by breaking the
square U into rows.

The remainder of this section is devoted to the proof of Proposition 2.1.
Let pn/qn denote the convergents of the irrational number α.

Lemma 2.3. For any n, k, |#(S ∩ [k, k + qn − 1])− 2δqn| ≤ 3.

Proof. This is an easy quantative refinement of a standard argument show-
ing that the sequence {iα mod 1} is equidistributed in the circle S = R/Z.
We will assume that α − pn

qn
> 0, the other case is absolutely analogous.

Consider a finite sequence xi = α(i + k − 1) mod 1 ∈ S, i = 1, 2, . . . qn.
Then #(S ∩ [k, k + qn − 1]) is nothing but the number of xi’s that belong
to the interval of length 2δ centered at −r mod 1 in S.

Consider another sequence yi = (k − 1)α + ipn

qn
mod 1, i = 1, 2, . . . qn.

Note that 0 < xi − yi < qn

(
α− pn

qn

)
(where the first inequality means that

yi precedes xi with respect to the natural orientation of S.) This means
that there are no other xj on the segment between yi and xi. Indeed,
otherwise |(i−j)α−m| < qnα−pn for some integer m, and this contradicts
to the fact that pn/qn is the best approximation for α by rationals with
denominators not exceeding qn. Hence the points xi and yi alternate in S.
This means that there is exactly one member of the sequence {xi} between
any two neighboring (with respect to their positions in S, as opposed to
their indices) points yi′ and yi′′ .

It is clear that the qn points y1, y2, . . . yqn are equispaced in S, and hence
the number of these points in any interval of length 2δ differs from 2qnδ
by no more than 1. Since xi’s and yi’s alternate, the number of xi’s in any
interval differs from the number of yi’s in the same interval by no more
than two. This completes the proof of the lemma. ✷
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We now return to the proof of Proposition 2.1. Recall that∣∣α− pk
qk

∣∣ < 1
qkqk+1

(2.4)

for all k ≥ 0. Combining this with (1.1), we get

qk+1 < Cqd−1
k = Cqh

k (2.5)

where h := d− 1 > 1.
If l ∈ Z and qn ≤ l < qn+1, then from (2.5) we get qn > (l/C)1/h;

if moreover qn|l, we may divide any interval of the form [j, j + l) into
l

qn
< C

1
h l1−

1
h intervals of length qn, and apply Lemma 2.3 to each of these,

getting ∣∣#(S ∩ [j, j + l))− 2δl
∣∣ < C

1/h
1 l1−

1
h = C2l

h1 (2.6)

where C2 = C
1/h
1 , h1 = 1 − 1

h ∈ (0, 1). Given any interval [j, j + k), let qn

be the largest denominator ≤ k, and set a := [k/qn]. Then aqn > k/2, and
we may apply (2.6) to get∣∣#(S ∩ [j, j + aqn))− 2δ(aqn)

∣∣ < C2(aqn)h1 < C2k
h1 .

Repeating this estimate inductively to the leftover interval [j + aqn, k), we
get that∣∣#(S ∩ [j, j + k)) − 2δk

∣∣ < C2

(
kh1 +

(
k
2

)h1 + . . .
)
= C3k

h1

where
C3 :=

C2

1− (1/2h1)
. �

3 A Sufficient Condition for a Function to be a Jacobian

The main result of this section is:

Proposition 3.1. Let u : R
2 → R be a positive function which is constant

on each open unit square with vertices in Z
2, and let ρ > 0 be given. For

any square S in R
2, let e(S) be the quantity

max

{
ρ

1
|S|

∫
S u

,

1
|S|

∫
S u

ρ

}

where |S| denotes the area of the square S. Define an “error” function
E : N → R by letting E(k) be the supremum of e(·) over the collection of
k×k squares of the form [i, i+k]× [j, j +k], where i, j ∈ Z. If the product∏

i

E(2i)
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converges, then there is a biLipschitz homeomorphism φ : R
2 → R

2 with
Jac(φ) = u a.e.

The proof of Proposition 3.1 is based on the following:
Proposition 3.2. There is a constant C1 with the following property.
Let T := [0, 2] × [0, 2] ⊂ R

2, and let u : T → (0,∞) be a function
which is constant in each square (i, i + 1) × (j, j + 1), i, j = 0, 1. Then
there is a biLipschitz homeomorphism φ : T → T which fixes ∂T point-
wise, so that Jac(φ) = λu a.e., where 1/λ = 1/|T |

∫
T u, and BiLip(φ) ≤

(max u/minu)C1 .

To prove Proposition 3.2, we will need two lemmas.
Let ‖ · ‖∞ denote the l∞ norm on R

2, so ‖(x, y)‖∞ := max(|x|, |y|). Let
Sr denote the square {x ∈ R

2 | ‖x‖∞ ≤ r}.
Lemma 3.3. Suppose u1 : Sr → R and u2 : Sr → R are a continuous
positive functions of ‖ ·‖∞, and

∫
Sr

u1 =
∫
Sr

u2. Then there is a biLipschitz
homeomorphism φ : Sr → Sr which fixes ∂Sr pointwise, so that Jac(φ) =
u1/u2 ◦ φ a.e., and

biLip(φ) ≤
(
maxu1

minu1

)C2
(
maxu2

minu2

)C2

where C2 is independent of u and r.

Proof. We first treat the case where u2 ≡ 1 and
∫
Sr

u1 =
∫
Sr

u2 = |Sr|. Set
u := u1. Define f : [0, r] → [0, r] by

f(t) :=
1
2

(∫
St

u

)1/2

,

so f(0) = 0 and f(r) = r. Now define φ : Sr → Sr by

φ(x) = f(‖x‖∞) x
‖x‖∞

when ‖x‖∞ �= 0, and φ(0) = 0. The map φ is differentiable on Sr \ {(x, y) |
|x| = |y|}, and calculation shows that

‖Dφ‖(x) ≤ k1 max
(
f(‖x‖∞)
‖x‖∞

, f ′(‖x‖∞)
)

and ∥∥[Dφ(x)]−1
∥∥ ≤ k1 max

(
‖x‖∞

f(‖x‖∞)
,

1
f ′(‖x‖∞)

)
where k1 is independent of u. These quantities are bounded by k2

max u
minu

where k2 is independent of u. Hence

biLip(φ) ≤ k2
maxu
minu

. (3.4)
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When maxu/minu is close to 1, then one gets that∥∥(Dφ− I)
∥∥ ≤ k3

(max u
minu

− 1
)
,

which implies that ∥∥[Dφ]±1
∥∥ ≤

(maxu
minu

)k4

,

where k3 and k4 are independent of u. Combining this with (3.4) we get
that

biLip(φ) ≤
(max u
minu

)C2

(3.5)

when C2 is sufficiently large.
In the general case, we set

ūi :=
ui|Sr|∫

Sr
ui

,

so
∫
Sr

ui = |Sr|. Applying the special case above, we obtain biLipschitz
homeomorphisms ψ1 : Sr → Sr and ψ2 : Sr → Sr with Jac(ψi) = ūi a.e.,
whose biLipschitz constants satisfy (3.5) (with u replaced by ui). Then
φ := ψ−1

2 ◦ ψ1 : Sr → Sr has Jacobian u1/u2 ◦ φ a.e. and

biLip(φ) ≤
(
maxu1

minu1

)C2
(
maxu2

minu2

)C2

. �

Lemma 3.6. We use the notation A(r1,r2) for the annulus B(0,r2)−B(0,r1).
Pick 0 < a < b, and set A := A(a, b). If u1 : A → R and u2 : A → R are
positive Lipschitz functions with∫

A
u1 =

∫
A
u2 = |A| ,

then there is a biLipschitz homeomorphism φ : A → A with

Jac(φ) =
u1

u2 ◦ φ
a.e.,

and

biLip(φ) ≤
[
maxu1

minu1
(1 + Lip(u1))

]C3
[
maxu2

minu2
(1 + Lip(u2))

]C3

(3.7)

for C3 = C3(b/a); moreover, when u1|∂A = u2|∂A, then φ can be chosen to
fix ∂A pointwise.

Proof. We first assume that u2 ≡ 1, and set u := u1. Using polar coordi-
nates, we define I : [a, b] × [0, 2π] → R by

I(r, θ) :=
∫ θ

0
u(r, θ̄)dθ̄ .
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Then define φ1 : A → A to be the polar coordinate shear

φ1(r, θ) :=
(
r,
2πI(r, θ)
I(r, 2π)

)
.

The map φ1 clearly defines a biLipschitz homeomorphism of A and

Jac(φ1)(r, θ) =
2πu(r, θ)
I(r, 2π)

for a.e. (r, θ). Now define f : [a, b] → [a, b] by the relation∫
A(a,t)

u(r, θ) = Area
(
A(a, f(t))

)
,

and φ2 : A → A by φ2(r, θ) = (f(r), θ). Then φ2 satisfies Jac(φ2)(r, θ) =
I(r, 2π)/2π for a.e. (r, θ). So we can set φ = φ2 ◦ φ1, and for a.e. (r, θ),

Jac(φ)(r, θ) =
[
Jac(φ2)(φ1(r, θ)

][
Jac(φ1)(r, θ)

]
=

[
I(r, 2π)

2π

] [
2πu(r, θ)
I(r, 2π)

]
= u(r, θ) .

We now estimate biLip(φ).
One gets biLip(φ1) ≤ k1 max(max u/minu, (1 + Lip(u))) where k1 is

independent of u. When maxu/minu ≈ 1, then at points of differentiability
one has ∥∥(Dφ1 − I)

∥∥ ≤ k2

(maxu
minu

− 1 + Lip(u)
)

which gives ∥∥[Dφ1]±1
∥∥ ≤

(maxu
minu

(
1 + Lip(u)

))k3

,

where k2 and k3 are independent of u. It follows that

biLip(φ1) ≤
(maxu
minu

(
1 + Lip(u)

))k4

where k4 is independent of u. One easily gets that

biLip(φ2) < k5
maxu
minu

, (3.8)

where k5 is independent of u, and when maxu/minu ≈ 1 then∥∥(Dφ2 − I)
∥∥ ≤ k6

(maxu
minu

− 1
)
,

which implies ∥∥[Dφ2]±1
∥∥ ≤

(maxu
minu

)k7

(3.9)

in this case. Combining (3.8) with (3.9) we get

biLip(φ2) ≤
(maxu
minu

)k8

(3.10)
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where k8 is independent of u. Therefore

biLip(φ) ≤ biLip(φ1)biLip(φ2) ≤
(max u
minu

(
1 + Lip(u)

))k4k8

. (3.11)

We now return to the general case when u2 �≡ 1. Applying the special
case above, we get homeomorpisms ψ1 : A → A and ψ2 : A → A with
Jac(ψi) = ui almost everywhere, whose biLipschitz constants are controlled
as in (3.11). Then the composition ψ := ψ−1

2 ◦ ψ1 has Jacobian u1/u2 ◦ ψ
a.e., and satisfies (3.7) with C3 = k4k8.

It remains only to observe that ψi|∂A is determined by ui|∂A, and there-
fore ψ will fix ∂A pointwise when u1|∂A = u2|∂A. ✷

Proof of Proposition 3.2. We will produce φ as a composition of homeomor-
phisms ψ1, ψ2, ψ3 which are constructed by applying Lemmas 3.3 and 3.6.

We first introduce some notation. Let Tij := (i, i + 1) × (j, j + 1) for
i, j = 0, 1. Let Sij ⊂ Tij be the square with side length

√
2−1 with the same

center as Tij ; note that Sij is the largest square concentric with Tij which
is contained in the ball B((1, 1), 1) ⊂ T . Let S′ be the square of side length√
2 with center at (1, 1); so S′ is contained in B((1, 1), 1) and contains the

squares Sij . Let A ⊂ T be the annulus centered at (1, 1) with radii 1−
√

2
2

and 1; note that A contains the squares Sij . Finally, let S be the square of
side length 2 −

√
2 with center (1, 1); the “hole” B

(
(1, 1), 1 −

√
2

2

)
of A is

inscribed in S.
We may assume that ess inf u = minu, ess supu = max u, and that∫

T u = |T |. Set v1 := u, and let m := minu. Let v2 : T → R be a
continuous positive function satisfying

a.
∫
Tij

v2 =
∫
Tij

v1 for i, j = 0, 1;
b. v2 ≡ m on the complement of ∪Sij;
c. The restriction of v2 to Sij is constant on the boundary of each square

concentric with Sij ; and

d. max v2
min v2

≤
(

max u
min u

)k1 and 1 + Lip(v2) ≤
(

max u
minu

)k1 ; where k1 is indepen-
dent of u. Now let v3 : T → R be a continuous positive function
satisfying

e.
∫
T v3 = |T |;

f. v3 ≡ m on S and on the complement of S′;
g. v3 is constant on the boundary of each square concentric with T ;
h. max v3

min v3
≤

(
max u
min u

)k2 and 1 + Lip(v3) ≤
(

max u
minu

)k2 ; where k2 is indepen-
dent of u. Finally, set v4 ≡ 1.
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We now apply Lemma 3.3 to the restrictions v1|Tij and v2|Tij and obtain
a homeomorphism ψ1 : T → T with Jac(ψ1) = v1/v2 ◦ ψ1 a.e. and

biLip(ψ1) ≤
(maxu
minu

)C2k1

.

Since v2(x) = v3(x) = m ≤ 1 for x ∈ T − A, it follows that
∫
A v2 =∫

A v3 ≥ |A|. Hence if we set v̄2 := v2|A|/
∫
A v2 and v̄3 := v3|A|/

∫
A v3,

then Lip(v̄2) ≤ Lip(v2) and Lip(v̄3) ≤ Lip(v3). We may therefore apply
Lemma 3.6 with u1 = v̄2 and u2 = v̄3 to get ψ2 : T → T with Jac(ψ2) =
v̄2/v̄3 ◦ ψ2 = v2/v3 ◦ ψ2 a.e. and

biLip(ψ2) ≤
(maxu
minu

)4k2C3

.

Finally, we apply Lemma 3.3 with u1 = v3 and u2 = v4 to get ψ3 : T → T
with Jac(ψ3) = v3/v4 ◦ ψ3 a.e. and

biLip(ψ3) ≤
(maxu
minu

)k2C2

.

Then φ := ψ3 ◦ ψ2 ◦ ψ1 satisfies the requirements of Proposition 3.2 where
C1 := C2k1 + 4k2C3 + k2C2. ✷

Proof of Proposition 3.1. We may assume without loss of generality
that ρ = 1, since we may postcompose a biLipschitz homeomorphism
φ0 : R

2→R
2 whose Jacobian satisfies Jac(φ0)=u/ρ with the map x�→√

ρx,
to get φ : R

2 → R
2 with Jac(φ) = u.

For each nonnegative integer q, let uq : R
2 → R be a function whose

value on each open square of the form (m2q, (m+ 1)2q)× (n2q, (n+ 1)2q),
m, n ∈ Z, is equal to the average of u over that square. For each q ∈ N, we
apply Proposition 3.2 to each of the above squares, to obtain a biLipschitz
homeomorphism ψq : R

2 → R
2 with Jac(ψq) = vq := uq−1/uq ◦ ψq a.e. and

biLip(ψq) ≤
(
max vq

min vq

)C1

≤
[
E(2q−1)2E(2q)2

]C1 .

Then φq := ψq ◦ . . . ◦ ψ1 : R
2 → R

2 will have Jacobian
u

uq ◦ φq
=

u

uq
,

and

biLip(φq) ≤
[ q∏

i=1

E(2i)
]4C1

≤
[ ∞∏

i=1

E(2i)
]4C1

< ∞ .

Hence biLip(φq) is uniformly bounded and we may apply Arzela–Ascoli to
get the desired biLipschitz homeomorphism φ : R

2 → R
2. ✷
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4 Proof of Theorem 1.3

For j ∈ N, let Sj be the tiling of R
2 produced by rescaling the standard

unit tiling by the factor 1/2j . Pick i large enough that no tile of Si contains
more than one element of Y . Now form a tiling T = {Ty}y∈Y whose tiles
are indexed by Y , where Ty is a union of tiles from Si which are closer to
y than to any other point of Y . The tiles of T have uniformly bounded
diameters and inradii, and y is an interior point of Ty for every y ∈ Y . Let
u : R

2 → R be a function that takes the value 1/|Ty | on the interior of Ty,
for all y ∈ Y . Observe that if U ⊂ R

2 is a square of side length k, then
∫
U u

agrees with #(Y ∩ U) to within an error ≤ c1k. Hence our assumption on
Y implies that u satisfies the hypotheses of Proposition 3.1. Therefore by
Proposition 3.1, u is the Jacobian of a biLipschitz homeomorphism. The
following lemma then completes the proof of Theorem 1.3.

Lemma 4.1. Let T = {Ti}i∈I be a tiling of the plane by tiles with
uniformly bounded diameters and inradii. Let u : R

2 → R be the function
such that u(x) = 1/|Ti| for a.e. x ∈ Ti, and suppose u = Jac(φ) for some
biLipschitz homeomorphism φ : R

2 → R
2. Let X = {xi}i∈I be a separated

net where xi lies in the interior of Ti for each i ∈ I. Then X is biLipschitz
homeomorphic to Z

2.

Proof. This is an application of Hall’s marriage lemma, which has been
used for similar problems by several authors (see [M], [W]). Consider a
bi-partite graph Γ whose set of vertices is Z

2
⋃

X, and there is an edge
between (z1, z2) ∈ Z

2 and xi ∈ X iff the intersection of φ(Ti) with the
square [z1 − 0.5, z1 +0.5]× [z2 − 0.5, z2 +0.5] is non-empty. Notice that the
area of each set φ(Tj) is 1. Hence, for every k, any collection of k points in
Z

2 is connected with at least k elements in X, because otherwise k squares
of the form [z1 − 0.5, z1 +0.5[×[z2 − 0.5, z2 +0.5] would be entirely covered
by less than k tiles of the form φ(Tj), and this is impossible since the total
area of the tiles is at most k − 1. By the same reason, for every k, any
collection of k points of X is connected with at least k points in Z

2. Hence
by Hall’s marriage lemma, our graph Γ contains a bijection F : X → Z

2.
Notice that φ(X) is also a separated net, which is biLipschitz equiv-

alent to X. To complete the argument, it is enough to show that φ(X)
in its turn is biLipschitz equivalent to Z

2. To see this consider the bi-
jection F ◦ φ−1 : φ(X) → Z

2. If F ◦ φ−1(φ(xi)) = (z1, z2), then (by
definitions of F and Γ), the distance dist(φ(xi), (z1, z2)) is bounded by√
0.5 + BiLip(φ) sup diam(Ti). Now it remains to notice that a bijection
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between two separated nets that moves every point by a uniformly bounded
distance is a biLipschitz equivalence.
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