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1 Introduction

Let X = G/K be a noncompact Riemannian symmetric space. Although
basic harmonic analysis on X has been settled in the sixties (see [GV],
[He2,3], for thorough presentations of this material), it is only recently that
it has been used efficiently to produce sharp and complete results compara-
ble to the Euclidean or the compact case ([An3,5], [BrOSc], [CowGM1,2],
[MaNSt], [Str],...). The reason may be that time was needed to digest and
refine the formidable work of Harish–Chandra and his followers.

Our main object of study in this paper is the heat kernel ht(x, y) =
ht(y−1x) on X, for which we produce optimal upper and lower bounds, as
well as asymptotics at infinity, in what is arguably the most interesting
case, namely when the time variable t is larger than (any constant times)
the distance d(x, y) between the space variables. The upper bound was
conjectured some years ago by the first author [An2] and proves amazingly
to be a lower bound too. The restriction 1+ t ≥ const. d(x, y) in our results
is due to a lack of control in the Trombi & Varadarajan expansion for
spherical functions along the walls. Fortunately this is no problem in all
applications since good upper bounds, with fast decaying Gaussian factors
e− const. d(x,y)2/t, are known to hold in the remaining domain t� d(x, y).

Such heat kernel estimates have several important consequences. Among
them let us mention the exact behavior of the Green function, which is fully
obtained for the first time on general symmetric spaces X. Recall that this
is precisely the analytic information needed for a complete description of
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the Martin boundary of X ([Gu], [GuJT1,2]). Other consequences worth
mentioning are on one hand optimal kernel bounds for the Poisson semi-
group e−t

√
−∆ on X and on the other hand a delicate maximal inequality

for a particular heat diffusion on the Iwasawa component S = (exp a)N
of G, which was sought after in [CowGGM].

Our paper is organized as follows. Section 2 contains some necessary
reminders about symmetric spaces and spherical analysis, notably spheri-
cal function asymptotics. In section 3 we establish our main result, namely
the above mentioned bounds for the heat kernel on X. Section 4 is devoted
to some applications: Lp heat propagation on X, optimal bounds for the
Bessel–Green–Riesz kernels (in particular for the Green function) and for
the Poisson kernel on X, and finally the weak L1 → L1 boundedness al-
luded to above of the heat maximal operator associated to a distinguished
Laplacian on S. In section 5 we refine our previous results by obtaining
asymptotics at infinity for the various kernels considered before. Historical
comments will be made throughout the text.

The main results in this paper were announced in [AnJ1] and in several
talks during the past years. Both authors would like to thank M. Babillot,
Y. Guivarc’h and J. C. Taylor for helpful discussions and indications. The
first author enjoyed hospitality at the University of Wroc law, at the Uni-
versity of Wisconsin in Madison, and at the Mittag–Leffler Institute, where
substantial parts of this article were carried out.

2 Preliminaries

In this section we recall the basic material about noncompact Rieman-
nian symmetric spaces and spherical analysis thereupon which will be used
throughout the article. We shall seize the opportunity of setting up the
notation. The book [GV] will serve as our main reference.

2.1 Noncompact Riemannian symmetric spaces. G will denote
a noncompact reductive Lie group in Harish–Chandra’s class, K a max-
imal compact subgroup, θ a corresponding Cartan involution, g = k ⊕ p

the resulting decomposition on the Lie algebra level, and X = G/K the
associated Riemannian symmetric space with nonpositive curvature. It is
understood that g is equipped with an admissible nondegenerate bilinear
form B (coinciding with the Killing form on g′ = [g, g]) and X with the
associated G-invariant metric. Using the inner product

〈X,Y 〉 = −B
(
X, θ(Y )

)
, (2.1.1)
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we shall systematically identify any subspace of g with its dual space. (Re-
call that the Harish–Chandra class is the natural setting for this theory.
Actually, as long as the associated symmetric spaces are concerned, the
difference with the semisimple setting consists only in possible additional
Euclidean factors. Specifically let G′ be the analytic subgroup of G cor-
responding to g′ = [g, g], K ′ = K ∩ G′, and V = exp(a ∩ z), where z

denotes the center of g. Then G′ is closed, semisimple, with finite center,
K ′ is a maximal compact subgroup of G′, V is a split component of G,
and X splits as the product of the Riemannian symmetric space of non-
compact type X′ = G′/K ′ times the Euclidean space V ∼= a ∩ z. Similarly
MF /KF

∼= GF /(GF ∩K) × aF , where GF denotes the analytic subgroup
of G corresponding to [mF ,mF ] = [mF ,mF ].)

Given a Cartan subspace a in p, A = exp a denotes the corresponding
analytic subgroup of G, M its centralizer in K, M ′ its normalizer in K,
Σ the restricted root system of (g, a), and W the associated Weyl group.
Once a positive Weyl chamber a+ has been selected, Σ+ (resp. Σ++ or
Σ+++) denotes the corresponding set of positive (resp. positive indivisible
or simple) roots, n the direct sum of all positive root subspaces gα, N =
exp n the corresponding analytic subgroup of G, and % the half sum of all
positive roots α counted with their multiplicities mα = dim gα. Let n be
the dimension of X, ` its rank (i.e. the dimension of a), and m =

∑
α∈Σ+ mα

the dimension of N , so that n = `+m. Recall the decompositions{
G = K(exp a)N (Iwasawa),
G = K(exp a+)K (Cartan).

Denote by H(x) ∈ a and x+ ∈ a+ the middle components of x ∈ G in these
decompositions, and by |x| = |x+| the distance to the origin.

Lemma 2.1.2. d(xK, yK) ≥ |x+ − y+| ∀x, y ∈ G.

Let us give a proof of this elementary result, for lack of known reference
(see [Cl, Lemma 6.3] for the analog in the compact Lie group setting). Since

d
(
(expX)K, (expY )K

)
≥ |X − Y | , ∀X,Y ∈ p

(see for instance [He1, Theorem I.13.1]), we can reduce to the corresponding
inequality in the flat case, namely

|X − Y | ≥ |X+ − Y +| , ∀X,Y ∈ p

with obvious notation. Writing X = Ad k1.X
+, Y = Ad k2.Y

+ with
k1, k2 ∈ K, we can furthermore restrict to X+, Y + ∈ a+ and k1 or k2 = e.
Let us show that the minimum of f(k) = |Ad k.X+ − Y +| is necessarily
reached on M ′. If k0 is a local extremum of f , we have indeed
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0 = d
dt

∣∣
0f(k0 exp tZ)2 = 2

〈
Ad k0.X

+ − Y +,Ad k0.[Z,X+]
〉

= 2
〈
[X+,Ad k−1

0 .Y +], Z
〉

for every Z ∈ k, which implies successively [X+,Ad k−1
0 .Y +] = 0,

Ad k−1
0 .Y +∈a and k0∈M ′. Finally it is well known that minw∈W |w.X+−Y +|

= |X+ − Y +|, and this concludes the proof of Lemma 2.1.2.
Let us fix the invariant measures on the groups and homogeneous spaces

introduced so far. K is equipped with its normalized Haar measure, a, N ,
G/K and K/M with the invariant measures induced by the inner product
(2.1.1), and G with∫

G
dx f(x) =

∫
G/K

d(xK)
∫
K
dk f(xk) . (2.1.3)

Thus the Haar measure on G writes∫
G
dx f(x) = 2−

m
2

∫
K
dk

∫
a

dH e2〈%,H〉
∫
N
dnf

(
k(expH)n

)
(2.1.4)

in the Iwasawa decomposition and∫
G
dx f(x) = |K/M |

∫
K
dk1

∫
a+
dHδ(H)

∫
K
dk2 f

(
k1(expH)k2

)
, (2.1.5)

with

δ(H) =
∏
α∈Σ+

sinhmα〈α,H〉 �
{ ∏
α∈Σ+

(
〈α,H〉

1 + 〈α,H〉

)mα}
e2〈%,H〉 ,

in the Cartan decomposition. (The symbol � means precisely that there
exist two constants 0<C1≤C2<+∞ such that C1

{ ∏
α∈Σ+

( 〈α,H〉
1+〈α,H〉

)mα}e2〈%,H〉

≤ δ(H) ≤ C2
{∏

α∈Σ+

( 〈α,H〉
1+〈α,H〉

)mα}e2〈%,H〉, ∀H ∈ a+.) The volume of
K/M can be computed explicitly (see (2.2.3) and (2.2.4) below). Notice
the differences with Harish–Chandra’s conventions, where the Lebesgue
measure on a is divided by (2π)`/2, the Haar measure on N is normalized
by the condition

∫
N dn e

−2〈%,(H◦θ)(n)〉 = 1, and the Haar measure on G is
given by dx = dk e2〈%,H〉dH dn in the Iwasawa decomposition.

Let us next describe the various faces of a+ and the associated standard
parabolic subgroups of G. They are in 1–1 correspondence with the subsets
F in Σ+++. Specifically denote by Σ(+)

F the (positive) root subsystem
generated by F . Furthermore split

a = aF ⊕ aF , n = nF ⊕ nF and N = NFN
F accordingly,

where aF is the subspace generated by F , aF its orthogonal in a, nF =⊕
α∈Σ+

F
gα, and nF =

⊕
α∈Σ+rΣ+

F
gα. Then the face of a+ and the standard

parabolic subgroup attached to F are respectively
(aF )+ =

{
H ∈ aF | 〈α,H〉 > 0 , ∀α ∈ Σ+++ r F

}
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and the normalizer PF of NF in G.
We shall write H = HF + HF according to the decomposition a =

aF ⊕ aF . For example
% = %F + %F , with %F = 1

2

∑
α∈Σ+

F

mαα and %F = 1
2

∑
α∈Σ+rΣ+

F

mαα .

Similarly
` = `F + `F , with `F = dim aF and `F = dim aF .

PF has Langlands decomposition PF = MF (exp aF )NF . MF and MF =
MF (exp aF ) are closed subgroups ofG, which belong to the Harish–Chandra
class and are θ-stable. KF = K∩MF = K∩MF is a joint maximal compact
subgroup. With the obvious notation, aF and a are Cartan subspaces for
mF and mF = mF ⊕ aF respectively, ΣF is the corresponding root system,
and its Weyl group WF is the stabilizer in W of any element H ∈ (aF )+.

We conclude this subsection with some less standard results about the
geometry of a.

Lemma 2.1.6. (i) |〈α,H〉| ≤ |H| ∀α ∈ Σ, ∀H ∈ a.
(ii) There exists a positive constant c1 such that

|H| ≤ c1 max
α∈F
|〈α,H〉| ∀H ∈ aF and ∀F ⊂ Σ+++ .

Proof. (i) Decompose H = HΣ+++ +HΣ+++
. Then

|H|2 ≥ |HΣ+++ |2 = tr(ad2
gHΣ+++) = 2

∑
α∈Σ+

mα〈α,HΣ+++〉2

= 2
∑
α∈Σ+

mα〈α,H〉2 ≥ 2〈α,H〉2 .

(ii) Since F is a basis of aF , H 7→ maxα∈F |〈α,H〉| is a norm on aF .
Hence there exists a positive constant CF such that

max
α∈F
|〈α,H〉| ≤ CF |H| ∀H ∈ aF .

We obtain (ii) by taking for c1 the maximum of all constants CF .
Assume temporarily that X has no split component (i.e. Σ generates a)

and consider the cones
a+(F, δ, ε) =

{
H ∈ a+ | 〈α,H〉 ≤ δ|H| ∀α ∈ F

and 〈α,H〉 ≥ ε|H| ∀α ∈ Σ+++ r F
}
,

where F is a subset of Σ+++ and 0 < δ ≤ ε < +∞.

Lemma 2.1.7. (i) |HF | ≤ c1δ|H| if H ∈ a+(F, δ, ε).
(ii) a+ can be covered with 2` − 1 subcones a+(F, δF , εF ), where F

ranges through the proper subsets of Σ+++ and δF , δF /εF are arbitrarily
small.
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Proof. The statement (i) follows from Lemma 2.1.6.ii and the definition of
a+(F, δ, ε):

|HF | ≤ c1 max
α∈F
|〈α,HF 〉| = c1 max

α∈F
|〈α,H〉| ≤ c1δ|H| .

(ii) Observe first that one can restrict by homogeneity to the unit-
sphere S(a) = {H ∈ a | |H| = 1}. For ε > 0 small enough, the ` hy-
perplanes 〈α,H〉 = ε (α ∈ Σ+++) divide the (spherical) domain S(a+) =
{H ∈ a+ | |H| = 1} into 2` − 1 (spherical) subdomains, defined by the
conditions {

〈α,H〉 ≤ ε ∀α ∈ F
〈α,H〉 ≥ ε ∀α ∈ Σ+++ r F

and indexed by the proper subsets F of Σ+++. Given such an ε and
0 < γ < 1, set δF = γ `−|F |ε and εF = γ`−|F |−1ε. Then δF /εF = γ
and one shows by (backward) induction on k = ` − 1, ` − 2, . . . , 1, 0 that⋃
k≤|F |<` S(a+)(F, δF , εF ) (obvious notation) contains{

H ∈ S(a+) | 〈α,H〉 ≤ γ `−kε for at least k simple roots α
}
.

For k = 0 this amounts to
⋃
F&Σ+++ a+(F, δF , εF ) = a+.

2.2 Spherical analysis. The role played by exponentials in Euclidean
Fourier analysis is played by the (elementary) spherical functions in the
Fourier analysis of bi-K-invariant functions on G. Recall Harish–Chandra’s
integral formula

ϕλ(x) =
∫
K
dk e〈iλ−%,H(xk)〉 (2.2.1)

for these functions and the definition of the spherical Fourier transform

Hf(λ) =
∫
G
dx f(x)ϕ−λ(x) .

Among its mapping properties we shall use the following result.

Theorem 2.2.2 ([GV, Theorem 6.4.1], see also [An4]). (i) H is a (topo-
logical) isomorphism between the Schwartz spaces S(G)\ and S(a)W .

(ii) Moreover we have the inversion formula

f(x) =
c2
|W |

∫
a

dλ

|c(λ)|2Hf(λ)ϕλ(x)

with c2 = 2m/(2π)`|K/M |.
This statement requires some explanations. The (L2) Schwartz space

S(G) consists of all functions f ∈ C∞(G) satisfying

sup
k1∈K,H∈a+ ,k2∈K

(
1 + |H|

)N
e〈%,H〉

∣∣f(D1 : k1(expH)k2 : D2)
∣∣ < +∞
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for every D1,D2 ∈ U(g) and N ≥ 0, where f(D1 : x : D2) denotes left and
right differentiation of f at x ∈ G with respect to the elements D1 and
D2 in the universal enveloping algebra U(g). The superscript \ denotes the
subspace of bi-K-invariant functions. Similarly S(a)W is the subspace of
W -invariants in the classical Schwartz space on a.

c(λ) =
I(λ)

I(−i%)
, where I(λ) =

∫
N
dn e−〈iλ+%,(H◦θ)(n)〉 when λ ∈ a− ia+ ,

is the famous c-function of Harish–Chandra, which was determined explic-
itly by Gindikin & Karpelevič. By resuming their computation carefully as
in [DuKoV, pp. 43–50] or in [Mn], one obtains for our choice of invariant
measures

I(λ) =
∏

α∈Σ++

Iα

(
〈α,λ〉
〈α,α〉

)
, (2.2.3)

with Iα(ν) =
(√

2π
|α|

)mα Γ(iν)

Γ
(
iν+ 1

2mα
) × (√2π

2|α|

)m2α Γ
(
i
2ν+ 1

4mα
)

Γ
(
i
2ν+ 1

4mα+ 1
2m2α

) .
As a consequence

c(λ) =
∏

α∈Σ++

cα

(
〈α,λ〉
〈α,α〉

)
, where

cα(ν) =
Γ
(
〈α,%〉
〈α,α〉+

1
2mα

)
Γ
(
〈α,%〉
〈α,α〉

) Γ
(

1
2
〈α,%〉
〈α,α〉+

1
4mα+ 1

2m2α

)
Γ
(

1
2
〈α,%〉
〈α,α〉+

1
4mα

) Γ(iν)
Γ(iν+ 1

2mα)

Γ
(
i
2ν+ 1

4mα
)

Γ
(
i
2ν+ 1

4mα+ 1
2m2α

) .
Formula (2.2.3) is also useful to evaluate

|K/M | = 2m/2I(−i%) . (2.2.4)
We shall often consider the expression

b(λ) = π(iλ)c(λ) =
∏

α∈Σ++

bα

(
〈α,λ〉
〈α,α〉

)
,

where π(iλ) =
∏
α∈Σ++〈α, λ〉 and

bα(ν) = |α|2iνcα(ν)

= |α|2
Γ
(
〈α,%〉
〈α,α〉+

1
2mα

)
Γ
(
〈α,%〉
〈α,α〉

) Γ
(

1
2
〈α,%〉
〈α,α〉+

1
4mα+ 1

2m2α

)
Γ
(

1
2
〈α,%〉
〈α,α〉+

1
4mα

) Γ(iν+1)
Γ(iν+ 1

2mα)
Γ( i2ν+ 1

4mα)
Γ( i2ν+ 1

4mα+ 1
2m2α)

.

Notice that bα(−iν)±1 is a holomorphic function for Im ν > −1/2, with
Γ(iν+1)

Γ(iν+ 1
2mα)

Γ( i2ν+ 1
4mα)

Γ( i2ν+ 1
4mα+ 1

2m2α)
∼ 2

m2α
2 ν1−mα2 −

m2α
2 as |ν| → +∞ .

(The symbol ∼means precisely that Γ(iν+1)
Γ(iν+ 1

2mα)
Γ( i2ν+ 1

4mα)
Γ( i2ν+ 1

4mα+ 1
2m2α)

ν
mα
2 +m2α

2 −1

→ 2
m2α

2 as |ν| → +∞.) Hence b(−λ)±1 is a holomorphic function for
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λ ∈ a + ia+ (actually in a neighborhood of a + ia+ defined by ω(Imλ) =
minα∈Σ+++〈α, Imλ〉 > −η for some small η > 0), which has the following
behavior:

|b(−λ)|±1 �
∏

α∈Σ++

(
1 + |〈α, λ〉|

)±1∓mα+m2α/2, (2.2.5)

and whose derivatives can be estimated as follows, using Cauchy’s formula:
p
(
∂
∂λ

)
b(−λ)±1 = O

(
|b(−λ)|±1) . (2.2.6)

For an effective use of the inversion formula (2.2.2.ii), one needs precise
information about spherical functions. Their behavior away from the walls
is well described by the following converging expansion of Harish–Chandra
(& Gangolli).

Theorem 2.2.7. We have a converging expansion
ϕλ(expH) = e−〈%,H〉

∑
q∈2Q

e−〈q,H〉
∑
w∈W

c(w.λ)γq(w.λ)ei〈w.λ,H〉

for all λ ∈ a regular and H ∈ a+. Here,
(i) Q =

∑
α∈Σ+++ Nα is the positive root lattice,

(ii) the leading coefficient γ0 is equal to 1,
(iii) the other coefficients γq(λ) are rational functions in λ ∈ aC, which

have no poles for λ ∈ a + ia+ (actually in a neighborhood of a + ia+

defined by ω(Imλ) > −η for some small η > 0) and satisfy there

|γq(λ)| ≤ C
(
1 + |q|

)d
,

for some nonnegative constants C and d (independent of q ∈ Q and
λ ∈ a + ia+).

Moreover,
(iv) all derivatives of ϕλ(expH) in H have corresponding expansions

p
(
∂
∂H

)
ϕλ(expH)

= e−〈%,H〉
∑
q∈2Q

e−〈q,H〉
∑
w∈W

c(w.λ)γq(w.λ)p(iw.λ− %− q)ei〈w.λ,H〉.

Theorem 2.2.7 is proved for instance in [GV, Ch. 4] or [He2, Ch. IV]. The
crucial point is the estimate in (iii), which is due to Gangolli and which
provides quite a good control of convergence.

As far as the behavior of spherical functions along faces is concerned,
the best information available is provided by the asymptotic expansion of
Trombi & Varadarajan. Before stating this result, let us introduce the
height in Q:

κ(q) =
∑

α∈Σ+++

qα if q =
∑

α∈Σ+++

qαα .
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Moreover, given a subset F in Σ+++, let us decompose
Q = QF +QF and

c(λ) = cF (λ)cF (λ) , π(λ) = πF (λ)πF (λ) , b(λ) = bF (λ)bF (λ) ,
where QF =

∑
α∈F Nα [resp. QF =

∑
α∈Σ+++rF Nα], and cF (λ) [resp.

cF (λ)], πF (λ) [resp. πF (λ)], bF (λ) [resp. bF (λ)] denote the products over
α ∈ Σ++

F [resp. over α ∈ Σ++ r Σ++
F ] of cα(〈α, λ〉/〈α,α〉), 〈α, λ〉,

bα(〈α, λ〉/〈α,α〉). Finally let
ωF (H) = min

α∈Σ+++rF
〈α,H〉 ∀H ∈ a .

Theorem 2.2.8. Let F be a nontrivial subset of Σ+++. Then we have an
asymptotic expansion

ϕλ(expH) ∼ e−〈%F ,H〉
∑
q∈2QF

∑
w∈WF \W

cF (w.λ)ϕFw.λ,q(expH)

for all λ ∈ a regular and H ∈ a+ with ωF (H) > 0. Specifically:

(i) ϕFλ,0(y expH) = ϕFλF (y)ei〈λ
F ,H〉 is the spherical function of index λ on

MF = MF exp aF .
(ii) The other terms ϕFλ,q(x) are bi-KF -invariant C∞ functions in the

variable x ∈ MF and WF -invariant holomorphic functions in the
variable λ ∈ a + i(aF )+ (actually λ can be taken in a neighborhood
of a + i(aF )+ defined by | ImλF | < η and ωF (ImλF ) > −η for some
small η > 0), which satisfy
ϕFλ,q(x) = ϕFλ,q(y)e〈iλ−q,H〉 ∀x = y expH ∈MF = MF exp aF .

(iii) For every q ∈ QF and D ∈ U(mF ), there exist a constant d ≥ 0 and,
for every η > 0, another constant C ≥ 0 such that∣∣ϕFλ,q(expH : D)

∣∣ ≤ Ceη|HF |(1 + |λ|
)d
e−〈Imλ+%F+q,H〉

for all λ ∈ a + i(aF )+ and H ∈ a+.
(iv) For every integer N > 0 and every D ∈ U(mF ), there exist a constant

d ≥ 0 and, for every η > 0, another constant C ≥ 0 such that∣∣∣ϕλ( expH:D)−e−〈%F ,H〉
∑
q∈2QF
κ(q)<N

∑
w∈WF \W

cF (w.λ)ϕFw.λ,q(expH:e%
F ◦D◦e−%F )

∣∣∣
≤ C

(
1 + |λ|

)d(1 + |H|
)d
e−〈%,H〉−Nω

F (H)

for all λ ∈ a regular and H ∈ a+ with ωF (H) > η.
Remark 2.2.9. (i) This result refines Harish–Chandra’s constant term
theory (see for instance [GV, Ch. 5]) by expanding spherical functions along
a face beyond the leading term.
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(ii) Here is the relation between the expansions in Theorem 2.2.7 and
in Theorem 2.2.8:
ϕFλ,q(expH) = e−〈%F ,H〉

∑
q′∈2QF

e−〈q+q
′,H〉

∑
w∈WF

cF (w.λ)γq+q′(w.λ)ei〈w.λ,H〉

for all λ ∈ a (ΣF -)regular and H ∈ a+.
(iii) Expansions along faces actually converge [CMi], like expansions

away from the walls. But we miss a control comparable to the Gangolli
estimates in Theorem 2.2.7.iii.

Theorem 2.2.8 is essentially a restatement adapted to our needs of the
main results in [TrV], which are reproduced in [GV, Ch. 7]. Let us elaborate
on (ii) and (iii).

Consider the algebra AF of functions on MF , which is generated by 1
and by the matrix entries of aF (x) = AdnF {x−1θ(x)}, and which is graded
by AF =

⊕
q∈QF AFq , where AFq = {f ∈ AF | f(x expH) = f(x)e−〈q,H〉,

∀x ∈ MF ,∀H ∈ aF }. We know from [loc. cit.] that Pq(λ)ϕFλ,q belongs to
{AFq ⊗U(mF )}KFϕFλ , where Pq is a WF -invariant polynomial and U(mF )
acts on ϕFλ by differentiation on the right. Hence Pq(λ)ϕFλ,q(x) is a WF -
invariant holomorphic function in λ ∈ aC and a bi-KF -invariant C∞ func-
tion in x ∈MF , which has the required homogeneity
Pq(λ)ϕFλ,q(x expH) = Pq(λ)ϕFλ,q(x)e〈iλ−q,H〉 ∀x ∈MF , ∀H ∈ a

F ,

and which can be estimated by∣∣Pq(λ)ϕFλ,q(expH)
∣∣ ≤ Cq(1 + |λ|

)dq(1 + |HF |
)d
e| ImλF ||HF |−〈ImλF+%F+q,H〉

(2.2.10)
for H ∈ a+ (Cq, dq and d are nonnegative constants, the first two depending
on q). Moreover similar estimates hold for all derivatives Pq(λ)ϕFλ,q(expH:D)
with respect to D ∈ U(mF ), since U(mF ) preserves AFq . Thus the main
problem consists of getting rid of the factor Pq(λ). Since Pq(λ) is a product
of (non necessarily distinct) factors f(λ) = 〈µ, λ〉+iν, with µ ∈ ar{0} and
ν ∈ Rr {0}, this will be achieved by repeated application of the following
elementary lemma.

Lemma 2.2.11. Let U be an open subset in R`, T (U) = U + iR` the open
tube over U in C`, Ξ a C∞ manifold, F = F (z; ξ) a holomorphic function
in z ∈ T (U) depending smoothly on ξ ∈ Ξ, and f(z) = 〈µ, z〉+ ν an affine
function on C` with µ ∈ R` r {0}.

(i) Assume that F (z; ξ) vanishes whenever f(z) does (in T (U)). Then
G(z; ξ) = F (z; ξ)/f(z) is a holomorphic function in z ∈ T (U) depend-
ing smoothly on ξ ∈ Ξ.
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(ii) Moreover, for any η > 0, there exists a nonnegative constant C such
that

|G(z; ξ)| ≤ C sup
|ζ−z|≤η

|F (ζ; ξ)|

for all z ∈ T (U) at distance> η from C` r T (U) and for all ξ ∈ Ξ.

Proof of Lemma 2.2.11. One can reduce to the case f(z) = z1.

(i) Let ζ ∈ T (U). If ζ1 6= 0, then G(z; ξ) = F (z; ξ)/z1 defines obviously
a holomorphic function in z, for z close to ζ, which depends smoothly
in ξ. If ζ1 = 0, we have

F (z; ξ) = F (0, z2, . . . , z`; ξ) +
∫ 1

0
dt
∂

∂t
F (tz1, z2, . . . , z`; ξ)

= z1

∫ 1

0
dt(∂1F )(tz1, z2, . . . , z`; ξ) ,

for z close to ζ, hence also in this case

G(z; ξ) =
F (z; ξ)
z1

=
∫ 1

0
dt(∂1F )(tz1, z2, . . . , z`; ξ)

is holomorphic in z and C∞ in ξ.
(ii) Let z ∈ T (U). If |z1| ≥ η

3 , then |G(z; ξ)| ≤ 3
η |F (z; ξ)|. Otherwise

G(z; ξ) =
1

2πi

∫
|ζ1|=2η/3

dζ1

∫ 1

0
dt
F (ζ1, z2, . . . , z`; ξ)

(ζ1 − tz1)2

by Cauchy’s formula, hence |G(z; ξ)| ≤ 3
η sup|ζ−z|≤η |F (ζ; ξ)|.

This concludes the proof of Lemma 2.2.11.
Let us now complete the proof of (ii) and (iii) in Theorem 2.2.8 . Re-

strict temporarily to H ∈ a+. We know (see Remark 2.2.9) that λ 7→
πF (λ)ϕFλ,q(expH) is a holomorphic function in a tubular neighborhood
Tη = {λ ∈ aC | | ImλF | < η and ωF (ImλF ) > −η} of a + i(aF )+

in aC. Since πF (λ) and Pq(λ) have no common factors, we deduce that
Pq(λ)ϕFλ,q(expH) vanishes in Tη whenever Pq(λ) does. By combining this
observation with Lemma 2.2.11.i, we can eliminate successively all factors in
Pq(λ) and obtain as a first conclusion that ϕFλ,q(x) is holomorphic in λ ∈ Tη
and C∞ in x ∈ exp a+. This result extends to x ∈ KF exp{(aF )+ + aF }KF

by bi-KF -invariance and (exp aF )-homogeneity. Further extension to
x ∈ MF is achieved by density and by reapplying Lemma 2.2.11.i to
Pq(λ)ϕFλ,q(x). Finally the estimate (iii) in Theorem 2.2.8 is obtained by

applying Lemma 2.2.11.ii to the expression Pq(λ)ϕFλ,q(expH : D)e−i〈λ
F ,H〉

and using (2.2.10) for derivatives of ϕFλ,q.



1046 J.-P. ANKER AND L. JI GAFA

Finally let us recall the particular behavior of the basic spherical func-
tion ϕ0.

Proposition 2.2.12. (i) Global estimate:

ϕ0(expH) �
{ ∏
α∈Σ++

(
1 + 〈α,H〉

)}
e−〈%,H〉 ∀H∈a+ .

(The symbol �, let us recall, means precisely that there exist two constants
0 < C1 ≤ C2 < +∞ such that C1≤ ϕ0(expH){∏

α∈Σ++(1+〈α,H〉)
}
e−〈%,H〉

≤C2 ∀H ∈ a+).

(ii) Asymptotics:

ϕ0(expH) ∼ cF3 πF (H)ϕF0 (expH)e−〈%
F ,H〉

when


H ∈ a+ ,

〈α,H〉 = o(ωF (H)) ∀α ∈ F ,
ωF (H) = minα∈Σ+++rF 〈α,H〉 → +∞ .

(The symbol ∼, let us recall, means precisely that ϕ0(expH)
πF (H)ϕF0 (expH)e−〈%F ,H〉

→
cF3 under the indicated assumptions.) Here F is a proper subset of Σ+++

(possibly empty) and cF3 = πF (%̃)−1bF (0) a positive constant, with %̃ =
1
2
∑

α∈Σ++ α.

Remark 2.2.13. (i) Recall that ϕ0 controls all spherical functions ϕλ
with parameter λ ∈ a. More precisely, for every D ∈ U(g),

ϕλ(x : D) = O
(
(1 + |λ|)degDϕ0(x)

)
∀λ ∈ a, ∀x ∈ G .

This follows easily from (2.2.1) (see for instance [GV, Proposition 4.6.2]).
(ii) We can disregard Euclidean factors in X = G/K, which do not

contribute to ϕ0, and will do so in the rest of this subsection.
(iii) The asymptotics in Proposition 2.2.12.ii hold in particular when

H ∈ a+ tends to infinity in either of the following ways, which are most
often considered:{

〈α,H〉 remains bounded ∀α ∈ F ,
〈α,H〉 → +∞ ∀α ∈ Σ+++ r F ,

(a){
〈α,H〉 = o(|H|) ∀α ∈ F ,
〈α,H〉 � |H| ∀α ∈ Σ+++ r F .

(b)

These particular asymptotics, for the various functions ϕF0 , are actually
equivalent to the general asymptotics stated in Proposition 2.2.12.ii . Let
us for instance deduce the general case from the particular case (a). In the
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proof of Proposition 2.2.12.ii, we shall do the same with (b). Assume that,
for all subsets F1 ⊂ F2 in Σ+++,

ϕF2
0 (expH) ∼

{ ∏
α∈Σ++

F2
rΣ++

F1

〈α, %̃〉−1bα(0)〈α,H〉
}
ϕF1

0 (expH)e−〈%F2−%F1 ,H〉

when


H ∈ a

+
F2
,

〈α,H〉 remains bounded ∀α ∈ F1 ,

〈α,H〉 → +∞ , ∀α ∈ F2 r F1 ,

but that the asymptotics in Proposition 2.2.12.ii fail to hold. Thus there
exists a proper subset F2 of Σ+++ and a sequence Hj ∈ a+ such that

ωF2(Hj)→ +∞ ,

〈α,Hj〉 = o
(
ωF2(Hj)

)
, ∀α ∈ F2 ,

infj
∣∣∣ ϕ0(expHj)

πF2(Hj)ϕ
F2
0 (expHj)e

−〈%F2 ,Hj〉
− πF2(%̃)−1bF2(0)

∣∣∣ > 0 .

By passing to a subsequence, we can assume that{
supj〈α,Hj〉 < +∞ , ∀α ∈ F2 ,

〈α,Hj〉 → +∞ , ∀α ∈ F2 r F1 (actually ∀α ∈ Σ+++ r F1) ,
for a subset F1 of F2. According to our assumptions,

π(Hj)−1e〈%,Hj〉ϕ0(expHj)
πF2(Hj)−1e〈%F2 ,Hj〉ϕF2

0 (expHj)
−→ π(%̃)−1b(0)

πF2(%̃)−1bF2(0)
.

Hence a contradiction.
(iv) (See also Remark 5.2.2.iii.) The correct asymptotics

ϕ0(expH) ∼ cFπF (H)ϕF0 (expH)e−〈%
F ,H〉

were announced in [Ol2] under the assumptions{
H ∈ a+ tends to infinity, i.e. |H| → +∞,
the aF -component HF tends to a vector in (aF )+.

But the analysis along faces relied on a misuse of Harish–Chandra’s ex-
pansion (recalled in Theorem 2.2.7), as came out in the preprint version of
[Ol3]. The final version contains the weaker result [Ol3, Proposition 2.6],
where asymptotics of ϕ0(expH) are stated with a nonexplicit polynomial
factor and under the additional assumptions{

limHF 6= 0 ,
H
|H| i.e. HF

|HF | tends to a unit vector in (aF )+.

But the proof requires actually more, namely H ∈ a+ and limHF ∈ (aF )+.
Besides, notice that error terms, involving derivatives of f , are missing in
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[Ol3, Lemma 2.5]. Thus the gap in Olshanetsky’s results about ϕ0(expH)
consists essentially in tangential asymptotics along faces.

Proof of Proposition 2.2.12. The global estimate (i) was established in
[An1], essentially as a consequence of the Harish–Chandra converging ex-
pansion away from the walls (Theorem 2.2.7). The same expansion yields
the asymptotics (ii) away from the walls, i.e. when F = ∅. We refer to
the proof of [GV, Theorem 4.6.6] for details. In addition we use the iden-
tity ∂(π)π = |W |π(%̃), which is obtained by applying π(∂/∂H)|H=0 to the
Weyl denominator formula∏

α∈Σ++

2 sinh 〈α,H〉2 =
∑
w∈W

(detw)e〈w.%̃,H〉 (2.2.14)

(see for instance [He2, Proposition I.5.15]).
Let us turn to the asymptotics (ii) along a face, i.e. relatively to a non-

trivial subset F of Σ+++ and let us first consider the special assumptions
(2.2.13.iii.b). In this case we use the Trombi–Varadarajan asymptotic ex-
pansion along faces (Theorem 2.2.8), or the simpler Harish–Chandra con-
stant term theory (see for instance [GV, Ch. 5]), and more precisely the
resulting asymptotics [GV, Theorem 5.9.5]

ϕ0(expH) = e−〈%
F ,H〉pF

(
−i ∂∂λ

)∣∣
λ=0ϕ

F
λ (expH)

+ O
(
(1 + |H|)de−〈%,H〉−2ωF (H)) , (2.2.15)

which holds for H ∈ a+ with ωF (H) bounded below. Here pF is a polyno-
mial on a, which is W -harmonic and WF -invariant, and which is uniquely
determined by (2.2.15). Recall that p∅ = c∅3π+ derivatives of π (see the
proof of [GV, Theorem 4.6.6]). We need a similar information about the
other polynomials pF . First of all, the space HW (a)WF of W -harmonic
WF -invariant polynomials on a can be described as follows:

HW (a)WF = ∂
(
P(a)WF

)
∂(πF )π = ∂

(
HW (a)WF

)
∂(πF )π .

This is easily deduced from the case F = ∅, which is well-known (see for
instance [He2, Theorem III.3.6.i]). Thus ∂(πF )π has maximal degree in
HW (a)WF and all other elements are derivatives thereof. In particular

pF = cF∂(πF )π + ∂(qF )∂(πF )π = cF {∂(πF )πF }πF + . . . ,

where cF is a constant, qF is a WF -invariant polynomial on a with no
constant term, ∂(πF )πF = |WF |πF (%̃F ) = |WF |πF (%̃) is a positive constant,
and the dots stand for a sum of terms obtained by suppressing some α in
the product πF =

∏
α∈Σ++rΣ++

F
α or by replacing them by some other
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α ∈ Σ++
F . Next, let us consider the expression

pF
(
−i ∂∂λ

)∣∣
λ=0ϕ

F
λ (expH) =

∫
KF

dk pF
(
H{(expHF )k}+HF

)
e−〈%F ,H{(expHF )k}〉,

which is a consequence of Harish–Chandra’s integral formula (2.2.1) for ϕFλ .
By expanding pF (H((expHF )k) +HF ) and estimating∣∣H{(expHF )k}

∣∣ ≤ |HF | � max
α∈F
〈α,H〉 = o(|H|) ,

we obtain
pF
(
−i ∂∂λ

)∣∣
λ=0ϕ

F
λ (x) = cF |WF |πF (%̃)πF (HF )ϕF0 (expH)

+ o
(
|H||Σ++|−|Σ++

F |ϕF0 (expH)
)
,

hence
ϕ0(expH) = cF |WF |πF (%̃)πF (H)ϕF0 (expH)e−〈%

F ,H〉

+ o
(
|H||Σ++|−|Σ++

F |ϕF0 (expH)e−〈%
F ,H〉)

∼ cF |WF |πF (%̃)πF (H)ϕF0 (expH)e−〈%
F ,H〉 . (2.2.16)

Finally the constant cF = |WF |−1π(%̃)−1bF (0) is determined by considering
a particular sequence Hj going to infinity in a+ with{

〈α,Hj〉 � |Hj |1/2 , ∀α ∈ F
〈α,Hj〉 � |Hj | , ∀α ∈ Σ+++ r F

and by comparing (2.2.16) with the asymptotics away from the walls of
both ϕ0(expHj) and ϕF0 (expHj). Now that we have established the desired
asymptotics in the special case (2.2.13.iii.b), let us extend our result to the
general case. Arguing by contradiction, assume that there exist a subset
F0 ( Σ+++ and a sequence H(0)

j ∈ a+ such that
ωF0(H(0)

j )→ +∞ ,

〈α,H(0)
j 〉 = o

(
ωF0(H(0)

j )
)
, ∀α ∈ F0 ,

infj

∣∣∣∣ ϕ0(expH(0)
j )

πF0(H(0)
j )ϕF0

0 (expH(0)
j )e

−〈%F0 ,H(0)
j
〉
− πF0(%̃)−1bF0(0)

∣∣∣∣ > 0 .

By passing to a subsequence, we can assume that H(0)
j /|H(0)

j | tends to a

unit vector H(0)
∞ ∈ a+. Then F1 = {α ∈ Σ+++ | 〈α,H(0)

∞ 〉 = 0} is a proper
subset of Σ+++ containing F0 and

ϕ0(expH(0)
j ) ∼ πF1(%̃)−1bF1(0)πF1(H(0)

j )ϕF1
0 (expH(0)

j )e−〈%
F1 ,H

(0)
j 〉,

since {
〈α,H(0)

j 〉 = o(|H(0)
j |) ∀α ∈ F1 ,

〈α,H(0)
j 〉 � |H

(0)
j | ∀α ∈ Σ+++ r F1 .
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If F1 = F0, we have a contradiction. Otherwise F1 ) F0 and in this case
H

(1)
j = (Hj)F1 is a sequence in a

+
F1

verifying

minα∈F1rF0〈α,H
(1)
j 〉 → +∞ ,

maxα∈F0〈α,H
(1)
j 〉 = o

(
minα∈F1rF0〈α,H

(1)
j 〉
)
,

lim inf
j→+∞

∣∣∣∣ ϕ
F1
0 (expH(1)

j ){∏
α∈Σ++

F1
rΣ++

F0
〈α,H(1)

j 〉
}
ϕ
F0
0 (expH(1)

j )e
−〈%F1

−%F0
,H

(1)
j
〉

−
∏
α∈Σ++

F1
rΣ++

F0
〈α, %̃〉−1bα(0)

∣∣∣∣ > 0 ,

i.e. violating Proposition 2.2.12.ii for ϕF1
0 . Repeating the same reasoning,

we end up with a contradiction, after a finite number of steps. This con-
cludes the proof of Proposition 2.2.12.

3 Heat Kernel Bounds

During the last decades heat kernels have become a theme of extensive
research in differential geometry, global analysis and probability. Among
the vast literature we shall cite [Ch], [Da], [Gr], [R], [Va], [VaSCou] (and
the bibliographies therein) as general references for the (scalar) heat kernel
on Riemannian manifolds or Lie groups, and [An2,5], [CowGM1], [Lu] for
the particular case of noncompact symmetric spaces.

It is well known that the heat kernel on X = G/K is given by

ht(x) =
c2
|W |

∫
a

dλ

|c(λ)|2 e
−t(|λ|2+|%|2)ϕλ(x) (3.1)

(see for instance the pioneer work [G]). In [An2] the first author conjectured
the global upper estimate

ht(expH) ≤ Ct−n/2
{ ∏
α∈Σ++

(
1 + 〈α,H〉

)(
1 + t+ 〈α,H〉

)mα+m2α
2 −1

}
· e−|%|2t−〈%,H〉−

|H|2
4t (3.2)

for t > 0 and H ∈ a+. This guess was based on some particular cases
where specific expressions were available for the heat kernel, namely when
G is complex, when rankX = 1, or when G = SU(p, q). Around the same
time the global behavior of the heat kernel on real hyperbolic spaces was
determined in [DaM]:

ht(r) � t−
n
2 (1 + r)(1 + t+ r)

n−3
2 e−(n−1

2 )2t−n−1
2 r− r24t

for an appropriate normalization of the Riemannian structure, where r de-
notes the geodesic distance to the origin. Thus the right hand side in (3.2)
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proved to be not only an upper bound but also a lower bound in this case.
This result was extended later on to all hyperbolic spaces [GiMau], to the
larger class of Damek–Ricci harmonic spaces [AnDY], and actually to a
much wider family of radial Laplacians in [LorRo]. Let us turn to the
higher rank case. In [An5] the first author obtained global upper bounds
of the form

t−d1
(
1 + |H|

)d2e−|%|
2t−〈%,H〉− |H|

2

4t , (3.3)
where d1 and d2 are positive constants depending on the position of H ∈ a+

with respect to the walls and on the relative size of t > 0 and 1 + |H|.
Although quite general and rather precise, this result was clearly not op-
timal. On the contrary (3.2) was established by specific computations for
G = SL(n,R), SL(n,H) and “SL(3,O)” in a series of papers by P. Sawyer
([Sa1-4]); moreover the right-hand side of (3.2) was shown in [Sa1] to be
also a lower bound in the particular case G = SL(3,R). All these results
has lead us to update (3.2) as follows.

Conjecture 3.4.

ht(expH) � t−n2
{∏
α∈Σ++

(
1+〈α,H〉

)(
1+t+〈α,H〉

)mα+m2α
2 −1

}
e−|%|

2t−〈%,H〉− |H|
2

4t

for all t > 0 and H ∈ a+.

Remark 3.5. Let us make some comments about the various factors
in this conjectural estimate. The whole expression reduces as expected to
t−n/2e−|H|

2/4t in the Euclidean case or for small t and H in the general
case. The exponential decay e−|%|

2t in t is connected with the bottom of
the L2 spectrum [|%|2,+∞) of −∆, while the exponential decay e−〈%,H〉 in
H is related both to the exponential growth of the volume (see (2.1.5))
and to the temperedness of the spherical functions ϕλ entering (3.1) (see
Remark 2.2.13.i). Eventually the expression between braces is related to
the behavior of the c-function. More precisely, after dividing by tm/2,∏
α∈Σ++

1+〈α,H〉
t

(
1+1+〈α,H〉

t

)mα+m2α
2 −1

� c
(
−iH1+H

κ1t

)−1
�
∣∣∣c(−H2+iH

κ2t

)∣∣∣−1
,

where H1 (resp. H2) is any fixed element in a+ (resp. any fixed regular
element in a + ia+) and κ1, κ2 are any fixed positive constants.

Beside the heat kernel itself, we have also a conjectural estimate for its
derivatives.

Conjecture 3.6. Let D ∈ U(g). Then
ht(x : D) = O

(
t−degD(

√
t+ t+ |x|)degDht(x)

)
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for all t > 0 and x ∈ G.

We shall establish these conjectures for general noncompact symmetric
spaces but under some restrictions on the time and space variables, which
prove fortunately to be unessential in all applications (see section 4).

Theorem 3.7. (i) Estimates away from the walls: Conjectures 3.4 and
3.6 hold when ω(H) = minα∈Σ+(++)〈α,H〉 is large. This means precisely
that there exist positive constants κ,C1, C2 and C3 (the last one depending
on D) such that

C1 ≤
ht(expH)

t−
n
2
{∏

α∈Σ++〈α,H〉(t+ 〈α,H〉)
mα+m2α

2 −1}e−|%|2t−〈%,H〉− |H|24t

≤ C2

and∣∣ht(expH : D)
∣∣ ≤ C3t

−n2−degD
{ ∏
α∈Σ++

〈α,H〉
(
t+ 〈α,H〉

)mα+m2α
2 −1

}
×
(
t+ |H|

)degD
e−|%|

2t−〈%,H〉− |H|
2

4t

for all t > 0 and H ∈ a with ω(H) ≥ κ.
(ii) Global estimates: Conjectures 3.4 and 3.6 hold when |H| ≤ κ(1+t),

κ being an arbitrary positive constant. This means precisely that there exist
positive constants C1, C2 and C3 (depending on κ and also on D for C3)
such that

C1 ≤
ht(expH)

t−
n
2 (1 + t)

m
2 −|Σ++|{∏

α∈Σ++(1 + 〈α,H〉)
}
e−|%|

2t−〈%,H〉− |H|24t

≤ C2

and∣∣ht(expH : D)
∣∣ ≤ C3t

−n2−degD(1 + t)
m
2 −|Σ

++|
{ ∏
α∈Σ++

(
1 + 〈α,H〉

)}
×
(√
t+ t+ |H|

)degD
e−|%|

2t−〈%,H〉− |H|
2

4t

for all t > 0 and H ∈ a+ with |H| ≤ κ(1 + t).

Remark 3.8. Thus Conjectures 3.4 and 3.6 remain to be proved for
H ∈ a+ tending to infinity while staying at bounded distance to the walls
and for t� |H|. Actually we shall obtain the upper estimate for all t > 0
as long as H does not tend to a wall. And we have anyway the upper bound
(3.3) in the remaining cases.

The rest of this section will be devoted to the proof of Theorem 3.7,
that we outline for the reader’s convenience. Using classical results, we
reduce in Step 0 to the semisimple setting and to t+ |H| large. After these
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preliminaries, we restate in Proposition 3.9 the upper estimates for the
range t ≥ const.(1 + |H|), in a suitable form with regard to induction over
the semisimple rank. Then we establish our estimates in eight successive
steps, the upper ones in Steps 1–4 and the lower one in Steps 5–8. In both
cases, we consider separately the ranges where

• t ≥ const.(1 + |H|2),
• t > 0 and H stays away from the walls, i.e. ω(H) ≥ const.,
• const.

√
t ≤ |H| ≤ const. t and H is close to a face, i.e.H ∈ a+(F, δ, ε).

The lower estimate is more delicate than the upper ones and, in both cases,
the main difficulty lies in the analysis along faces, which is performed in
Steps 4, 7 and 8.

Step 0: Preliminary reductions. (a) By specializing to X = G/K general
heat kernel asymptotics (see for instance [K]), we obtain all desirable infor-
mation about ht(x) for t small and |x| bounded and can in particular check
Conjectures 3.4 and 3.6 in this case. Since ht(x) is C∞ in t ∈ (0,+∞) and
x ∈ G, and moreover positive, we can actually disregard in Theorem 3.7
any bounded range of t and H.

(b) Let us get rid of a possible split component in X = G/K. If X
decomposes as X = X′×X′′, with X′ of noncompact type and X′′ Euclidean,
then its heat kernel splits accordingly:

ht(expH) = ht(expH ′) ht(expH ′′) (obvious notation) ,
with ht(expH ′′) = (4πt)−n/2e−|H

′′|2/4t, |H|2 = |H ′|2 + |H ′′|2, and 〈α,H〉 =
〈α,H ′〉 for every α ∈ Σ. This decomposition extends to derivatives, since
U(g) = U(g′)⊗U(g′′) (obvious notation) and
ht(expH:D′D′′) = ht(expH ′:D′)ht(expH ′′:D′′) , ∀D′∈U(g′) , D′′∈U(g′′) .
Consequently the estimates for ht(expH : D) in Theorem 3.7 (including
ht(expH) itself) follow from the corresponding estimates for ht(expH ′:D′).

The main difficulties in the proof of Theorem 3.7 lie in the estimates,
especially the lower one, when H tends to infinity along a face in a+. Our
tools in this case will be the Trombi & Varadarajan expansion for spherical
functions (Theorem 2.2.8) and Harish–Chandra’s reduction to lower rank
symmetric spaces. This procedure requires to consider and estimate from
above more general expressions, namely

hΩ;t(x) =
∫

a

dλ

|c(λ)|2 Ω(λ)e−t(|%|
2+|λ|2)ϕλ(x)

and their derivatives, where Ω(λ) are W -invariant functions which are holo-
morphic inside some tube {λ ∈ aC | | Imλ| ≤ κ}, which extend continuously
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to its boundary and which have (at most) polynomial growth. Let us de-
note by Oκ(a)W the space of all such functions Ω, for any fixed κ > 0.
In the limit case κ = 0, O0(a)W consists simply of all W -invariant C∞

functions on a with polynomial growth.

Proposition 3.9. Let D ∈ U(g) and let κ1, κ2, η be positive constants
with η < 1. Then there exists a nonnegative constant C such that∣∣hΩ;t(expH : D)

∣∣ ≤ C{ sup
| Imλ|≤κ′2

|Ω(λ)|e−ηt|Reλ|2
}

× t− `2−|Σ++|
{ ∏
α∈Σ++

(
1 + 〈α,H〉

)}
e−|%|

2t−〈%,H〉− |H|
2

4t

for every Ω ∈ Oκ′2(a)W with 0 ≤ κ′2 ≤ κ2 and for every t ≥ κ1, H ∈ a+

with |H| ≤ 2κ′2t.

We shall establish first the upper bounds in the easy cases, which were
admittedly more or less known.

Step 1: Upper estimates for t ≥ const.(1 + |H|2). Let Ω ∈ O0(a)W ,
D ∈ U(g), κ > 0 and 0 < η < 1. Using 2.2.5, Proposition 2.2.12.i and
Remark 2.2.13.i, we estimate easily, for every H ∈ a+ and t ≥ κ(1 + |H|2),∣∣hΩ;t(expH : D)

∣∣ ≤ C ∫
a

dλ

|c(λ)|2 |Ω(λ)|e−t(|%|2+|λ|2)∣∣ϕλ(expH : D)
∣∣

≤ CAte−|%|
2tϕ0(expH)

×
∫

a

dλπ(λ)2(1 + |λ|
)m+degD

e−(1−η)t|λ|2

≤ CAte−|%|
2t
{ ∏
α∈Σ++

(
1 + 〈α,H〉

)}
e−〈%,H〉

× t− `2−|Σ++|
∫

a

dλπ(λ)2
(

1 +
|λ|√
t

)m+degD

e−(1−η)|λ|2

≤ CAtt−
`
2−|Σ

++|
{ ∏
α∈Σ++

(
1 + 〈α,H〉

)}
e−|%|

2t−〈%,H〉− |H|
2

4t ,

where the dependence on Ω is entirely contained inAt= supλ∈a|Ω(λ)|e−ηt|λ|2.
Notice that the Gaussian factor e−|H|

2/4t is trivial under the present as-
sumption t ≥ κ|H|2.

Step 2: Upper estimates in Theorem 3.7.i . We shall restrict here to
t > 0 and H ∈ a+ with ω(H) ≥ κ (this condition goes slightly beyond
the actual statement of Theorem 3.7.i) where κ is an arbitrary positive
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constant. Let p ∈ P(a) and let us expand the spherical functions in

p

(
∂

∂H

)
ht(expH) =

c2
|W |

∫
a

dλ

|c(λ)|2 e
−t(|%|2+|λ|2)p

(
∂

∂H

)
ϕλ(expH)

according to Theorem 2.2.7. Using the decompositions
|c(λ)|−2 = c(w.λ)−1c(−w.λ)−1 , ∀λ ∈ a , ∀w ∈W

and
c(−λ)−1 = π(−iλ)b(−λ)−1 ,

we obtain
p
(
∂
∂H

)
ht(expH) =

∑
q∈2Q

Eq

where
Eq = c2e

−|%|2t−〈%+q,H〉

×
∫

a

dλπ(−iλ)b(−λ)−1γq(λ)p(iλ− %− q)e−t|λ|2+i〈λ,H〉 . (3.10)

Recall the remarkable and well-known cancellation of the remainder in
π
(
i
2t

∂
∂λ

)
e−t|λ|

2
= π(−iλ)e−t|λ|

2
+ . . . ,

which is due to the fact (see for instance [He2, Corollary III.3.8]) that there
are no nonzero polynomials on a which are skew symmetric under W and
of degree< |Σ++|. Thus (3.10) becomes
Eq = c22−|Σ

++|t−|Σ
++|e−|%|

2t−〈%+q,H〉

×
∑

Σ++=Σ′tΣ′′

∫
a

dλ e−t|λ|
2
{ ∏
α′∈Σ′

〈α′,H〉
}
ei〈λ,H〉

×
{ ∏
α′′∈Σ′′

(−i∂α′′)
}{

b(−λ)−1γq(λ)p(iλ− %− q)
}
,

after integrating by parts, and

Eq = c22−|Σ
++|t−|Σ

++|e−|%|
2t−〈%+q,H〉− |H|

2

4t

×
∑

Σ++=Σ′tΣ′′

{ ∏
α′∈Σ′

〈α′,H〉
}∫

a

dλe−t|λ|
2

×
{ ∏
α′′∈Σ′′

(−i∂α′′)
}{

b
(
− λ− iH2t

)−1
γq
(
λ+ iH2t

)
p
(
iλ− H

2t − %− q
)}
,

after moving the contour of integration, which produces the expected Gaus-
sian factor e−|H|

2/4t. The last three factors can be estimated as follows:(
∂
∂λ

)σb(− λ− iH2t)−1

= O
({ ∏

α∈Σ++

(
1 + 〈α,H〉

t

)mα+m2α
2 −1}(

1 +
√
t|λ|
)m

2
)
,

(3.11)
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∂
∂λ

)σ
γq
(
λ+ iH2t

)−1 = O
(
(1 + |q|)d

)
, (3.12)(

∂
∂λ

)σ
p
(
iλ− H

2t − %− q
)

= O
(
(1 + |q|)deg p

(
1 + |H|

t

)deg p
(1 +

√
t|λ|)deg p) . (3.13)

(3.12) follows from Theorem 2.2.8.iii and Cauchy’s formula. (3.13) is obvi-
ous, except maybe for the elementary estimate

|λ| ≤ C
(
1 + |H|

t

)(
1 +
√
t|λ|
)
.

(3.11) is obtained by combining (2.2.5), (2.2.6) and
〈α,H〉

2t ≤
∣∣〈α, λ+ iH2t

〉∣∣ ≤ |λ|+ 〈α,H〉
2t ≤ C

(
1 + 〈α,H〉

t

) (
1 +
√
t|λ|
)
.

Since ∫
a

dλ e−t|λ|
2(

1 +
√
t|λ|
)m

2 +deg p = O(t−
`
2 ) ,

we get finally

|Eq| ≤ C
(
1+|q|

)d+deg p
t−

`
2
(
1+ |H|t

)deg p
{ ∏
α∈Σ++

〈α,H〉
t

(
1+ 〈α,H〉t

)mα+m2α
2 −1}

× e−|%|2t−〈%+q,H〉−
|H|2

4t

and∣∣p( ∂
∂H

)
ht(expH)

∣∣≤Ct− `2 (1 + |H|
t

)deg p{ ∏
α∈Σ++

〈α,H〉
t

(
1+ 〈α,H〉t

)mα+m2α
2 −1}

× e−|%|2t−〈%,H〉−
|H|2

4t ,

after summing up over q. This estimate extends to all derivatives
ht(expH : D) in a standard way. Recall indeed that, for every D ∈ U(g),
there exist polynomials p1, . . . , pN ∈ P(a) of degree≤ degD and functions
a1, . . . , aN ∈ C∞(a+) which are bounded away from the walls (i.e. when
ω(H) ≥ κ > 0) such that

f(expH : D) =
N∑
j=1

aj(H)pj
(
∂
∂H

)
f(expH) ∀ f ∈ C∞(G)\, ∀H ∈ a

+

(see for instance [GV, pp. 128–129]).
Step 3: Proof of Proposition 3.9 away from the walls . We shall restrict

here to t > 0 and H ∈ a+ with ω(H) ≥ κ1(1 +
√
t) (this condition goes

again slightly beyond our actual needs for Proposition 3.9) and |H| ≤ 2κ′2t.
Let us expand as in Step 2

p
(
∂
∂H

)
hΩ;t(expH) =

∑
q∈2Q

Eq
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with
Eq = c2e

−|%|2t−〈%+q,H〉

×
∫

a

dλπ(−iλ)b(−λ)−1γq(λ)p(iλ− %− q)Ω(λ)e−t|λ|
2+i〈λ,H〉,

but let us now handle these expressions differently in order to avoid differ-
entiating Ω. We move first the contour of integration and estimate next

Eq = c2e
−|%|2t−〈%+q,H〉− |H|

2

4t

×
∫

a

dλπ
(
H
2t − iλ

)
b
(
− λ− iH2t

)−1
γq
(
λ+ iH2t

)
× p
(
iλ− H

2t − %− q
)
Ω
(
λ+ iH2t

)
e−t|λ|

2
,

using (3.10), (3.12), (3.13) (with σ = 0) and
π
(
H
2t − iλ

)
= O

(
π
(
H
t

)
(1 +

√
t|λ|)

)
, (3.14)

which is obtained by expanding

π
(
H
2t − iλ

)
=

∏
α∈Σ++

〈
α, H2t − i

√
tλ√
t

〉
and making use of the assumption 1/

√
t = O(ω(H)/t). As a result

|Eq| ≤ C
(
1 + |q|

)d+deg p
{

sup
| Imλ|≤κ′2

|Ω(λ)|e−ηt|Reλ|2
}

× t− `2
(

1 + |H|
t

)deg p { ∏
α∈Σ++

〈α,H〉
t

(
1 + 〈α,H〉

t

)mα+m2α
2 −1}

× e−|%|2t−〈%+q,H〉−
|H|2

4t

We conclude as in Step 2.
As far as upper bounds are concerned, it remains for us to prove Propo-

sition 3.9 along a face (aF )+, more precisely for H ∈ a+(F, δ, ε) with δ � ε
and const.

√
t ≤ |H| ≤ const. t. This will be achieved by induction on the

semisimple rank. Thus let us assume that Proposition 3.9 holds for all
proper symmetric subspaces with no Euclidean factor in X = G/K.

Step 4: Upper estimates along faces. Let κ1, κ2, η be positive constants
with η < 1 , Ω ∈ Oκ′2(a)W with 0 ≤ κ′2 ≤ κ2 , and D ∈ U(g) . We shall
estimate

hΩ;t(expH : D) =
∫

a

dλ

|c(λ)|2 Ω(λ)e−t(|%|
2+|λ|2)ϕλ(expH : D) (3.15)

for t > 0 and H ∈ a+(F, δ, ε) with κ1
√
t ≤ |H| ≤ 2κ′2t. Here F denotes

any nontrivial subset of Σ+++ and ε/δ can be taken as large as we wish,
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according to Lemma 2.1.7.ii, let say ε/δ ≥ (1 + 2κ2)c1, where c1 is the
constant occurring in Lemmas 2.1.6.ii and 2.1.7.i . Notice that all these
assumptions imply that

t, H and ωF (H) are bounded below , (3.16.1)
HF ∈ (aF )+, (3.16.2)

HF∈(aF )+ , specifically ωF (HF ) ≥ ωF (H) ≥ ε|H| , (3.16.3)
|HF | ≤ c1δ|H| ≤ ε|H| , (3.16.4)

|HF |2
t ≤ |H|t |HF | ≤ 2κ2c1δ|H| ≤ ε|H| . (3.16.5)

Let us restrict first to derivatives D ∈ U(mF ) = U(mF ) ⊗ U(aF ), hence
to D = DF ∂(pF ) with DF ∈ U(mF ) and pF ∈ P(aF ). By expanding the
spherical functions in (3.15) according to Theorem 2.2.8 with N ≥ 1 + κ2

2ε ,
we obtain

hΩ;t
(

expH : DF∂(pF )
)

=
∑
q∈2QF
κ(q)<N

EFq +RFN , (3.17)

where
EFq = c2

|WF |e
−|%|2t−〈%F ,H〉

×
∫

a

dλ|cF (λ)|−2cF (−λ)−1Ω(λ)e−t|λ|
2
pF (iλF −%F −qF )ϕFλ,q(expH : DF )

and RFN denotes the remainder. EF0 is the main term, the most delicate
to estimate, and the only one which does require the induction hypothesis.
After decomposing the integral over a = aF ⊕ aF and moving the contour
of integration, it can be rewritten

EF0 = c2
|WF |e

−|%|2t−〈%F ,H〉− |H
F |2
4t

×
∫

aF

dλF |cF (λF )|−2ΩF ;t,H(λF )e−t|λF |
2
ϕFλF (expHF : DF ) , (3.18)

with

ΩF ;t,H(λF ) =
∫

aF
dλFπF

(
HF

2t − iλF − iλ
F
)
bF
(
− λF − λF − iH

F

2t

)−1

× pF
(
iλF − HF

2t − %
F
)
Ω
(
λF + λF + iH

F

2t

)
e−t|λ

F |2 . (3.19)
We claim that ΩF ;t,H belongs to OκF (aF )WF and that

sup
| ImλF |≤κF

∣∣ΩF ;t,H(λF )
∣∣e−ηF t|ReλF |2 ≤ CAtt−

`F

2

(
|H|
t

)|Σ++|−|Σ++
F |

, (3.20)

where κF = |HF |
2t ∈[0, κ2], ηF = 1+η

2 ∈(η, 1), At = sup| Imλ|≤κ′2|Ω(λ)|e−ηt|Reλ|2

and C is a nonnegative constant, which may depend on κ1, κ2, δ, ε, η or pF
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but not on κ′2,Ω, t or H (subject to all conditions above). Let us elaborate.
First of all ΩF ;t,H(λF ) is well defined when | ImλF | ≤ κF , since∣∣ ImλF + HF

2t

∣∣ ≤ |H|2t ≤ κ
′
2 ,

ωF
(

ImλF + HF

2t

)
≥ ωF (HF )

2t − | ImλF | ≥ ωF (H)−|HF |
2t ≥ (ε−c1δ)|H|

2t ≥ 0 ,
and hence neither Ω nor bF makes a problem in (3.19). Next ΩF ;t,H is
clearly WF -invariant and has (at most) polynomial growth. Finally (3.20)
follows from the estimates∣∣pF (iλF − HF

2t − %
F
)∣∣ ≤ C(1 + |λF |

)deg pF
,∣∣bF (− λF − λF − iHF

2t

)∣∣−1 ≤ C
(
1 + |λF |

)m/2(1 + |λF |
)m/2

,∣∣πF (HF

2t − iλF − iλ
F
)∣∣ ≤ C ( |H|t )|Σ++|−|Σ++

F |

×
(
1 +
√
t|λF |

)|Σ++|−|Σ++
F |(1 +

√
t|λF |

)|Σ++|−|Σ++
F | ,

the last one being established like (3.14) and the constants C depending
possibly on κ1, κ2, δ, ε or pF but not on t or H. This proves our claim
about ΩF ;t,H . By applying the induction hypothesis to the integral in
(3.18), we obtain the desired estimate

|EF0 | ≤ CAtt−
`
2−|Σ

++|
{ ∏
α∈Σ++

(
1 + 〈α,H〉

)}
e−|%|

2t−〈%,H〉− |H|
2

4t . (3.21)

The other terms EFq in (3.17) are easier to estimate. After moving the
contour of integration, they become

EFq = c2
|WF |e

−|%|2t−〈%F ,H〉+ |H
F |2
4t

×
∫

a

dλ
∣∣cF (λF )

∣∣−2cF
(
− λ− iHF

2t

)−1 ×Ω
(
λ+ iH

F

2t

)
e−t|λ|

2−i〈λ,HF 〉

× pF
(
iλF − HF

2t − %
F − qF

)
ϕF
λ+iH

F

2t ,q
(expH : DF ) .

Hence, using Theorem 2.2.8.iii and (3.16),

|EFq | ≤ CAte−|%|
2t+ ε

4 |H|−〈%+q,H〉−
|HF |2

4t

≤ CAte−
ε
2 |H|e−|%|

2t−〈%,H〉− |H|
2

4t , (3.22)
where the constant C may depend on κ1, κ2, δ, ε,N, η or D = DF∂(pF ) but
not on κ′2,Ω, t or H. The remainder RFN in (3.17) is also easy to estimate,
using Theorem 2.2.8.iv and the assumption N ≥ 1 + κ2

2ε :

|RFN | ≤ C
∫

a

dλ

|c(λ)|2 |Ω(λ)|e−t(|%|2+|λ|2)(1 + |λ|
)d
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×
(
1 + |H|

)d
e−〈%,H〉−Nω

F (H)

≤ CAt
(
1 + |H|

)d
e−ε|H|e−|%|

2t−〈%,H〉−κ2
2 |H|

×
∫

a

dλ

|c(λ)|2
(
1 + |λ|

)d
e−(1−η)t|λ|2

≤ CAte−
ε
2 |H|e−|%|

2t−〈%,H〉− |H|
2

4t . (3.23)
By putting (3.17), (3.21), (3.22) and (3.23) together, we obtain eventually∣∣hΩ;t(expH:DF∂(pF ))

∣∣≤CAtt− `2−|Σ++|
{ ∏
α∈Σ++

(
1+〈α,H〉

)}
e−|%|

2t−〈%,H〉− |H|
2

4t .

This estimate extends to all derivatives hΩ;t(expH : D) by an argument
similar to the one used at the end of Step 2. For every D ∈ U(g), there
exist indeed differential operators D1, . . . ,DN ∈ U(mF ) of degree≤ degD
and continuous functions a1, . . . , aN on {H ∈ a+ | ωF (H) > 0}, which are
bounded when ωF (H) ≥ ε, such that

f(expH : D) =
N∑
j=1

aj(H)f(expH : Dj)

for all f ∈ C∞(G)\ and H ∈ a+ with ωF (H) > 0 (see for instance [GV,
Lemma 7.1.1]).

This concludes the proof of the upper estimates in Theorem 3.7 and
Proposition 3.9 . Let us turn to the lower estimate in Theorem 3.7.

Step 5: Lower estimate for t� 1 + |H|2. We will obtain here the lower
bound by elementary means, as in Step 1, under the assumption that t

1+|H|2
is large. Let us first rescale

ht(expH) = c2
|W | t

− `2−|Σ
++|e−|%|

2t

∫
a

dλπ(λ)2∣∣b( λ√
t

)∣∣−2
e−|λ|

2
ϕ λ√

t

(expH)

and next decompose
ht(expH) = I + II + III , where

I =
c2
|W |b(0)−2t−

`
2−|Σ

++|e−|%|
2tϕ0(expH)

∫
a

dλπ(λ)2e−|λ|
2
,

II = c2
|W |b(0)−2t−

`
2−|Σ

++|e−|%|
2t

×
∫

a

dλπ(λ)2e−|λ|
2{
ϕ λ√

t

(expH)− ϕ0(expH)
}
, and

III = c2
|W | t

− `2−|Σ
++|e−|%|

2t

×
∫

a

dλπ(λ)2
{∣∣∣∣b( λ√

t

)∣∣∣∣−2

− b(0)−2
}
e−|λ|

2
ϕ λ√

t

(expH) .
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Notice that I is a positive expression. We claim that II and III are
small in comparison, let say |II| ≤ 1

3 I and |III| ≤ 1
3 I, provided t

1+|H|2 is
sufficiently large. This follows indeed from the estimates

ϕ λ√
t

(expH)− ϕ0(expH) = O
(
t−1/2|λ||H|ϕ0(expH)

)
,∣∣b( λ√

t

)∣∣−2 − b(0)−2 = O
(
t−1/2|λ|(1 + |λ|)m

)
,

which are easily deduced from (2.2.1), respectively (2.2.5) and (2.2.6). As
a conclusion we obtain

ht(expH) ≥ 1
3I ≥ Ct

− `2−|Σ
++|e−|%|

2tϕo(expH) ,
which is comparable to the expected bound

t−
`
2−|Σ

++|
{ ∏
α∈Σ++

(
1 + 〈α,H〉

)}
e−|%|

2t−〈α,H〉− |H|
2

4t (3.24)

according to Proposition 2.2.12.i and to the assumption |H| = O(
√
t).

Step 6: Lower estimate away from the walls. We shall restrict here to
t > 0 and H ∈ a+ with ω(H) large. Let us resume the computations carried
out in Step 2. We have

ht(expH) =
∑
q∈2Q

Eq ,

where

E0 = c2e
−|%|2t−〈%,H〉

∫
a

dλ e−t|λ|
2
π

(
− i

2t
∂

∂λ

){
b(−λ)−1ei〈λ,H〉

}
and

|Eq| ≤ C
(
1 + |q|

)d
t−

`
2 c
(
− iHt

)−1
e−|%|

2t−〈%+q,H〉− |H|
2

4t ,

the constant C depending possibly on a lower bound κ > 0 for ω(H) but
not on q, t or H (subject to the conditions above). Moreover

E0 = c2t
− `2 e−|%|

2t−〈%,H〉− |H|
2

4t

×
∑

Σ++=Σ′tΣ′′

{ ∏
α′∈Σ′

〈α′,H〉
2t

}∫
a

dλe−|λ|
2
{ ∏
α′′∈Σ′′

(
− i

2t∂α′′
)}

(b−1)
(
− λ√

t
− iH2t

)
= I0 + II0 + III0 ,

where

I0 = c2

{∫
a

dλe−|λ|
2
}

︸ ︷︷ ︸
π`/2

t−
`
2 c
(
− iH2t

)−1
e−|%|

2t−〈%,H〉− |H|
2

4t ,

II0 = c2t
− `2π

(
H
2t

)
e−|%|

2t−〈%,H〉− |H|
2

4t

×
∫

a

dλ e−|λ|
2{

b
(
− λ√

t
− iH2t

)−1 − b
(
− iH2t

)−1}
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and the remaining sum over Σ′ ( Σ++ verifies

|III0| ≤ Cω(H)−1t−
`
2 c(−iHt )−1e−|%|

2t−〈%,H〉− |H|
2

4t ,

with a constant C as above. Let us establish a similar estimate for II0 with
ω(H)−

1
2 instead of ω(H)−1. Since∣∣b(− λ√

t
− iH2t

)−1 − b
(
− iH2t

)−1∣∣ ≤ |λ|√
t

sup
λ′∈[0, λ√

t
]

∣∣∇(b−1)
(
− λ′ − iH2t

)∣∣ ,
we are left with a gradient estimate of b−1. When ω(H) ≤ t, we use
simply (3.11) and obtain

b
(
− λ√

t
− iH2t

)−1 − b
(
− iH2t

)−1 = O
(
ω(H)−

1
2 b
(
− iHt

)−1(1 + |λ|
)m

2 +1)
.

Recall that (3.11) relied on (2.2.6), which was itself deduced from (2.2.5)
by applying Cauchy’s formula to b−1 in a small torus. When ω(H) ≥ t, we
can use a larger torus T` ⊂ a− ia+, centered at the point −λ′ − iH2t and of
radius r proportional to ω(H)/t (for instance r = ω(H)/2

√
`t) and obtain

this way
∇(b−1)

(
− λ′ − iH2t

)
= O

(
t

ω(H)b
(
− iHt

)−1(1 +
√
t|λ′|)m/2

)
,

hence
b
(
− λ√

t
− iH2t

)−1 − b
(
− iH2t

)−1 = O
(
ω(H)−

1
2 b
(
− iHt

)−1(1 + |λ|)m2 +1) .
Thus in both cases

|II0| ≤ Cω(H)−
1
2 t−

`
2 c
(
− iHt

)−1
e−|%|

2t−〈%,H〉− |H|
2

4t ,

with a constant C as above. As a conclusion, I0 proves to be the leading
term in the expansion

ht(expH) = I0 + II0 + III0 +
∑

q∈2Qr{0}
Eq ,

as ω(H)→ +∞, and in particular

ht(expH) ≥ 1
2I0 ≥ Ct−

`
2 c
(
− iHt

)−1
e−|%|

2t−〈%,H〉− |H|
2

4t

provided ω(H) is sufficiently large. This concludes Step 6.
Step 7: Lower estimate along faces I. We shall restrict here to t > 0

and H ∈ a+(F, δ, ε) with κ1 ≤ |H| ≤ κ2
√
t, where κ1 ∈ (0,+∞) is large,

κ2 ∈ (0,+∞) is arbitrary, 0 < δ ≤ ε < +∞ are arbitrarily small, as well
as δ/ε, and F denotes any nontrivial subset of Σ+++. We will expand
again the heat kernel along faces, but differently from Step 4. This time we
need only the first order expansion in Theorem 2.2.8, we use no induction
argument and we perform an integration by parts as in Step 2. To begin
with, as in Step 4 we deduce easily from Theorem 2.2.8 that

ht(expH) = EF +RF ,
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where the leading term writes

EF = c2|WF |−1e−|%|
2t−〈%F ,H〉

∫
a

dλ|cF (λ)|−2cF (−λ)−1e−t|λ|
2
ϕFλ (expH)

and the remainder can be estimated as follows:
|RF | ≤ Ce− ε2 |H|e−|%|2t−〈%,H〉 , (3.25)

with a constant C ≥ 0 depending possibly on ε and on lower bounds for t
and |H|, hence on κ2 and on a lower bound for κ1, but not on δ. Let us
analyze the expression EF . By writing

|cF (λ)|−2cF (−λ)−1 = π(−iλ)πF (iλ)|bF (λ)|−2bF (−λ)−1

and by performing an integration by parts based on
π(−iλ)e−t|λ|

2
= π

(
i
2t

∂
∂λ

)
e−t|λ|

2
,

as in Step 2, we obtain first
EF = c22−|Σ

++||WF |−1t−|Σ
++|e−|%|

2t−〈%F ,H〉

×
∫

a

dλ e−t|λ|
2
π
(
−i ∂∂λ

) {
πF (iλ)|bF (λ)|−2bF (−λ)−1ϕFλ (expH)

}
.

By using
ϕFλ (expH) = ϕFλ (expHF )ei〈λ,H

F 〉 ,

by expanding
π
(
−i ∂∂λ

){
πF (iλ)|bF (λ)|−2bF (−λ)−1ϕFλ (expH)

}
=

∑
Σ++rΣ++

F =Σ′tΣ′′

{ ∏
α′∈Σ′

〈α′,HF 〉
}
ei〈λ,H

F 〉

×
{ ∏
α′′∈Σ′′tΣ++

F

(−i ∂α′′)
}{
πF (iλ)|bF (λ)|−2bF (−λ)−1ϕFλ (expHF )

}
and by moving the contour of integration, we obtain next

EF = c22−|Σ
++||WF |−1t−|Σ

++|e−|%|
2t−〈%F ,H〉− |H

F |2
4t

×
∑

Σ++rΣ++
F =Σ′tΣ′′

{ ∏
α′∈Σ′

〈α′,HF 〉
}
×
∫

a

dλ e−t|λ|
2
{ ∏
α′′∈Σ′′tΣ++

F

(−i ∂α′′)
}

×
{
πF (iλ)|bF (λ)|−2bF

(
− λ− iHF

2t

)−1
ϕFλ (expHF )

}
. (3.26)

Let us concentrate on the expression

cF4 t
−|Σ++|πF (HF )e−|%|

2t−〈%F ,H〉− |H
F |2
4t

×
∫

a

dλ e−t|λ|
2 |bF (λ)|−2bF

(
− λ− iHF

2t

)−1
ϕFλ (expHF ) , (3.27)

with
cF4 = c22−|Σ

++||WF |−1∂(πF )πF = c22−|Σ
++|πF (%̃) ,
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which will prove to be the main term in (3.26), and which is obtained by
taking Σ′ = Σ++ r Σ++

F , i.e. Σ′′ = ∅ in the above sum and by applying all
remaining derivatives πF

(
−i ∂∂λ

)
=
∏
α′′∈Σ++

F
(−i ∂α′′) to the factor πF (iλ).

We decompose the integral in (3.27) as a sum
IF + IIF + IIIF , (3.28)

where

IF = bF (0)−2bF (0)−1ϕF0 (expHF )
∫

a

dλe−t|λ|
2

︸ ︷︷ ︸
(π/t)`/2

,

IIF = bF (0)−2bF (0)−1
∫

a

dλ e−t|λ|
2{
ϕFλ (expHF )− ϕF0 (expHF )

}
,

IIIF =
∫

a

dλ e−t|λ|
2{|bF (λ)|−2bF

(
− λ− iHF

2t

)−1

− |bF (0)|−2bF (0)−1}ϕFλ (expHF ) .
Using the estimates∣∣ϕFλ (expHF )− ϕF0 (expHF )

∣∣ ≤ |λ||HF |ϕF0 (expHF ) ≤ c1δ|λ||H|ϕF0 (expH) ,

|bF (λ)|−2bF
(
− λ−iHF

2t

)−1
a−|bF (0)|−2bF (0)−1=O

({
|λ|+ |H|t

}
(1+|λ|)m

)
,

which follow from (2.2.1) and Lemma 2.1.7.i , respectively (2.2.5) and (2.2.6),
we get

|IIF | ≤ Cδt−`/2ϕF0 (expH) ,

|IIIF | ≤ Ct−
`+1

2 ϕF0 (expH) ,
with constants C ≥ 0 depending on κ2 and on a lower bound for t, hence
for κ1, but not on δ or ε. Thus IF is the main term in (3.27) and we have
for instance

|IIF |+ |IIIF | ≤ 1
2I

F , (3.29)
provided δ is sufficiently small and κ1 hence t is sufficiently large. As a
consequence (3.27) is bounded below by

cF4 t
−|Σ++|πF (HF )e−|%|

2t−〈%F ,H〉− |H
F |2
4t × 1

2I
F

≥ Ct− `2−|Σ++|πF (HF )ϕF0 (expH)e−|%|
2t−〈%F ,H〉 ,

with a constant C > 0 depending on κ2, but not on κ1, δ or ε. We claim
that the other terms in (3.26) are

O
(
{δ+ δ

ε + 1
εκ1

+ t−
1
2 }t− `2−|Σ++|πF (HF )ϕF0 (expH)e−|%|

2t−〈%F ,H〉) , (3.30)
with the constant in O depending possibly on κ2, on a lower bound for
κ1 and on an upper bound for ε, but not on δ. The proof relies on the
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estimates(
∂
∂λ

)σ
πF (iλ) =

{
O
(
|λ||Σ++

F |−|σ|
)

if |σ| ≤ |Σ++
F | ,

0 if |σ| > |Σ++
F | ,

(3.31.1)(
∂
∂λ

)σ{|bF (λ)|−2bF (−λ− iHF

2t )−1} = O
(
{1 + |λ|}m

)
, (3.31.2)(

∂
∂λ

)σ
ϕFλ (expHF ) = O

(
|HF ||σ|ϕF0 (expH)

)
. (3.31.3)

(3.31.1) is immediate, (3.31.2) follows again from (2.2.5) and (2.2.6), and
(3.31.3) from (2.2.1). Let us elaborate on (3.30). Consider first the terms
in (3.26) which are obtained by taking Σ′ = Σ++ r Σ++

F and by applying
some derivatives ∂α′′ to |bF (λ)|−2bF

(
−λ− iHF

2t

)−1
ϕFλ (expHF ). Using the

estimates (3.31), we get in this case an upper bound

O
({

1+|HF |√
t

}N
t−

`
2−|Σ

++|πF (HF )ϕF0 (expH)e−|%|
2t−〈%F ,H〉

)
as expected, with

{1+|HF |√
t

}N = O
(
t−

1
2 + δ

)
since |HF | ≤ c1δ|H| (Lem-

ma 2.1.7.i) and κ1 ≤ |H| ≤ κ2
√
t by assumption. Consider next the nonzero

terms in (3.26) with Σ′ ( Σ++ r Σ++
F . In this case there are on one hand

some missing factors 〈α′,HF 〉 in πF (HF ), and on the other hand at least
as many derivatives ∂α′′ applied to |bF (λ)|−2bF

(
−λ−iHF

2t

)−1
ϕFλ (expHF ).

Using the estimates (3.31), we get this time an upper bound

O
({

1+|HF |
〈α′,HF 〉

}N
t−

`
2−|Σ

++|πF (HF )ϕF0 (expH)e−|%|
2t−〈%F ,H〉

)
with

{ 1+|HF |
〈α′,HF 〉

}N = O
( 1
εκ1

+ δ
ε

)
, since 〈α′,HF 〉 ≥ ωF (HF ) ≥ ωF (H) ≥

ε|H| ≥ εκ1 and |HF | ≤ c1δ|H|. This proves our claim (3.30). By putting
everything together, we can now conclude that

ht(expH) ≥ Ct− `2−|Σ++|πF (HF )ϕF0 (expH)e−|%|
2t−〈%F ,H〉 . (3.32)

More precisely, given ε and κ2, we choose δ sufficiently small and κ1 suffi-
ciently large so that (3.29) holds, which implies the lower estimate (3.32)
for the expression (3.27). By possibly reducing δ or increasing κ1, this es-
timate can be extended to EF and furthermore to ht(expH), according to
(3.30) and (3.25). Finally notice that, under the present assumptions, the
right hand side of (3.32) is comparable to the expected bound

t−
`
2−|Σ

++|
{ ∏
α∈Σ++

(
1 + 〈α,H〉

)}
e−|%|

2t−〈α,H〉− |H|
2

4t . (3.24)

This follows from Proposition 2.2.12.i, applied to ϕF0 , and from the fact
that the expressions∏

α∈Σ++rΣ++
F

(
1 + 〈α, . 〉

)
, πF , (ωF )|Σ

++|−|Σ++
F | and | . ||Σ++|−|Σ++

F | ,
(3.33)
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applied to H or HF , are all comparable.
Remark 3.34. Let us indicate another proof of the lower estimate along
faces

ht(expH) ≥ Ct− `2−|Σ++|e−|%|
2tϕ0(expH) (3.35)

when t ≥ κ(1 + |H|2), which is simpler than Step 7, but which has the
disadvantage of yielding only estimates and no asymptotics (and which is
moreover not in the spirit of asymptotic methods used throughout this
paper). The idea consists in reducing to the estimate (3.35) away from the
walls, which has been established in Step 6. Take H0 ∈ a+ at distance> 2
from the walls and consider the balls

Br =
{
H ∈ a

∣∣ |H − rH0| ≤ r
}
⊂ B′r =

{
H ∈ a

∣∣ |H − rH0| ≤ 2r
}

in a+. According to Lemma 2.1.2, the set K(expBr)K [resp. K(expB′r)K]
consists of all points in X = G/K at distance≤ r [resp. ≤ 2r] from the
K-orbit K(exp rH0)K. Denote by χr [resp. χ′r] its characteristic function.
Letting r(t) =

√
t/κ, we can estimate

ht = ht/2 ∗ ht/2 ≥ {χr(t)ht/2} ∗ {χ′r(t)ht/2}

≥ Ct−`−2|Σ++|e−|%|
2t{χr(t)ϕ0} ∗ {χ′r(t)ϕ0} ,

using the semigroup property of the heat kernel, its positivity, and (3.35)
away from the walls. On one hand

{χr(t)ϕ0} ∗ {χ′r(t)ϕ0}(expH) =
∫
K(expBr(t))K

dxϕ0(x±1){χ′r(t)ϕ0}(x expH)

coincides with

{χr(t)ϕ0} ∗ ϕ0(expH) =
∫
K(expBr(t))K

dxϕ0(x±1)ϕ0(x expH)

for |H| ≤ r(t), since
d
(
x(expH)K,K{exp r(t)H0}K

)
≤ d
(
x(expH)K,xK

)
+ d
(
xK,K{exp r(t)H0}K

)
≤ |H|+ r(t) ≤ 2r(t) .

On the other hand

{χr(t)ϕ0} ∗ ϕ0 =
{∫

K(expBr(t))K
dxϕ0(x)2

}
ϕ0

by the functional equation of ϕ0. Thus we are left with the last brace,
which is easily estimated using (2.1.5) and Proposition 2.2.12.i:∫

K(expBr(t))K
dxϕ0(x)2 �

∫
Br(t)

dH ′|H ′|2|Σ++| � t `2 +|Σ++|.

This concludes Remark 3.34 .
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Step 8: Lower estimate along faces II. In this last step, we restrict to
t > 0 and H ∈ a+(F, δ, ε) with κ1

√
t ≤ |H| ≤ κ2t. Here κ1 ∈ (0,+∞) is

large and κ2 ∈ (0,+∞) is arbitrary. As usual, F denotes any nontrivial
subset of Σ+++ and the constants 0 < δ ≤ ε < +∞ can be taken as small
as we wish, as well as δ/ε. We will establish the lower estimate

ht(expH) ≥ Ct− `2−|Σ++|
{ ∏
α∈Σ++

(
1 + 〈α,H〉

)}
e−|%|

2t−〈α,H〉− |H|
2

4t (3.36)

by proceeding as in Step 4. Starting with the induction hypothesis, assume
that the lower estimate in Theorem 3.7.ii holds for all proper symmetric
subspaces with no Euclidean factor in X = G/K. Recall the heat kernel
expansion investigated in Step 4:

ht(expH) =
∑
q∈2QF
κ(q)<N

EFq +RFN , (3.37)

where

EF0 = c2
|WF |e

−|%|2t−〈%F ,H〉− |H
F |2
4t

×
∫

aF

dλF |cF (λF )|−2ΩF ;t,H(λF )e−t|λF |
2
ϕFλF (expHF ) ,

with
ΩF ;t,H(λF ) =

∫
aF
dλFcF

(
− λF − λF − iH

F

2t

)−1
e−t|λ

F |2 ,

and ∑
q∈2QF

0<κ(q)<N

|EFq |+ |RFN | ≤ Ce−
ε
2 |H|e−|%|

2t−〈%,H〉− |H|
2

4t , (3.38)

provided ε
δ ≥ (1 + 2κ2)c1 and N ≥ 1 + κ2

4ε , the constant C depending
possibly on κ2, δ, ε,N and on a lower bound for κ1. Thus (3.36) will follow
from a similar estimate for EF0 , provided κ1 hence t and H are sufficiently
large. Let us therefore concentrate on EF0 . Consider the decomposition

EF0 = IF0 + IIF0 + IIIF0 , (3.39)
where

IF0 =
c2
|WF |

{∫
aF
dλF e−|λ

F |2
}

︸ ︷︷ ︸
π`
F /2

× t− `
F

2 cF (−iHF

2t )−1e−|%|
2t−〈%F ,H〉− |H

F |2
4t

×
∫

aF

dλF |cF (λF )|−2e−t|λF |
2
ϕFλF (expHF ) ,
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IIF0 = c2
|WF |π

F
(
HF

2t

)
e−|%|

2t−〈%F ,H〉− |H
F |2
4t

×
∫

aF

dλF |cF (λF )|−2Ω′′F ;t,H(λF )e−t|λF |
2
ϕFλF (expHF ) ,

IIIF0 = c2
|WF |e

−|%|2t−〈%F ,H〉− |H
F |2
4t

×
∫

aF

dλF |cF (λF )|−2Ω′′′F ;t,H(λF )e−t|λF |
2
ϕFλF (expHF ) ,

with

Ω′′F ;t,H(λF ) =
∫

aF
dλF

{
bF
(
− λF − λF − iH

F

2t

)−1 − bF (−iHF

2t )−1}e−t|λF |2 ,
Ω′′′F ;t,H(λF ) =

∫
aF
dλF

{
πF
(
HF

2t − iλF − iλ
F
)
− πF (H

F

2t )
}

× bF
(
− λF − λF − iH

F

2t

)−1
e−t|λ

F |2 .

Using the induction hypothesis, together with cF (−iHF

2t )−1 � πF (H
F

t ), we
obtain the desired estimate for the leading term:

IF0 ≥ Ct−
`
2−|Σ

++|
{ ∏
α∈Σ++

F

(
1 + 〈α,H〉

)}
πF (HF )e−|%|

2t−〈%,H〉− |H|
2

4t , (3.40)

with a positive constant C depending possibly on κ2 and on a lower bound
for κ1, but not on δ, ε or N . The other terms IIF0 and IIIF0 are compar-
atively smaller, as we shall see next by applying Proposition 3.9. On one
hand

sup
| ImλF |≤

|HF |
2t

∣∣Ω′′F ;t,H(λF )
∣∣e− t2 |ReλF |2

≤
{∫

aF
dλF e−

t
2 |λ

F |2
}

sup
| Imλ|≤ |HF |2t

∣∣bF (−λ−iHF

2t

)−1−bF
(
−iHF

2t

)−1∣∣e− t2 |Reλ|2

≤ C{δ + t−1/2}t−`F /2 ,
since∣∣bF (− λ− iHF

2t

)−1 − bF
(
− iHF

2t

)−1∣∣ ≤ |λ| sup
λ′∈[0,λ]

∣∣∇λ′bF (− λ′ − iHF

2t

)−1∣∣
≤ C

{
|Reλ|+| Imλ|

}(
1+|Reλ|

)m/2
and |Reλ| ≤

√
t|Reλ|√

t
, | Imλ| ≤ |HF |2t ≤

c1δ|H|
2t ≤ c1κ2

2 δ. Hence

|IIF0 | ≤ C{δ + t−
1
2 }t− `2−|Σ++|

{ ∏
α∈Σ++

F

(
1+〈α,H〉

)}
πF (HF )e−|%|

2t−〈%,H〉− |H|
2

4t
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with a constant C as above. On the other hand
sup

| ImλF |≤
|HF |

2t

∣∣Ω′′′F ;t,H(λF )
∣∣e− t2 |ReλF |2

≤
{∫

aF
dλF e−

t
2 |λ

F |2
}

× sup
| Imλ|≤ |HF |2t

∣∣πF (HF

2t − iλ
)
− πF

(
HF

2t

)∣∣∣∣bF (− λ− iHF

2t

)∣∣−1
e−

t
2 |Reλ|2

≤ C
{
δ
ε + 1

κ1ε

}
t−

`F

2 −|Σ
++|+|Σ++

F |πF (HF ) ,
since

bF
(
− λ− iHF

2t

)−1 = O
(
(1 + |Reλ|)m2

)
,

|〈α, Imλ〉| ≤ | Imλ| ≤ |HF |2t ≤
c1
2
δ
ε
ε|H|
t ≤

c1
2
δ
ε
ωF (H)

t ≤ c1
2
δ
ε
〈α,HF 〉

t

for every α ∈ Σ++ rΣ++
F , and similarly

|〈α,Reλ〉| ≤ |Reλ| ≤ 1
κ1ε

ε|H|
t

√
t|Reλ| ≤ 1

κ1ε
〈α,HF 〉

t

√
t|Reλ| .

Hence

|IIIF0 | ≤ C
{
δ
ε+ 1

κ1ε

}
t−

`
2−|Σ

++|
{ ∏
α∈Σ++

F

(
1+〈α,H〉

)}
πF (HF )e−|%|

2t−〈%,H〉− |H|
2

4t

with C as above again. Thus IF0 is the leading term in (3.39), as claimed,
and we have

|IIF0 |+ |IIIF0 | ≤ 1
2I

F
0 ,

hence
EF0 ≥ 1

2I
F
0 , (3.41)

provided δ, δ/ε, 1/κ1ε and t−1/2 are sufficiently small, which can be achieved
by choosing δ ε appropriately (see Lemma 2.1.7.ii) and by taking κ1 suf-
ficiently large. The lower estimate (3.36) follows eventually from (3.37),
(3.38), (3.40), (3.41) and from

πF (HF ) �
∏

α∈Σ++rΣ++
F

(
1 + 〈α,H〉

)
,

see (3.33). This concludes Step 8.
Our heat kernel estimates are finally obtained by putting together all

cases dealt with in the previous steps.

Remark. This is the second application known as yet of the Trombi
& Varadarajan expansion for spherical functions (Theorem 2.2.8). Recall
that the first one in [TrV] dealt with the spherical Fourier transform of
the Lp Schwartz spaces Sp(G)\, and that this result was later on obtained
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in a much simpler way [An4]. Here too the recourse to the Trombi &
Varadarajan expansion could be avoided, as we realized lately [AnJ2]. One
uses instead the parabolic Harnack inequality of Li & Yau ([LiY], see also
[Da, Section 5.3]), which allows to shift heat kernel estimates away from
the walls. Of course this simplification works only for bounds and not for
asymptotics (subsection 5.1). Besides we think that the delicate analysis
carried out in this section is interesting in its own and may be helpful for
other problems.

4 Some Applications

4.1 Heat propagation. In this subsection we shall assume that X =
G/K has no Euclidean factor. (Actually all results for 1 ≤ p ≤ 2 hold
provided X is not trivially Euclidean.) Recall that ht denotes the heat
kernel on X. The behavior of its Lp-norm ‖ht‖p can be easily deduced from
the pointwise estimates established or recalled in Section 3, specifically
Theorem 3.7.ii and (3.3). This result was obtained in a more abstract way
in [CowGM1].

Proposition 4.1.1. (i) For t small,

‖ht‖p � t−n/2p
′ ∀ 1 ≤ p ≤ +∞ ,

where p′ = p
p−1 denotes the dual index.

(ii) For t large,

‖ht‖p �


t
− `

2p′ e
− 4
pp′ |%|

2t if 1 ≤ p < 2 ,

t−
`
4−
|Σ++|

2 e−|%|
2t if p = 2 ,

t−
`
2−|Σ

++|e−|%|
2t if 2 < p ≤ +∞ .

Davies [Da, Corollary 5.7.3] observed that heat diffusion on real hy-
perbolic spaces propagates asymptotically with finite speed. This striking
phenomenon was later on extended to noncompact symmetric spaces, by
analytic means in [AnSe] and probabilistic ones in [B2]. It reflects the in-
terplay between the heat kernel decay on one hand and the volume growth
on the other hand. This becomes more apparent if we go beyond L1 and
consider the general Lp setting.

Theorem 4.1.2. (i) Case 1 ≤ p < 2: For t large, consider the box

Bp(t) =
{
H ∈ a | 2|%p|t− r(t) ≤ |H| ≤ 2|%p|t+ r(t) , ^(H, %) ≤ θ(t)

}
centered at the point 2t%p = 4

(1
p−

1
2

)
t% in a, where r(t) and θ(t) are positive



Vol. 9, 1999 HEAT KERNEL AND GREEN FUNCTION 1071

functions such that{
r(t)
t → 0
r(t)√
t
→ +∞

and

{
θ(t)→ 0√
tθ(t)→ +∞

as t→ +∞ .

Then the Lp norm of ht concentrates asymptotically in the bi-K-orbit of
expBp(t):

‖ht‖−1
p

{∫
GrK{expBp(t)}K

dx|ht(x)|p
}1/p

−→ 0 as t→ +∞ .

(ii) Case p = 2: We have a similar concentration

‖ht‖−1
2

{∫
GrK{expB2(t)}K

dx|ht(x)|2
}1/2

−→ 0

with respect to boxes
B2(t) =

{
H ∈ a | r1(t) ≤ |H| ≤ r2(t) , ω(H) ≥ r3(t)

}
,

where{
r1(t)→ +∞
r1(t)√
t
→ 0

, r2(t)√
t
→ +∞ and

{
r3(t)→ +∞
r3(t)√
t
→ 0

.

(iii) Case 2 < p < +∞:

‖ht‖−1
p

{∫
|x|≥r(t)

dx|ht(x)|p
}1/p

−→ 0

if r(t)→ +∞ as t→ +∞.
(iv) Case p = +∞: ht(x) reaches its maximum at x = e and

‖ht‖−1
∞ sup
|x|≥r(t)

ht(x) −→ 0

again if r(t)→ +∞.
Notice that p = 2 is the only case which resembles the Euclidean setting.

Sketch of proof. As a positive-definite function, ht = ht/2 ∗ h∨t/2 reaches
its maximum at the origin. The rest of the proof is similar to the L1 case
treated in [AnSe, Section 2]. It relies on the integral formula (2.1.5) for
bi-K-invariant functions:∫

G
dx f(x) = const.

∫
a+
dHδ(H)f(expH) with δ(H) = O(e2〈%,H〉) ,

and on the upper bounds in Theorem 3.7.ii for t large (and |H| = O(t)):

ht(expH) ≤ Ct− `2−|Σ++|
{ ∏
α∈Σ++

(
1 + 〈α,H〉

)}
e−|%|

2t−〈%,H〉− |H|
2

4t ,

and in (3.3) for |H| � t large (or any other Gaussian upper estimate):

ht(expH) ≤ C|H|de−|%|2t−〈%,H〉−
|H|2

4t .
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4.2 Bessel–Green–Riesz kernels. Let ∆ be the Laplace–Beltrami
operator on X = G/K. Recall that its L2-spectrum consists of the half-line
(−∞,−|%|2] and that its spectral decomposition is given by

E
(
[−|%|2−R2

2,−|%|2−R2
1]
)
f =

c2
|W |

∫
{λ∈a|R1≤|λ|≤R2}

dλ

|c(λ)|2 f ∗ϕλ . (4.2.1)

The Bessel–Green–Riesz potentials are the following spectrally defined func-
tions of ∆:(

−∆− |%|2 + ζ2)−σ/2 ∀ ζ ∈ (0,+∞) + iR , ∀σ ∈ C .
Their (Schwartz ) kernel will be denoted by kζ,σ, and simply by kζ when
σ = 2 (Green function).

These expressions extend to the limit case ζ = 0 provided σ /∈ ` +
2|Σ++| + 2N [CowGM1, Section 6]. Notice that the first singularity σ =
` + 2|Σ++| is related to the vanishing of the spectral measure (4.2.1) at
−|%|2, i.e. of the Plancherel measure at the origin.

Theorem 4.2.2. (i) Let ζ > 0, σ > 0 and D ∈ U(g). Then

kζ,σ(x) � |x|
σ−`−1

2 −|Σ++|ϕ0(x)e−ζ|x|

and
kζ,σ(x : D) = O

(
kζ,σ(x)

)
away from the origin.

(ii) In the limit case ζ = 0 and for 0 < σ < `+ 2|Σ++|, we have instead

k0,σ(x) � |x|σ−`−2|Σ++|ϕ0(x) .

Remark 4.2.3. (i) Recall the behavior of ϕ0 (Proposition 2.2.12.i):

ϕ0(expH) �
{ ∏
α∈Σ++

(
1 + 〈α,H〉

)}
e−〈%,H〉 ∀H ∈ a+ .

(ii) Notice the jump in the polynomial factor between the cases ζ > 0
and ζ = 0.

(iii) The behavior of kζ,σ at the origin is classical and well known:

kζ,σ(x) �


|x|σ−n if 0 < σ < n

log 1
|x| if σ = n

1 if σ > n

and

kζ,σ(x : D) =


O(|x|σ−n−degD) if 0 < σ < n+ degD
O
(

log 1
|x|
)

if σ = n+ degD

O(1) if σ > n+ degD
with the restriction 0 < σ < `+ 2|Σ++| if ζ = 0.
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(iv) As mentioned in the introduction, the Green function estimates

kζ(x) �
{
|x| 1−`2 −|Σ

++|e−ζ|x|ϕ0(x) if ζ > 0
|x|2−`−2|Σ++|ϕ0(x) if ζ = 0

away from the origin (especially when ζ > 0) constitute the key analytic
ingredient in the determination of the Martin compactification of X = G/K
([Gu], [GuJT1,2]). They play a further role in the study of Patterson–
Sullivan measures on X [A].

Proof of Theorem 4.2.2. Recall the Mellin type expression(
−∆− |%|2 + ζ2)−σ2 =

1
Γ(σ2 )

∫ +∞

0

dt

t
t
σ
2 e(|%|2−ζ2)tet∆ (4.2.4.1)

of the Bessel–Green–Riesz potentials in terms of the heat semigroup et∆,
which writes

kζ,σ(x) =
1

Γ(σ2 )

∫ +∞

0

dt

t
t
σ
2 e(|%|2−ζ2)tht(x) (4.2.4.2)

on the kernel level.
(i) When ζ > 0, the main contribution in (4.2.4.2) comes from the

integral where t ∼ |x|/2ζ. Thus let us split∫ +∞

0
=
∫ κ−1 |x|

2ζ

0
+
∫ κ

|x|
2ζ

κ−1 |x|
2ζ

+
∫ +∞

κ
|x|
2ζ

for some κ > 1. According to Theorem 3.7.ii, the second integral is com-
parable to

|x|
σ−`

2 −|Σ
++|−1ϕ0(x)

∫ κ
|x|
2ζ

κ−1 |x|
2ζ

dt e−ζ
2t− |x|

2

4t ,

hence to
|x|

σ−`−1
2 −|Σ++|ϕ0(x)e−ζ|x| ,

since∫ κ
|x|
2ζ

κ−1 |x|
2ζ

dt e−ζ
2t− |x|

2

4t =
|x|
2ζ

∫ κ

κ−1
dt e−ζ|x|

t+t−1
2 ∼

√
π

2
ζ−3/2|x| 12 e−ζ|x|

by an elementary application of the Laplace method (see for instance [Co,
Ch. 5]). Similarly, the third integral is bounded by

Cϕ0(x)
∫ +∞

κ
|x|
2ζ

dt t
σ−`

2 −|Σ
++|−1e−ζ

2t− |x|
2

4t ,

which is a O(ϕ0(x)e−(ζ+η)|x|) for some η > 0 depending on ζ, σ and κ.
For the first one, we use instead of Theorem 3.7 any heat kernel Gaussian
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estimate, for instance the result (3.3) borrowed from [An5], and obtain as
an upper bound

C|x|dϕ0(x)
∫ κ−1 |x|

2ζ

0

dt

t
t
σ
2 e−ζ

2t− |x|
2

4t ,

which is also a O(ϕ0(x)e−(ζ+η)|x|). This establishes the expected behavior
of κζ,σ. Derivatives are estimated in the same way.

(ii) When ζ = 0, the main contribution in (4.2.4.2) comes instead from
the integral where t � |x|2. Let η be a small positive constant. On one
hand, using Theorem 3.7.ii,∫ +∞

|x|2−η

dt

t
t
σ
2 e|%|

2tht(x) � ϕ0(x)
∫ +∞

|x|2−η

dt

t
t
σ−`

2 −|Σ
++|e−

|x|2
4t

with∫ +∞

|x|2−η

dt

t
t
σ−`

2 −|Σ
++|e−

|x|2
4t ∼ Γ

(
`− σ

2
+ |Σ++|

)(
|x|
2

)σ−`−2|Σ++|
.

On the other hand, using (3.3),∫ |x|2−η
0

dt

t
t
σ
2 e|%|

2tht(x) ≤ C|x|dϕ0(x)
∫ |x|2−η

0

dt

t
t
σ
2 e−

|x|2
4t

with ∫ |x|2−η
0

dt

t
t
σ
2 e−

|x|2
4t = O(|x|−∞) .

Derivatives of k0,σ are estimated in the same way.

4.3 Poisson kernel. Beside the heat semigroup et∆, another classical
semigroup in harmonic analysis is the Poisson semigroup e−t

√
−∆. It has

been studied in various settings, including noncompact symmetric spaces
(see for instance [An5], [AnDY], [CowGM2], [Lo1–5], [St]). In this subsec-
tion we shall determine the behavior of its kernel pt(x). Actually we shall
consider a slightly more general expression, namely the kernel pt,ζ(x) of

e−t
√
−∆−|%|2+ζ2 , where ζ ≥ 0.

Theorem 4.3.1. (i) Assume ζ > 0. Then

pt,ζ(x) �
{
t(t+ |x|)−n−1 if t+ |x| ≤ 1

t (t+ |x|)− `2−|Σ++|−1ϕ0(x)e−ζ
√
t2+|x|2 if t+ |x| ≥ 1

for t > 0 and x ∈ G. Moreover{
pt,ζ(x : D) = O

(
min

{
1, t+ |x|

}−degD
pt,ζ(x)

)
∂
∂tpt,ζ(x : D) = O

(
min

{
t, 1 + |x|

t

}−1 min
{

1, t+ |x|
}−degD

pt,ζ(x)
)

for every D ∈ U(g).
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(ii) In the limit case ζ = 0, we have instead

pt,0(x) �
{
t(t+ |x|)−n−1 if t+ |x| ≤ 1
t(t+ |x|)−`−2|Σ++|−1ϕ0(x) if t+ |x| ≥ 1

and {
pt,0(x : D) = O

(
min{1, t+ |x|}− degDpt,0(x)

)
∂
∂tpt,0(x : D) = O

(
t−1 min{1, t+ |x|}− degDpt,0(x)

)
Remarks. (i) Recall again the behavior of ϕ0 (Proposition 2.2.12.i):

ϕ0(expH) �
{ ∏
α∈Σ++

(
1 + 〈α,H〉

)}
e−〈%,H〉 ∀H ∈ a+ .

(ii) Notice again the jump in the polynomial factors between the cases
ζ > 0 and ζ = 0.

Proof of Theorem 4.3.1. Theorem 4.3.1 is proved like Theorem 4.2.2 .
Instead of (4.2.4) we use the subordination formula

e−t
√
−∆−|%|2+ζ2

=
t

2
√
π

∫ +∞

0
ds s−

3
2 e−

t2
4s e−s(−∆−|%|2+ζ2) , (4.3.2.1)

which writes

pt,ζ(x) =
t

2
√
π

∫ +∞

0
ds s−

3
2 e(|%|2−ζ2)se−

t2
4shs(x) (4.3.2.2)

on the kernel level. Assume first ζ > 0 and t + |H| ≥ 1. In (4.3.2.2) the
main contribution comes from the integral where s ∼

√
t2 + |x|2/2ζ. Thus

let us split ∫ +∞

0
=
∫ κ−1

√
t2+|x|2

2ζ

0
+
∫ κ

√
t2+|x|2

2ζ

κ−1
√
t2+|x|2

2ζ

+
∫ +∞

κ

√
t2+|x|2

2ζ

(4.3.3)

for some κ > 1. According to the heat kernel estimate in Theorem 3.7.ii,
the second integral is comparable to

t
(
t+ |x|

)− `+3
2 −|Σ

++|
ϕ0(x)

∫ κ

√
t2+|x|2

2ζ

κ−1
√
t2+|x|2

2ζ

ds e−ζ
2se−

t2+|x|2
4s ,

hence to (
t+ |x|

)− `2−|Σ++|−1
ϕ0(x)e−ζ

√
t2+|x|2 ,

since∫ κ

√
t2+|x|2

2ζ

κ−1
√
t2+|x|2

2ζ

ds e−ζ
2se−

t2+|x|2
4s =

√
t2+|x|2

2ζ

∫ κ

κ−1
ds e−

ζ
2

√
t2+|x|2(s+s−1)

∼
√

π
2 ζ
− 3

2
(
t2 + |x|2

) 1
4 e−ζ
√
t2+|x|2
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as t+ |x| → +∞, again by the Laplace method [Co, Ch. 5]. Altogether

t

∫ κ

√
t2+|x|2

2ζ

κ−1
√
t2+|x|2

2ζ

ds s−
3
2 e(|%|2−ζ2)se−

t2
4shs(x)

� t
(
t+ |x|

)− `2−|Σ++|−1
ϕ0(x)e−ζ

√
t2+|x|2 .

As far as they are concerned, the first and the last integrals in (4.3.3) are

O
(
ϕ0(x)e−(ζ+η)

√
t2+|x|2) ,

for some η > 0. This is obtained by elementary computations as above,
using the heat kernel upper estimates in (3.3) and in Theorem 3.7.ii .

The other cases are simpler. When ζ = 0 and t + |x| ≥ 1, the main
contribution in (4.3.2.2) comes from the integral where s � t2 + |x|2. We
split therefore ∫ +∞

0
=
∫ (t2+|x|2) 1−η

0
+
∫ +∞

(t2+|x|2) 1−η

with η > 0 small. The second integral is then comparable to

t
(
t+ |x|

)−`−2|Σ++|−1
ϕ0(x)

while the first one is O(t(t+ |x|)−∞ϕ0(x)). Derivatives are estimated in the
same way.

4.4 Heat maximal operator on S = (exp a)N . Recall that the
Laplace–Beltrami operator ∆ on X = G/K is defined by (the left or right
action of) the Casimir operator Ω ∈ U(g):

∆f(xK) = f(Ω : x) = f(x : Ω) ∀x ∈ G . (4.4.1)
Given bases {Hi} of a, {Zj} of m, and {Xk} of n, which are orthonor-
mal with respect to the inner product (2.1.1)) and the latter basis being
compatible with the root space decomposition n = ⊕α∈Σ+gα, we have

Ω =
∑
i

H2
i −

∑
j

Z2
j −

∑
k

{
Xkθ(Xk) + θ(Xk)Xk

}
≡
∑
i

H2
i − 2%+ 2

∑
k

X2
k modulo U(g)k .

Thus (4.4.1) rewrites

∆f(xK) = f
(
x :
∑
i

H2
i − 2%+ 2

∑
k

X2
k

)
∀x ∈ G . (4.4.2)

Owing to the Iwasawa decomposition G = SK, X = G/K can be identified
with the solvable Lie group S = (exp a)N = N(exp a), equipped with the
left-invariant Riemannian structure induced by

(H +X,H ′ +X ′) 7−→ 〈H,H ′〉+ 1
2〈X,X

′〉
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for every H+X and H ′+X ′ in s = a⊕n. Instead of the Laplace–Beltrami
operator (4.4.2), consider the following left-invariant differential operator
on S:

∆̃f(x) = f(x : Ω̃) ∀x ∈ S , where Ω̃ =
∑
i

H2
i + 2

∑
k

X2
k ∈ U(s) .

This distinguished Laplacian is (essentially) self-adjoint with respect to the
right-invariant Haar measure∫

S
drxf(x) =

∫
a

dHe2〈%,H〉
∫
N
dnf((expH)n) =

∫
N
dn

∫
a

dHf(n expH) ,

which will be our reference measure on S henceforth. It has been considered
earlier by several authors ([Bo3], [CowGGM], [CowGHM], [DeGav], [GaSj],
[GiMau], [H], [Hu], [Va],. . . ), some of them interchanging left and right
sides. For clarity let us indicate the relations between functions of ∆ and
∆̃, and between the corresponding convolution kernels k and k̃:

m
(
∆ + |%|2

)
= δ̃−1/2 ◦m(∆̃) ◦ δ̃1/2 ,

k(Kx±1K) = δ̃(x)−1/2k̃(x) ∀x ∈ S ,
where δ̃((expH)n) = δ̃(n expH) = e−2〈%,H〉 denotes the modular function
of S. In particular the heat kernels ht and h̃t associated to ∆ and ∆̃ are
related by

h̃t(x) = δ̃(x)
1
2 e|%|

2tht(KxK) ∀x ∈ S . (4.4.3)
The estimates established or recalled in section 3 enable us to prove the
weak type (1,1) inequality for the heat maximal operator

{H∗f}(x) = sup
t>0

∣∣{et∆̃f}(x)
∣∣

on S, which was looked for in [CowGGM] and obtained there in some
particular cases.

Theorem 4.4.4. There exists a positive constant C such that∣∣{x ∈ S | H∗f(x) > τ}
∣∣ ≤ Cτ−1‖f‖L1 ∀ f ∈ L1(S) , ∀ τ > 0 .

Proof of Theorem 4.4.4. We shall resume the clever method pursued
in [CowGGM]. By using (4.4.3), let us first transfer certain estimates of
section 3 from ht to h̃t:

h̃t(x) � t−n2 (1 + t)
m
2 −|Σ

++|δ̃(x)
1
2ϕ0(x)e−

|x|2
4t if |x| ≤ 1 + t , (4.4.6)

h̃t(x) = O
(
(1 + |x|)dδ̃(x)

1
2ϕ0(x)e−

|x|2
4t
)

if |x| ≥ max{1, t} . (4.4.7)
The weak type (1,1) estimate is known to hold for the local maximal func-
tion

{H0
∗f}(x) = sup

0<t<1

∣∣{et∆̃f}(x)
∣∣ .
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Thus we are left with the global maximal function

{H∞∗ f}(x) = sup
t≥1

∣∣{et∆̃f}(x)
∣∣ ,

which is estimated as follows:

{H∞∗ f}(x) ≤
{
|f | ∗ h̃∗

}
(x) + sup

t≥1

∣∣f ∗ {χth̃t}(x)
∣∣ ,

where h̃∗(x) = sup1≤t≤|x| h̃t(x) and χt(x) denotes the characteristic func-
tion of the ball |x| ≤ t in S. On one hand (4.4.7) yields

h̃∗(x) = O
(
(1 + |x|)dδ̃(x)1/2ϕ0(x)e−|x|/4

)
,

which implies the integrability of h̃∗. For any η > 0, we have indeed∫
S
drxδ̃(x)

1
2ϕ0(x)e−η|x| =

∫
N
dn

∫
a

dH e−〈%,H〉ϕ0(n expH)e−η|n expH|

= 2
m
2

∫
G
dx e−〈%,H(x±1)〉ϕ0(x)e−η|x|

= 2
m
2

∫
G
dx

{∫
K
dk e−〈%,H(xk)〉

}
ϕ0(x)e−η|x|

= 2
m
2

∫
G
dxϕ0(x)2e−η|x|

≤ C
∫

a+
dHe−

η
2 |H| < +∞ ,

using (2.1.4), (2.1.5), (2.2.1) and Proposition 2.2.12.i. As a consequence
the operator f 7→ |f | ∗ h̃∗ is of strong type (1,1). On the other hand we
deduce from (4.4.6) that

χt(x)h̃t(x) ≤ Ct−1
∫ 2t

t
ds h̃s(x) ∀ t ≥ 1 , ∀x ∈ S ,

and the averaged convolution kernel yields a weak type (1,1) maximal op-
erator, according to the Hopf–Dunford–Schwartz ergodic theorem [DunSch,
Ch. VIII]. Altogether H∞∗ is a weak type (1,1) operator and this concludes
the proof of Theorem 4.4.4.

Remarks. (i) The analogous result for the heat diffusion on G/K is
proved quite differently [An5].

(ii) The kernel behavior of the Bessel–Green–Riesz potentials

(−∆̃ + ζ2)−σ/2 and of the Poisson semigroup e−t
√
−∆̃+ζ2 can be deduced

similarly from the corresponding results for ∆ in subsections 4.2 and 4.3.
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5 Asymptotics

In this section we refine the results of section 3, subsection 4.2 and subsec-
tion 4.3 by obtaining asymptotics at infinity instead of global estimates for
the heat kernel ht(expH), for the Bessel–Green–Riesz kernels kζ,σ(expH)
and for the Poisson kernel pt,ζ(expH) on X = G/K. Such precise informa-
tions, notably the asymptotics along faces, were previously unavailable in
the literature, except for some particular cases where specific expressions
could be used (rankX = 1, G complex, G real normal, i.e. totally split,
G = SU(p, q), G = SL(n,H), G = “SL(3,O)”, . . . ).

Recall the meaning of the symbols{
xj ∼ yj ⇐⇒ limj

xj
yj

= 1
xj � yj ⇐⇒ 0 < infj

xj
yj
≤ supj

xj
yj
< +∞

between two sequences of positive numbers.

5.1 Heat kernel ht.

Theorem 5.1.1. The following asymptotics hold:

htj (expHj) ∼ c5b
(
−iHj2tj

)−1
t
− `2−|Σ

++|
j ϕ0(expHj)e

−|%|2tj−
|Hj |

2

4tj as j → +∞ ,

for all sequences tj → +∞ and Hj ∈ a+ satisfying one of the following two
conditions:

(i) 〈α,Hj〉 → +∞ ∀α ∈ Σ+(++),
(ii) |Hj | = O(tj).

Here c5 = c22−|Σ
++|π`/2π(%̃)b(0)−1 is a positive constant.

Remarks 5.1.2. (i) The expressions b
(
− iHj2tj

)−1 and ϕ0(expHj) en-
tering these asymptotics are positive and their behavior was recalled in
subsection 2.2.

(ii) We conjecture that these asymptotics hold for all sequences tj →
+∞ and Hj ∈ a+, without the condition |Hj | = O(tj). As in Theo-
rem 3.7.ii, our restricted assumption comes from the Trombi–Varadarajan
expansion (Theorem 2.2.8).

(iii) When G is complex, spherical analysis is elementary and the heat
kernel behavior is easily read off from the explicit formula [G]

ht(x) = (4πt)−
n
2 ϕ0(x)e−|%|

2t− |x|
2

4t ∀ t > 0 , ∀x ∈ G ,
with ϕ0(expH) =

∏
α∈Σ+

〈α,H〉
sinh〈α,H〉 ∀H ∈ a .
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(iv) Theorem 5.1.1 yields complete heat kernel asymptotics in rank 1:

htj (exp rjH0) ∼ c′5γ
(κ

2
rj
tj

)
t
− 3

2
j rje

− %
2

κ2 tj−%rj−
κ2

4

r2j
tj

as tj → +∞ and rj → +∞. Here α is the short positive root, H0 is the gen-
erator of a normalized by 〈α,H0〉 = 1, κ = |H0| = |α|−1 =

√
2mα + 8m2α,

% = mα
2 +m2α, c′5 = 2m2α−1π−

n
2 κ3−n and

γ(s) = Γ(s+mα
2 )

Γ(s+1)
Γ( s2 + %

2 )
Γ( s2 +mα

4 )

is a positive expression when s ≥ 0, with γ(0) = 2
mα
2 −1π−

1
2 Γ
(%

2

)
Γ
(
mα
4 + 1

2

)
and

γ(s) ∼ 2−
m2α

2 s
n−3

2 as s→ +∞ .

This result extends obviously to Damek–Ricci spaces (see [AnDY] and the
references therein).

(v) The weak asymptotic behavior of the measures htj (x)dx on X =
G/K, for iterated times tj = jt1 → +∞, was determined in ([Bo1,2]), as a
particular case of a central limit theorem for random walks on G.

The proof of Theorem 5.1.1 relies on the analysis carried out in section 3
and will take up the rest of this subsection. Let us first deal with the easy
cases:
(5.1.3) As noticed in Step 0 of section 3, the Euclidean setting is elementary

and we can always reduce to the semisimple one.
(5.1.4) The heat kernel asymptotics in case (i) follow immediately from

Step 6 in section 3. Notice that the convergence
htj (expHj)

b
(
− iHj2tj

)−1
t
− `2−|Σ++|
j ϕ0(expHj)e−|%|

2tj−(|Hj |2/4tj)
−→ c5

depends only on the rate ω(Hj) = minα∈Σ+(++)〈α,Hj〉 tends to +∞.
(5.1.5) The heat kernel asymptotics when |Hj | = o(

√
tj) follow similarly

from Step 5 in section 3 and from the formula∫
a

dλπ(λ)2e−|λ|
2

= 2−|Σ
++|π

`
2 |W |π(%̃) ,

which is obtained by applying π
(
∂
∂H

)2∣∣
H=0 to

∫
a
dλe−|λ|

2
ei〈λ,H〉 =

π
`
2 e−

1
4 |H|

2
and using ∂(π)π = |W |π(%̃) (see the proof of Proposi-

tion 2.2.12.ii).
(5.1.6) Let us now consider the more general case where |Hj | = O(

√
tj).

Assume that the heat kernel asymptotics fail to hold for two such se-
quences tj ∈ (0,+∞) and Hj ∈ a+. According to (5.1.5), |Hj |/

√
tj 9

0. By passing to subsequences, we can assume that infj |Hj |/
√
tj > 0,
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hence |Hj | → +∞. By compactness, we can furthermore assume that
Hj/|Hj | tends to a unit vector H∞ in a+. Because of case (i), H∞
cannot lie in a+ and must therefore belong to some face (aF )+. Then
Step 7 in section 3 yields the heat kernel asymptotics asymptotics

htj (expHj) ∼ c22−|Σ
++|π

`
2πF (%̃)b(0)−1bF (0)−1

× t−
`
2−|Σ

++|
j πF (HF

j )ϕF0 (expHj)e
−|%|2tj−〈%F ,Hj〉−

|HFj |
2

4tj ,

which agree with Theorem 5.1.1, since{
〈α,Hj〉 = o(|Hj |) ∀α ∈ F ,
〈α,Hj〉 � |Hj | ∀α ∈ Σ+++ r F ,

hence

〈α,Hj〉 ∼ 〈α,HF
j 〉 ∀α ∈ Σ++ rΣ++

F ,

|(Hj)F | = o(|Hj |) ,
and

ϕ0(expHj) ∼ πF (%̃)−1bF (0)πF (HF
j )ϕF0 (expHj)e−〈%

F ,Hj〉

according to (2.2.13.iii). This contradicts our assumptions.

Next assume that the heat kernel asymptotics hold in case (ii) for all
proper symmetric subspaces with no Euclidean factor in X, but not for
X itself. Consider two sequences tj ∈ (0,+∞) and Hj ∈ a+ such that
tj → +∞, |Hj | = O(tj) and

inf
j

∣∣∣∣ htj (expHj)

t
− `2−|Σ++|
j ϕ0(expHj)e−|%|

2tj−(|Hj |2/4tj)
− c5

∣∣∣∣ > 0 . (5.1.7)

By passing to subsequences as above, we can assume that |Hj |/
√
tj → +∞,

because of (5.1.6), and that Hj/|Hj | tends to a unit vector in some face
(aF )+, by compactness and because of case (i). Under these assumptions,
we can expand the heat kernel as in Steps 4 and 8 of section 3:

htj (expHj) = IF0 + IIF0 + IIIF0︸ ︷︷ ︸
EF0

+
∑
q∈2QF

0<κ(q)<N

EFq +RFN ,

with leading term

IF0 = c2π
`F

2 |WF |−1t
− `

F

2
j cF

(
−iH

F
j

2tj

)−1

e
−|%|2tj−〈%F ,Hj〉−

|HFj |
2

4tj

×
∫

aF

dλF |cF (λF )|−2e−tj |λF |
2
ϕFλF (expHj) (5.1.8)
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and remainder estimates

IIF0 + IIIF0 = o
(
t
− `2−|Σ

++
F |

j

{ ∏
α∈Σ++

(1 + 〈α,Hj〉)
}
e
−|%|2tj−〈%,Hj〉−

|Hj |
2

4tj

)
,

∑
q∈2QF

0<κ(q)<N

EFq +RFN = O
(
t−∞j e

−|%|2tj−〈%,Hj〉−
|Hj |

2

4tj

)
.

According to the induction hypothesis, the integral in (5.1.8) behaves asymp-
totically like

2−|Σ
++
F |π

`F
2 |WF |πF (%̃)bF (0)−2t

− `F2 −|Σ
++
F |

j ϕF0 (expHj)e
− |(Hj)F |

2

4tj .

Putting everything together, we obtain

htj (expHj) ∼ c22−|Σ
++|π

`
2πF (%̃)bF (0)−2bF

(
−iHj2tj

)−1

× t−
`
2−|Σ

++|
j πF (HF

j )ϕF0 (expHj)e
−|%|2tj−〈%F ,Hj〉−

|Hj |
2

4tj ,

which agrees with the asymptotics in Theorem 5.1.1, as observed at the
end of (5.1.6). This contradicts (5.1.7) and concludes the proof of Theo-
rem 5.1.1.

5.2 Bessel–Green–Riesz kernels kζ, σ.

Theorem 5.2.1. (i) Let ζ > 0 and σ > 0. Then the following asymp-
totics hold, for all sequences Hj ∈ a+ tending to infinity, i.e. such that
|Hj | → +∞:

kζ,σ(expHj)∼c6b
(
−iζ Hj

|Hj |

)−1
|Hj |

σ−`−1
2 −|Σ++|ϕ0(expHj)e−ζ|Hj | as j→+∞ ,

where c6 = c22
`+1−σ

2 π
`+1

2 π(%̃)b(0)−1Γ
(
σ
2

)−1
ζ
`−σ−1

2 +|Σ++| is a positive con-
stant.

(ii) In the limit case ζ = 0 and for 0 < σ < `+ 2|Σ++|, we have instead
k0,σ(expHj) ∼ c7|Hj |σ−`−2|Σ++|ϕ0(expHj) ,

with c7 = c22`+|Σ
++|−σπ

`
2π(%̃)b(0)−2Γ( `−σ2 + |Σ++|) Γ(σ2 )−1.

Remark 5.2.2. (i) The expressions b
(
−iζ Hj

|Hj |
)−1 and ϕ0(expHj) en-

tering these asymptotics are positive and their behavior was recalled in
subsection 2.2. For instance, let us specialize Theorem 5.2.1 to sequences
Hj ∈ a+ tending to infinity as in Proposition 2.2.12.ii:{

〈α,Hj〉 = o(ωF (Hj)) ∀α ∈ F ,
ωF (Hj) = minα∈Σ+++rF 〈α,Hj〉 → +∞ ,

where F is a proper subset of Σ+++ (possibly empty). Then
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• ζ > 0 and σ > 0:
kζ,σ(expHj) ∼

cF6 bF
(
−iζ Hj

|Hj |
)−1|Hj |

σ−`−1
2 −|Σ++|πF (Hj)ϕF0 (expHj)e−〈%

F ,Hj〉−ζ|Hj | ,

with cF6 = c22
`+1−σ

2 π
`+1

2 πF (%̃)bF (0)−2Γ(σ2 )−1ζ
`−σ−1

2 +|Σ++|,
• ζ=0 and 0<σ<`+2|Σ++|:

k0,σ(expHj)∼cF7 |Hj |σ−`−2|Σ++|ϕ0(expHj) ,

with cF7 =c22`+|Σ
++|−σπ

`
2πF (%̃)b(0)−1bF (0)−1Γ

(
`−σ

2 +|Σ++|
)
Γ
(
σ
2

)−1.
(ii) When G is complex, the behavior of kζ,σ can be easily read off from

the explicit formulas
• ζ > 0 and σ > 0:

kζ,σ(x) = 21−n+σ
2 π−

n
2 Γ(σ2 )−1ζ

n−σ
2 |x|

σ−n
2 ϕ0(x)K±n−σ2

(ζ|x|) ,
• ζ = 0 and 0 < σ < n:

k0,σ = 2−σπ−
n
2 Γ
(
n−σ

2

)
Γ
(
σ
2

)−1|x|σ−nϕ0(x) ,
for x ∈ G r K, which are obtained by combining (4.2.4.2) with Rem-
ark 5.1.2.iii. Here

ϕ0(expH) =
∏
α∈Σ+

〈α,H〉
sinh〈α,H〉 ∀H ∈ a

and Kν(z) denotes the classical Bessel K-function, also known as modified
Bessel function of the third kind or Macdonald’s function (see for instance
[L, Ch.4 5]).

(iii) In rank 1, the asymptotics in Theorem 5.2.1 read as follows, resum-
ing the notation of Remark 5.1.2.iv:
• ζ > 0 and σ > 0:

kζ,σ(exp rjH0) ∼ c′6r
σ
2−1
j e−(%+κζ)rj ,

with c′6 = 2m2α+1−σ2 π
1−n

2 κ
σ
2 +1−nΓ(σ2 )−1ζ1−σ2 γ(ζ),

• ζ = 0 and 0 < σ < 3:
k0,σ(exp rjH0) ∼ c′7rσ−2

j e−%rj ,

with c′7 = 2%+1−σπ−
n+1

2 κσ−nΓ(%2)Γ
(
mα
4 + 1

2

)
Γ
(3−σ

2

)
Γ
(
σ
2

)−1.
These results extend again to Damek–Ricci spaces.

(iv) Let us specialize Theorem 5.2.1 to the Green function kζ = kζ,2:
• ζ > 0:

kζ(expHj) ∼ c′′6b
(
−iζ Hj

|Hj |
)−1|Hj |

1−`
2 −|Σ

++|ϕ0(expHj)e−ζ|Hj | ,

with c′′6 = c22
`−1

2 π
`+1

2 π(%̃)b(0)−1ζ
`−3

2 +|Σ++|,
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• ζ = 0:
k0(expHj) ∼ c′′7|Hj |2−`−2|Σ++|ϕ0(expHj) ,

with c′′7 = c22`+|Σ
++|−2π

`
2 Γ
(
`
2 + |Σ++| − 1

)
π(%̃)b(0)−2.

Recall that these asymptotics are closely related to the Martin compactifica-
tion of X = G/K (see [GuJT2] and the references cited therein). Complete
Green function asymptotics had been obtained previously in some particu-
lar cases: when G is complex ([Dy], [No]), when X is a product of hyperbolic
spaces [GiW], or when G is real normal, i.e. totally split [Cha]. (Notice by
comparison that b(−iλ)−1 coincides, up to a positive constant, with the
expression κ(λ) =

∫
KC
dh e−〈%+λ,H(h)〉 used in [Cha].) The general case was

actually announced a long time ago in [Ol1] (see also Remark 2.2.13.iv).
But the delicate analysis along faces relied on a misuse of Harish–Chandra’s
expansion (recalled in Theorem 2.2.7), as came out in the preprint version
of [Ol3]. In the final version, asymptotics of kζ(expHj) are stated in [Ol3,
Theorem 3.2] under the following restricted assumptions: G is semisimple,
ζ > 0 and 

Hj ∈ a+ tends to infinity i.e. |Hj | → +∞ ,

(Hj)F tends to a nonzero vector in (aF )+ ,
Hj
|Hj | i.e. (Hj)F

|(Hj)F | tends to a unit vector in (aF )+ ,

for some proper subset F of Σ+++. But the proof requires actually more,
namely

Hj ∈ a
+ , lim(Hj)F ∈ (aF )+ and lim (Hj)F

|(Hj)F | ∈ (aF )+ .

The first two conditions come from the Harish–Chandra expansion. The
last condition is needed to ensure the nonvanishing of the expressions
cz(−ia′ r̃

|̃r|)
−1 in [Ol3, (3.47)] and cz(−ia r̃

|̃r|)
−1 in [Ol3, (3.51)]. Otherwise

the asymptotic analysis carried out in [Ol3, Section 3] yields no leading
term and is not conclusive. Thus the gap in Olshanetsky’s asymptotics of
kζ(expHj) consists essentially in the cases where{

some 〈α,Hj〉 tend to 0 ,
some 〈α,Hj〉 tend to +∞ at different rates .

Finally, let us mention that Green potential asymptotics have also been
obtained for random walks on X, along directions xj = kj(expHj)K with
radial part 

Hj ∈ a+

|Hj | → +∞
〈α,Hj〉 � |Hj | ∀α ∈ Σ+(++)
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([B1,3], [Bo1,4]).
The proof of Theorem 5.2.1 relies on the material developed in subsec-

tions 4.2 and 5.1. Recall the formula

kζ,σ(expHj) =
1

Γ(σ2 )

∫ +∞

0

dt

t
t
σ
2 e(|%|2−ζ2)tht(expHj) . (4.2.4.2)

(i) When ζ > 0, we know that the main contribution in (4.2.4.2) comes

from the integral
∫ κ |Hj |2ζ

κ−1 |Hj |
2ζ

around |Hj |2ζ , which yields

Γ
(σ

2

)−1
ϕ0(expHj)

∫ κ
|Hj |
2ζ

κ−1 |Hj |
2ζ

dt t
σ−`

2 −|Σ
++|−1b

(
−iHj

2t

)−1

e−ζ
2t− |Hj |

2

4t h(t,Hj)

= Γ
(
σ
2

)−1
(
|Hj |
2ζ

)σ−`
2 −|Σ

++|
b
(
− iζ Hj

|Hj |

)−1
ϕ0(expHj)

×
∫ κ

κ−1
dt e−ζ|Hj |

t+t−1
2 t

σ−`
2 −|Σ

++|−1
b
(
− iζ Hj

|Hj |
)

b
(
− iζ Hj

|Hj |t
−1
)h( |Hj |

2ζ
t,Hj

)
,

where

h(t,H) = t
`
2 +|Σ++|b

(
−iH2t

)
ϕ0(expH)−1e|%|

2t+ |H|
2

4t ht(expH) .
The asymptotic behavior

Ij ∼ c5
√

2π
ζ |Hj |−

1
2 e−ζ|Hj |

of the last integral is obtained by the Laplace method. Notice that
(5.2.3.1) b

(
− iζ Hj

|Hj | t
−1
)

is bounded above and below, uniformly in j and t,

(5.2.3.2) b
(
− iζ Hj

|Hj | t
−1
)
∼ b

(
− iζ Hj

|Hj |
)

as t→ 1, uniformly in j,

(5.2.3.3) h
( |Hj |

2ζ t,Hj

)
→ c5 as j → +∞, uniformly in t.

While (5.2.3.1) and (5.2.3.2) are elementary, (5.2.3.3) follows from Theo-
rem 5.1.1 by contradiction.

(ii) When ζ = 0, the main contribution in (4.2.4.2) comes instead from
the integral

∫ |Hj |2+η

|Hj |2−η around |Hj |2, which yields

Γ
(σ

2

)−1
ϕ0(expHj)

∫ |Hj |2+η

|Hj |2−η

dt

t
t
σ−`

2 −|Σ
++|e−

|Hj |
2

4t h′(t,Hj)

= Γ
(σ

2

)−1
(
|Hj |

2

)σ−`−2|Σ++|
ϕ0(expHj)

×
∫ 1

4 |Hj |
η

1
4 |Hj |−η

dt

t
t
`−σ

2 +|Σ++|e−th′
(
|Hj |2

4t
,Hj

)
.
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Here

h′(t,Hj) = t
`
2 +|Σ++|ϕ0(expHj)−1e|%|

2t+
|Hj |

2

4t ht(expHj)
tends uniformly to c5b(0)−1, as |Hj |2−η ≤ t ≤ |Hj |2+η and j → +∞. This
follows from Theorem 5.1.1.i, again by contradiction. As a conclusion, the
last integral tends to c5b(0)−1Γ( `−σ2 + |Σ++|).
5.3 Poisson kernel pt, ζ.

Theorem 5.3.1. (i) Assume ζ > 0. Let tj ∈ (0,+∞) and Hj ∈ a+ be two
sequences such that tj + |Hj | → +∞. Then

pt,ζ(expHj) ∼ c8b
(
−iζ Hj√

t2j+|Hj |2

)−1

× tj
(
t2j + |Hj |2

)− `4− 1
2 |Σ

++|− 1
2ϕ0(expHj)e

−ζ
√
t2j+|Hj |2 ,

where c8 = c22
`
2π

`
2π(%̃)b(0)−1ζ

`
2 +|Σ++| is a positive constant.

(ii) In the limit case ζ = 0, we have instead

pt,0(expHj) ∼ c9tj(t2j + |Hj |2)−
`
2−|Σ

++|− 1
2ϕ0(expHj) ,

with c9 = c22`+|Σ
++|π

`−1
2 Γ( `+1

2 + |Σ++|)π(%̃)b(0)−2.
Theorem 5.3.1 is proved like Theorem 5.2.1, using the material in Sub-

sections 4.3 and 5.1.
Remark 5.3.2. We have again

(i) the following explicit expressions when G is complex:

• ζ > 0:

pt,ζ(x) = 2−
n−1

2 π−
n+1

2 ζ
n+1

2 t(t2 + |x|2)−
n+1

4 ϕ0(x)K±n+1
2

(
ζ
√
t2 + |x|2

)
,

• ζ = 0:

pt,0(x) = π−
n+1

2 Γ(n+1
2 )t(t2 + |x|2)−

n+1
2 ϕ0(x) ,

(ii) the following asymptotics in rank 1:
• ζ > 0:

pt,ζ(exp rjH0) ∼ c′8γ
(
ζ

κrj√
t2j+κ

2r2j

)
tjrj(t2j+κ2r2

j )
− 5

4 e
−%rj−ζ

√
t2j+κ

2r2j ,

where c′8 = 2m2α+ 1
2π−

n
2 κ3−nζ

3
2 ,

• ζ = 0:
pt,0(exp rjH0) ∼ c′9tjrj(t2j + κ2r2

j )
−2e−%rj ,

where c′9 = 2%+1π−
n
2−1κ3−nΓ

(%
2

)
Γ
(
mα
4 +1

2

)
, which extend straight-

forwardly to Damek–Ricci spaces.
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