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Abstract. The scattering matrix for multi-component systems is recalculated using the extended form of
the Sherman-Morisson formula. The matrix elements are given explicitly in closed form. The Gibbs-Duhem
relation separates the density and composition contributions.
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1 Introduction

The classical method for the evaluation of the scattering
at zero angle by multi-component systems starts with the
following formulation of the scattered intensity:

I =
∑

i,j=1..p

bibjSij ,

where the bj ’s are the scattering length of the p species
and the Sij are the elements of the scattering matrix S. It
has been shown [1] that S−1 can be decomposed into two
terms: a density and a composition fluctuation,

S−1 =
[
A + Γ−1vvT

]
, (1)

where A is the matrix of the chemical potential gradients
(∂µi/∂nj)p,T,nk �=i,j , Γ = V χT , V being the total volume
of the system, χT the isothermal compressibility, nj the
number of molecules in the i-th component, and v the
column vector of the partial volumes of the components
and vT its transpose.

The problem is to invert S−1. Recently, Benôıt and
Jannink [1] proposed a new method for this inversion. In
this paper we present a more general derivation based on
the Sherman-Morisson [2] formula (SMF), i.e., which, as-
suming A to be a non-singular matrix, reads as

S = A−1 − A−1vvTA−1

Γ + vTA−1v
. (2)

This identity can be verified by direct matrix
multiplication. This formula was used, generically, in the
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field of multi-component polymer dynamics in the early
nineties to obtain an expression for the mobility matrix
in the mean-field approximation [3,4]. In these applica-
tions, the matrix A was not singular, and the application
of the SMF was straightforward. In the present applica-
tion, the matrix A of equation (1) is singular due to the
Gibbs-Duhem rule and hence the SMF rule cannot be used
directly. The purpose of this communication is thus to ex-
tend SMF to allow A to be singular, so that the expression
of the static structure factor in the thermodynamic limit
can be calculated in closed form even when the Gibbs-
Duhem rule is implemented. The first part of this paper
is therefore devoted to the extension of the SMF, and the
second part to its application to the scattering problem.

2 The derivation of the extended version of
the SMF

We first calculate the determinant of the matrix A +
Γ−1vvT (see App. A) as∣∣S−1

∣∣ =
∣∣A + Γ−1vvT

∣∣ = |A| + Γ−1vTAadv , (3)

where Aad is the adjoint of A, i.e., the transpose of the
cofactor matrix of A, and related to the inverse of A as

A−1 =
Aad

|A| . (4a)

The elements of Aad are expressed as

Aad
ij =

∂ |A|
∂aji

. (4b)
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The second term in equation (3) can be expressed ex-
plicitly in terms of the elements aij of A as

vTAadv =
p∑

µ=1

|Cµ| , (5a)

where

Cµ =




a11.. v1vµ.. a1p

: : :
as1.. vsvµ.. asp

: : :
ap1.. vpvµ.. app


 , (5b)

vs being the partial volumes of the components at constant
pressure. The matrix Cµ is obtained by replacing elements
asµ in the µ-th column of A by vsvµ for s = 1 . . . p as
explained in Appendix A.

We then express the right-hand side of equation (1) in
terms of the adjoint of [A+Γ−1vvT] and its determinant
using equation (4a):

S =
1

|A + Γ−1vvT|
[
A + Γ−1vvT

]ad
. (6a)

Clearly, the front factor is just the determinant of S
according to equation (3):

|S| =
1

|A| + Γ−1vTAadv
. (6b)

The elements of the second factor in equation (6a)
can be expressed as the partial derivatives of the deter-
minant of |A + Γ−1vvT| with respect to its elements
xji = aji + Γ−1vjvi according to equation (4b). Since
the second term in xji is independent of aji, the differen-
tiation can be performed with respect to aji only. Hence,
we obtain

Sij = |S| ∂

∂aji

(
|A| + Γ−1vTAadv

)
. (7a)

This is the desired extension of the SMF which is valid
even when the matrix A is singular. The first term in
equation (7a) is just the adjoint matrix Aad according to
equation (4b). Hence, S can be written as

S = |S|
(
Aad + Γ−1Z

)
, (7b)

where we have introduced the matrix Z to denote

Zij =
∂

∂aji

(
vTAadv

)
. (8)

We mention in passing that the right-hand side of
equation (7a) can be written more compactly, and inter-
estingly, by using equation (6b) as

Sij = |S| ∂

∂aji

1
|S| .

In order to express the elements Zij in terms of the
elements of A and v, we substitute vTAadv from equa-
tions (5) into (8), and obtain

Zij =
p∑

µ=1

∂ |Cµ|
∂aji

. (9)

We present the expression of Zij explicitly for p = 2
and 3 to illustrate the implementation of this formula.

For p (number of constituents) = 2,

Zij =
∂

∂aji

∣∣∣∣ v2
1 a12

v1v2 a22

∣∣∣∣ +
∂

∂aji

∣∣∣∣a11 v1v2

a21 v2
2

∣∣∣∣ (i, j = 1, 2)

or

Z =
[

v2
2 −v1v2

−v1v2 v2
1

]
. (10)

For p = 3,

Zij =
∂

∂aji

∣∣∣∣∣∣∣
v2
1 a12 a13

v2v1 a22 a23

v3v1 a32 a33

∣∣∣∣∣∣∣
+

∂

∂aji

∣∣∣∣∣∣∣
a11 v1v2 a13

a21 v2
2 a23

a31 v3v2 a33

∣∣∣∣∣∣∣ +
∂

∂aji

∣∣∣∣∣∣∣
a11 a12 v1v3

a21 a22 v2v3

a31 a32 v2
3

∣∣∣∣∣∣∣ ,

or

Z11 = a33v
2
2 + a22v

2
3 − (a23 + a32)v2v3 ,

Z22 = a11v
2
3 + a33v

2
1 − (a13 + a31)v1v3 ,

Z33 = a11v
2
2 + a22v

2
1 − (a12 + a21)v1v2 ,

Z12 = a13v2v3 − a12v
2
3 − a33v1v2 + a32v1v3 ,

Z21 = a31v2v3 − a21v
2
3 − a33v1v2 + a23v1v3 ,

Z13 = a12v2v3 − a13v
2
2 − a22v1v3 + a23v1v2 ,

Z31 = a21v2v3 − a31v
2
2 − a22v1v3 + a32v1v2 ,

Z23 = a13v1v2 + a21v1v3 − a11v2v3 + a23v
2
1 ,

Z32 = a31v1v2 + a12v1v3 − a11v2v3 + a32v
2
1 . (11)

We note that the matrix A is not assumed to be
symmetric in the derivation of the above results. When
A = AT, we also have Z = ZT so that the calculation of
Zij is simplified.

In conclusion, equation (9) provides a simple algorithm
to calculate the elements of Z for any number of compo-
nents.

3 Application to scattering by
multi-component systems

3.1 The thermodynamic modelling

The scattering by multi-component systems has aroused
great interest [1,5–7], because of the information that it
contains, and because of a certain degree of freedom in
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the interpretation. The modelling is based on thermody-
namics: There are p species, characterised by abundance’s
ni, partial volumes vi, chemical potentials µi, i = 1, . . . , p.
The scattering matrix S, of order p, is defined by its ele-
ments

Sij = 〈δniδnj〉 = δµi/δnj |V,T . (12)

The derivatives are taken at constant volume and tem-
perature. Thermodynamics allows to obtain a decomposi-
tion for the inverse scattering matrix, as in equation (1):

S−1 = A + Pv , (13)

where the elements aij of A are the increments
δµi/δnj |P,T taken at constant pressure and temperature.
The symbol Pv means the projector on vector v:

Pv |ij= vivj/χT V . (14)

The Gibbs-Duhem rule writes

An = 0 , (15)

where n= column (n1, n2,. . . ,np). It has been shown [1,6]
that the inverse of (13), i.e., the scattering matrix, takes
the form

S = Pn + B , (16)

where Pn is the projector on vector n,

Pn |ij= ninjχT /V (17)

and B is the composition fluctuation contribution. It has
the property

Bv = 0 , (18)

a relation conjugated to the Gibbs-Duhem rule. The prob-
lem is to determine the elements of B. Several solu-
tions [1,7] have been proposed which are complementary.
Here we propose a new approach based on the extended-
version Sherman-Morisson formula derived in Section 2.
This approach has the advantage to give explicit results,
and it helps to gain some new insight into the problem.

3.2 The Sherman-Morisson inversion: A re-normalized
formulation

The problem which arises in modelling the scatter-
ing experiment is to obtain equation (16) from equa-
tion (13). The extended SMF in equation (7b) gives
S = |S|(Aad + Γ−1Z) which we reproduce here as

S(α) = S0(α) + S1(α) , (19)

where

S0(α) =
ΓAad

Γα + vTAadv
, (20a)

S1(α) =
Z

Γα + vTAadv
, (20b)

where α = |A|. In these equation the square matrix A is
completely arbitrary in the sense that the elements aij are
all independent variables. When the Gibbs-Duhem(G-D)
rule is invoked, the determinant α = 0, and equations (20)
reduce to

S0(0) =
ΓAad

vTAadv
, (21)

S1(0) =
Z

vTAadv
. (22)

In order to reproduce the thermodynamic results based
on the G-D rule as reported in reference [1], we have to
make full use of the consequences of the G-D constraints:

ai1n1 +ai2n2 + . . .+aipnp = 0 (i = 1, 2, . . . , p) , (23)

as well as the fact that in scattering problems the matrix
A is symmetric. It is shown in Appendix B that, when
it is done, the adjoint matrix Aad acquires the following
delightfully simple form:

Aad =
Aad

11

n2
1

nnT , (24)

where n is the column vector (n1, n2, . . . , np). This re-
sult was obtained in reference [1] in the case of p = 3.
Substituting equation (24) into equation (21), and using
V = nTv, where V is the volume of the system, we obtain

S0(0) =
Γ

V 2
nnT , (25)

which is identical to the projector Pn defined in equa-
tion (17), with Γ = V χT .

The other contribution B in equation (16), which is re-
lated to the composition fluctuations, is identical to S1(0)
in equation (22). Hence, using vTAadv = (V 2/n2

1)A
ad
11 , we

get

Bij =
n2

1

V 2Aad
11

Zij , (26)

where Zij are given by equation (9) in general. The use
of G-D constraints in the calculation of Bij does not lead
to any simplification. We present explicit results only for
p = 2 and p = 3 as an illustration. For p = 2, Aad

11 = a22,
and Zij are given in equation (10):

B =
n2

1

V 2a22

[
v2
2 −v1v2

−v1v2 v2
1

]
,

which is a standard result.
For p = 3, Aad

11 = a22a33 − a2
12, and Zij are given in

equation (11). We present only B11 as an example:

B11 =
n2

1

V 2(a22a33 − a2
23)

(a33v
2
2 + a22v

2
3 − 2a23v2v3) ,

which was also obtained in reference [1].
We note that the property in equation (18), i.e.,

Bv = 0, is easily verified in the case of p = 2. The proof
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Bv = 0, or, equivalently, Zv = 0, for an arbitrary number
of components is based on the following identity:

∂2|A|
∂ajiaνµ

= − ∂2|A|
∂aνiajµ

,

which follows from the fact that the simultaneous inter-
change of the indices j and ν, and the interchange of the
j-th and ν-th rows of |A| implies differentiation with re-
spect to the same elements. The minus sign comes from
the interchange of two rows in a determinant. The follow-
ing steps are now self-explanatory:

Zijvj = vjvνvµ
∂2|A|

∂ajiaνµ
= vjvµvν

∂2|A|
∂aνiajµ

=

−vjvµvν
∂2|A|

∂ajiaνµ
= −Zijvj .

A general method of computation of the scattering
by multi-component, compressible systems has been pre-
sented. It assumes that the chemical potential gradients
at constant pressure are known.

3.3 Discussions

The decomposition of the scattering matrix S, re-derived
with a new method in the preceding sections, calls for the
following comments:

1) This decomposition is given for any value of α =
Det A. The case α = 0 corresponds to constant pres-
sure and temperature conditions. The case α �= 0 is
not yet fully interpreted but could correspond to an
adiabatic situation.
The condition α = 0 is a necessary condition for the
rule to be obeyed: It produces a separation into a den-
sity fluctuation matrix and a composition fluctuation
matrix. On the contrary, when α �= 0, the rule is not
obeyed, and it is not possible to partition S into den-
sity and composition contributions.

2) The fact that the scattering matrix S may be decom-
posed into a density and a composition fluctuation
sub-matrices does not automatically imply that den-
sity and composition fluctuations are uncorrelated. For
this to occur it is necessary that S be represented as a
direct sum [8]:

S = B ⊕ Pn . (27)

Such a situation exists, when, for instance, B is the in-
verse of the restriction of A to the subspace orthogonal
to vector “n” [7]. The matrix Pn being the projector
on “n”, there is no intersection between the respec-
tive subspaces. This representation allows uncorrelated
fluctuations [9], which could perhaps be observed ex-
perimentally.

3) The property Bv = 0 is a key relation for the intro-
duction of contrasts. It is however not the only one,
if one considers the fact that the scattered intensity is
a quadratic form of the scattering matrices: One can
imagine many transformations which would leave the
intensity unchanged.

Appendix A. Calculation of the determinant
of S−1

We start with the expansion of |S−1|:

|S−1| =
∑
P

(−1)P (a1k1 + Γ−1v1vk1)

× (a2k2 + Γ−1v2vk2) . . . (apkp
+ Γ−1vpvkp

) ,

where the symbols have their usual meanings. Upon ex-
pansion we get

|S−1| = |A| + 1
Γ

v1

∑
P

(−1)P vk1a2k2 . . . ap,kp
+ . . .

+
1
Γ

vp

∑
P

(−1)P a1k1 . . . ap−1,kp−1vkp

+
1

Γ 2

{
v1v2

∑
p

(−1)P vk1vk2a3k3 . . . apkp
+ . . .

}
.

The terms involving (1/Γ )2 and the higher powers are
zero because they involve determinants with two identi-
cal rows. The sum of the terms involving 1/Γ is equal to
(1/Γ )vTAadv. Hence equation (3) follows.

To calculate vTAadv in terms of the elements aij and
vs, we start with the matrix identity aνµAad

µν = |A| for
any given µ with summation on ν. This is the expansion
of the determinant |A| into the elements of the µ-th col-
umn. Thus, vνAad

µν = |Xµ| is the determinant of a matrix
Xµ which is obtained by replacing the elements aνµ in
the µ-th column of |A| by vν , ν = 1, 2, . . . p. Consider now
the summation vµ|Xµ| for µ = 1, 2 . . . p. Each term in this
summation, say the µ-th term, is the determinant of a ma-
trix Cµ, which is obtained by replacing the elements aνµ

in the µ-th column of |A| by vµvν , ν = 1, 2, . . . p. Hence,
vTAadv = vµAad

µνvν =
∑p

s=1 |Cs| has been established,
proving equations (5) in the text.

Appendix B. Implementation of the
Gibbs-Duhem relation in the SMF

The G-D relations are expressed as aijnj = 0, i =
1, 2, . . . , p, where summation on j is implied. For a given
set of values of nj , we can solve these equations for the
diagonal terms as

aii = − 1
ni

∑
j �=i

aijnj ,

where we treat aij as p(p − 1) independent variables for
i �= j. Since An = 0 implies |A| = 0, we have

p∑
j=1

aijA
ad
ji = 0 , i = 1, 2, . . . , p ,
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where Aad
ji does not depend on aik or akj for any k by its

definition as adjoint. The diagonal term is given by

aiiA
ad
ii = −

p∑
j=1 �=i

aijA
ad
ji .

Substituting aii from above, we find

n∑
j=1 �=i

aij

[
nj

ni
Aad

ii − Aad
ji

]
= 0 .

Since aij are independent variables and the coefficients
do not depend on them, we obtain

Aad
ji

nj
=

Aad
ii

ni
, for any i and j , (B1)

which can also be written as Aad
ji /nj = Aad

ki /nk for any j
and k for a given i. Expressing the off-diagonal elements
in terms of the diagonal elements using equation (B1), we
can express the elements of the adjoint matrix Aad as

[
Aad

]
µν

=
nµ

nν
Aad

νν . (B2)

So far, we have not assumed that the matrix A is
symmetric. When A = AT, we also have Aad

ji = Aad
ij .

When substituted into equation (B1), the latter yields

Aad
ji = (nj/ni)Aad

ii = Aad
ij = (ni/nj)Aad

jj .

So, the diagonal elements satisfy Aad
ii = (ni/nj)2Aad

jj

or Aad
ii = (ni/n1)2Aad

11 , i.e., they can be expressed only in
terms of one of them. Using this result in equation (B2),
we find [

Aad
]

µν
=

nµnν

n2
1

Aad
11 ,

which leads to equation (24) in the text.
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