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The analysis of drill cutting angles is important for the design
of high-performance drill geometry. The cutting angles along
the cutting edge of a drill are determined by the combination
of its flute and flank surfaces. This paper examines the analysis
of both flute and flank surface models and the evaluation of
drill cutting angles. A new mathematical model for an arbitrary
drill flute face is developed by sweeping the polynomial rep-
resentation of the flute cross-sectional curve along the drill
axis, with a helical movement. On the basis of the quadratic
flank face, a relationship between the grinding and the geo-
metrical design parameters of the flank face is also established.
The vector analysis method is employed for the analysis of the
cutting angles for various drill geometries. A comparison of
the analytical results with the actual measured cutting angles
of an example drill has shown that the average error is less
than 5%.
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1. Introduction

Drill performance is significantly affected by its cutting angles,
such as the relief and rake angles, along the entire drill cutting
edges. Researchers over the past few decades have tried to
optimise cutting angles for better drill performance by mod-
ifying drill geometry. Cutting edges are formed by the intersec-
tion of the flank and flute faces. Their shapes and orientations,
with respect to the drill axis, greatly influence the design of
the drills.

Most flute contour analyses were performed with the assump-
tion that the primary cutting edge is a straight line [1–4].
However, many commercial drills are no longer confined to
straight cutting edges owing to the better cutting performance
of curved cutting edges over straight ones. Although some
researchers [5,6] have analysed flutes by sweeping the cross-
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section, the analysis was still incomplete and inaccurate because
of the assumption that the primary cutting edge of a conven-
tional drill lies in a plane parallel to the drill axis. This
assumption is only suitable in limited cases. In addition, the
researchers did not provide a complete flute face model.

Recently, drills with various flute shapes have been
developed for different drilling applications. Many of these
flute contours have been developed by the trial-and-error
approach. Thus, no theoretical models are available to represent
these flute contours. In this paper, an accurate flute model based
on the measurement of the drill cross-section is introduced. The
flute model uses the polynomial representation of the drill
cross-section and the sweeping of the cross-section curve with
a helical movement around the drill axis. This paper also
develops an analytical method for deriving drill cutting angles
using vector analyses.

Section 2 presents the developed flute model. Since the drill
cutting angles are formed by both the drill flute and drill flank
surface, Section 3 will describe the quadratic drill flank surface
models. Because the quadratic flank surface models are
expressed in terms of grinding parameters, it is desirable to
define the relationship between drill grinding and the geometri-
cal design parameters. Section 4 will introduce the vector
analysis method for cutting angle analysis, although the
developed method is suitable for arbitrary drill design, Section
5 selects a spilt-point drill design as an example to show the
comparative results between the analysis and actual measure-
ment of cutting angles for a spilt-point drill.

2. Mathematical Models of Flute
Geometry

The drill flute is an essential component of a drill body
structure. Its shape and position affect the cutting performance
of the drill, and are very closely related to the design of the
grinding wheel shape for the flute generation. When a certain
type of cross-section and helix angle are selected, the flute
face can be represented by the helical motion of the initial
cross-section. By rotating the cross-section of a drill around
and down itsz-axis simultaneously [1], an unpointed blank
drill with a helix flute face is formed, as shown in Fig. 1.
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Fig. 1. Model of flute for two-flute drill.

Table 1.Results of statistical fitting of a flute cross-sectional curve.

Statistic n=5 (order) n=8 (order) n=12 (order)

emin (min residual −0.080 −0.053 −0.028
emax (max residual) 0.109 0.050 0.021
s (standard deviation of residual) 0.051 0.026 0.011
g2 (correlation coefficient) 0.990 0.997 1.000

Here, o-xyz is the original coordinate,o′-x′y′z′ is the rotating
coordinate, andh is the rotating angle. The model development
for a flute face involves the following three steps.

2.1 Polynomial Representation of the Flute
Cross-Sectional Curve

The flute curve on a cross-section can be approximated as a
polynomial curve. Suppose that the equation of the flute curve
takes the form:

R(x,y) = y − On
i=0

bixi=0 (1)

The coefficientsbi(i=0,1,2,$,n) must be determined from a
series of data (xj,yj) (j=1,2,$,m) measured along the flute
cross-sectional curve:

x x1 x2 $ xj $ xm

y y1 y2 $ yj $ ym

In other words, the coefficientsbi can be obtained from the
following equations:








 (2)
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yj − On
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biOm
j=1

xi
j = 0
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:

Om−n

j=1
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biOm−n

j=1
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j = 0

Usually m.n. The selection of the ordern depends on the
shape of the flute curve on the cross-section. An example is
given for fitting a group of flute curve data (m = 80) on the
cross-section by using Eq. (2), as shown in Table 1 and Fig. 2.
When n=12, the flute curve can be fitted very well. When
n.12, s has almost no improvement.

2.2 Positioning of the Flute Curve

Because the fitted flute curve is located at an arbitrary position
about the drill axis (z-axis), this curve must be rotated by a
certain angle about the drill axis in order to make the point
A (xA,yA,zA) (see Fig. 3) at the outer corner fall onto the flute
curve. The pointA is on both the flank and the rake faces.
Its location influences the shape of the cutting lip. Generally,
it can be assumed that the coordinatesxA and yA of the point
A are located approximately at the following position:

5xA =
√(D2

d − w2
b)

2

yA =
wb

2

(3)

where Dd is the drill diameter, andwb is the web thickness.
The termzA can be obtained from Eq. (11).

Supposing the angle of rotation is«, the equation of the
flute curve becomes:

R(x′,y′) = y′ − On
i=0

bix′i = 0 (4)
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Fig. 2.Polynomial representation of flute cross-sectional curve and its residual error (order= 12).

Fig. 3.Definition of relief angle.

where x′ and y′ satisfy the following equation:

Sx′
y′D = S cos« sin«

−sin« cos«
DSx

yD (5)

Hence, Eq. (4) becomes:

R(x,y) = x sin « − y cos« + On
i=0

bi(x cos« + y sin «)i = 0 (6)

Replacingx and y with xA and yA in Eq. (3), we can calculate
the value of the angle«.

2.3 Sweeping of the Flute Curve

After the cross-section sweeps down the z-axis fromABCD in
the o-xyz coordinate system toA′B′C′D′ in the o′-x′y′z′ coordi-
nate system (see Fig. 1), the flute surface is formed. The
corresponding equation can be obtained from Eq. (6):

5 R(x′,y′) = x′sin« −y′cos« + On
i=0

bi(x′cos« + y′sin«)i = 0

z = zA +
Tf

2p
h = zA +

Dd

2tanb
h

(7)

where Tf is the lead of the right-hand helix,b is the helix

angle, andzA is the coordinate of the pointA. From Eqs (5)
and (7), it yields:

R(x,y,z) = (xcos(Dzx) + ysin(Dzx))sin«

+ (xsin(Dzx) − ycos(Dzx))cos« + On
i=0

bi((xcos(Dzx)

+ ysin(Dzx))cos« − (xsin(Dzx) − ycos(Dzx))sin«)i = 0 (8)

where,

x = 2p/Tf = 2 tanb/Dd

Dz = z − zA

The above is the equation of a flute face.

3. Mathematical Models of Flank Faces

To date, a large number of different drill points are commer-
cially available. Despite the wide variety, there are only a few
types of flank faces for current drill points, owing to manufac-
turing limitations. The following subsections will present the
equations of the flank faces and describe the relationship
between the grinding parameters that are used for the surface
model and the geometric design parameters that are commonly
used by tool engineers in the analysis and design of drills.

3.1 Equation of the Flank Face

For various drill points, the flank face or the main part of the
flank face is generally modelled by one of the basic surfaces,
e.g. hyperbolic, ellipsoidal, conical, cylindrical or planar. All
of the above surfaces can be represented by a generalised
rotary quadratic equation [3]:

x*2

a2 +
y*2

a2 + d
z*2

c2 = 1 (9)

where, a, c, and d are parameters that decide the shape of
a quadratic surface. Conical, ellipsoidal, hyperboloidal, and
cylindrical grinding models are shown in Fig. 4. After the
transformation from the coordinate systemo*-x*y*z* to the
drill coordinate systemo-xyz, the mathematical model of a
drill flank is obtained as:
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Fig. 4. Models for quadratic drill points. (a) Conical model. (b) Ellipsoidal model. (c) Hyperboloidal model. (d) Cylindrical model.

1
a2 S(xcosv + ysinv) cosw + zsinw + !Sa2 − d

a2

c2d
2 − s2DD2

+
1
a2 ((xsinv − ycosv) + s)2

+
d

c2(zcosw − (xcosv + ysinv)sinw − d)2 = 1 (10)

This is a general expression of a drill flank with a rotary
quadratic surface, and can be expressed in the more general-
ised form:

F(x,y,z) = E1x2 + E2y2 + E3z2 + E4xy + E5yz+ E6zx

+ E7x + E8y + E9z = 0 (11a)

where,
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








E1 = sin2v + cos2vScos2w + d
a2

c2sin2wD
E2 = cos2v + sin2vScos2w + d

a2

c2sin2wD
E3 = cos2wStan2w + d

a2

c2D
E4 = −sin2vsin2wS1− d

a2

c2D
E5 = sinvsin2wS1 − d

a2

c2D
E6 = cosvsin2wS1− d

a2

c2D
E7 = 2Sssinv + cosvScosw!Sa2 − d

a2

c2d
2 − s2D + d

a2

c2dsinwDD
E8 = 2S−scosv + sinvScosw!Sa2 − d

a2

c2d
2 − s2D + d

a2

c2dsinwDD
E9 = 2Ssinw!Sa2 − d

a2

c2d
2 − s2D− d

a2

c2dcoswD
(11b)

Equation (11a) describes one side of the flank. Symmetrically,
the other side of the flank can be obtained by substitutingx
with −x and y with −y in Eq. (11a):

F′(x,y,z) = E1x2 + E2y2 + E3z2 + E4xy − E5yz− E6zx (12)
− E7x − E8y + E9z = 0

For different combinations and values of parametersa, c, and
d, various surfaces can be obtained from Eqs (10) or (11):

Conical flank d = −1, a→0, c→0, and set tanu=a/c
Hyperboloidal flank d = −1
Ellipsoidal flank d = 1
Cylindrical flank d = 0

3.2 Relationship between Geometrical Design and
Grinding Parameters

Equations (11) and (12) are described only with the grinding
parameters. Generally, a drill is designed in terms of its
geometry parameters. Therefore, the corresponding relationship
between the geometrical design parameters and the grinding
parameters must be established to achieve the conversion
between the two groups of parameters. The following deri-
vations are modified from the results of Lin et al. [7].

3.2.1 Semi-Point Angle r

A cutting edge is formed by the intersection of the flank face
F(x,y,z) and the rake faceR(x,y,z). If the cutting edges are
curved, the drill semi-point angle,r, will vary along the
cutting edges. Generally, the drill nominal semi-point angler
is specified at the outer corner pointA (xA,yA,zA), and is defined
as the acute angle between the tangent to the projection of the

cutting lip at the outer corner pointA and the drill axis on
the x,z-plane. Figure 5 illustrates the drill semi-point angler,
that is:

r = tan−1

­F
­z

­R
­y

−
­F
­y

­R
­z

­F
­x

­R
­y

−
­F
­y

­R
­x |

A

= tan−1
Nfz Nry − Nfy Nrz

Nfx Nry − Nfy Nrx |A (13)

whereNfx, Nfy,Nfz and Nrx, Nry, Nrz will be derived in Eqs (26)
and (31).

3.2.2 Chisel Edge Angle c

The chisel edge is the intersection of the two symmetrical
flanks, F(x,y,z) and F′(x,y,z). It passes through the drill point
centre and can be a spatial curve when the flanks are common
quadratic surfaces or a straight line when both flanks are
planes. As shown in Fig. 5, the chisel edge anglec is the
acute angle between the tangent to the projection of the chisel
edge onto the plane perpendicular to the drill axis at the point
centre and thex-axis.

c = tan−1 S­y
­xDo

= tan−1 S−
­F/­x
­F/­yDo

(14)

From Eq. (11), it yields

5
­F
­x |o = (2E1x + E4y + E6z + E7)x=y=z=0 = E7

­F
­y |o = (2E2y + E4x + E5z + E8)x=y=z=0 = E8

Fig. 5.Definition of the drill semi-point angler and heel clearance
angle ah.
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Therefore, Eq. (14) becomes:

c = tan−1 S−
E7

E8
D (15)

3.2.3 Relief Angle afA

In Section 4, an analysis of the relief angleaf is presented
in detail. Substituting the outer corner pointA(xA,yA,zA) into
Eq. (29) yields:

afA = cos−1 S Î(x2 + y2)Nfz

Î((x2 + y2)N2
fz + (yNfx − xNfy)2)A

D (16)

3.2.4 Heel Clearance Angle ah

As illustrated in Fig. 5, the heel clearance angleah is an acute
angle whose amplitude determines the extent of inclination of
the relief face close to the heel flute area. Its tangent is equal
to the axial drop between a point on the cutting edge and a
specified point on the flank at the same radiusr divided by
the circumferential distance between the two points. Suppose
the point a is on the cutting edge and the pointb is on the
flank at the same radial distancer. The heel clearance angle
ah at the pointb is defined by:

ah−b = tan−1
za − zb

2pr
360

(Ùa + Ùb)
= tan−1

180(za − zb)
pr(Ùa + Ùb)

(17)

The heel clearance angleah at a special pointb close to the
heel corner,r = Dd/2 and Vb = 60°, can be written as:

ah−b = tan−1
360(za − zb)

pDd(Ùa + 60)
(18)

where,

Ùa = sin−1
wb/2
Dd/2

= sin−1
wb

Dd

xa = xA

ya = yA

xb = !Sx2
A + y2

AD cosÙb = !Sx2
A + y2

AD cos60°

yb = !Sx2
A + y2

AD sin Ùb = !Sx2
A + y2

AD sin60° (19)

za andzb can be alculated by substituting Eq. (19) into Eqs (10)
or (11).

4. Cutting Angle Analysis

The study of the cutting angles of drills is of importance in
the design and analysis of drills. Many other models and
analyses, such as the calculation of force, temperature, wear,
and chip ejection, are based on cutting angle analysis. In this
section, general formulae for rake and relief angle calculation
are derived.

Fig. 6. Definition of rake angle.

4.1 Cutting Lips

One of the key components of the drill geometry is the cutting
lip that is associated with the cutting angles. Cutting lips are
formed by the intersection of the flank and rake faces. Suppose
that the equations of the flank and rake faces areF(x,y,z)=0
and R(x,y,z)=0, respectively. The equation of the cutting lip
can be obtained by solving the simultaneous equations:

HF(x,y,z) = 0
R(x,y,z) = 0

(20)

F(x,y,z) and R(x,y,z) are nonlinear and implicit. A numerical
method has to be applied for Eq. (20) because it is normally
impossible to obtain its algebraic explicit solution. Any arbi-
trary point P(x,y,z) (see Figs 3 and 6) on the cutting lip should
satisfy the above equation.

For the flank face F(x,y,z) = 0, the normal vector
Nf(Nfx, Nfy, Nfz) of a plane tangent to this surface is:

Nf = Nfxi + Nfy j + Nfz k =
­F
­x

i +
­F
­y

j +
­F
­z

k (21)

and for the rake faceR(x,y,z) = 0, the normal vector
Nr(Nrx, Nry, Nrz) of a plane tangent to this surface can be
represented by:

Nr = Nrxi + Nryj + Nrzk =
­R
­x

i +
­R
­y

j +
­R
­z

k (22)

Then the tangent vectorL (Lx,Ly,Lz) of the cutting lip at the
point P satisfies the formula:

L = Nr × Nf = |
i j k

Nrx Nry Nrz

Nfx Nfy Nfz | (23)

4.2 Relief Angle Analysis

The relief angle is one of the important factors for improving
drill performance. A proper relief angle means that:

1. The clearance is large enough to suit the specified feedrate
without touching the newly cut surface on the bottom.
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2. There is enough material in the drill flank to conduct heat
and to ensure necessary strength.

In this section a mathematical formula of the relief angle,
relating to the drill geometry parameters, is derived. The relief
angle af at the pointP(x,y,z) along the cutting lip is the angle
between the direction vectorVaf(Vafx, Vafy, Vafz) and the normal
vector N (Nx, Ny, Nz) of the reference planePr. Vaf is perpen-
dicular to the normal vectorNf and the reference vectorVr,
and V is perpendicular to the reference planePr as shown in
Fig. 3. The planePr passes through thez-axis and the pointP.

The reference vectorVr(Vrx, Vry, Vrz) on the reference plane
Pr is:

Vr = Vrxi + Vryj + Vrzk = xi + yj + 0k (24)

The direction vectorVaf (Vafx, Vafy, Vafz) is:

V áf = Vr × Nf = |
i j k

Vrx Vry Vrz

Nfx Nfy Nfz | = |
i j k

x y 0

Nfx Nfy Nfz | (25)

The normal vectorNf at the point P can be obtained from
Eq. (11):

5 Nfx = 2E1x + E4y + E6z + E7

Nfy = 2E2y + E4x + E5z + E8

Nfz = 2E3z + E5y + E6x + E9

(26)

Then the relief angle along the cutting lip is:

af = cos−1
N · V áf

uN i Váfu
= cos−1

VxVafx + VyVafy + VzVafz

Î(V2
x + V2

y + V2
z) Î(V2

afx + V2
afy + V2

afz)

(27)

Because

N = Nxi + Nyj + Nzk = yi − xj + 0k (28)

Substituting forV and Vaf into Eq. (27) yields:

af = cos−1
Î(x2 + y2) Nfz

Î((x2 + y2)Nfz
2 + (yNfx − xNfy)2)

(29)

4.3 Rake Angle Analysis

Like the relief angle, the normal rake anglegn is a function
of the position along the cutting lip. For any pointP(x,y,z) on

Table 2.Fitted coefficientsbi (n=12) of a flute curve on the cross-
section.

b0 −0.6906115
b1 −0.0562371
b2 0.4108830
b3 −0.0590901
b4 −0.1370808
b5 0.0393022
b6 0.0373205
b7 −0.0029054
b8 −0.005149
b9 −0.0005039
b10 0.0002485
b11 0.0000624
b12 0.0000042

the cutting lip, there are two datum planes: the normal plane
Pn and the reference planePr. The planePn is perpendicular
to the tangent lineL (Lx, Ly, Lz) of the cutting lip at the point
P, and the planePr passes through thez-axis and the point
P. The rake angle vectorVgn (Vgnx, Vgny, Vgnz) is along the
intersection line of the planePn and the tangent plane of the
flute face at the pointP. The reference vectorVn(Vnx, Vny,Vnz)
is along the intersection line of the planePn and the reference
plane Pr. The normal rake anglegn is defined as an angle
between the vectorVgn and the vectorVn as shown in Fig. 6.

The rake angle vectorVgn (Vgnx, Vgny, Vgnz) is:

Vãn = Nr × L = |
i j k

Nrx Nry Nrz

Lx Ly Lz | (30)

For the primary cutting edge of a drill, the flute is the rake
face. The normal vectorNr at the point P can be obtained
from Eqs (8) and (22):










Nrx = cos(Dzx)sin« + sin(Dzx)cos« + (cos(Dzx)cos« − sin(Dzx)sin«)

On
i=1

ibi((xcos(Dzx) + ysin(Dzx))cos« − (xsin(Dzx) − ycos(Dzx))sin«)i−1

Nry = sin(Dzx)sin« − cos(Dzx)cos« + (sin(Dzx)cos« + cos(Dzx)sin«)

On
i=1

ibi((xcos(Dzx) + ysin(Dzx))cos« − (xsin(Dzx) − ycos(Dzx))sin«)i−1

Nrz = −x(xsin(Dzx) − ycos(Dzx))sin« + x(xcos(Dzx) + ysin(Dzx))cos«
−x((xsin(Dzx) − ycos(Dzx))cos« + (xcos(Dzx) + ysin(Dzx))sin«)

On
i=1

bi((xcos(Dzx) + ysin(Dzx))cos«− (xsin(Dzx) − ycos(Dzx))sin«)i−1

(31)

The reference vectorVn(Vnx, Vny, Vnz) is:

Vn = L × N = |
i j k

Lx Ly Lz

Nx Nt Nz | = |
i j k

Lx Ly Lz

y −x 0 | (32)

Then the normal rake angle can be obtained:

gn = cos−1

Vgn · Vn

ugn i Vnu
= cos−1

Vgnx Vnx + Vgny Vny + Vgnz Vnz

Î(V2
gnx + V2

gny + V2
gnz) Î(V2

nx + V2
ny + V2

nx) (33)

5. Comparison of the measured and
calculated angles

Equations (29) and (33) for the cutting angle calculation are
complicated. Therefore, a program was developed for calculat-
ing the distribution of relief and rake angles. An example is
given to validate the formulae.

From the data used for fitting the flute curve on the cross-
section in Section 2, the coefficientsbi of Eq. (8) are calculated
and shown in Table 2. Based on the data of the parameters of
a split drill with conical flank in Table 3, the distribution of
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Table 3.Geometrical parameters of a split drill.

Dd wb r b ac ah c
Diameter Web Semi-point Helix angle of Relief angle on Heel angle (deg.) Chisel edge
(mm) thickness (mm) angle (deg.) flute (deg.) cutter corner (deg.) angle (deg.)

8.5 2.7 170 26.05 15 18 55

the cutting edges is shown in Fig. 7. The calculated and
measured values of the cutting angles agree with each other
very well. The average error is less than 5%.

Fig. 7. Distribution of relief and rake angles (solid lines are calcu-
lated values).

6. Conclusion

This paper presents an analysis of drill cutting angles along
the cutting edges of a drill. To facilitate the analysis, both
drill flank and flute surface models are necessary. For drill
flank surface representation, conventional quadratic surface
models have been adopted with some minor modifications. A
new drill flute face model is introduced with the use of a
polynomial representation of an arbitrary flute cross-sectional

curve and a sweeping helix motion along the drill body axis.
In the evaluation of drill cutting angles, the vector analysis
method is used to derive generalised solutions. As an example,
a split drill is measured and evaluated with the presented
method. The results from both the measured rake and relief
angle distribution and the analytical calculation have shown a
good agreement. These models for cutting angle analysis can
serve as a fundamental basis for other drilling process model-
ling such as the prediction of force, temperature, chip forma-
tion, and ejection.
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