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The analysis of drill cutting angles is important for the design section, the analysis was still incomplete and inaccurate because
of high-performance drill geometry. The cutting angles alongof the assumption that the primary cutting edge of a conven-
the cutting edge of a drill are determined by the combinationtional drill lies in a plane parallel to the drill axis. This
of its flute and flank surfaces. This paper examines the analysiassumption is only suitable in limited cases. In addition, the
of both flute and flank surface models and the evaluation ofesearchers did not provide a complete flute face model.
drill cutting angles. A new mathematical model for an arbitrary = Recently, drills with various flute shapes have been
drill flute face is developed by sweeping the polynomial rep-developed for different drilling applications. Many of these
resentation of the flute cross-sectional curve along the drillflute contours have been developed by the trial-and-error
axis, with a helical movement. On the basis of the quadraticapproach. Thus, no theoretical models are available to represent
flank face, a relationship between the grinding and the geothese flute contours. In this paper, an accurate flute model based
metrical design parameters of the flank face is also establishedn the measurement of the drill cross-section is introduced. The
The vector analysis method is employed for the analysis of thBute model uses the polynomial representation of the drill
cutting angles for various drill geometries. A comparison of cross-section and the sweeping of the cross-section curve with
the analytical results with the actual measured cutting anglesa helical movement around the drill axis. This paper also
of an example drill has shown that the average error is lessdevelops an analytical method for deriving drill cutting angles
than 5%. using vector analyses.
Section 2 presents the developed flute model. Since the drill
Keywords: Cutting angle; Drill; Flank surface; Flute surface cutting angles are formed by both the drill flute and drill flank
surface, Section 3 will describe the quadratic drill flank surface
models. Because the quadratic flank surface models are
. expressed in terms of grinding parameters, it is desirable to
1. Introduction define the relationship between drill grinding and the geometri-
cal design parameters. Section 4 will introduce the vector
Drill performance is significantly affected by its cutting angles, analysis method for cutting angle analysis, although the
such as the relief and rake angles, along the entire drill cuttingieveloped method is suitable for arbitrary drill design, Section
edges. Researchers over the past few decades have tried 30selects a spilt-point drill design as an example to show the
optimise cutting angles for better drill performance by mod-comparative results between the analysis and actual measure-
|fy|ng drill geometry. Cutting edges are formed by the interSEC'ment of Cutting ang|es for a Sp”t_point drill.
tion of the flank and flute faces. Their shapes and orientations,
with respect to the drill axis, greatly influence the design of
the drills. 2. Mathematical Models of Flute
Most flute contour analyses were performed with the assumpGeometry
tion that the primary cutting edge is a straight line [1-4].
However, many commercial drills are no longer confined toThe drill flute is an essential component of a drill body
straight cutting edges owing to the better cutting performancetrycture. Its shape and position affect the cutting performance
of curved cutting edges over straight ones. Although somef the drill, and are very closely related to the design of the
researchers [5,6] have analysed flutes by sweeping the crosgrinding wheel shape for the flute generation. When a certain
type of cross-section and helix angle are selected, the flute
Correspondence and offprint requests: tbr Jun Ni, Department face can .be represent_ed by the helical _motion of .the initial
of Mechanical Engineering and Applied Mechanic’s, University of cross-section. By rotating the cross-section of a drill around

Michigan, 3424 G. G. Brown, Ann Arbor, Ml 48109-2125, USA. and down itsz-axis simultaneously [1], an unpointed blank
E-mail: junni@umich.edu drill with a helix flute face is formed, as shown in Fig. 1.
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Top View

Fig. 1. Model of flute for two-flute drill.
Table 1.Results of statistical fitting of a flute cross-sectional curve.
Statistic n=5 (order) n=8 (order) n=12 (order)
€mnin (Min residual -0.080 -0.053 -0.028
€mnax (Max residual) 0.109 0.050 0.021
o (standard deviation of residual) 0.051 0.026 0.011
v2 (correlation coefficient) 0.990 0.997 1.000

Here, 0-xyz is the original coordinateg’-x'y'z' is the rotating

Usually m>n. The selection of the orden depends on the

coordinate, and, is the rotating angle. The model development shape of the flute curve on the cross-section. An example is

for a flute face involves the following three steps.

2.1 Polynomial Representation of the Flute
Cross-Sectional Curve

given for fitting a group of flute curve datanE80) on the
cross-section by using Eq. (2), as shown in Table 1 and Fig. 2.
When n=12, the flute curve can be fitted very well. When
n>12, ¢ has almost no improvement.

The flute curve on a cross-section can be approximated as 4, Positioning of the Flute Curve
polynomial curve. Suppose that the equation of the flute curve

takes the form:

R(xy) =y = >, bx=0
i=0
The coefficientsb;(i=0,1,2,..,n) must be determined from a
series of data Xy;) (j=1,2,..,m) measured along the flute
cross-sectional curve:

@)

X X Xo oo X oo X

YY1 Y2 - ¥ oo Ym
In other words, the coefficients; can be obtained from the
following equations:
D m n m
- E Y~ Eb.EXJ =0
j=1 i=0 j=1

)

n

m-1 m-1
> /e Eb.EXJ =0
j=1

i=0  j=1

]

n

Z%-EbEX}:O

=0 j=1

Because the fitted flute curve is located at an arbitrary position
about the drill axis (z-axis), this curve must be rotated by a
certain angle about the drill axis in order to make the point
A (XaYarZa) (see Fig. 3) at the outer corner fall onto the flute
curve. The pointA is on both the flank and the rake faces.
Its location influences the shape of the cutting lip. Generally,
it can be assumed that the coordinaigsand y, of the point

A are located approximately at the following position:

V(D3 - wp)
Xa =
3)
W
Ya = )

where Dy is the drill diameter, andv, is the web thickness.
The termz, can be obtained from Eq. (11).

Supposing the angle of rotation is the equation of the
flute curve becomes:

RX.Y) =Y - }n‘,bix'i =0

i=0

(4)
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Fig. 2. Polynomial representation of flute cross-sectional curve and its residual error (rb2y.

angle, andz, is the coordinate of the poirA. From Eqgs (5)
and (7), it yields:

R(xy,2) = (xcos@,x) + ysin(A,x))sine

+ (xsin(4,x) — ycos@,x))cox + ibi((xcos(AZX)

i=0
+ ysin(A,x))cos — (xsin(4,x) — ycos@,x))sine) =0 (8)
where,
X =2m/T; = 2 tanB/Dy
A,=z2-12,

The above is the equation of a flute face.

Fig. 3. Definition of relief angle. 3. Mathematical Models of Flank Faces
wherex' andy' satisfy the following equation: To date, a large number of different drill points are commer-
cially available. Despite the wide variety, there are only a few
X cox Sine\/x types of flank faces for current drill points, owing to manufac-
y = —sins cos:/\y ®) turing limitations. The following subsections will present the

equations of the flank faces and describe the relationship
Hence, Eq. (4) becomes: between the grinding parameters that are used for the surface
n model and the geometric design parameters that are commonly
R(Xy) = Xsine - ycose + >.b(xcose +ysing) =0  (6) Used by tool engineers in the analysis and design of drills.
i=0
Replacingx andy with x, andy, in Eg. (3), we can calculate 31 Equation of the Flank Face
the value of the angle.

For various drill points, the flank face or the main part of the
2.3 Sweeping of the Flute Curve flank face is generally modelled by one of the basic surfaces,

e.g. hyperbolic, ellipsoidal, conical, cylindrical or planar. All
After the cross-section sweeps down the z-axis fldBCD in of the above surfaces can be represented by a generalised

the o-xyz coordinate system t&'B'C'D’ in the 0'-xX'y'z' coordi-  rotary quadratic equation [3]:
nate system (see Fig. 1), the flute surface is formed. The o o "
; ; ; . X2y Z
corresponding equation can be obtained from Eg. (6): —+-+85—5=1 9
a? & c?
R(X,y') = X'sine -y cos + >, b(Xcos + ysins) =0 where, a, ¢, and 8 are parameters that decide the shape of
i=0 a quadratic surface. Conical, ellipsoidal, hyperboloidal, and
2=z 4 Tn=z. 4 Dy cylindrical grinding models are shown in Fig. 4. After the
271~ A 2tan3 K transformation from the coordinate systeoit-x*y*z* to the

(7) drill coordinate systemo-xyz, the mathematical model of a
where T; is the lead of the right-hand helib is the helix  drill flank is obtained as:
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Fig. 4. Models for quadratic drill points.aj Conical model. If) Ellipsoidal model. ¢) Hyperboloidal model.d) Cylindrical model.

1 _ ) a2 This is a general expression of a drill flank with a rotary
2 ((XCOSH + ySinw) cosp + zsing + (az ki 32)>2 quadratic surface, and can be expressed in the more general-
ised form:
1 .
* 5 (xsinw — ycosw) + 5)? F(XY,2) = Ex® + E\? + E;22 + Exxy + Esyz + Egzx
+ ExXx+Egy+Egz=0 (118)

5 s 2=
+ (z008p — (xcosw + ysinw)sing — d)* = 1 (10) where,
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O_ _ . a2 . cutting lip at the outer corner poirA and the drill axis on
E,=sifw + cos'w C°§‘P+5@S'r‘2‘P the x,z-plane. Figure 5 illustrates the drill semi-point angie
that is:
. a’ .
E,=cofw+ sm2w<co§<p + 3@8”’12(,0)
a2 dF R  9F dR
E:CO§(p<tanZ(p+¢°%) 9z oV oy oz No. No = N N
) ¢ p=tart 22 Y OZ| oy N Sy T Sy N (13)
5 dF R 9F dR Nix Niy = Niy Ny [
. . a2 s e
E4:—sm2wsm?<p(l—6?> ox dy dy ox [
. a2
DESZSIanIHZ(p(l - 5@ where Ny, Ny,Ng, andN,,, N, N,, will be derived in Egs (26)
and (31).
. a2
EG_COSHSInZP(l_B?> 3.2.2 Chisel Edge Angle
] a2 a2 The chisel edge is the intersection of the two symmetrical
E7=2<SSInw+COSw(COS(p (az—%d2—32)+5gd5m¢)) flanks, F(x,y,2) and F'(x,y,2). It passes through the drill point
centre and can be a spatial curve when the flanks are common
. a? a . quadratic surfaces or a straight line when both flanks are
— _ 2 _ 2 _
EB_Z( SCOS‘”+S'n“’<C°S‘P\/<a b0 SZ) * Séds'n‘P)) planes. As shown in Fig.5, the chisel edge anglds the

acute angle between the tangent to the projection of the chisel

, a a edge onto the plane dicular to the drill axis at the point
E.=2 2_ s p-2|- 624 g p perpendicular to the drill axis at the poin
o (smq:\/(a c? ) c? c03p) centre and thex-axis.
(11b) F
. . . . Yy =tarrt (a—y) :tarrl( g /ax) (14)
Equation (14) describes one side of the flank. Symmetrically, X/ aFlay/,

the other side of the flank can be obtained by substituking
with =x and y with -y in Eq. (11a):

F'(xy.2) = Ep® + Egy? + EgZ” + Euxy — Esyz - Egzx (12)
—ExXx-Egy+Exz=0

From Eg. (11), it yields

aF

x|l (2BEx+ By + BEZ + BEp)yey=r0 = B¢

(e

For different combinations and values of parameters, and aF

— | =(2Eyy + Exx + Esz + Eg)yey=r0 = E
3, various surfaces can be obtained from Eqgs (10) or (11): ay (CEy+E ° aheyermo = o

(e

Conical flank 6 = -1, a=0, c—0, and set tafd=al/c
Hyperboloidal flank & = -1 zh

Ellipsoidal flank 6=1 ¢
Cylindrical flank 6=0 o P X

3.2 Relationship between Geometrical Design and a
Grinding Parameters bo—Z

Section B-B

Moy

Equations (11) and (12) are described only with the grinding
parameters. Generally, a drill is designed in terms of its
geometry parameters. Therefore, the corresponding relationship r($2,-£2) | —
between the geometrical design parameters and the grinding y

parameters must be established to achieve the conversioni_ % - “\
between the two groups of parameters. The following deri- %% a v
vations are modified from the results of Lin etal. [7]. B

Q,
3.2.1 Semi-Point Angle p D, > ra :

A cutting edge is formed by the intersection of the flank face
F(x,y,2 and the rake faceR(x,y,2). If the cutting edges are
curved, the drill semi-point anglep, will vary along the
cutting edges. Generally, the drill nominal semi-point angle

is specified at the outer corner poit(x,ya.z,), and is defined  Fig. 5 Definition of the drill semi-point angley and heel clearance
as the acute angle between the tangent to the projection of thengle ..
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Therefore, Eq. (14) becomes:

g =tam? (— %) (15)

8

3.2.3 Relief Angle oy,

In Section 4, an analysis of the relief angle is presented
in detail. Substituting the outer corner poiA(Xa,Ya,Z,) iNto
Eq. (29) yields:

( V/(XZ + y2) Nfz )
a = COst | (16)
V(0@ + Y2NE + (YN = XNy)?)a

3.24 Heel Clearance Angle a, Fig. 6. Definition of rake angle.
As illustrated in Fig. 5, the heel clearance anglgis an acute 4.1 Cutting Lips
angle whose amplitude determines the extent of inclination of

the relief face close to the heel flute area. Its tangent is equdDne of the key components of the drill geometry is the cutting
to the axial drop between a point on the cutting edge and dip that is associated with the cutting angles. Cutting lips are
specified point on the flank at the same radiudivided by  formed by the intersection of the flank and rake faces. Suppose
the circumferential distance between the two points. Supposthat the equations of the flank and rake faces Ffey,2)=0

the pointa is on the cutting edge and the poibtis on the and R(x,y,2)=0, respectively. The equation of the cutting lip
flank at the same radial distance The heel clearance angle can be obtained by solving the simultaneous equations:

a;, at the pointb is defined by: {F(x,y,z) -0 0
- 180(@z, - =
anp = tar? D rZa - tarrlT(Jz%j’% 17) R(xy.2) =0
l(Ua+ Up) mi-a b F(xy,2) and R(x,y,2) are nonlinear and implicit. A numerical

360 method has to be applied for Eq. (20) because it is normally
The heel clearance angle, at a special poinb close to the impossible to obtain its algebraic explicit solution. Any arbi-

heel cornery = D42 and (), = 60°, can be written as: trary pointP(x,y,2) (see Figs 3 and 6) on the cutting lip should
3606, - 7) satisfy the above equation.
o, = tart ——— 2 (18) For the flank face F(xy,2 =0, the normal vector
mD4(Ua + 60) Ni(Ns, Ny, N;) of a plane tangent to this surface is:
where,
Nf:foi+nyj+Nka:ﬁi+%j +£k (21)
0, = simt W2 _ gjpa W ox oy oz
: Dy/2 Dq and for the rake faceR(xy,2)=0, the normal vector
X, = Xa N;(Ni, Ny, N;) of a plane tangent to this surface can be
represented by:
Ya =Y R R R
. N; = Nii + Npyj + Nk = &| + a—yj + Ek (22)
Xp = \/ (x,%\ + yi) cosU, = \/ (xi + y,%\) cos60
Then the tangent vectokr (L,,L,,L,) of the cutting lip at the
N point P satisfies the formula:
Yo = \/(x,%\ + y,%\) sinU, = \/(x,%\ + y,i) sin6@® (29)
z, andz, can be alculated by substituting Eq. (19) into Eqgs (10) bk
or (11) L= Nr X Nf = er Nry er (23)
fo ny Nfz

4. Cutting Angle Analysis

The study of the cutting angles of drills is of importance in 4-2 Relief Angle Analysis
the design and analysis of drills. Many other models an
analyses, such as the calculation of force, temperature, we
and chip ejection, are based on cutting angle analysis. In thi
section, general formulae for rake and relief angle calculatiorl. The clearance is large enough to suit the specified feedrate
are derived. without touching the newly cut surface on the bottom.

SJhe relief angle is one of the important factors for improving
gHII performance. A proper relief angle means that:
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2. There is enough material in the drill flank to conduct heatthe cutting lip, there are two datum planes: the normal plane

and to ensure necessary strength.

In this section a mathematical formula of the relief angle,
relating to the drill geometry parameters, is derived. The relie

angle «; at the pointP(x,y,2) along the cutting lip is the angle
between the direction Vectdf (Vs Vanys Varz) and the normal
vector N (N,, Ny, N,) of the reference plan®,. V  is perpen-
dicular to the normal vectoN; and the reference vectdy,,
andV is perpendicular to the reference plaRgas shown in
Fig. 3. The planeP, passes through theaxis and the poinP.

The reference vectoV (V,, V., V,,) on the reference plane
P, is:

V, = Vi + Vyj + V k=X +yj +0k (24)
The direction vectolV it (Vaix Vasys Varr) 1S:
i j ok i ok
Véf = Vr x Nf = er Vry Vrz =X y 0 (25)
fo ny Nfz fo ny Nfz

The normal vectorN; at the pointP can be obtained from
Eqg. (11):

Np = 2Ex + Egy + Eiz + E;

Ny = 26y + Exx + Esz + Eg (26)
Ni, = 2Bz + By + Eex + B
Then the relief angle along the cutting lip is:
N -V, Vi Vaix + V\Vopy + VoV,
af:COS'1 N Vaf :COS_]' : x Y afx y“afy zVafz
NIV VOVE + VB + V2) (Vi + V2, + V2y)
(27)
Because
N =NJd+Nj+ Nk =yi —x + 0k (28)
Substituting forV andV into Eq. (27) yields:
o JOZ +y?) N,
s = COS (29)

V(0@ + YING2 + (YN = XNR)?)

4.3 Rake Angle Analysis

Like the relief angle, the normal rake angilg is a function
of the position along the cutting lip. For any poiR{x,y,z) on

Table 2. Fitted coefficientsh; (n=12) of a flute curve on the cross-
section.

bo -0.6906115
by -0.0562371
b, 0.4108830
by -0.0590901
ba -0.1370808
bs 0.0393022
be 0.0373205
b, -0.0029054
be -0.005149

be -0.0005039
bro 0.0002485
by, 0.0000624
byo 0.0000042

P, and the reference plan@.. The planeP, is perpendicular
to the tangent lind. (L,, Ly, L,) of the cutting lip at the point

£, and the planeP, passes through the-axis and the point

P. The rake angle vectoV ., (V,n Vyny V,ng) is along the

intersection line of the plan®, and the tangent plane of the

flute face at the poinP. The reference vectoV (Vi Viy Vo)

is along the intersection line of the plafg and the reference

plane P,. The normal rake angley, is defined as an angle

between the vecto¥ ., and the vecto,, as shown in Fig. 6.
The rake angle vectoY ., (Vs Vyny Vong IS:

i j kK
Vén = Nr X L = er Nry er
L L, L,

(30)

For the primary cutting edge of a drill, the flute is the rake
face. The normal vectoN, at the pointP can be obtained
from Egs (8) and (22):

UNy = cos{@,x)sine + sin(4,x)cos + (cos@,x)cox — sin(A, x)sins)

-En:ib.((XCOS@zX) +ysin(d,x))co: — (xsin(d,x) — ycos@,x))sine)'
;\:l:y:sin(AzX)sins — cos@,x)cox + (sin(d,x)cosx + cos@,x)sine)
ISiih((xcos(AzX) +ysin(A,x))cos — (xsin(4,x) — ycos@,x))sine)
;\:lrlz = —x(xsin(4,x) — ycos@,x))sine + x(xcos@,x) + ysin(d,x))cos:
~x((xsin4x) - ycos@,x))cos: + (xcos@,x) + ysin(d,x))sire)

En:b.((XCOS@zx) +ysin(,x))cog— (xsin(d,x) = ycos@,x))sine)'
Ti=1

(31)
The reference vectoV (Vi Vi, Viy) is:
i ]k i j k
Vo=LxN=[L, L, L|=[L L L, (32)
N, N, N, y x 0
Then the normal rake angle can be obtained:
v, = cos?
Vyn ) Vn — COS_]' : Vynx an + Vynyvn){ + Vynz Vnz
o | Vil V V3 + Vany + V3n) ((Vac+ VA, +V3) - (33)

5. Comparison of the measured and
calculated angles

Equations (29) and (33) for the cutting angle calculation are
complicated. Therefore, a program was developed for calculat-
ing the distribution of relief and rake angles. An example is
given to validate the formulae.

From the data used for fitting the flute curve on the cross-
section in Section 2, the coefficierttsof Eg. (8) are calculated
and shown in Table 2. Based on the data of the parameters of
a split drill with conical flank in Table 3, the distribution of
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Table 3. Geometrical parameters of a split drill.

Dg Wp P o B ) O Qp Y .
Diameter Web Semi-point Helix angle of Relief angle on Heel angle (deg.) Chisel edge
(mm) thickness (mm) angle (deg.) flute (deg.) cutter corner (deg.) angle (deg.)
8.5 2.7 170 26.05 15 18 55

the cutting edges is shown in Fig.7. The calculated ancturve and a sweeping helix motion along the drill body axis.

measured values of the cutting angles agree with each othén the evaluation of drill cutting angles, the vector analysis

very well. The average error is less than 5%. method is used to derive generalised solutions. As an example,
a split drill is measured and evaluated with the presented
method. The results from both the measured rake and relief
angle distribution and the analytical calculation have shown a
good agreement. These models for cutting angle analysis can
serve as a fundamental basis for other drilling process model-
ling such as the prediction of force, temperature, chip forma-

tion, and ejection.
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