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ABSTRACT

The objective of the present work is the study of the fluid
motion and heat transfer in a vertical cylindrical cavity, closed at
the lower end and opened to a large reservoir on the top. The temper-
atures of the walls of the cavity and of the reservoir are maintained
constant and uniform with the wall temperature greater than that of
the reservoir. The variation of the fluid density with temperature
is taken into consideration only as it affects buoyancy. The fluid
is otherwise considered uniform and incompressible, With this con-
figuration the motion of the fluid is generated by the density differ-
ential within the fluid, and heat is transferred through the walls of
the cavity to the reservoir by the convection motion and conductive
in the fluid.

Based on the assumption of laminar flow, and with the approx-
imation of boundary layer theory, a theoretical analysis has been made.
Three possible modes of fluid motion are obtained from physical consider-
ation, i.e., the boundary layer type flow regime, the similarity flow
regime, and finally, similarity flow with a stagnant portion at the
bottom of the cavity. From the equations of motion, it is shown that
the parameters differentiating the flow regimes are the Rayleigh number,
the Prandtl number, and the aspect ratio of the cavity.

A set of solutions in numerical form has been obtained for

the boundary layer type flow regime. This set of solutions covers a

viii



range of Ra x a/#4 (Rayleigh number x the aspect ratio) from 5 x 107
to 1 x 10/ and s Prandtl number range of 0,02 to 10.0. For the same
flow regime, an analytical solution has been obtained for the case

of very large Rayleigh number. This solution assumes an arbitrary
Prandtl number. Due to the complexity of the governing equations,
the solution for the flow regime with similarity has been obtained
only for thé fluids with large Prandtl number, Two,K solutions, one
by an analytical method and the other by a numerical method, have
been included in this paper. These two solutions are in agreement,
despite the fact that they are derived from two entirely different
methods. An approximate solution for this flow regime has been
obtained by Lighthill(25) which gives good agreement with the present
solution., However, the solutions from present work are useful in case
more accurate results are required. An approximate solution by
Lighthill(25) to fill the gap between the solutions for similarity
flow regime and boundary layer type flow regime has also been quoted
in the present paper for the sake of completeness.

An experimental program has been conducted to attempt to
validate the results of the analysis, A facility compatible to the
physical conditions specified in the theoretical analysis employs water
and mercury as test media. The results from the water tests agree rea-
sonably well with the analysis, while the test results from mercury show
considerable discrepancy.

It is believed that for the facility used in the investigation
laminar flow inside the cavity is almost impossible to attain for low

Prandtl number liquids (as in the case of mercury). The turbulent

ix



motion effectively reduces the rate of heat transfer, and gives a
Nusselt number much lower than that predicted by the theory. How-
ever, since no data has been available for natural convection heat
transfer of mercury in a closed cavity under the present conditions,

the experimental results from this investigation do represent a new

contribution.



CHAPTER I

INTRODUCTION

Flows which are generated entirely by the action of body forces
on fluids with density variations due to heating (or cooling) are referred
to as natural - or free - convective flows, heat transfer by natural con-
vection is of both theoretical as well as practical interest. The
governing equations of natural convection are non-linear, and are coupled
through both temperatures and velocity. Even with some simplifying assump-
tions, it is still a challenging task to solve this set of simultaneous
equations in order to obtain the numerical results for this phenomenon.
In engineering practice, the use of this mode of heat transfer through the
walls of hollow passages in turbine rotor blades for cooling is one of its
many applications(l). Recently, with the rapid development of nuclear
power reactors, the natural convection process has become of even greater
importance, because this means of heat transfer appears in some of the
many schemes for extracting the heat energy from an atomic pole<2)°

Very few theoretical investigations have been made for the natural
convection heat transfer other than those which are restricted to very
simple configurations, such as flat plates and horizontal or vertical
cylinders, Experimental data are equally lacking. Water and air are al-
most the only two fluids being considered as test media to verify the limited

theoretical results, Indeed, literature is available for natural convection



in more complicated geometries and less conventional liquids such as flows
in channels, or using liquid metal as test fluid*, but those investigations
are often semi-emperical or purely experimental. Since there are soO many
physical variables involved, and each of them may take a wide rénge of
values, a few semi-emperical results are of dubious worth in the absence

of theoretical considerations.

Therefofe, in order to answer some of the many pending questions
concerning natural-convection heat transfer, such as the effect of a con-
fining wall (closed geometry) and of liquid metals (characterized by their
low Prandtl number), this phenomenon is analyzed herein. To be more spe-
cific, the problem is to study the natural convection and its associated
heat transfer in a vertical, cylindrical cavity with fluids of different
Prandtl numbers at a given constant wall to reservolr temperature difference.

Only the case of laminar flow is analyzed herein. From a sci-
entific point of view, this is reasonable since the laminar analysis will
gshed some light on the study of the more complicated case of turbulent
flow. From an engineering point of view, this is equally desirable even
though in the practical application the flow will often be turbulent.

Study of the corresponding laminar flow, being more reliable, is essential
to bringing out certain broad qualitative details of what happens.

Thus, in the following chapters, it can be seen that a general
physical analysis is made to distinguish possible modes‘of fluid flow,

the equations of motion, which are compatable to physical conditions but

* For instance, References., 3, 4, 5, furnish an excellent example.
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are nontheless reasonably simplified to permit mathematical manipulations,
are then set up, solutions for different flow regimes are obtained either
numerically or analytically, and the validity of these solutions is dis-
cussed. Finally, along with the theoretical analysis, an experimental pro-
gram is also described. Water is used to represent high Prandtl number
fluids and mercury is regarded as a typical low Prandtl number liquid.

Some existing experimental data are also compiled herein. Indeed, these
experimental data are used to verify the validity of the assumptions made
within the scope of the present analysis, and hence, the correctness of the

theoretical predictions.



CHAPTER II

LITERATURE SURVEY

Generally speaking, the case of natural convection heat transfer
in an open geometry, such as heat transfer from a vertical plate, or on
the outside of a vertical or horizontal circular cylinder, has been ex-
tensively studied. Experimental data for various fluids are also available.
However, the information of its counterpart - natural convection in a
closed space, is comparatively much less. Since many ingenious approaches
used in solving the cases with open geometry can also be applied to the so-
lution of the cases in confined space, it is desirable to summarize some

of these simpler cases.

1. Natural Convection from a Flat Plate

Although it is believed that Lorenz(6) is the pioneer investigator
for natural convection from a Ve:tical plate kept at a constant uniform
temperature, different from the ambient*, E. Pohlhausen obtained the first
correct approximate solution of this case(Y)b He used the boundary layer

simplification of the equations of motion and formally transformed them

* Lorenz in 1881 published his paper on this subject. He assumed that
heat was transferred from the plate to a layer adjacent to it by con-
duction. Thus a density gradient is formed and heat is carried away
by the flowing stream. The horizontal velocity in this layer was
completely neglected and consequently the equations of motion were sim-
plified. These assumptions were later proven inaccurate by Schmidt ex-
perimentally. However, it is quite amazing to find the resemblance be-
tween Lorenz's simplification and boundary layer theory which was pub-
lished by Prandtl somewhat 50 years later.

I



into ordinary differential equations from which he obtained a numerical
solution for fluid of Prandtl number 0.73. The theoretical results thus
Obtained were then verified experimentally by the data of Beckman and
Schmidt<8) who measured both velocity and temperature distribution and
found good agreement.* Later, O. A. Saunders(9) solved the same problem
with a different approach. He assumed a polynomial solution for the above
mentioned transformed equations and fitted the coefficients of the poly-
nomial to a desired accuracy. A special feature of his solution is the
removal of the Prandtl number limitation which appeared in Pohlhausen's
solution. Saunders further verified his results by measuring the overall
heat transfer coefficient in water and mercury. In both cases, good agree-
ment was seen. It is to be noted that this is one of the very few experi-
ments of natural convection heat transfer from a flat plate in liquid metal.
Using the integrated boundary léyer equations and assuming a

quadratic form for the velocity and temperature‘brofiles, Squire(lo>

* The detailed description of Pohlhausen's solution has never be%ﬁ pub-
lished. E. Schmidt quoted this solution in one of his papers( and
stated briefly that the theoretical solution was verified by his experi-
mental data. Recently, in a Boiling Heat Transfer Symposium held at
Argonne National Laboratory on September 6, 1961, which both the author
and Professor Schmidt attended, the author queried Professor Schmidt
about Pohlhausen's solution. According to him, Pohlhausen studied
Schmidt's data and estimated the slope of the velocity and temperature
functions. From these boundary values, Pohlhausen was able to integrate
numerically the ordinary differential equations from the equations of
motion.

The same difficulty is to be encountered in a later section of this
paper. However, the author is fortunate to be able to find the correct
values by a trial-and-error computation with the aid of an analog
computer, which was not available at Pohlhausen's time.
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obtained an approximate solution of Nusselt number as a function of Prandtl
number (Pr) and Grashof number (Gr). In spite of the simplified method,

his solution did check with the known "exact" solutions to a reasonable
accuracy. Later, Braun and Heighwayflu) modified Squire's method by in-
troducing more terms, which are functions of Prandtl number, into velocity
and temperature profiles. It is indeed true that the introduction of these
functions does improve the accuracy of numerical results. However, the sim-
plicity of Squire's method is lost.

With the aid of the large scale electronic computers, the obtain-
ing of a numerical solution of this problem becomes more feasible. Thus,
with boundary layer approximations, Ostrach(ll) and Sparrow(lg) obtained a
set of numerical solutions corresponding to fluids of various Prandtl num-
bers. Hellums and Churchill(l3) developed a method of solving the exact
equations of motion and obtained the solutions for different cases includ-

ing non-uniform plate temperature.

2. Natural Convection from the Outside and Inside of a Cylinder

A semi-empirical study of natural convection from a horizontal
cylinder was first made by R. Hermannc(l5) His results were satisfactorily
checked by Jodlbauer(l7) who measured the velocity and temperature distri-
bution of air surrounding a heated horizontal cylinder. Numerical solutions
of natural convection inside a cylinder have also been obtained by Hellums(l3)
which check with Martini's(l6) data reasonably well.

Natural convection from a vertical cylinder is very similar to

that of vertical plate if the curvature of the surface is not too big.(lo)



(18)

Under this condition, Sparrow and Gregg applied a set of "similarity
transformations" to the boundary layer equations and obtained two simul-
taneous ordinary differential equations which were solved numerically. In
this same paper, Sparrow pointed out that the overall heat transfer coeffi-
cient could be approximated by considering heat transferred through a thin
layer adjacent to the wall by conduction. No experimental data were avail-
able for comparison¥*, however, K. Pohlhausen** used another set of trans-
formation to solve the case where the cylinder wall temperature varied
linearly with the axis(l9).

Due to the simplified geometry, the possible similarity solutions
for vertical flat plates and cylinders have been systematically summarized
by Yang(go). He started with boundary layer equations and determined the
necessary conditions under which the original partial differential equa-
tions can be transformed into ordinary differential equations. From these
mathematical requirements, the compatibility of physical boundary conditions
can be asserted. This paper has thus established the existence of various
similarity transformations with which the original equations are simplified

and eventually solved either analytically or numerically.

3. Natural Convection Inside the Enclosed Planes

A theoretical prediction of heat transfer and fluid flow between
two long flat plates kept at different constant temperature was first made
by Batchelor(gg) in 1954. The essence of his paper is to determine which

of the several different flow regimes occur at a given Rayleigh number
* It might be interesting to compare this solution to Lorenz's solution.

*¥¥ Not E. Pohlhausen mentioned previously.
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(Pr x Gr) and aspect ratio (the ratio of length of the plate to the width
of the enclosure, E/d). Batchelor did not completely solve the governing
equations of motion, instead, he obtained several polynomials which could
approximate the exact solutions at extreme values of Grashof number.

Using the stability criteria, he was able to determine the coefficients

of the polynomials and the range to which they were applicable. His pre-
diction was then compared with the experimental data by Mull and Reihercgl).
Although the predicted values are generally higher, the comparison is sat-
isfactory.

Later, Poots(gh) modified his approach by employing an orthogonal
expansion of the governing equations and developed a technique of obtaining
numerical approximation. Several sets of solution corresponding to different
Rayleigh number and aspect ratio were thus obtained. The theoretical re-
sults from this paper are comparatively more reliable as verified by the
experimental data(23>. With the growing computer technique, this method

has assumed increasing interest.

4. Free Convection Inside a Vertical Circular Cylinder

(

This subject was first studied by Lighthill‘gB) in 1953 and sub-
se . (26) . (27) . . . . »
quently by Leslie} and Liu*'‘. Lighthill studied the fluid motion

inside a vertical circular cylinder, closed at one end and opened to a
heat reservoir at the other end. The temperature of the cylinder walls
is kept at constant, different from that of the reservoir. Thus, heat is

transferred through the tube wall to the reservoir by combined natural

convection and conduction. A special feature of this problem is that,



due to the presence of the closed end, the fluid motion is made to form an
internal boundary by itself. This is quite conceivable if one considers
that the fluid adjacent to the solid wall is moving upward by buoyancy
while the continuity requirement makes it necessary that fluid in the
central portion of the tube has to flow downward. Thus, somewhere in be-
tween, there must exist a stationary layer.

Indeed, it is shown by the equations of motion that three inde-
pendent parameters, the Rayleigh number, the Prandtl number and the aspect
ratio, determine the fluid motion uniquely. Nevertheless, in addition to
this, Lighthill predicted that fluid motion is not exclusively of only one
type. He predicted that for large values of Rayleigh number (Ra) or small
aspect ratio (£/a), the flow would be of the boundary layer type. This
type of flow ceases to exist when the first critical value of Ra x a/z, tys
is reached. Then the motion is of the "similarity type" by which it is
meant that the velocity and temperature distributions are similar along the
axial distance. The similarity regime again is terminated at the second
critical value ofty , below which the fluid motion is stagnant in some
portion of the tube. Using a modified Squire's method(lo), Lighthill ob-
tained approximate solutions and determined the appropriate critical values
of tj for different flow regimes. Using the theorj of eddy properties
(exchange coefficient concept), he estimated the corresponding values for
the case of turbulent flow. It should be noticed, however, that a
partially linealizing assumption is made in his solution so that the analysis

is applicable only to fluids of large Prandtl number. To be exact, the
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Prandtl number of the fluid to which his solution could apply should be in-
finitely large. Physically, this corresponds to neglecting the inertia of
the fluid as compared with the forces due to its viscosity and the external
acceleration.

In a paper published in 1957, Ostrach(28) extended Lighthill's
similarity solution to the case of linear variation of wall temperature.
Still later, Leslie<26) used Lighthill's method to solve the problem in the
same geometry but with a first order perturbation term which is introduced
by considering the external acceleration to be at a small angle to the axis
of symmetry. Apparantly, his solution is intended to throw some lights on
the "turbine blade" problem(l) where the Coriolis force is exerted on the
moving fluid. In a paper by Liu(27) yet unpublished this same problem is
attacked by a more sophisticated method. Liu modified Poots' method(24)
of orthogonal expansion of the equations of motion and obtained solutions
in a limited range. Since the boundary layer approximation is not involved
in this case, his solution should be very accurate and more reliable.

Experimental work on this subject has been done by Cohen(29>,
Martin(3o> and Cresswell(31>. As a whole, the experimental data check with
Lighthill's laminar analysis to a reasonable accuracy, the error in the
theoretical prediction of turbulent flow is high, however. Since in Light-
hill's analysis a parameter of large Prandtl number has been assumed, the experi-
mental work is mainly for conventional fluids. Nevertheless, the experimental
data for air which has an average Prandtl number of 0.73 do agree with the
theory in spite of this assumption. This fact was pointed out beforehand

by Lighthill in a discussion of the applicability of his solution(25).
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The experiments by Hartnett, et gin,(32) were conducted in the
same geometry except that the condition at the walls being constant flux.
Both mercury and water were used as test media and the data were correlated
in terms of average Rayleigh number (Gr x Pr) versus average Nussult
number. It is reported that corresponding to a given Rayleigh number,
Nussult's number for heat transfer in mercury is much smaller than that
in water. Furthermore, it has also been reported that the fluid motion in
mercury is very unstable for all values of Rayleigh number. The same phe-
nomenon has been observed by A. G. Smirnov in Russia,(3) No rationaliza-

tion has been given in both reports, however.

5. DNatural Convection with Internal Heat Generation

Because of the advance in nuclear power reactor technology, heat
transfer by natural convection with internal heat generation has assumed
increasing interest. The basic equations of this case are very similar
to those without internal heat generation, with the exception that a heat
source term is included in the energy equation. Theoretical solutions by
Hammitt,(g) Hallman,(33) Ostrach,<3h) etc., are available in the literature,
among which the work of Hammitt is of most interest to the author.

Hammitt studied the heat transfer in a completely closed circu-
lar cylinder with a known internal heat source (not necessarily constant),
the wall temperature of the cylinder being subject to a known axial func-
tion. With the boundary layer simplification and the assumption of a
large Prandtl number for the fluids, he set up the equations of motion in

integral form. Hammitt further modified Lighthill's temperature and
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velocity profiles(25) to satisfy his boundary conditions. The final form of
these equations are then programmed for an IBM-650 computer to obtain the
numerical results. The solutions thus obtained are verified by an appro-
priate experiment from which a good agreement has been seen.

Since Hammitt's solution involves an arbitrarily known heat source
and a very general boundary conditon, Lighthill's solution in the boundary
layer flow regime as discussed previously would be a special case of Hammitt's
solution if the heat source is assigned everywhere zero inside the cylinder
except at the bottom and the wall temperature is assumed to be constant
throughout. This fact has been pointed out and numerically checked by
Hammitt in his paper. Later, Hammitt and Chu(35) employed the results from
the previous work to obtain a numerical method for transient heat transfer
by natural convection in the same geometry. No experimental data are avail-
able to verify the theoretical results from this paper, however. Also
Hammitt and Brower(36) made a somewhat preliminary analysis of low Prandtl
number fluid flow in the same geometry. Finally, internal heat source
experiments similar to those of the above studies are presently underway
in England.*

To summarize the above, the phenomenon of natural convection has
been quite extensively studied both theoretically and experimentally.
Nevertheless, due to the inherent difficulties of mathematics and experi-
mental technique involved, the information so far available is rather frag-

mental. Several elegant analyses on laminar flow have been published,

* Personal communication from Dr. D. Wilkie, Windscale and Calder Works
of UKAEC, September 1961.
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but only under very restrictive conditions, such as a particularly simpli-
fied geometry, a limited range of Grashof or Prandtl number etc., those
analytical results agree fairly well with the experimental data. With the
bexception of few papers such as Lighthill;s(QS), the ‘analysis for.nat-
ural convection in turbulent flow has virtually not been attempted. Cer-
tain emperical correlations are in existence, however, due to the absence

of basic understanding, the applicability of these correlations is rather

limited.



CHAPTER IIT

THE THEORETICAL CONSIDERATIONS

1l. General Considerations

Figure 1 is a schematic representation of the problem configura-
tion. The coordinate system is symmetrically placed at the closed end
of the circular cavity whose length is £ and radius is a. The walls
of the cavity are kept at a uniform and constant temperature, Tgy. The
open end of the cavity is connected to a reservoir which is kept at a
uniform constant temperature, T;. T; 1is always smaller than Ty. By
this arrangement, heat is transferred through the walls to the fluid in-
side the cavity and carried to the reservoir by convection and conduction.
Radiation heat transfer is neglected throughout the entire analysis. The
temperature difference (T,-T7) 1is assumed to be small as compared with
the absolute temmerature. Furthermore, for sufficiently small tempera-
ture difference, it is reasonable to assume that flow is laminar.* The
body force, due to gravity, is parallel to the axis of symmetry.

As mentioned in the previous section, the fluid motion is not
exclusively of one type. Both Lighthill<25) and Batchelor(gg) have pointed
out that three different flow regimes are possible, namely, a boundary-layer
type flow regime, a similarity flow regime and a similarity flow with a

stagnant portion. The parameterswhich differentiate one regime from the

* 1t appears that the magnitude of the (Crashof number determines whether
the flow is laminar or turbulent. Indeed, a large temperature differ-
ence will tend to make the Grashof number big, this is indeed not the
only factor, however. For instance, in a centrifugal field the accel-
eration is so big that even under moderate temperature difference, the
Grashof number can be of order of 1012, Nevertheless, the assumption
that T1-T, being small 1s essential as will be seen in following sec-
tion.

=1k
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Figure 1. Schematic Representation of
the Problem Configuration.
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other is Rayleigh's number (based on radius, see Nomenclature) and £/a°
Since each of the following solutions applies to a specific flow pattern,
it is of advantage to analyze physically the significance of each flow
regime, and its relation to the parameters involved.¥

When the product of Ra and; a/ﬁ is sufficiently large, the
flow up the sides of the cavity approximates free convection flow up a
vertical plate. This flow is of the boundary layer type; and it is well
known that the solution thus obtained has given good agreement with ex-~
perimental data,(8)9) For flow inside a circular cylinder it is also
known that the curvature of the wall does not affect the form or the
validity of the boundary layer approximation, provided that its thick-
ness is smaller compared to the radius of curvatureo(lo) The present
case is different from that of the flat plate since the fluid motion
occurs in a confined space which makes it necessary that the flux upward
along the walls must be balanced by the flux flowing downward at the cen-
ter. At one extreme, when the boundary layer occupies only a negligible
portion of the cavity cross-section and consequently the downward velocity
is small, the present solution should be identical to Pohlhausen's solu-
tion(8) which assumes no vertical velocity outside the boundary layer.

Therefore, for a large value of Ra x a/z, the solution is of
the boundary layer type. This yields the first of the three flow regimes
with a downward velocity outside the layer taken into consideration. One
might expect it to be valid down to a value of Ra x a/z for which the

boundary layer first fills the whole tube. Actually, however, it should

* A similar analysis is also given in Lighthill's papera(25)
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break down for a smaller value of this parameter, roughly that at which
there is no longer a maximum in the volume flow of unheated fluid (i.e.,
of fluid outside the boundary layer) at the orifice cross-section. It
is possible that unheated fluid be drawn into the boundary layer to be-
come partially heated; but not vice-versa.

When Ra x a/z is less than this critical value, the boundary
layer mixes with the central flow and when a uniform condition is reached,
fills the whole tube. The nature of this resulting flow can be more
easily perceived at the extreme case when Ra x a/ﬁ is sufficiently
small. This is one in which all tendency for the boundary layer to
thicken with distance from the closed end has disappeared (e.g., similar
to ordinary, fully-developed pipe flow). Then the distributions of veloc-
ity and temperature are similar at each section of the tube, only the scale
increases as the orifice is approached. It will be found from the equa-
tions of motion that under these circumstances the scales of both the tem-
perature and (axial) velocity profiles increase linearly along the tube.
The condition that the central temperature should rise from its value T1
at the orifice to the value T, at the bottom then determines the possi-
ble values of the aspect ratio ﬂ/a for this particular flow as certain
multiples of Ra.

This is the smallest value of Ra X a/ﬂ for which there is mo-
tion all along the tube. For still smaller values, which may be regarded
as acheived by extending the tube beyond a hypothetical closed end, the
additional length is filled with fluid at rest at the temperature of the
walls, the "similarity flow" in the remainder being unchanged. This is
the third regime of flow which occurs when Ra x a/ﬁ is less than the

second critical value described above.
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In the following sections, the solution for the first flow regime
is obtained by using a modified Squire's method,(lo) An analytical solu-
tion is given for large Ra x a/z when the boundary layer is such that
high order terms of boundary layer thickness in a series expansion are
negligible., This solution is applicable for fluids of any Prandtl number.
For the intermediate range of Rayleigh number x a/z, still beyond the first
critical value, the solutions are expressed in numerical form. Again,
these solutions are given in a wide range of Prandtl number (10 > Pr > 0.02).
For the similarity regime, an analytic solution is obtained only for fluids
with large Prandtl number. This simplification is important in order to
make the governing equations manageable. It is to be noted that an approxi-
mate solution of the same problem under this simplification has been ob-
tained by Lighthill.(25) However, the present solution employes an entirely
different method which is believed not only more rigorous mathematically,
but also more meaningful physically.

A factor of order of 10 separates the first critical value (cor-
responding to the breakdown of the boundary layer solution) from the sec-
ond (corresponding to the onset of the similarity solution). The inter-
mediate range must be filled by a solution which permits variation down
the tube of velocity and temperature profiles which nevertheless fill the
whole tube. Due to the great complexity present, such a solution is very
difficult to obtain in a rigorous mathematical manner. However, an approxi-
mate solution(25) is known to the author (by Lighthill), and this solu-
tion is quoted in order to complete the range of present work. Indeed, it

is hoped that this gap can be filled by later endeavors on this problem.
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Figure 2 is a graphical representation of the similarity flow

regime with and without the stagnant portion.

2. The Basic Equations

The equations of motion of the present problem are similar to
the ordinary equations of free convection flow. With the boundary layer
approximation, the equations of conservation of mass, heat, and momentum

respectively, in steady axisymmetrical flow are¥*

QU oV v
X * 3R + = 0 (2.1)
dT dT 3T 19T
oT oT _ o1 2
U "V R K(ggz TR 5R) (2.2)
U R - SN S -1
SR 3R R OR (2.3)
X - 9 2.k4)
OR (

Here Uand V are unknown velocity functions, U being the axial
velocity (parallel to X-axis) and V Dbeing the outward radial velocity
(along the radius R). T is the temperature, p the pressure which is
assumed to be a function of X only as shown by Equation (2.4). This is
a consequence of the boundary layer approximation. f 1s the external
acceleration oriented in the negative direction of X. k 1s the thermal
diffusivity, v 1s kinematic viscosity and p is the density, all in
consistent units. X and R are the coordinates as shown in Figure 1.

Figure 3 shows schematically the physical quantities. A table

of nomenclature is given at the end of this paper.

* The derivation of these equations can be found in the Appendix.
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FLOW WITH SIMILARITY REGIME
BOUNDARY LAYER NOT  w|TH STAGNANT
FILLING TUBE PORTION

Figure 2. Similarity Flow Regime with
and without Stagnant Portion
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Figure 3. Schematic of Physical Variables.
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As usually assumed in natural convection flow, only density
variation with respect to temperature is taken into consideration. Thus,
if the temperature difference To-T; 1is small compared to the absolute

temperature scale, p"l varies with temperature according to the equation.

p = po [1+ aT-T,)] (2.5)

" "

where the subscript "o signifies the conditions at the wall (R = a),
and & 1s the volumetric thermal expansion coefficient.
The condition of no slip at the solid boundary requires
U=V =0 at R =a. Thus, the momentum Equation (2.3) at the wall takes

the form

2
- _ e _ladp dU _ 19U
° £ P, IX *Volsm t R 5§]R=a (2.6)

Now Equation (2.5) is combined with Equation (2.6). By this
means, the thermal buoyancy force is made apparent. Upon substituting
dp/dx from the combined form of Equation (2.5) and Equation (2.6) into

Equation (2.3) the momentum equation becomes

2
oU dU 3 U 1 0ou,R=R
U x5t A\ A af (T-T,) + v[aR2 = R]R=a (2.7)

Equations (2.1), (2.2) and (2.7) are the three governing equa-

tions to be solved for three unknowns U, V and T under the conditions

at R

I

a and at X =0; U=V =0 and T =T, (2.8)

and
at X =4, R =0; T =T . (2.9)
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It is found convenient to write the governing equations and the
boundary conditions in a dimensionless form. The substitutions which re-
duce simultaneously Equations (2.1), (2.2), (2.7), (2.8) and (2.9) into

dimensionless form with the least number of parameters are

kL
U = u

a2
v = £y

a

_ vl 2.10

T o= T - ikt ( )
R = ar
X = Ix

Thus, the final form of the governing equations becomes

—_— — + X = 0 (2.11)
0x Or r
ot ot 62t 10t ( )
i = + = == 2.12
h ox T dr JOr2 r or
1/.. du ou 3%y . 1 du,reT
= - —) = =t = == 2.1
c(u ox T Br) ' [8;2 * r ar]r=l (2.13)

while the conditions in Equation (2.8) become
u=v=%t=0 at r =1 and at x = 0. (2.14)

and the condition at the orifice or Equation (2.9) is

. afah(To-Tl) ~

a =1t (2.1
X=l, r=0 vks 1 ( 5)

a a
7 Gr Pr = 7



b

Now, one of the most important results from any solution of the
above equations will be the overall heat transfer rate. In this coanec-
tion, conventional Nusselt number, based on the radius of the cavity, is

defined, i.e.,

and

Combining these two definitions, one obtains

£
aQ 1 1

oT
= = 2ratK dx
KEna,@(Tl-TO) Qﬂz'K(Tl-To) Q 2n,8K(Tl-TO) f T (Sﬁ)R=a
(¢]

Nu =

(T1-T,) Of 3R 'R=a
Upon the substitution of dimensionless variables defined in Equation (2.10),

the Nusselt number can be written as

1
1
o= f( at)r=l dx (2.16)

" or
o

Before getting into the details of solving above equations, two
conclusions can be readily drawn; (1) the final results must contain the
parameters Prandtl number, ¢, Rayleigh number, Ra, and the aspect ratio
E/a , since these are the only parameters in the governing equations and
the boundary conditions. (2) From Equation (2.13), it can be seen that
zero velocity everywhere inside the cavity (u = o, v = o) for any non-
zero t 1is impossible. This simply means any temperature difference

across the cavity, however small, will produce some steady convective
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motion.*¥ This fact is useful in obtaining the similarity solutions in
the following section.

The complete derivation of the basic equations as well as a
discussion of the significance of the omitted terms due to the boundary

layer approximation is found in the Appendix.

3. The Solutions for the Boundary Layer Type Flow Regime

(a) The Formulism of the Integral Equations

In this section an approximate solution for large Ra x a/E
is obtained. As mentioned in the previous sections, this corresponds
to boundary layer type flow. Because of the complexity involved in the
governing Equations (2.11) through (2.15), an exact solution throughout
the fluid is very difficult to obtain. Therefore, an approximate solu-
tion of their integrated forms is attempted. Experience has shown that
the integral method predicts overall heat transfer rate, being an integrated
quantity, with reasonable accuracy (around 3 percent at high Prandtl num-
ber and 13 percent at low Prandtl number) (141 However, the errors in
skin friction and mass flow rate are usually high.<lo’lu’37) Since in
the present case, the Nusselt number is of main interest, the use of this
method to obtain the solutions is Jjustified.

The equations of motion integrated over each cross-sectional

area, in dimensionless form, are

1

U/\urdr = 0 (3.1)

o}

As an example of a problem with the opposite nature, consider natural
convection inside a rectangular region where two horizontal sides are
maintained at different temperatures. Now the Rayleigh number must
exceed a cer%ain value in order to have non-trivial solutions for the
velocity.<22
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1
3
8; L/\ rutdr = (%%)r:l (3.2)
o
1> [t ' 1 ,du  d°
- _ L (eu _ u
- 6/ﬂ ru dr = 6/~ rtdr + > (ar S;E)r=l (3.3)

The forms of Equations (2.11), (2.12) and (2.13) at the walls and on the

axis are

2

0t 19

ot =L = b
(ar " r Br)r=l 0 (3.4)

3t _ %% 10t

(u ax)r=o = (érz + ; ar)r=o (3»5)
1y 0 S () s [52u L, Ldup (3.6)
SV S r=0 T VTWp=o T T2 T T Oripa :

For this flow regime a solution with a variable boundary layer
thickness is needed. Because of this complication, a simple profile is
used. No attempt is made to apply the more delicate of the above condi-
tions, namely, those involving the values of the second derivative, as in

Equations (3.4) and (3.5). Equations (3.3) and (3.6) are thus combined to

2
eliminate (%;% Since for this regime of flow, u 1s independent from

)r=l'
r outside the boundary layer, (%E) o vanishes. Thus, the momentum equa-
r'r=

tion becomes

1 1
\/ﬁrugdr = - L/Artdr + % (i u ou , t) + (Gu) (3.7)
g

9% r=0 dr'r=1
o o

o/

1o,
o Ox
The solutions of Equations (3.1), (3.2) and (3.7) together with
the boundary condition Equations (2.14) and (2.15) are obtained in the
form of polynomials in r. Since from the condition of axisymmetry, the

solutions must be the even functions in r. That i1s, the terms with odd
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powers of r are missing. A consideration of the physical situation as
well as test results of Hammitt(2 ) reveals that the temperature function
t 1s a monotonously decreasing function from a constant value t1 at

r =0 to zeroat r =1. The simplest form of the velocity function u,
with least energy dissipation is to have one (positive) relative maximum
and one (negative) relative minimum over the interval 0 < r< 1, being
negative constant outside the boundary layer and positive in the vicinity
of r =1, vanishing somewhere between and also at r = 1. 1In fact, the

following profiles due to Lighthill(25) are assumed

(tl O<r<p

t = (3.8)
bl - 221 per<n
- 0

U ={ V4 <r<?f (3-9)

'7{1 = (i:é)g[l + B(T-l)]} B<r<l

where B, vy, & are functions of x.

Equations (3.8) and (3.9) already satisfy the boundary conditions
at r=0 and r = 1. Now Equations (3.1), (3.2) and (3.7) are used to
determine the unknown functions B, 7, and &. It is to be remarked here
that B could be physically regarded as the one's complement of the
"boundary layer thickness", i.e., 1-B is the boundary layer thickness.

The continuity requirement of the temperature and velocity functions suf-
fices to determine the interval of PR varies over 0< B < 1. As will be
shown later, the upper limit of B 1s completely determined by a pair of

given values ¢ and tj.

The substitution of Equation (3.9) into Equation (3.1) yields

5 = - 2(5+ap+ 2) (3.10)
(1-8)2(3+28)
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while the equations of conservation of energy and conservation of momentum
after elimination of & from Equation (3.10) give the following system

of ordinary differential equations,*

d_ [72_ . -1485+1017p+k72282+262283+2978 2785
dx 8o (3+2p)2(1-B)

= =5 t1(1-8)(348) - 7 %é%éﬁ%%%?é%é (3.11)

d_ ,ybl | 45+132p+181p2+6283y _ 1
ax <8uo 3+28 ) = 1- (3.12)

Since it 1s assumed that the boundary layer arises from the
closed end of the cavity, B =1 at x =0, likewise at this point

v = 0. Thus
X=O, B =l, y =0 (3-13)

(b) The Asymptotic Solutions

Tt now remains to solve Equations (3.11) and (3.12) under the
conditions defined in Equation (3.13). Two difficulties are immediately
encountered, namely, (i) the given system of equations is highly non-linear,
(ii) the given condition at x = O happens to be the singular point of
the equations. An analytical method of solving a system of non-linear
equations is not generally known, and it seems very unlikely that Equations
(3.11) and (3.12) can be solved analytically. Therefore, a numerical

method is relied upon for the solutions of the above system. However, a

* A complete derivation is given in the Appendix.
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well defined initial point is necessary to initiate the numerical process.*
In the present case, the conditions known at x = 0 do not define the
first derivatives of B and 7y and consequently the numerical integration
cannot be readily performed. Since the system of Equations (3.11), (3.12)
and (3.13) do not satisfy Lipschitz condition,** the solution may exist
but uniqueness is not guaranteed. This simply means that through the

given point x =0 there are infinitely many solutions for the given sys-
tem of equations. Therefore, it is necessary either to successfully re-
move the singular point from the differential equations or to determine
from physical reasoning which one of these infinitely many solutions would
yield the desired results and thus to proceed uumerical process. It

has been found in the present case that an asymptotic integration of the
above equations combined with a conclusion drawn from dimensional analysis
will determine the desired solution with success.

Substituting

B =1-¢t (3.14)

into the above differential system, the following equations can be obtained

1d (,2¢) - 4,14 - oI .1
5 ax (7<) 1141 = 74 (3.15)

= (e) = % (3.16)

See Milne, "Numerical Integration of Differential Equations." McGraw-Hill Co.

**see Ince, "Ordinary Differential Equations." Dover Publication, p. 23.
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. 2&00-6550g+4886g2-136og3+1uhg5-9g6 1_1p
= .t -Lps
280(5-2¢)2 E & R
g1 - 4f _ -3000+3600¢-450£2-96083+540e4-117654980 | 1 _ 1
=== - = == Prr |
de 70(5-2¢)3 g2 g '
g = 420-680£+367E2-62¢3
8L0(5-2t) *(3.17)
gt = 48 _ -2560+3670-16642+248¢3
g 840(5-2¢)2
I) = g(k-g) = ¢P]
12 1
3(10-108+3t°) 11 J
I, = s — = — P
2 (5-2¢) 2 2 2
and the initial conditions become
x=0, =0, £=0 (3.18)

When the Rayleigh number x a/ﬁ is large, the boundary layer
thickness, &, 1is small and the higher order terms of ¢ are neglegible
as compared with the leading coefficients. Thus, the polynomials in
Equation (3.17) can be approximated by appropriate constants. The differ-

ential system Equation (3.15) and Equation (3.16) is then reduced to

1d (1272 L1y - 62 (3.19)
o dx 35 & 3 g2
a (1, .1 (3.20)

dx 10 e
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By expanding the differentials in above equations, Equations (3.19) and

(3.20) become

121 p2dy 724y _tlg g2 (3.21)
350 &tdx g2dx 3 g2
1 dy 1 (3.22)
10 dx 13

from which the following equations are readily obtained.
dt _ -350t1£3+307 (210+2L) (3.23)
ax 3692
dy - 10 (3.24)
dx 3

Now it can be seen that the independent variable x 1is missing in both
equations. As a result of that, an elimination of dx yields a first

order equation with variables y and ¢ only, i.e.,

4 -3607° (3.25)
g &[350t183-30y(21o+2L)]

By a transformation of

7 = &30 (3.26)

Equation (3.25) becomes

d6 . -1050t10+1800 62+18900¢°
at "ot =30 6(21lo+24)

The variables are now separable and the result of this separation is

dg¢ _ __350t1-30 6(21o+2k) Qo (3.27)
E 6[-1050t1+90 ©(20+210)]
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The general solution of Equation (3.27) is

4nC + fnt = - L gme - 120 pm[-1050t71+90 ©(20+210)]
3 90 (20+210)
or - L L
(20+21 5
Ct =06 3 [-1050t +90 @(20+2lc)]3 g

and by Equation (3.26)

I
Cy = [-1050t7+90 %3 (20+210) ] (20+215) (3.28)

Equation (3.28) clearly shows that the given condition ¢ =0, y = O does
not suffice to determine the unknown constant C uniquely as predicted
previously. In order to determine a particular solution for Equation
(3.27) which is physically meaningful as well, the results from a dimen-
sional analysis are invoked. It is well known that in case of boundary
layer type natural convection flow, the boundary layer thickness grows
according to the fourth root of the distance X, (gnqxl/u) while the

3/ (13,14)

increase of velocity, 7, 1s proportionate to Therefore,
the ratio of §3 to 7y 1s independent of the distance x. Bearing this
in mind, one can easily show that Equation (3.28) does yield this parti-
cular solution if one sets C equal to zero. Furthermore, the propor-
tionality constant can also be determined from the same equation, i.e.,

Y = fot1 §3 (3.29)
120(1+1.050)

with this explicit relation of ¢y and &, the system of Equations (3023)
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and (3.24) can easily be solved. The solutions are found to be¥

1/
= 3.88(1_%%2) / e (3.30)
7 = 3. 1*3(102% YL/ % 3/ (3.31)

The Nusselt number can be computed by combining Equations (3.30) and
(3.8), i.e.,
1 1
NU.=Lf(-§E dx=2fj;dx (3-32)
o ¢
Thus, the overall average Nusselt number, as from Equations (3.30) and

3.32) is

1/4

Nu = 0.69 (

—) (3.33)

1+1. 05

By definition of "asymptotic integration", the accuracy of the
results increases as g‘l increases and approéches exactness when ¢
is infinitesimally small. This is equivalent to say that the accuracy
increases for an increase in tj;. It is therefore natural to investigate
the lower bound of t; below which the error introduced becomes intolera-
ble. Owing to the non-linear nature of the problem, it is almost impossi-

ble to compute the error as a function of t; in a rigorous mathematical

* A less elegant but ﬁa51er wag to obtain these solutions is to assume the
solutions ¢ = Ax , / and determine the constants A and B
from Equations (3.23) and (3.24). 1Indeed, if the postulated solutions
are consistent, they should reduce these differential equations into
algebraic equations for which A and B are unknowns. However, in
doing this, the insight into the differential equations is completely
lost.
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manner. Nevertheless, it is not too difficult to estimate the order of
magnitude of the error by comparison with a known "exact solution" and
thus to determine a lower bound.

If the Prandtl number of the fluid is sufficiently large, the
left side of Equation (3.11) vanishes and the equation is reduced to an
algebraic form. With this simplification, Lighthill(25) obtained a set
of solutions by integrating numerically the energy equation, which, in

the present notation, can be written as

a_ £3(k-8)(420-680£+3676%-62¢3) 1 _ 1 (3.34)
dx (10-10¢+3¢2)

t1

U e

His solutions are carried out within the range of 0.62 > & > 0.1 which
corresponds to 3400 < t1 < 2, b x 106. The lower limit of +t7; 1in this
case 1s determined by the condition of maximum volumetric flow at the
orifice which has been discussed in the previous sections.

If o - o, the asymptotic solutions Equations ( 3.30), (3.31)

and (3.33) approach the limiting values of

g = (214 I/ (3.35)
1
7 = 2 (G)/H 3 (3.36)
8 1 \1/4
m, =2 (5ig) (3.37)

For the purpose of comparison, the range of the solutions of
Equation (3.34) has been extended to &< 0.01 which corresponds to
t1 > 4.0 x lOll. A trapezoid method is used for this integration

and the numerical computation is done by an IBM-704 computer.



-35-

The exact solutions for o — o from Equation (3.34) compare
with the asymptotic solutions from Equation (3.37) remarkably well. The
deviation is less than 1.2% when t] 1is 2.6k4 x 106 which corresponds
to a boundary layer thickness of 0.2, about 5.42% at t] = 4.0k x 10% or
at the boundary layer thickness ¢ = 0.3. Figure U4 shows the comparison
over the region investigated.

The dimensionless volumetric flow rate of the cold fluid at the
orifice of the cavity is proportional to the flow rate of the core and

the cross~sectional area of the orifice. That is,

G~ 7(1-8)7 = 9p° (3.38)
where G 1is the dimensionless flow rate.
It has been found* that the right side of Equation (3.38) can

be expressed by

B3(3+8) (3+28) (1-8)3
36(3+48+382)

and this quantity ceases to be a maximum when £ =0.38 or ¢ = 0.62, cor-

respondingly +tj = 3,400, which is the lower limit for this regime of
flow.
Substituting in Equation (3.29) with o0 - o, and Equation (3.35)

into Equation (3.38), it is obtained that

~(1-2)2 1 3 .
G~ (1-t) 3 b1t (3.39)
Equation (3.39) has a maximum at ¢ = 0.60 which indicates even

for relatively large &, the asymptotic solutions are still reasonably

* A brief review of Lighthill's solution appears in the Appendix.
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applicable. However, the corresponding t] computed from Equation (3.35)
is 1,850 which deviates considerably from the actual value of t] = 3,400
(47.1% error).

It is, therefore, concluded that when the Prandtl number is large,
asymptotic solutions are good for ti > lOu, and the deviation becomes
large as tj decreases from this value. The critical value of tj as
predicted by Equation (3.39) is not good. Nevertheless, the critical
boundary layer thickness at the orifice is in excellent agreement with
that obtained by exact integration. There is no absolute guarantee that
this conclusion can be equally well applied to those solutions of finite
Prandtl number. However, at least, the comparisons above may serve as a
possible guide as to how the solutions vary with respect to the physical
parameters. It is indeed true that the exact solutions of Equations (3.15)
and (3.16) still rely on numerical integration which is the subject of the

next section.

(c) The Solutions in Numerical Form

In this section, a method is developed to obtain numerical solu-
tions of Equations (3.15), (3.16) and (3.17). An IBM-70L4 digital computer
is used for this purpose. The detailed computer program is included in
the Appendix along with the flow diagram.

The difficulty due to the presence of a singularity at x =0
can now be overcome with the aid of the known asymptotic solutions. It
has been shown that these solutions are particularly good when ¢ is
small, and it is also physically obvious that the boundary layer thickness
€ 1is a continuous function of x throughout the entire region of investi-

gation. Thus, in the neighborhood of x = 0, regardless of the value of
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t1, & must be small as required by this continuity (since at x = 0,

t =0), and consequently the relationship between &, y, and x is
accurately described by Equations (3.30) and (3.31) if x 1is chosen
sufficiently close to the origin. The differential system Equation
(3.15) and Equation (3.16) is everywhere continuous except at the ori-
gin, x = 0. Therefore, the numerical integration can be initiated in
the neighborhood of x =0 with the values of & and 7y predicted by
Equations (3.30) and (3.31). Indeed, high accuracy can be obtained by
first taking both a sufficiently small value of x and then a small interval
of numerical integration. This is feasible since the tedious repeti-
tive computation is done by a computer.

Equation (3.15) and Equation ( 3.16) could be programmed di-
rectly for mechanical computation. A sufficiently small initial value
of x could be taken and the corresponding values of ¢ and 7y com-
puted from the asymptotic solutions Equations (3.30) and (3.31). The
values of the first derivatives dg/dx and dy/dx are then to be com-
puted from Equation (3.15) and Equation ( 3.16) respectively. From this
point on, Runge-Kutta or any known method for numerical integration of
differential equation can readily be applied, and the differential Equa-
tions (3.15) and (3.16) pointwise solved.

In the present case, however, direct programming has proven
disadvantageous. The independent variable x 1is missing both in Equa-
tions (3.15) and (3.16). If the iteration is on x, the stability of
machine computation is greatly reduced. As a matter of fact, in some in-

stance, the error is so big that overflow of the computer was detected
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after only the first few computations. Thus, an amended form of Equa-
tions (3.15) and (3.16) is needed.
Expanding the differentials in Equations (3.15) and (3.16),

one obtains

yof! dé 2yt dy _ o(t1I1-7Ip) (3.40)
dx ax

r A€ dy _ 1 i1

78 dx Te dx 3 (3 )

where the coefficients are the same as those defined in Equation (3.17).
It is found convenient to write these two equations as follows:

2
2 per &8 42 2 pp & =g (t1EPr; - L5 Prp)
£2 ax £ dx o2 2 (3.42)

 dg dy _ 1
78 =t 8 = £ (3.41)

The new coefficients have also been defined in Equation (3.17).
From Equations (3.41) and (3.42), d&/dx and dy/dx can be explicitly

solved, i.e.,

dt _ ot1gP1;E7 - 7(0gPI,+2Pr)
dx 72(gPp1-2¢Prg") (3.43)

dy _ otlg'P1124 - 7(0og'PI E+Pf1)
dx vt (2Prg' -gPr1)

(3.L4)
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Dividing Egquation (3.44) by Equation (3.43), one obtains

dy _ _ot1g'Prtt - y(og'Pryt+Pr1) y
at ctlgPIl§3 - 7(ogPr,+2P¢) E (3.45)

One also obtains from Equation (3..43)

dx _ _ y°(gPr'-2tPrg')
at otlgPIl§3 - 7(ogP1,-2Pr) (3.46)

and the Nusselt Number can be expressed in terms of ¢, i.e., from
Equation (3.32)

1

M =2 [Llax=o2
o &

1

:
/

v
QJIQI
g

dg (3.47)

o}

where &7 is the boundary layer thickness at x = 1.

Equations (3.45), (3.46) and (3.47) are now programmed for ma-
chine computation. The program is so written that the input data are
Prandtl number, o; the product of Rayleigh number and a/z, t1; and the
initial point, PBg (sufficiently small). Corresponding to these values
of By, 0, t1, the computer starts to compute x5 and 7o from the
asymptotic solutions. With all these as initial values, the computer pro-
ceeds to integrate Equations (3.45) and (3;&6) by the Runge-Kutta fifth
order method.* The pointwise results are stored in a temporary space for
the integral of Equation (3.47). The accuracy of integration of Equations
(3.45) and (3.46) is of order of At to the fifth power, while for

Equation (3.47) the accuracy is only of second order. The machine prints

* The equations involved are included in the computer program shown in
the Appendix.
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out the values of x, y and 7(1—5)2 at each ¢&t. It is terminated when the
condition x =1 is satisfied. If x =1 happens to be somewhere in be-
tween the intervals, the size of Af at the last point is adjusted accord-
ing to a quarterth power extrapolation. During the numerical integration,

the values of 2 1dx At for each ¢ are computed and summed. The

£ dg
final total of this quantity is printed out at the end of the program.
This is the overall Nusselt number computed under the given conditions.

It can be observed that both the denominator and the numerator
of Equation (3.45) are the difference of two terms. A simplified numeri-
cal computation shows that their numerical values are so close that their
difference begins to show only after the fourth or fifth digit. This is
particularly true when the Prandtl number is large; -- e.8., accuracy
of 12 digits is required when o = lOA. Furthermore, the stability of the
solution decreases as the Prandtl number increases. This is evidenced by
the rapid build-up of the errors incurred in each step. Once an error is
introduced, the numerical solution of ¢ converges to a small constant
value very close to the initial value of £ corresponding to Xxg.

This result is not at all surprising if one examines the orders
of magnitude of each term in Equation (3.45). The numerator of Equation
(3.45) is of o(gh) while the denominator is of O(&3) and ¢t is of
0(0) in the neighborhood of x = 0. Therefore, if an error, e, is in-
troduced in the numerator during the numerical computation, the error
simultaneously introduced in the denominator would be of O(%) which is
much larger than e. %% is than consequently of O(&) or 0(0). The

same argument is repeated when the next point is computed except that now

an error has already been inherited in ¥ since the numerical integration
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employes a slope approximation (or a truncated Taylor Series approximation),
i.e,
Tnel = 7n + (RAE)7) (3.46)

where R 1is a correction of Runge-Kutta method and 7& = (%%'n . There-

fore, it can be concluded that if the required accuracy is not met, the
error would build up rapidly, and the solution of ¥ becomes approximately
constant depending on the initial value of Xxo. A similar conclusion can
be drawn from the fact that Equation (3.45), being a first order equation,
possesses a singular solution of 7 = O (which is physically meaningless).
This solution happens to be stable as far as numerical integration is con-
cerned. Therefore, it is only natural that an additional accuracy is re-
quired in order to obtain a solution along a relatively unstable path.

It is, however, fortunate that this obstacle is not overwhelming.
It is well known that if the Prandtl number is big, the overall heat trans-
fer rate i1s not much affected by the magnitude of this parameter.(8’9’lo)
This is further evidenced, in the present case, by the asymptotic solution
Equation (3.33) that o is hardly important at all if it is big enough.

In fact, Lighthill’s(25) solution of o0 o was well verified by experi-
ments on water(29) having a maximum Prandtl number less than 10.

As pointed out previously, the numerical integration employes a
Runge-Kutta fifth order method, and the maximum step size does not exceed
0.01 for all the computations. Therefore, the truncation error should be
less than 10710 for each step of computation. The accumulated error and
the stability criterion are very difficult to estimate.* No attempt has

been made in this connection.

* See Milne, ibid.
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Altogether about 30 machine computations have been made (the re-
sults are listed in Table I). The range of Prandtl number is from 10.0
to 0.02 and of Rayleigh number is from 108 down to 103 for fluids of
larger Prandtl number and from 1010 gown to 102 for fluids of low Prandtl
number. In each set of computation there is a check of volumetric flow
rate at each axial distance x. This device was intended to determine the
lower limit of t3; i.e., that condition when a maximum volumetric flow
rate would not be located at x = 1. Regafdless of the parameters tj
and o0, this maximum always shows at the orifice. But the Nusselt number
becomes more and more independent of t3 (NUJ\’tll/h for high tl). The
fallure to obtain such a minimum t7 below which this analysis does not
apply is thought to be due to the error introduced in the pointwise inte-
gratioﬁ. However, there 1s no rigid basis for this argument. For the
present cases, the minimum t; for each ¢ 1s then taken when £ > 0.6
at x =1 as per Equation (3.39). This criterion should give a fair esti-

mate as explained in foregoing section.

(d) General Remarks on Computer Program

At least, three different methods of programming have been tried.
A Runge-Kutta fourth order method has been used occasionally.* The results
from this program were compared with the results of Runge-Kutta fifth
order method and no significant difference observed. A double precision
fifth order program has also been used for integrating equations with high

Prandtl number, but no success obtained. On the average, a complete set

See University of Michigan Computing Center, MESS.
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of computations takes approximately two minutes on an IBM-704 type compu-
ter (using Runge-Kutta fifth order), while double precision program re-
quires five to six minutes.

Figure 5 is a consolidated representation of Nusselt number as
a function of t; for different Prandtl numbers. The dotted lines are
the trace of the asymptotic solution. It can be seen that the deviation
increases with decreasing t7. The numerical solution reasonably follows
the '"one quarter power'" law and flattens out when a certain value of tl
is reached. The mark on each line is the estimated value of t; corre-
sponding to the break-down of the model. This is given by the criterion
of &> 0.6 at the orifice.

Figures 6, 7, 8 and 9 are the boundary layer thickness and the
axial velocity as functions of x. Again the asymptotic solution is shown
for comparison. Figures 10 through 15 show the temperature and velocity

distributions.

4, Solution for Flow Regime With Similarity

(a) The Similarity Transformation

In this section a solution of Equations (2.11), (2.12) and (2.13)
under the boundary conditions Equations (2.14) and (2.15) is obtained,
such that u and t are proportional always to the same two functions of
r, the factors of proportionality varying with x. A brief examination
shows that the only possible form of variation with x 1s that u and
t are both proportional to x, measured from some origin. In fact, such

a transformation linear in x does exist as shown following:
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By Equation (2.11), a stream function 1 exists, such that

V=—£a_‘[ (lhl)

r Ox

c
I
R
/|
Yl

The transformation which possesses the "similarity characteristics" is

found to be

v = xf(r), t = xg(r) (4.2)

Tt should be noted that the functions f and g in Equation (L.2) are
not to be confused with those mentioned in the previous section (which
will not appear again).

After this transformation, Equations (4.1), (2.12) and (2.13)

become

u = % f'(r), v =- % f(r) (k.3)
f'g - fg' =rg" + g' (b L)
_l_ l ,2 - l_ i1 l 1 - - ]_- 1my - L " l 1]
0(;2-f = £ + =5 £F ) = -g + =T ST+ 3 f' + C (L.5)
where
C=-f""(1) + £"(1) - £'(1) (4.6)

and the prime denotes differentiation with respect to r. The boundary

conditions are transformed into

£(1) =£'(1) =g(1) =0 (4.7)

£(0) =0, g(0) = t] = constant (4.8)

and moreover, from symmetry, the solutions must be even functions of r.
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Indeed, Equation (4.5) is of third order and (4.4) of second order, the
five conditions in Equations (4.7) and (4.8) would suffice to determine
a particular solution for this differential system had the unknown con-
stant C been absent. Owing to this additional complication, one more
physical condition is explicitly utilized; i.e., the velocity u must
be bounded everywhere in the region of r, that is to say,
| 1im Le(r)] < M (%.9)
r 07T
where M 1s a finite constant.

The transformed energy and momentum Equations (4.4) and (4.5)
respectively are non-linear and of high order. It does not appear that
an analytic solution can be obtained without simplification. This situa-
tion is further obstructed by the given conditions in Equations (4.7),
(4.8) and (4.9), so that even a numerical solution is very difficult to
obtain.

As stated before, a well defined initial point is necessary for
any type of numerical process. For the present differential system, three
conditions are given at r =0 and another three are given at r = 1.
Therefore, if a numerical solution is attempted,three additional conditions
must be guessed in order to initiate the numerical process and then the
results must be matched to the conditions at the other end. The condition
specified by Equation (4.9) is most unsuitable for any numerical computa-
tion since it is almost impossible to obtain a limiting value from mechani-
cal calculations.

Equations (4.4) and (4.5) are subject to a set of homogeneous

boundary conditions. Since the differential system is non-linear, the
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well-developed theory of homogeneous ordinary differential equation and
eigenvalue solutions are not quite applicable. However, it would not
be surprising that this system of equations would exhibit a behavior
similar to that of linear equation (which happens quite often in mathe-
matical physics, such as in some non—linear vibration cases). This is
to say, the solutions may exist only under certain values of the parame-
ters o and t7. It will be shown later this is the case. The given
system will possess solutions only at discrete values of t7 for a given
o. These values of t] are accordingly the eigenvalues. Since the dif-
ferential equations are non-linear, the sum of the solutions is no longer
a solution. Further consideration will be required to decide which one
of these eigenfunctions is the desired solution.
In summary, the given differential system Egquations (4.4) through
(4.9) is inherently difficult to solve by any means. The analytical method
is practically unknown for a non-linear system of this kind. The numeri-
cal type solution encounters three serious difficulties; i.e.:
(i) the "two-point problem" with three unknown quantities
at either end.
(ii) the convergence requirement at r = O and
(1ii) the proper choice of t; for each o (such that t3
happens to be an eigenvalue of the system) before the
initiation of the numerical process. Such a choice of
t] must be completely blind.
It must, therefore, be hoped to solve these equations either
with the aid of certain simplifications or under very restrictive con-

ditions. This latter approach is chosen. It will be seen in the
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natural convection, these governing equations are coupled together. It
has been found fruitful to solve Equation (4.11) in terms of g and then
fully utilize this solution of f +to determine the unknown function g
from Equation (4.10). (The elimination of one variable from these two
equations is absolutely hopeless.)

Equation (4.11) is linear in f and this fact is particularly
useful since its complementary solution is readily obtainable. In fact,

the homogeneous part of Equation (4.11) is

r2f"' - rf" 4+ £' =0 (k.12)

which is of Euler's form and whose solution is

f=cy+ (cp+ c3 lnr) re (h.13)
From Equation (4.13), the Green's function subject to the conditions of
f, i.e.,

£(1) =f£'(1) = £(0) =0 (L.1k)
is constructed, and finally the particular solution of Equation (4.11) is
obtained in terms of g. The Green's function method to solve a non-
homogeneous equation is well known.¥ The particular application to this
problem is given below with further details in the Appendix.

The Green's function of Equation (4.11) is obtained from its
complementary solution Equation (4.13) and the given conditions Equation
(4.14). This function satisfies the homogeneous Equation (4.12) and the
end conditions Equation (4.14); it is continuous throughout the whole in-

terval O <<r=<<1l up to its second derivative where a finite discontinuity

* See for instance, Ince, "Ordinary Differential Equation'" Dover Press.
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following sections that a solution restricted to large Prandtl number

(0 - w to be precise) is obtained. It has been demonstrated experimentally

that the solutions corresponding to large Prandtl number are applicable,

to a reasonable accuracy, to fluids even with Prandtl number of order of

one.(2’25) With this restriction the simplified equations possess an

analytical solution which illustrates all the particular aspects of the

original Equations (4.4) and (L4.5) that have been described previously.
When o -, Equations (4.4) and (4.5) are reduced to following

forms;

rg" + (f+l)g' - f'g =0 (4.10)

ref"t - rf" 4+ £' = (g-c)r3 (k.11)
Comparing Equations (4,10) and (4.11) with Equations (4.4) and (L.5), it
can be seen that the order of both equations is retained. The non-
homogeneous term (g-c)rBin Equation (4.5) appears again in Equation (4.11)
and finally, though the non-linear terms are somewhat simplified, the
basic non-linear nature is still preserved [see Equation (4.10)].

The analytical solution of Equations (4.10) and (L4.11) will
appear in the following section. Since a truncation of a power series is
involved, the solution thus obtained is checked by a numerical calculation
from an analog computer, with the initial information supplied by the
analytical solution. An altered form of Equations (4.10) and (4.11) is
thus needed for suitable analog computer prograrming, the details of which

will be discussed later.

(b) The Eigenvalues and the Approximate Solution

The task now is to solve Equations (4.10) and (4.11) subject to

the conditions in Equations (4.7) and (4.8) and (4.9). As is typical of
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of - =, 1is allowed. With these specifications, the desired Green's

function K(r;&) is found to be

{1—52.+ efn & _ (1-E2)sm n o 0«

K(r;8) e TR <r<t

]

- %.{l + (24n r—l)rg}

A
H
A
=

(k.15)

Once the corresponding Green's function is known, the solution of
Equation (L4.11) is readily obtainable by integrating the Green function

and the nonhomogeneous term (g-c)r3, i.e.,

f(r) = %-g {l+(2zn r-l)rg}{g(g)-c} at
1
+rf {l-§2 zggﬁn E _ (l‘ﬁigén r}{g(§> _ C} IEEBdg (h.16)

The integration of Equation (L4.16) yields
1 r 1 1
£(r) = ﬁJ gt3de + 2regn v [ ge3de-re [ ge3de
o o

+]j r2g§d§ + r} 2r2g§£n§d§ - :j 2rlgn rggdg}

+ fé cr2(1+24n r-re) (k.17)
where

g = g(t)

Equation (4.3) and Equation (4.9) are now used to determine

the unknown constant C. In this connection, Liebnitz rule of differen-
tiation with respect to a parameter is required; i.e., for continuous
functions F(&;r), oalr), p(r) (where ¢ in F is a parameter), the

following theory is true.¥

*
See Kaplan, "Advanced Calculus,’ McGraw Hill Book Co.
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S | P(e;r)de = Flp(x),rle'(r) - Flair),rla’(r)
or or
B(r) 3
— F(t;r)d
+ a(i) 5y Flesrae

By differentiation of Equation (L.17) with respect to r, one obtains the

velocity u from Equation (4.7), namely,

L 1
u o= % %% =x {smr [ g(e)edae + [ eg(t)sneat
o r
1 1
- r [ g(e)eae} + 7 c(l + 4n r-r2)x (4.18)
r

when r approaches to zero,
r 1 1 ]

1
u(0,x) =x lim {sn r[ [ gt3 + [ gtde - [ gedt + = C
r -0 o o ) b

1 r 1 1 5
+ [ tinteat - [ eintgdt + T C - Cr}
Thus, for a convergent u as required by Equation (4.9) the unbounded
terms of the above equation at r = O must be cancelled out among one
another. By equating these terms to zero, the unknown constant C 1is

found to be

1 1,
C==5L [ gtdt - & of gE~de (4.19)

o}

Thus, the final solution of f, satisfying all the given conditions is

obtained.

—

1, ¥ 2 z 2 57
f(r) = E{Of g§3d§ +2r4n r Of gEdE + = gtdt + 2r g Eintgdt

1 1 1 1
- 22 [ gedag + vt [ gelae + v2 [ geag - r* [ geag} (%.20)
o @] O o

Now, Equation (4.20) can be combined with Equation (L4.4) to
form a differential-integral equation. However, if this is done, the

final equation contains very complicated integral and differential terms,
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and the presenf limited theory on integral equations is not enough to

tackle any problem of this nature. Thus, in order to obtain an explicit

solution for f(r) and g(r), Equation (4.20) should be further modified.
Assuming the function g(r) can be expressed in a power series,

i.e.,

g(r) = L a,rt (k.21)

the integrals in Equation (4.20) can now be carried out. .In fact, upon the

substitution of Equation (4.21), Equation (4.19) becomes*

f(r) = z § enre

=2 Lo tayaay L®2)(1-rF) - 2(1-r2)] (4.22)

and Equation (L4.L4) is now of the form

0 0
ngo n(n-1)a,r®1 + ¥ na r?-1

o % - .

L rn-l _...51_—_ i - - -7 2
ek me T HE ey (90 - 20T
> a. rh 3 __.Ejir__.__. - I‘2 _ (- rk 2
- {néb . }{kZ )2 el [(k+2)(1-2r%) - @-(k+4)r**)]}

Before the solution of Equation (4.23) is attempted, several interesting
facts can already be seen from it. First, the roots of the indicial
equation of Equation (4.23) are O and -1 so the difference between
them is an integer. This means one of the solutions of Equation (4.4)

will possess a logarithmic coefficient. This solution thus is not

* The detail of this solution can be seen in the Appendix.



-65-

convergent at r =0 and is discarded. The second term in the series
expansion gives aj; = 0, and the recruiting formula requires all the
coefficients of odd powers of r to be zero. Therefore, the solutions
of Equation (4.23) convergent at r =0 is a series with only even
powers of r. This is exactly what is required by the assumption of
axisymmetrical geometry. Indeed, it is clearly shown by Equation (L4.22)
that if g(r) is an even function, f£(r) is also an even function.
Therefore, a consistent set of solutions can be obtained after the co-
efficients in Equation (4.23) are determined.

Since all the coefficients of odd powers of r are missing in

the series solution, Equations (4.21) and (4.22) can be written as

[ee]

g(r) = nz=:o ap Tt (4.24)

1y __aE_nEE__[(n+1)(1-r2)-(1-r2n+2)J (k.25)
8 n=0 (n41)2(n+2)

f(r) =
Thus, the solutions of the energy Equation (4.10) and the momentum
Equation (4.11) with these forms of power series will be free from singu-
larities at r = O.

Now Equation (4.24) and Equation (4.25) are substituted into
Equation (4.4) to determine all the coefficients such that the given con-
ditions

g0) =t; and g(1) =0 | (4.26)

are satisfied. [Note that Equation (4.25) will satisfy all the condi-

tions of f(r) and the momentum Equation (4.3) provided that Equation

(4.26) is satisfied. The verification can be found in the Appendix. )
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From the first condition in Equation (L4.26), the leading co-
efficient in the series solution of g(r) must be t1. By the second

condition in Equation (4.26), the form of g(r) at r =1 is

ag + 8 + 8y +ag+ ... =0 (k.27)

Since ay 1is non-vanishing, the eventual determination of all the co-
efficients of g(r) will be expressed in terms of ap (the recurrence
formula is not necessarily explicit and in the present problem, it turns
out that the relations between these coefficients are extremely compli-
cated). Therefore, it can be seen from Equation (4.27) that only certain
discrete values of ag, and hence the values for t;, will yield a com-
patible solution for the differential system Equation (4.3) and (k4.4),
namely, those values of ag which satisfy the algebraic relation Equa-
tion (4.27). 1In principle, there are infinitely many roots for Equation
(4.27), but as will be shown later, the number of physically meaningful
solutions is very limited.

The substitution of Equations (4.24) and (4.25) into Egquation

(4.4) yields the following relation:

© o apj .
2 on-1 _ ed a2 o s 25+k4
16 L, Weent N = I ARy 0 20 E e (3e2)r
S 2n-1 = 82 2 (s b 23+ .
% D . - | J
[n=o den® ) j=o (j+1)2(j+2)[Jr (3+1)xTer ) ) o8
© 2
[n;bnagnrgn'l] ( )

Recalling Cauchy's formula for the product of two infinite series¥*

[ [ 0 n
Y an-2 bn= 2 Y anbn-j
n=o n=o n=o Jj=o (4.29)

See, for instance, Rainville, "Intermediate Differential Equations."
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and shifting the indices, Equation (4.28) becomes

65 2o, gen-l _ ¥ Y 9%, 1 ena

' nzb " eent nzi %2(n 1){325 (3+1)2(542) br
o ) . o & 2an s

_ - Jap j 2n-1 _ 2J 2n-1
am FHRGDlE, EEet T Sk e E, Gy

3 g %3 yoen-l, ¥ "% apsen(n-j-p) 2n-1
+ (n-2)a2(n_2){.2 br + Y ¥ r

n=2 j=o (J+1)(5+2) n= j=o (n-j-1)2
i niE Jap38p(n-i-2) pon-1 (4.30)

n=2 j=o (n-j-1)2(n-j)

The difficulty in determination of the coefficients in Equation
(4.30) is from the fact that this equation is not in the form of a pure
power series (due to the nonhomogeneous terms in the momentum equation).
The coefficients are related to one another in a very complicated fashion,
Thus, an explicit recurrent formula is not available. In order to deter-
mine the coefficients for the leading terms in a manageable way, a trunca-
tion of the infinite series must be made (up to the sixth power of r).

It has been found convenient to extract the leading term from

the series in Equation (4.24); i.e., if by = ag ,

L 6

g(r) = bo(l + byr® + byrt + ber® + ...) (4.31)

and after collecting the coefficients of various power of r 1in Equation
(4.25), it becomes,

bo

[(60bs + 4Ob), + 27bg ...)r2 -(120bs + 60b) + 36bg)rh
5760 2 i 6 2 L 6

f(r) =

+ 60bor® + 200318 + ... ] (4.32)
Substituting Equations (4.31) and (4.32) into Equation (4.4) and equating

the coefficients of each power of r to zero, one obtains the following
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equations :
(60 - E—Jbg + LOb), + 27bg = O
o
120b, + (60 + égobu + 36bg = O
2byby, + 180 cgby + 18bg = O (%.33)
where
co = by/5760 (4.34)

Equation (4.33) can be solved for by, bj, and bg in terms of cg. The
condition defined in Equation (4.27) is then used to solve for the values

of c¢o. That is, by, by, and bg in terms of ¢ must satisfy the con-

o
dition
1+Dby + D) +bg =0 (%.35)

Theoretically, Equation (4.31) and Equation (4.32), after being substituted
into Equation (4.4) will generate a set of n algebraic equations with n
unknowns and a non-zero constant, bg = t;. These n-equations are homo-
geneous but non~linear. Thus, the eigenvalues of this system cannot be
determined by setting the complimentary determinante to zero. Instead, the
boundary condition at r =1 1is used to determine uniquely the numerical
values of all the coefficients as demonstrated previously. The exact solu-
tion could be obtained by allowing n to go to infinity. This, of course,
is practically impossiblé. In fact, even for a relatively small value of
n, say n =4, the steps involved in solving this set of simultaneous
algebraic equations are already forbiddingly complicated.

The elimination of by, by and bg from Equations (4.33) and
(4.35) (by Kramer's rule) results in the following function of c,, called

eigenvalue generating function, i.e.,



120¢3(108+180c,)? + 40c3(72+108¢,)? - 120(108+180¢,) (72+1080c, )3
+ 36¢2(108+180c,) (8-120¢,+1200¢,)? - 27c2(72+108¢,) (8-120c+1200¢,)°
- 180c2(108+180¢,) (-8+8lcy-3000c2) - 18(8-120c,+1200cS ) (-8+8lc,-300¢3)

=0 (4.36)

The roots of Equation (4.36) can most easily be obtained by
plotting its value versus Cqe This function is shown graphically in
Figure 16, where three zeros, corresponding to cg equal to 0.06702,
0.1442 and 0.2241, can be seen. Therefore, when the power series repre-
sentation of g(r) is truncated up to its seventh term (r to the sixth
power), these values of cg, and hence by by Equation (4.34), will give
a consistent set of solutions of Equations (4.3) and (4.4). The solutions
are given by Equations (4.31) and (4.32) with the coefficients determined
by Equations (4.33) and (4.36).

Corresponding to cg = 0.06702 or t7 = 386, the solutions for
t and u are

t = 387%(1.0-2 Br2+2.60r -1, bhrO) (4.37)

-x(8.6-L41.7r2+52. 3r*-19,2r0) (4.38)

u

I

[the solﬁtion for u is obtained by differentiating f(r) and dividing
f'(r) by r as shown in Equatidn (4.3), u = ? £'(r)]

In a similar fashion, corresponding to the other two values of
Cy, there are two sets of solutions for t and wu. The poésible solutions
of temperature are plotted in Figure 17.

As mentioned previously, since the energy equation is nonlinear,

the sum of the solutions is not a solution. Therefore, it remains to determine

* A short IBM-704 program has been written for this purpose.



-70-

RAPIDLY INCREASE
WITH NO LIMIT

1000

E (Co)

C4*0.06702
Co=0.2241
o 1, =356 f= 1290
C =0.1442
1 =830
RAPIDLY DECREASE
WITH NO LIMIT
0 010 020 0.30

Figure 16.

Co

* The function E(Co) is defined in Equation (A.36).

The Eigenvalue Generating Function*with Three Zeros.
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which one of these solutions is the desired one. In this connection, it
can be seen from Figure 17 that the only possible solution is the one
corresponding to cé = 0.06702. The other two solutions have a negative
temperature difference within the interval of r, and this violates the
second law of thermodynamics. Since it is impossible to heat the fluid
in the cavity by the heat input through the wall to a temperature higher
than the wall temperature.

Knowing the temperature function, the Nusselt number is readily

obtainable by Equation (2.16), i.e.,
T
Nu = i- f(—E) dx (%.39)
0o

and by Equation (4.37), Nu = 0.771.

It will be of interest at this point to discuss the validity of
the solutions Equations (4.37) and (4.38). . The previous development
has shown a method from which the solutions of Equations (4.3) and (L4.4)
can be obtained. By taking a sufficient number of terms in Equation (k4.30)
the solution can be as accurate as desired, provided that the power series
is uniformly convergent throughout the entire interval O < r < 1. Indeed,
the complexity of the computation would simultaneously increase with the
increased accuracy.

The most serious difficulty encountered is, however, to establish
the convergence of the power series representation of the functions f(r)
and g(r). The present problem is non-linear and of high order. Therefore,
the general theory of the power series method of solving differential equa-
tions 1s not applicable, since it is restricted only to linear equations.

Furthermore, the recurrent formula of the coefficients is not in explicit
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form, thus, even the radius of the circle of convergence cannot be esti-
mated. Nevertheless, it is interesting to note that the signs in both
Equations (4.37) and (L.38) are alternating and the coefficients for ro
are smaller than for ru. The independent variable r 1is generally
smaller than unity, and when r = 1, the condition in Equation (4.26) re-
quires the power series to be zero. With all these favorable indications
for convergence, it could be expected that the solutions thus obtained
would converge. However, the rigorous mathematical proof is not readily
available.

The second difficulty is to Justify the truncation of the power
series. Should the convergence be rigorously established, the error of
the truncation could be estimated. But this cannot be done here. The
main concern is thus to estimate the error introduced in finding the
eigenvalues due to the truncation of the power series. It has been veri-
fied in the theory of Calculus of Variations¥* that the truncation has
little effect on the values of the first few roots of the elgenvalues
generating function. For example, the number of the eigenvalues for the
present problem is reduced from infinitely many to three due to the trun-
cation of the power series. The value of the first eigenvalue (i.e.,

c 0.06702) is only a little affected while the third value (i.e.,

(©)

Co 0.2214) may be hopelessly inaccurate as the result of this trunca-
tion. It 1s fortunate, that the present solution requires only the first
eigenvalue. Therefore, it is believed that the accuracy of the solution

must be very high. Again, there is no convenient method to estimate the

possible error because of the complexity of the given differential system.

x*
See R. Weinstock, Calculus of Variations, McGraw-Hill Co., 1952.
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With the same restriction of fluids of large Prandtl number,
Lighthill obtained an approximate solution by Squire's. method.(25) His
solution predicted a critical +t7 of 311 which is about 20% lower than
the value predicted by.the present investigation. The difference in
Nusselt number is, however, bigger. Lighthill's solution predicted an
overall Nusselt number of 0.364 (at t] = 311), while the present solu-
tion shows a value of 0.771.

Figure 18 and Figure 19 show the comparison between his solu-
tion of temperature and axial velocity and the solution by the present

method. His temperature and velocity functions are

ct
I

311x(1-2.091r2+1. 5kr*-0. 454r0) (4.10)

[
Il

-x(8.36-37.3r2+36.61%-7.7r6) (k. b1)

As can be seen both from the graphs and the equations, the solutions from
these two entirely different methods do resemble to each other.

For smaller values of t7 than 387 (say tg) which is character-
istic of the similarity solution when it fills the whole tube, the tempera-
ture function is given by Equation (4.37) with t; = 387 being replaced
by the value tg, and x by x - (l-tj/tg). For x < tg/t1, there is
no motion and no variation of temperature (see Figure 2) and the top of
this region plays exactly the same role to the similarity flow above it
as does the closed end of the tube in the case discussed above. The

Nusselt number is therefore equal to

Nu = 0.771 %. (k. 42)

which is a straight line on the Nu vs. t; diagram shown in Figure 20.
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(c) The Similarity Solutions Obtained
From an Analog Computer

In this section, Equation (4.3) and (4.4) are programed for an
analog computer to obtain the solutions. As mentioned before, this set
of differential equations with the given boundary conditions is not very
suitable for any type of numerical computation. However, with the known
solutions Equations (4.37) and (4.38) the approximate values for the
initial points can be estimated. Thus, the difficulty arising from the
"two-point problem" is partially removed since the values of (¢, g' and
f" from Equation (4.37) and Equation (4.38) respectively should be very
close to the exact values if the analytical solutions obtained previously
would be correct. In the meantime, the solutions from the analog computer
can be compared with Equations (4.37) and (4.38) to estimate their accuracy
since there are some uncertainties in the power series solution due to the
convergence, truncation, etc. ‘

To employ an analog computer to integrate the differential equa-~-
tions, it is most convenient to transform the equations such that their
independent variable will range from zero to infinity. In many cases, the
independent variable of the differential equation is the time variable and
the dependent variables converge to certain constants as time increases.
The independent variable, r, in the present case, however, varies between
O to 1. Therefore, in order to facilitate the programming and to avoid
the possible complications in simulation, a transformation of Equations
(4.3) and (4.4) deems necessary.

With the exception of the nonhomogeneous term in Equation (k%.3),
the given system of equations is of Euler's type. Thus, the transfor-

mation, which will satisfy the requirement of the analog computer
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programming, is

Note when r =1, T =0 and when r =0, T = .
The transformation in above equation yields the following dif-

ferential operators; namely,

d __la @ _1 .  a_
ar rdr  dr2 re ‘ar dre
and (L.43)
a3 1 a a2 a3
_— = - = (2 — + + —
dr3 rd ( ar 3 dTé dT3)

Thus, calling F(t) and G(r) the transformed form of f(r)
and g(r) in the previous section, one obtains the momentum and energy

Equations (4.3), (4.4) respectively, in new variable , i.e.,
F'' 4 UF" 4+ UF' = (C - g)e™HT (. 1)

G" - FG' + F'G =0 (4, 05)

while the original boundary conditions, after this transformation, become

F(0) = F'(0) =G(0) =0 (b, 46)

Fle) =0  G(x) = 4 (4. 47)
and

Cc =F""(0) + F"(0) (1, 48)

and the corresponding condition of convergence at r =0 [Equation (L.9}]

is now

lim T F'(1) =0 (4.49)

T 5o
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Equations (4.44) and (4.45) are programed for a Pace electronic
analog computer. The electric circuit is shown in the Appendix.* The
input voltages to the computer are the properly scaled values of TF(0),
F'(0), F"(0), G(0), G'(0) and the value of C, among which the values
for F"(0), G'(0) and C are estimated from the results of the previous
section. The criterion of the correctness of these values 1s to require :;the
ralue of TF(T) approaches to zero, the values of G(t) and e F'(7)
approach to a steady value, at a fairly large t. In fact, this steady
value of G (T) should be the value of +t7 in Equation (4.47).

The best results from the analog computer, as selected from
approximately 100 trials, are summarized in Figures 21, 22, 23 and 2L.
Those curves are obtained according to the initial values of G'(0) = 470

and C 170 as compared to the corresponding values of g'(1l) = 307

I

and C

210 from power series solution. The dotted lines on the graphs
show the results from previous section.

It can be seen from tlese graphs the general agreement between
the soiutions from two entirely different approach. The solutions for
functions f(r) and F(r) match to each other remarkably. However, a
discrepancy between g(r) and G(7) is shown on Figure 21. Nevertheless,
not only the general trend between these two curves are the same, the
Nusselt number of 0.706 as computed from these results reasonably checks
the result from power series method of O0.771, i.e.,

11 4 ~1G'(0) _
M =33 0(0) —gml_om%

the error of which is less than 10%.

* This part of the present research was done in the National Argonne
Laboratory during the summer of 1961. The author was then a resident
research engineer in their Reactor Engineering Division. The analog
computer program is devised by Mr. R. Bare of Applied Mathematics
Division of the same laboratory. Mr. Bare also kindly assisted the
author to obtain the results shown in the following pages.
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As discussed previously, no numerical computation is suitable
to evaluate a limiting process, this is clearly demonstrated by the
irregularity shown in the right part of Figure 23, When + is suffi-
ciently large, both F'(t) and e=2T are vanishing, this portion of the
curve merely shows the residue statics in the computer circuit rather
than the limiting value of Equation (4.49).

The solution from the computer is very sensitive to the input
value of C, a 15% change of its value could drastically change the
form of the solutions. When this occurs, the solution of G(7) usually
does not converge to a steady value (always decreasing). Also, the
values from the divisor for =T F'(t) rapidly increase and the signal
of overflow is soon detected. From the theoretical solution of the pre=-
vious section, this behavior of the numerical solution can be expected
since the value of C actually determines the convergence of the solu-

tion at r =0 or, equivalent to T = .

5. General Discussion of the Theoretical Results

The previous sections give the theoretical results of the lami-
nar natural convection flow inside a circular cavity. The analysis in-
cludes the complete solutions for flow of the boundary layer type which
is characterized by high values of the parameter Ra x a/g (called tq)
for any Prandtl number and two solutions from different methods for the
flow in the similarity fegime with fluids of large‘Pfandtl number. All
these solutions are summarized in Figure 25,

A factor of about ten in the parameter, t;, separates the solu-

tions for boundary layer type flow and the similarity flow,comparing
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fluids of large Prandtl number (Figure 25). The solution for this inter-
mediate range of t] has not been obtained by the author. However,
Lighthill(25) presents an approximate solution for this region, which is
also included in Figure 25, Due to the various approximations made in
Lighthill's work, his solutions for boundary layer type flow and his
"intermediate solution" do not merge at the point of transition. As pre-
viously mentioned, more polished solutions are required. Indeed, it
would be of very desirable to obtain the solutions both in the
similarity regime as well as in this intermediate regime for fluids of
arbitrary Prandtl number.

From conventional boundary layer theory, it can be shown that
Prandtl number measures, as orders of magnitude, the ratio of the thick-
ness of the velocity boundary layer and the thermal boundary layer. How-
ever, in obtaining the results for the boundary layer type flow regime
for the present analysis, it has been assumed in Equations (3.8) and (3.9)
that the thickness of these boundary layers is of the same order of magni-
tude regardless of the value of Prandtl number. The validity of this
assumption depends upon the particular mechansim of natural convection
flow. The fluid motion in this case is entirely generated by the thermal
(differential buoyancy) effect. Thus, it is impossible that the thickness -
of these two boundary layers should be of significant difference,
since in the region where the thermal effect vanishes or changes sign,
the driving faorce for fluid motion and hence the velocity will tend to
do likewise. The exact solutions for the flat plate case with fluids of
different Prandtl numbers have been worked out by Ostrach,(ll) and

Sparrow,(lg) etc. The differential equations describing this natural
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convection flow are pointwise solved numerically. From these solutions,
no significant difference of the thickness of the thermal and velocity
boundary layer has been observed except perhaps in the region of very high
Prandtl number where a substantial temperature effect does not penetrate
as far into the fluid as a substantial velocity. However, this is for

the unbounded case of a semi-infinite flat plate in an infinite fluig,
where as in the present case within a cylinder the wall-generated velocity
is terminated by an opposite buoyancy effect in the central portion of the
vessel., Figure 26 and Figure 27 from Ostrach(ll) show the close relation
between these two boundary layer thickness for fluids of various Prandtl
number.

In spite of the various assumptions made it is believed that the
solutions obtained for the similarity flow regime are reasonably accurate,
since the power series solution and the solution from the analog computer
closely correspond. It is realized that analog computers may not give
the solutions of differential equations of this complicated nature with
great accuracy. Nevertheless, the process of obtaining the series solu-
tions furnishes the method in case solutions of improved accuracy are
needed.

It should be pointed out here that the integral method ( or modi-
fied Squire's method) of obtaining the approximate solutions in the simi-
larity flow regime is not as desirable as it is when applied to the regime
of boundary layer flow.* It has been mentioned earlier in this chapter

that the overall heat transfer results obtained from the integral

*
Lighthil1(25) used this method to obtain the solution which is quoted in
Figure 25.
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method should be satisfactory since the Nusselt number is an integrated
quantity. However, in the case of the solutions in the similarity flow
regime, the independent variables x and r 1in the temperature and
velocity functions are separable, and the Nusselt number as by Equation
(2.16) is evaluated by integrating the value of the radial gradient of
the temperature function at r =1 with respect to x. Since the varia-
bles are separable, and furthermore, the temperature dependence on X
is linear, the effect of the integration is merely to multiply the value
of g'(1) (which is of course free from x since the variables are
separable) by a numerical constant equal to 1/2. Therefore, a slight
change in the assumed form of the temperature function could introduce
a large error in Nusselt number because the value of the differential of
this assumed function is needed, and differentiation quite often intro-
duces more error than integration.

The entire analysis is based on the assumption of laminar flow.
It is, therefore, of interest to estimate the magnitude of the parameters
for which the basic laminar flow model should break down. There are two
factors in this flow regime which tend to create turbulence. First, the
radial distribution of shear has a maximum in the fluid. Secondly, the
temperature gradient upward is negative. Since the similarities exist
between the natural convection from a vertical flat plate and the boundary
layer type flow regime of the present problem, the empirical criterion of
transition from laminar to turbulent flow is referenced here.

Hermann(lo> found that for natural convection both from a verti-
cal flat plate and a horizontal cylinder, transition occurred when a

Reynolds number based on the maximum velocity and boundary layer thickness
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was about 300. Based on this criterion and the asymptotic solutions in

the previous section (the exact numerical solutions can indeed be used

for this purpose, but this would not give an explicit analytical expression
for discussion), the dependence of this transition point on the parameters
Ra, Pr and z/a can be estimated.

The Reynolds number, Re, according to the above definition is

Re = 5393 (5.1)

Applying the transformation in Equation (2.10) for U together with

velocity function of Equation (3.9) to Equation (5.1), one obtains

Re = &f(p,r) 22 - - tyf(pr) T4 (5.2)

where @(B,r) 1is the quantity in the square bracket in Equation (3.9).
Now from Hermann®s criterion of Re = 300, Equation (5.2) be-

conmes

300 = eyg(B,r)

Q-

£
a

and from the asymptotic solutions Equations (3.30) and (3.31), the final

expression of Equation (5.2) is

X

Lo 1
300 = E;'¢(B,T) oy

YT

or
x =22.5 of(B,r) % (5.3)
Several interesting results are suggested by Equation (5.3).
First, it can be seen that for a given t1 and aspect ratio, flow should
be laminar for the entire length of the cavity with fluids of high Prandtl

number, while under the same condition, the flow of low Prandtl number
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could be turbulent at least for part of the cavity. Generally speaking,
the quantity @(B,r) is decreasing with increasing t;, (see Figures
6, 7, 8, 9) this suggests the turbulent motion would occupy a larger

portion of the cavity as the parameter of Ra x a/ﬁ increases.



CHAPTER IV

EXPERIMENTAL PROGRAM

1. General Considerations

The previous theory has predicted that for the present problem,
the overall heat transfer results, expressed in terms of Nusselt number, can
be correlated as a function of three dimensionless variables, namely, the
Prandtl number, the Rayleigh number and the aspect ratio of the cavity.

In arriving at this conclusion, many simplifications and assumptions have
been involved. Therefore, it is desirable to conduct experiments to veri-
fy these assumptions so that the validity of the theoretical results can
be ascertained.

The experimental facility for this purpose should be so designed
that these three independent variables can be varied individually. In
addition to this, the facility should allow reliable measurement of the
quantity of total heat input for computing the dependent variable, i.e.,
the Nusselt number. Naturally, the geometry of the test section and the
physical conditions of these experiments should be compatible to those
used in the analysis. Based on these prerequisites, the present experi-
mental facility has been designed. The details are discussé& in the
following section.

The solutions given in the previous sections have covered a
wide range of Prandtl number. (The numerical solutions cover a range of
Prandtl number from 10.0 to 0.02, and the asymptotic solutions are good

for all non-zero Prandtl numbers at large Rayleigh number.) Therefore,

-9k~
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the fluids used as test media should also cover a large. range of this
parameter.

The work of Martin, Cohen, et gl.(29’30’3l) has used glycerine,
water and air under the same conditions and in the same geometry (the
Prandtl numbers of which are 66.0 to 7,000, 1.8-9.0, and 0.7-6.0 respec-
tively). These tests covered quite completely the range of large Prandtl
number fluids. In fact, they were intended to verify Lighthill's solution(25)
which is applicable only to fluids of large Prandtl number. In the present
work, water and mercury are chosen as the test media. The purpose of the
water tests is to develop the experimental techniques with the present
facility in a case where comparison with similar data is possible. Mer-
cury has been selected because of its low Prandtl number, which is approxi-
mately 0.03 at room temperature. No other fluid available at room tempera-
ture has Pr appreciably below 0.73 (Approximately the value of air). How-
ever, the low Prandtl number is typical of all the liquid metals, which
are of present technological interest, but, with the exception of mercury,
only are liquid at high temperature. NaK or Na would considerably extend
the range of available data (Pr for NaK is ™~ 0.003), but the complication
of the required high temperature is involved. For basic research, mercury
is considered sufficient.

Two test sections have been used: one with an aspect ratio of

13.3 and the other with 22.3% Due to the equipment limitations both are

of the same diameter.

¥ Defined as the ratio of the length to the diameter of the test section.
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Rayleigh number can be varied in two ways after the diameter of
the test section is fixed; i.e., variation of the temperature difference be-
tween the wall of the cavity and the reservoir (which is the quantity used to
define the AT in Ra), or of the average fluid temperature, since the fluid
physical properties are functions of temperature. The test range for Ra
is 10° to 106 for mercury and lO5 to lO7 for water. The range is limited
by the capacity of the test facility and the desire to obtain laminar flow
to match the assumptions used in the analysis.

Since mercury vapor is toxic in extremely small concentrations,
safety precautions must be taken into consideration. A mercury vapor con-
centration meter was placed next to the test section to detect any possible
mercury vapor leaking out of the system. 1In addition, the facility is lo-
cated in a test cell equipped with an automatic ventilation system so that
if any mercury vapor should leak, it would be carried out before reaching
a toxic concentration.

Due to the specified closed geometry, the low magnitudes of vel-
ocity, and the opaque nature of one of the fluids, it is almost impossible
to measure the fluid velocity, though this would be very desirable. In-
genious devices are available in the literature, such as those by Saunders,
Schmidt, etc.,<8J9) but their methods require the use of smoke traces in
an air stream or an open geometry. Hammitt(2> measured the velocity of
natural convection flow in a closed cylinder by timing the movement of
dye particles, but again his method is applicable only to a transparent

test section with transparent test fluid. Several devices were considered



-97-

in a preliminary fashion, but none of them has proven practical. Fortunately,
however, the local fluid temperatures can be measured to a reasonable accur-
acy. The?efore, not only a fairly accurate overall heat transfer result can
be obtained, but also the radial profiles of the temperature functions are
obtainable.

2. The Experimental Facility

Figure 28 is the schematic of the experimental facility. The
test section (A) is welded to the center of the bottom of the reservoir (B).
The entrance to the test section has been carefully machined after welding,
s0 that the disturbance to the fluids due to irregularities of the edge is
reduced to a minimum. A cooling coil is mounted inside the reservoir to
maintain the reservoir temperature constant. The diameter of the coil is
sufficiently large so that the cooling surface 1s reasonably removed from
the test section entrance to assure an approximately uniform temperature
of the fluid entering the test section. The spiral coil is fabricated
from l/h” 0.D. stainless steel tubing, aﬁprOXimately 6' long. This pro-
vides a total heat transfer area of about 57 sq. in. A rough calculation
has shown that with this amount of heat transfer surface, the maximum
temperature difference between the inlet and the outlet of the coolant
would not exceed 5°F even when the facility is operated at maximum heat
input. This small temperature difference proves to be very important in
stabilizing the reservoir temperature. Both the inlet and outlet of this
coil are welded to the wall of thé reservoir. Thermocouples are inserted
so0 that the coolant inlet and outlet temperatures can be measured during

the experiment.
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The reservoir is constructed from a piece of stainless steel pipe
of 6" nominal diameter and 8" length. A matching blind stainless steel
flange is welded to one end of the pipe and a matching slip-in flange to
the other. A hole is drilled at the center of the blind flange for the
insertion of the test section. The thickness of the flange in the neigh-
borhood of this hole is reduce to 1/4" (from the original thickness of 1").
In this way, the test section is secured firmly to the reservoir, and the
heated length of the test section is maintained at a maximum. Another blind
flange is used as the cover for the reservoir. Two small holes are drilled
in this flange: One for filling (plugged during operation), the other is
used to hold the movable thermocouple. An "O"-ring seal is used to pre-
vent leakage at this point since the thermocouple rod is a moving piece.

Two test sections were used. Both are of 1-1/2" 0.D. stainless
steel seamless tubing of 0.075" wall thickness. The shorter section is
18.0 inches long and the longer one is 30.0 inches. The bottom end of
each test section is sealed by a thin stainless steel plate and the open
end is welded to the reservoir as described previously. A small hole of

”1/16” diameter is drilled in the sealing plate which is welded to a
needle valve to provide a drain. Although both the test sections have
been carefully machined before being used, thé presence of small irregu-
larities on the walls is almost inevitable. However, it is believed that
these are so small as to have possibly only negligible effect on the motion
of the fluid, since the scale of the velocities inside the cavity is very

small. Figure 29 is the assembly of the test section.
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The mathematical model described in Chapter III requires a steady
and uniform temperature at the walls of the cavity. Physically, such a con-
dition can only be obtained by applying a wall heat flux which is non-
uniform in the axial direction. The required heat flux distribution may
be approximated by using separate heaters and suitably adjusting the power
input to each heated section. Theoretically, an infinite number of heaters
are required but this is indeed physically impossible.

Electrical resistence heaters are used. This proves effective
both for construction and in control. A possible alternative is the use
of steam heaters. After a brief consideration, this idea did not appear
feasible in the present case. The rate of heat input to the system would
be hard to control with steam. Even though the outside wall temperature
were maintained uniform, the rate of condensation of steam {i.e., heat
flux) would vary along the walls so that the inside wall temperature
would not be uniform. Also, a suitable steam supply was not readily avail-
able.

There are five electrical heating coils for the long test sec-
tion and three for the short one. Each of these heaters is formed by
winding resistance tapes around the insulation which is wrapped on the
tube wall. The heating tape is 1/16" wide and its thickness varies from
0.003" to 0.005" depending on the designed capacity of the particular
heater. The glass cloth and mica electrical insulation is used around the
tube wall. The mica is sandwiched between two layers of glass cloth. The

total thickness of this insulation is less than 1/32", and throughout the
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whole experiment, no burnout has been detected. The spacing between two
windings of the coil is kept less than 1/52”. Thus, in view of the rela-
tively high thermal conductivity of stainless steel (i.e., compared to the
electrical insulation) and the thinness of the electrical insulation, a
fairly uniform temperature of the tube wall could be attained. The heater
lengths are L', &', and 8' for the short section and 3",3",6",8", and
10 "respectively for the long one(listing from the top of the tube). The
sharp increase in the length of the heaters is due to the distribution of
the temperature and heat transfer along the wall as shown by previous
theory, i.e., both the change of temperature and the heat transfer is
smaller toward the bottom of the tube. Therefore, even with a compara-
tively longer heater, the lower end of the tube can still be kept at uni-
form temperature. There is no heater across the bottom of the test sec-
tion for either tube, although the boundary conditions of the basic pro-
blem do require a uniform temperature for all the walls and some heat
transfer through this portion is inevitable. There is no convenient means
to attach a heater to this wall and also the amount of heat transferred
from this portion of the tube is small as may be seen both from the theo-
retical consideration and the physically small heat transfer area.¥

A portion of the heater construction is shown in Plate 1. Six
thermocouples were welded along the outside walls of the short test section

(which was constructed first). It was found, however, their readings were

¥ Note the definition of Nusselt Number in Equation (2.16) does not
include the amount of heat transferred through this wall.
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Plate 1. Photographs of the Heaters.
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affected by the local high temperature of the heating tape to be of signi-
ficant assistance. Therefore, for the longer test section, the thermo-
couples along the outside vertical wall are eliminated with the exception
of locations at the test section entrance and the bottom of the sealing
plate. This gives a rough check on the movable thermocouple at the top
and the bottom of the test section and an indication of temperature at a
point which it cannot reach. However, major reliance is placed for the
entire investigation on local temperature measurements from the movable
thermocouple.

Figure 30 is the assembly of the movable thermocouple. It is
composed of a 1/8” 0.D. stainless steel tubing which shields iron-con-
stantan wires of approximately 0.0o8udiameter, insulated by magnesium oxide
powder. The assembly is about 5 ft. long. A 3/16" 0.D. by 4'-6" stainless
steel tube houses the smaller tube to give the required rigidity and guid-
ance to the assembly. An eccentric three-pronged circular spider with a
diameter of 1.35" (which is the I.D. of the test section) is located at
the bottom to maintain the required spacing between wall and thermocouple
rod. The lower end of the thermocouple rod is bent to a right angle.

A bead is formed at the tip which is 0.3375" from the centerline of the

rod (this distance is equal to one quarter of the inside diameter of the
test section). At about 1/2" above the bend it is located by the spider.

The eccentric cénter of the spider, and hence the center of the thermo-
couple rod, is located half way between test section centerline and the wall.
The remaining portion of the thermocouple rod is housed in the 3/16" tube

and is held at the both ends of the tube in two bearing sleeves so that it
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can rotate freely with respect to the housing tube, but can only be moved
vertically together with the housing tube. On the top of the upper end
of the thermocouple is a dial which indicates the angle of thermocouple
turning. Along the wall of the housing tube are marks of half inch inter-
val. Therefore, the exact location of the thermocouple bead can always be
known.

The housing tube is then secured in a specially made coupling
screwed on the cover of the reservoir. Three "0"-rings in series are used
to prevent vapor leaking. These allow rotation and vertical movement of
thermocouple. A three-legged supporting device is erected on the top
flange to provide a rigid support for the required vertical gliding motion
of the assembly. The centers of the spider and of the coupling are care-
fully aligned so that the centerlines of the thermocouple and of the test
section are parallel. Since this assembly, in spite of its length, is sup-
ported at both ends, its vertical motion is positive and only vertical mo-
tion is possible.

By this arrangement, the thermocouple bead can move along a circu-
lar path of a diameter equal to the radius of the test section as well as
along the axis. Since axial symmetry in the flow is assumed, the tempera-
ture measurements on the half circle of the locus of the bead, defined be-
tween the wall to the center of the test section, should be the radial
temperature profile of the fluid at a known distance from the bottom of the
cavity. Furthermore, since two sets of mutually symmetric readings are
Obtainable by rotating the bead to a full circle, the assumption of axisym-

metry can be checked.
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The presence of this movable thermocouple probe in the fluid would
certainly affect the fluid motion. However, it is believed that this effect
is small and can be neglected. Since the cross-sectional area of the probe
oeéupies less than 3% of the total area of the cavity (the legs of the
spider are made of 1/16" stainless steel rod), it seems reasonable that it
should not cause a great change in the fluid motion. Indeed, since the
probe'is off center, it would change the symmetry of the motion. In this
connection, the experimental work of Hammitt is cited. He used an off
centered thermocouple probe, much like that here described, to measure the
temperature field of natural convection in an entirely closed circular
test section with internal heat generation. As a check on the possible
effect of the probe, a second "dummy" probe was inserted in a series of
tests, with all the physical conditions kept the same. The temperature
profiles were then measured in the same facility with two probes in place.
The additional probe served only to preserve the geometrical symmetry in
these tests. Several sets of comparable data thus obtained have shown no
noticeable discrepancy. Therefore, it can be concluded that this tempera-
ture measuring device does not distort the physical phenomenon to a de-
tectable degree.

Since the spider is about 1/2" above the thermocouple bead and
cannot come out of the test section because of its diameter. The tempera-
ture reading at the inlet of the test section cannot be measured by the
same device. A fixed thermocouple, similar in design to the movable

thermocouple, is used at this position, one end being attached to a

»
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coupling welded to the wall of the reservoir. In order to avoid possible

confusion, these two thermocouples are made of the same material.

The whole unit is mounted vertically. The top section of this
structure (including the reservoir) is enclosed in an insulating box, about
two inches of glasswool insulation being used on each side. Around the
test section itself and the drain valve, are wrapped with a double 4 inch layer
of commercial thermal insulation. Three layers of aluminum foil are sand-
wiched between the insulation layers to reduce radiation heat loss to a mini-
mum. Three thermocouples are imbedded in the insulations to measure its
temperatures. It has been found that heat loss is tolerable in most of the
tests, since the temperature difference between the ambient and the surface
of the insulation has never been more than 1.0°F. The estimated maximum heat
loss corresponds to about 5% of the heat input.

All the thermocouples are led through a manual multi-point switch
to a Leeds and Northrup potentiometer so that temperature readings are
taken one at a time. However, the delay between readings is not sufficient
to cause severe inconvenience. The cold junction is immersed in an ice bath.

Individual variable transformers are used for power supply to each
heater, since each heater assumes a different heat input to the test sec-
tion, the design capacity of these being selected according to the approxi-
mate heater requirements; i.e., the transformers for the top heaters are
much bigger than those for the lower ones. The largest transformer (for
the topmost heater) has a maximum capacity of 1.12 kw (8.0 amp x 140 volts)
while the smallest (for the lowest heater) only 0.1 kw. The maximum total
heat input is approximately 2.8 kw, but under no circumstance could this

be realized due to the distribution of the required heat input.
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The output from the power transformers is led through a control
panel equipped with voltmeters, outlets, switches, indicating lights, etc.
A voltmeter is connected to each power transformer to indicate the approxi-
mate voltage across the corresponding heater (there are thus five such
voltmeters). A high precision Weston voltmeter and ammeter are plugged
into the sockets on the board so that they can be connected to any of
the heater circuits. Thus, precise readings of the power input to each
heater are made one at a time. The regular voltmeters merely indicate
roughly the condition of the heatérs during the test. Since the capaci-
tance and inductance of the heaters is negligible, the power factor is
very close to one, total power input 1s accurately calculated from the
product of current and voltage. Conventional safety devices are pro-
vided for the protection of the precision meters and transformers, etc.

The cooling system is of the recirculating type although initially
a much simpler device using tap water directly was employed. However, this
simple coil presented disadvantages as explained below so that it was
necessary that the design be changed.

The temperature of the tap water is usually well below the tempera-
ture of the reservoir. This big temperature difference between the wall
of the cooling coil and the reservoir fluid appeared to cause instabilities
in the fluid entering the test section. In some instance, it is almost
impossible to achieve a desired reservoir temperature. Also, the flow
rate of tap water in the laboratory has been found quite unsteady, and con-
sequently, to maintain a steady temperature of the reservoir is very dif-

ficult. In some cases, this reservoir temperature is so unsteady, as
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demonstrated by the rapid fluctuation, that a reliable measurement is im-
possible. This is more pronounced in mercury tests than it is in water
tests.

By adjusting the flow rate of the tap water in the auxiliary
heat exchanger of the redesigned system, the temperature of the recir-
culated coolant can be controlled and the undesired large temperature
difference eliminated. Because of the thermal inertia (or the time con-
stant) of the heat exchanger, a large part of the tap water flow rate
fluctuation is damped out and not passed to the secondary coolant which
directly affects the steady state of the reservoir temperature.

There is yet one more advantage for this type of cooling system.
Since the properties of the test fluid are functions of temperature, the
Rayleigh number, and hence the parameter tj, of the tests can be varied
at a constant power input. In other words, it is possible to hold the
power constant (and thus, approximately the temperature difference between
the cavity wall and reservoir remains unchanged), and to change the para-
meter t; by adjusting the coolant temperature via tap water flow-rate.
This capability of the facility proves helpful in attaining the desired
data.

The cooling system is composed of a cooling coil as menticned
previously, a small centrifugal pump, a tubular single pass heat exchanger,
a rotormeter, and a small glass jug used as the reservoir of the recir-
culated coolant.

The coolant leaving the coil is passed to the heat exchanger

where its excess heat is carried away. It then flows into the glass jug
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the outlet of which is connected to the centrifugal pump. It then is de-
livered to the coil again thus to complete the cycling process. The flow
réte of the coolant (ordinary tap water) in the shell side is indicated by
the rotormeter which is ranging from 0.05 to 1.0 gpm, in accordance with
the designed capacity of the total heat input to the test section. The
power to the driving motor is adjustable so the speed of the pump can be
controlled, but this device has never been utilized since the control of the
tap water flow rate is easier and effective enough.

Plate 2 is a photograph of the facility. The arrangement of com-
ponents is the same as those shown in the schematic drawing, Figure 28,

which can be used as the reference.

3. The Experimental Procedure

As mentioned before, water and mercury have been selected as test
media and two test sections of different length have been constructed.
Water tests were conducted only in the short test section (the 18" section)
while the mercury tests were carried out in both sections. With the excep-
tion that the recirculating cooling system was used only with the mercury
tests the experimental facility and general procedure of the tests have
been essentially the same throughout the entire program.

After the test section and all the auxiliaries were assembled,
the heat reservoir as well as the test section was thoroughly washed with
acetone to remove grease and other dirt. The movable thermocouple and the

top cover flange were carefully aligned with the centerline of the test
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Plate 2. Photograph of the Experimental Facility.
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section, and then the cover is assembled to the reservoir. The whole assembly,
erected on the upright structure, was carefully leveled. After the fluid is
poured into the system, the hole on the top flange is plugged. Distilled
water and triply-distilled mercury were used. The instrument was carefully
calibrated before used.

To start a test, the lowest heater is turned on first, then the re-
circulating pump is started (this is, of course, eliminated for water tests),
with zero coolant flow rate. '"Coolant flow rate" refers to the flow rate of
tap water in the heat exchanger. The recirculated coolant is at a constant
flow rate for all the tests. After an hour or so, when the whole system is
warmed up, the subsequent heaters are successively turned on. In the mean-
time, the movable thermocouple is positioned to measure the wall temperatures
at frequent time intervals. In accordance with the thermocouple readings, the
heat input to each section is adjusted until an approximately uniform wall
temperature is reached. This adjustment takes 4 to 8 hours depending on the
total heat input. Generally speaking, it takes a longer time to adjust the
heaters for larger Rayleigh number runs than it is for the smaller.

For the mercury tests, the mercury vapor detector is used as a
safety device. Since the operating temperature is relatively low and the
system is well sealed, the vapor detector has never registered any substantial
reading. The maximum temperature for the mercury tests is approximately 350°F,
but the reservoir temperature is only 170°F. The corresponding saturated
vapor pressures are 9.65mm and 0.03 respectively.

Except toward the entrance of the test section, where a mixing of

cold fluid entering the orifice and the hot fluid leaving the cavity is
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inevitable, the wall temperature readings are quite steady for most of the
water tests. The unsteady runs are those of large Rayleigh number for which
the flow is believed to be very turbulent. For the mercury runs, almost all

of the wall temperatures are unsteady for all the tests. Thus, the wall
temperature is considered uniform and constant if the reading of the movable
thermocouple is fluctuating within the range of the scale of the potentio-
meter (Leeds and Northrup type-8662) about the desired value. This is approxi-
mately equivalent to a fluctuation of + 5°F.

After the desired time-mean wall temperature is reached, the power
input to each heater is measured using the precision voltmeter and ammeter,
and the total heat input calculated. The insulation temperatures are checked
in order to estimate the heat loss. Based on the readings from the thermo-
couples embedded in the inner and outer wall of the insulation, the heat loss
is estimated to be less than 10 BTU/hour. This is small compared to the total
heat input (which is of the order of 200 BIU/hour so that the relative maxi-
mum heat loss is about 5%).

Although the temperatures of the coolant inlet and outlet are mea-
sured, the overall heat balance of the system has not been attempted. In
the water tests, where direct cooling system was used, the measurements of
the coolant flow rate were not accurate enough that a meaningful heat bal-
ance could be made. Since no flow meter is incorporated with the recircu-
lating system, the recirculated coolant flow rate is an unknown. However,
this quantity is of no real interest since only the net heat transfer to

the system through the test section wall is of main concern. The tubings
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of the cooling device are made of thick-walled tygon material. They are
therefore reasonably remote to the small change of the room temperature
which might be expected to have an effect on the steady state in the
heat reservoir.

When equilibrium is attained, the wall temperature and the
centerline temperature are measured at several axial positions with the
movable thermocouple. A radial temperature profile at a fixed axial
position is also made. Due to the unsteadiness of the temperature near
the throat (the entrance of the test section), this axial position has
always been taken near the middle point of the test section.

Altogether 47 tests have been made in this fashion: 14 with
water, 14 with mercury in the shorter test section and 19 with mer-
cury in the longer test section. Since the major interest is in the heat
transfer rate, the radial temperature profile measurements have been

omitted in some of the tests.(Table II is a summary of the test results.)

L, Observations

As shown by the theoretical treatment, the results of this ex-
periment should be correlatable in terms of Rayleigh number and Nusselt
number with Prandtl number and the aspect ratio of the cavity as parame-
ters. The data from the present investigation can then be grouped into
three categories, i.e., water in the short test section (Prandtl number
form 2.0 to 6.0, 1/a = 26.6), mercury in the short test section (Prandtl
number from 0.015 to 0.02 with same aspect ratio), and mercury in the
long test section (same Prandtl number with aspect ratio equal to 45.5).

The temperature differential between reservoir and wall of the

cavity 1is used to define the AT 1in the Rayleigh and Nusselt numbers.
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TABLE IT

SUMMARY OF EXPERIMENTAL DATA

Water Runs (£/a = 26.6) Mercury Runs (£4/a = 26.6)
Pr x GR Nu Pr x GR x 10°  Nu
4.01 x 106 6.51 1.2 0.251
51 x 106 7.52 1.22 0.222
5.95 x 106 734 1.32 0.140
6.61 x 106 7.%2 L.55 0.223
6.92 x 106 8.30 2.32 0.20
7.8 x 106 8.91 2.35 0.245
9.11 x 106 8.02 2.7k 0.272
9.52 x 106 10.10 5.42 0.270
1.0%2x 107 10.50 k.ho 0.285
1.0k x 107 10.01 5.0 0.310
1.1 x 107 10.02 6.80 0.29
1.45 x 107 9.35 6.85 0.25
1.81 x 107 10.05 8.02 0.308
2.01 x 107 10.07 8.72 0.201
Mercury Runs (4/a = 4k.5)

Pr x GR x 10° Nu

1.80 0.192

1.98 0.278} (unsteady runs,
2.10 0.202) zero coolant)
2.30 0.120

2.k2 0.1k2

2.90 0.115

5.55 0.141

5.65 0.122

4.05 0.124

4.9% 0.141

5.65 0.14k

5.95 0.105

6.40 0.126

7.35 0.155

7.96 0.1ko

8.62 0.124

9.60 0.161

9.62 0.1lk2
10.92 0.155
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Since both these temperatures are not quite uniform, an arithmetic mean
wall temperature and the time mean temperature reading from the thermo-
couple at the throat are used for this purpose. Since the physical
properties of the fluids are functions of temperature, their values used
in computing these dimensionless numbers are taken at the mean tempera-
ture between the reservolr and the cavity wall. Furthermore, since the
Prandtl number for each test of the same medium also varies due to this
temperature dependence, the final correlations from this experiment are
actually expressed within a small spectrum of variation of this parameter.
The range of this parameter for each group of tests can be seen in the
prior section. Values of the various properties of water and mercury

are taken from Heat Transmission and from Liquid Metal Handbook, Reference
h6 and 42 respectively. Some of the applicable properties of mercury

as functions of temperature are included in the Appendix.

Figure 31 is a summary of the experimental results. The points
on the top of the graph are the data from the water tests. This includes
the data from the present investigation and also that by Martin and
Cohen(29> in a facility which is generally similar except that the as-
pect ratio is 47.5. The four points in the middle of the graph are the
mercury data for a flat plate experiment taken by Saunders,(9) Since
when the Rayleigh number is sufficiently high, the results from the flat
plate analysis should converge to the present theoretical results, these
data points are also included for comparison. The points in the lower
portion of the figure are the mercury data from the present experiments.
Two different symbols represent the data from tests with different aspect

ratios (26.6 and 45.5). The data at the left portion of Figure 31 are
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test results from air by Martin and Cohen(29). No test has been conducted
in the similarity flow regime in the present investigation, however. The
dotted lines are the results of theoretical considerations.

As can be seen from this graph, the values from the theoretical
predictions are higher than the experimental results in all the cases, and
the deviations increase as the Prandtl number of the fluid decreases. It
is believed that this discrepancy is due to the fact that the flow inside
the cavity under the experimental conditions is actually turbulent while the
theoretical analysis is based on the assumption of laminar flow.

The water data of the present investigation agree reasonably well
with those of Martin and Cohen, which indicates that possible errors intro-
duced into the experiments are not significant. As shown by the theoretical
curves, smaller aspect ratio will increase the Nusselt number. The present
data, with an aspect ratio of 26.6, lie above the data by Martin and Cohen,
whose facility has an aspect ratio of 47.5.

The experimental results from mercury deviate much more from the
theoretical consideration than those from the water tests. With the excep-
tion of three points, the aspect ratio still plays an important role. The
test results from the short section are well above the results from the long
test section. The three higher points which are the exceptions mentioned
correspond to zero coolant rate. The reservoir temperature was thus very close
to the wall temperature so that the magnitude of AT was considerably re-
duced, giving rise to a comparatively small Rayleigh number and a large
Nusselt number. Since experimental conditions for these tests are consid-

erably different from the rest and from those required in the analysis, it
is very hard to make qualitative comparisons or to draw any quantitative

conclusions.
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It has been previously mentioned that both the fluid temperature
and the wall temperature are time-averaged values and considerable fuctua-
tions occur. This same phenomenon has been observed by Hartnett(u),
Hammitt(29) and Martin(5o). For both test fluids used in the present inves-
tigation, it has been observed that the largest fluctuétions occur at the
entrance of the test section and are reduced as the closed end is approached.
The oscillation is much larger in the mercury than in the water runs. }This
agrees with the observations of the previous investigators(Bz). Hartnett
measured the frequency and amplitude of these oscillations in his constant
flux experiments(Be), but no conclusion could be made from these measure-
ments, other than that these oscillations were of non-linear type.

No time-dependent measurements of these oscillations have been
made in the present investigation. However, a test in mercury was made
with zero coolant flow rate and zero heat input to all the heaters except
the lowest one, which drew a total heat input of approximately 50 watts.
Under these conditions, it was hoped that the disturbance from the mixing
of the cold and warm fluid at the entrance of the test section would be
eliminated. However, the oscillation of the fluid temperature was still
observed in this case. Therefore, it can be concluded that natural convec-
tion flow with low Prandtl number fluids is exceedingly unstable under
almost any condition.

The present analysis, as well as the analysis by Lighthill, using
an integral method, can not predict this observed instability. Rather, a
stability analysis is required of the type used by Chandrasekhar and Elbert(3T),

who treated the simpler situation of a thin layer of fluid heated from below.
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The calculations for this simple geometry predicted a cellular type of motion
for normal Prandtl number fluids such as air, water and oil when the temperature
differential between the bottom and the top surface exceeds a critical value.
For a fluid of low Prandtl number, such as mercury, the analysis of Chendrase-
kar and Elbert(37) predicted a situation of "over-stability", in which local
fluid temperatures oscillate, and the simple cellular pattern predicted for
water is no longer valid. Such predictions have been verified experimentally
by Fultz and Nakagawa(58) working with a thin layer of fluid. A similar sit-
uation is very likely to occur in the more complicated unstable flow geometry
treated in the present experiment.

For the water tests, the reservoir temperature is quite stable ex-
cept in the proximity of the entrance of the tube, where a fluctuation of the
order of 5°F has been observed for the entire range of tests. A test was made
with the cover of the reservoir and the movable thermocouple removed, and it
was observed visually that periodic discharge of hot fluid from the cavity
existed. This shows that a steady boundary layer with upward velocity around
the cavity and a steady downward velocity in the core which are assumed by
the theoretical analysis may not exist at all. Instead, a very complicated
mixing process may have taken place in this region. The highest temperature
difference between the reservoir and the cavity is about 80°F, and at this
temperature, the fluld temperature in the cavity is about 205°F. Since the
system is not pressurized, this is the highest Rayleigh number water test

possible with the present facility (Ra = 2.01 x 107, Nu = 10.7).
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For the mercury tests, the reservoir temperature is very unsteady,
especially in the vicinity of the test section entrance where the temperature
fluctuation is usually of the order of 20°F. Although it has not been vis-
ually observed, the periodic discharge of warm fluid must have been in exist-
ence, This is evidenced by the periodic variation of the thermocouple read-
ings. The period of this temperature shift ranges from approximately 1 minute
to 20 seconds as timed by a stop-watch. Generally speaking, the period is
longer and the fluctuation smaller for small Rayleigh number tests and vice
versa for large Rayleigh number runs. The temperature of the fluid in the
reservoir is very sensitive to the coolant flow rate, and it is very diffi-
cult to maintain a temperature differential between the fluid in the reser-
voir and the fluid in the test section less than about 60°F. The movable
thermocouple measurements show that this temperature differential exists
only within the top two or three inches of the test section. The rest of
the tube is in a more or less stable condition, though a temperature fluctu-
ation of 5 to 10°F has still been observed for all the mercury tests.

The sharp response of the reservoir temperature to coolant flow
rate suggests the existence of excellent heat transfer in the reservoir,
Since the reservoir temperature is fluctuating, it can be assumed that the
fluid motion in the reservoir is far from negligible, Therefore, it is prob-
able that the fluid motion in the test section is also affected by the turbu-
lence of the entering cold fluid causing some of the additional instability
in the test section., In some tests, attempts were made to reduce the tap
water coolant to bring the reservoir temperature up to as high as 170°F to

reduce the temperature differential, It was hoped that turbulence in reservoir
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might thus be decreased. This reduced the temperature fluctuation of the
reservoir fluid only slightly and the oscillations at the throat of the test
section still persisted.

The theoretical model employed in the analysis assumed a constant
core temperature extendiﬁg from the top of the test section to the bottom
and equal to the reservoir temperature. However, the actual observation is
quite different from the assumption. In most cases (both water and mercury
tests), the core temperature is very different from the temperature of the
fluid in the reservoir but close to the wall temperature, although in the
water tests, the radial temperéture differential between the centerline and
the wall of the cavity is larger than it is for mercury tests. But by no
means can be said that the core temperature is even relatively close to the
reservoir temperature.

It appears that the cold fluid of the reservoir is rapidly mixed
with the warm fluid within a very short distance after entering the test
section (2 to 3 inches). This greatly reduces the effective temperature
differential in the cavity and, hence, the total heat transfer through the
wall. Nevertheless, the Rayleigh number and the Nusselt number are computed
based on the temperature differential between the reservoir and the wall,
which does not actually represent the effective temperature differential as
far as heat transfer is concerned.

Figure 32 shows a typical axial temperature profiles of the wall

and the core. Figure 33 shows a typical radial temperature profile.
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(Mercury Run No. L-M-2
Reservoir Temp. = 162°F
Power Input = 383 watts)
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Radial Temperature Profile.

(Mercury Run No. L-M-3

Reservoir Temp. = 172°F

Power Input = 353 watts

Profile Taken 10" from the Closed End)
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Due to this rapid mixing process at the throat of the test section
and if the wall temperature is maintained constant, only the wall near the
throat is effective for heat transfer. Figure 34 shows a typical heat trans-
fer distribution for the short test section. As can be seen, about 85% of
the total heat transfer is through the top four inches of the test section
(from a total length of 18 inches). This situation is even more pronounced
with the long test section.

From the temperature measurements and the power input data, it is
indicated that the heat transfer rate is very low for almost the entire length
of the tube except for the top few inches. This reduction of the heat
transfer rate below theoretical expectations is due to the mixing effect of
the turbulence in the flow near the inlet of the cavity which reduces the
effective wall to centerline temperature differential very considerably.
Also, for the entire tube the cross streams in the turbulent flow field re-
duce the effective density gradient. Within the range of the mercury tests,
it is believed that the entire fluid is in turbulent motion. Due to the
inherent instability of the motion analogous to Chendrasekhar's prediction,
the onset of turbulent flow could occur at a very small Rayleigh number (as
evidenced by the test described previously), the fluid motion is even more
perturbed by the entering cool fluid from the reservoir which may be the
cause of the effective mixing process at the throat.

There may be another mechanism which affects the fluid motion in
the mercury tests. It is recalled that the test section is wound with re-
sistence wires as heaters. When a current is passed through the heaters,

it induces a weak magnetic field inside the test section (the current
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Figure 3k,

Typical Heat Input Distribution.
(Mercury Run No. S-M-1
Reservoir Temp. = T4°F

Power Input = 167.6 watts

Wall Temp. = 110°F
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through the top heater is about 8 amperes and there are 50 windings). Thus,
a '"pinch-effect" on the mercury is exerted giving an axially non-uniform ra-
dial pressure gradient. Although this gradient is small, so are the driving
forces for the flow. Thus, there may be some non-negligible perturbation.
Although similar heat input distribution has been shown in the wa-
ter tests, the temperature oscillation is much less in the lower portion
of the cavity. This could suggest a locally laminar flow. In the present
facility, visual determination of the fluid motion is impossible, especially
in the lower portion of the test section. However, Hammitt<2) observed a
partially turbulent and partially laminar flow pattern in his test facility.
In general, the Nusselt numbers for the water tests are much
higher than for mercury. This is predicted by the theoretical analysis but
to a much leéser extent than actually observed (Figure 31). The difference
is ascribed to the presence of turbulence especially near the cavity inlet
as has been discussed above. It is also noted (Figure 31) that Saunder's
data from the flat plate (9) do not quite agree with the boundary layer
type analysis suggesting that an analysis without consideration of stability

criteria is not suitable for natural convection flow with fluids of low

Prandtl number.



CHAPTER V
CONCLUSIONS

In Chapter III several methods have been developed to obtain
the theoretical solutions corresponding to different laminar flow regimes,
Within the accuracy of the approximate methods, e.g., the integral method
for the solutions of boundary layer type flow regime, the truncation of
power series to obtain the solution for flow with similarity, etc., these
solutions should give fairly reliable solutions to the equations,

In Chapter IV, a compatible experimental program has been de-
scribed. The aim of this experimental program is, of course, intended to
verify the theoretical results. In spite of the fact that the experi-
mental facility employed has been carefully designed, due to the physical
difficulties in fulfilling the conditions specified by the theoretical
considerations, the data thus obtained can be expected only to approxi-
mate the theoretical results.

The final results of the entire study can be seen in Figure 31
where both the theoretical and experimental results are included. The
theoretical solutions agree with various closely related and already
known solutions fairly well. However, the experimental results from the
present facility show a considerable discrepancy with the theoretical
results. By comparing the results from the present investigation with
the existing data, it is believed that experimental error is not the
major cause of this discrepancy.

From the various experimental observations, it is believed that

the assumption of laminar flow does not hold in the present test range.
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This is particularly true for the fluids with small Prandtl number. The
effect of turbulent mixing particularly in the entrance region gives a
choking effect which considerably reduces the heat transfer, giving rise
to a much smaller Nusselt number than predicted by the laminar analysis.
An empirical estimate of the onset of turbulent flow has also been given
at the end of Chapter III, which could serve as a possible guide to the
roles played by the different parameters.

From the results of the present investigation, as well as the
results from previous studies, it is concluded that an analysis which
does not consider the turbulence and instability of fluid motion in this
particular geometry would be of little worth as far as engineering prac-

tice 1s concerned.



NOMENCLATURE

Dimensional Quantities (in consistent units)

the axial coordinate

the radial coordinate

the height of the cavity

the radius of the cavity

the diameter of the cavity

the axial velocity of the fluid motion
the radial velocity of the fluid motion
thermal conductivity

thermal diffusivity

the viscosity

the kinematic viscosity

the density

the heat capacity

the volumetric thermal expansion coefficient
the rate of heat transfer

the gravitational acceleration

the pressure

the temperature, T; = the reservoir temperature,
temperature of the cavity, AT = TO - Tl .

the time elapsed on tiae analog computer

Dimensionless Quantities

the axial velocity

the radial velocity
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Ty = the wall
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b'd the axial coordinate

T the radial coordinate

t the dimensionless temggrature dlffere%41al based on wall tem-
perature = qf(T -T Jvxl ; = afa™AT/vx£4, At in Ra and
Gr should be AT,

Pr, o the Prandtl number = cp/K

Gr the Grashof number = afp X3Am/p

Ra the Rayleigh number = Gr x Pr = afa3At/vk

Nu the Nusselt number = Q -

2n£a(Tl—To)/a

Re the Reynolds number = agUp/p
(the definition of Gr, Ra, Nu and Re in the text are always
based on a, the radius of the cavity)

B,7,d the dimensionless function of x, defined in the text

13 the boundary layer thickness = 1-B (see Section 3 of Chapter III)
or the parameter appears in the Green Function (see Section k4
of Chapter III)

f,g the functions of & 1in Equation (3.17) or the radial dependence
of velocity and temperature in Section 4 of Chapter III

11,Io,

P_ Pf, the functions defined in Equation (3.17)

G the dimensionless volumetric flow rate at the throat of the
cavity or the transformed g(r). See Chapter III, Section 4(c),

C the dimensionless integration constants in Section 3 of Chapter
ITI, or the non-homogeneous term is the momentum equation in
Section 4 of Chapter III

80381, 82504 ,01,02,03,...,C0, the coefficients of the infinite series

"o subscript refers to the values of functions at the wall of the

cavity, or subscript used to designate a given point (e.g., go)

quantity of possible error in inumerical computation



APPENDIX

I. Derivation of the Boundary lLayer Equations

There are several ways to derive Equations (2.1, 2.2, and 2.3).
The most rigorous method is, of course, to start from the Navier-Stokes
equations in cylindrical coordinates and then to examine the order of mag-
nitude of each term. Based on boundary layers theory, the terms of lower
order may be dropped so that: (1) the entire momentum equation for radial
velocity, V, vanishes (2) some stress terms in the momentum equation for
axial velocity, U, are neglected (3) the terms for axial conduction and
energy dissipation are dropped from the energy equation. Thus, the desired
equations of motion are obtained.

However, the above involves much argument based on physical in-
tuition and the whole process is very lengthy. Therefore, the alterna-
tive is to employ a simpler method as the following.

Consider an annular ring of a circular disc with an infinitesimal
thickness dX (Figure 1-A) The width of the ring is dR which is R distant

from the origin R = 0. Temperature, T, depends on R and X alone.

Figure 1-A
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Under the condition of steady state and axisymmetry, the time inde-
pendent conservation equations can be written for this system. Only the
temperature variation of density is taken into consideration, the fluid is
otherwise incompressible and uniform. With these assumptions, the equation

of conservation of mass gives

>
ST (2TRARUS)AX + S5 (2T RAZ VS )dR =0

Upon expansion of the derivatives and rearrangement, one obtains

QU L2V LV _ 4 (2.1)
3% PR R
which is one of the desired equations.

In a similar fashion, the energy equation (2.2) is obtained, i.e.,
the change of convective heat transfer plus the change of conductive heat

transfer = 0 (for steady state), or

>
5% ZTRARVFCTIAR + £ (2w RAZVFCT) dR

>T (1.14)
"“%[K'ZTTRC\Z ‘Tf)']ch =0
Expanding the derivatives and collecting terms, one obtains

2Y 2V Vv °oT DT 22T L 2T

T(-i+sﬁﬂW2)'*UBZ_+VBR *K(BRL+F{BR
and by Equation (2.1)

o1 2T _ RFT LT (2.2)

U3X " Vir = X (5r TR 3R
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It should be noticed that Equation (1.1A) does not fully describe the energy
relations in the element. As mentioned before, the axial conduction term
and dissipation energy terms have been neglected. Physically, this merely
means that the convective heat transfer in the axial direction is of a
higher order of magnitude than conductive heat transfer in the same direction
and the quantity of heat generated due to viscous friction of the fluid is
negligible as compared with the overall heat transfer. Both asc mphions are
reasonable and conceivable,

The momentum equation in the axial direction is composed of the
terms involving the time rate of change of momentum and the terms for the
various forces acting on the fluid. By Newton's law, these two should be

equal. Thus,

2

5T (ZTRARUS-U)AR + % (2wRdZ v f-0)dR 1
(1.ZA)

= Time rate of change of momentum in axial direction.
and
-2 RARAE T £ 2 RARZE 4z 4 & (2Rdz w22
I DX &*OR 2w Z./»»aR)dR

Cr.3A)

= the forces acting on the fluid.
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In Equation (1.3A), again the gradient in the axial direction is
neglected along with various stress terms. The negative sign for the exter-
nal acceleration term is due to its orientation which is in the negative X-
direction. Equatingl(l.EA and 1.3A) and applying Equation (1.1A), the de-

sired momentum equation is obtained, i.e.,

O

b /

pe) L
:—-‘:'f_fb

v

o/
C

o
X
e

RO -1%
+9<3RL+R3R> (2.3)

The pressure gradient of the fluid in the radial direction can be neglected
from a conventional order of magnitude boundary layer analysis. Therefore,
the pressure is assumed as a function of X only and the partial differential
%% in Equation (2.3) can be now changed to an ordinary differential %% .
This assumption also leads to Equation (2.4) in the text.

Using the same assumptions, Equations (3.1, 3.2 and 3.3) can be

derived. Thus, the assumptions of steady state and incompressibility impi, that

the net mass flow through the entire disk of a thickness dX is zero; i.e.,
Q
' J 2wWR4ARLE = o0 (1.LA)
]
and by Equation (2.10), the dimensionless form of Equation (1.4A) is
\
J nudn =0 (3.1)
o

If the dissipation energy and axial conduction terms are negligible,

the net convective heat transfer across the entire disk is equal to the heat
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conduction through the wall, i.e.,

;T [ S 2TRAR U)OCT‘J =K [Z’WRdz(ﬁ >IR=& (1.5A)

Again by Equation (2.10), Equation (1.5A) becomes

> - (2t
ﬁj rukdn a/L>rL=\ (3.2)

o
The derivation of the momentum equation in integral form is a

little more involved, however. First, consider the time rate of change of

momentum. Since the dependence on the radial velocity vanishes in the in-

tegral as shown by Equation (1.4A), this inertia term is merely
[

| (2rrdRUS)HU

There are at least three force terms; the external acceleration,
the axial pressure gradient and the shearing force at the wall (the rest
of the forces being neglected). These three forces are, respectively,

a.

-jszaRdsz-J2wRaQ§§dx + 270 (2 (1.62)

2R

All the integrations are, naturally, with respect to R.

Equation (1.6A) can now be rewritten as

> Forces = gszde(f Fatydx+ zwap (22 (1.74)

Recall that previously the pressure gradient has been determined in terms

of stress at the wall, where velocity terms are zero. Thus

R - 104
»R* JrRaR>R=0L

LdP = 6
-§-+fodi )),,( =)
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and the density variation with respect to temperature follows

I =1 DT -T ] (2.5)
Combining Equations (1.7A, 2.5 and 2.6) with the inertial term above the in-

tegral form of the momentum equation is obtained. i.e.,

9 U(mmw{)’ﬂdx— EJRL}R)&(H—}—%)mMMf«( f_

joRde{ 1;-[%(%2%”'{—2{—% {]}dl-dm'r"a/u(b?\ <

o]

a
= { Jr o -1V 1 2UN s
Ii"Rdel‘“‘ K >+NBR2 +RaR>R=6\ 7} TAWaAN (aR)Ri&
o]

~—(1TRdKfo<\T-u ‘){dx —’m,u( RU; L >R'\L T4 M (—)

0

Thus, in dimensional form, the momentum equation is

a o

i

Changing the variables into dimensionless form by Equation (2.10), the final

form of the momentum equation is

\ |

\ 2 | U 2W
2 =-{ ntd LT W 2% (3.3)
an.u dn f Ine + R rci-T i

%]



II. Detail Derivation of the Momentum and Energy Equations from the
Boundary Layer Equations for Numerical Computation

It has been shown previously that the equations of motion in inte-
gral form are,

|

Snudmzo (3.1)
o
| (3.2)
> LS
BX[ﬂu*dn’ - (Bf\f>/L=\
o
> ( | (3.7)
1 e -~ - _ 1 DU :
Taxg&udm = Sﬂt&x+ (T +t%ﬁo+(gﬁbp|
0 o
and the velocity and temperature profiles are assumed to be:
K, o<n<fs
p = (3.8)
l t [\ - (___JE_) I pep=l
-Y
ocmep (3.9)

.-
R I

It is now desired to show the detail derivation of Equations (3.43 and
3.44) from these equations. It should be noticed here that three unknown
functions, 8,7, and B are present in Equations (3.8 and 3.9), all of

them being functions of x only. Equations (3.1, 3.2 and 3.3) are mutually

_139_
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independent. Therefore, they should suffice to determine the unknown func-

tions uniquely. It can further be seen from Equations (3.8 and 3.9), that
r =B is the position of the adjoint of velocity and temperature functions

Substituting Equation (3.9) into Equation (3.1), one obtains

‘ f
f"-w‘ﬂ—"[m.dw JX[\— E—L){ 43 (- )B‘IJM“L
P ‘

J?m.chu —J KdefL“\"Jb’(__E_) 'f_)“'g(fk‘ﬂ} ndp =0
o [ {s

l |
.'.S (_f:—:'_fzﬁf‘{\*g(ﬂ"\\)j]ﬂ,d/\- =j /'LCI(\—=';: (g.lA)
[ 0
Let

&i=j /‘L—F=3(\—F) y Lmv=G=feg-)

dm=<\—(s)43

Equation (2.1A) thus becomes
|
t/
SDB p+§(\—(3)120—w-§ [3u—{3)¢[%] a-prd%

|
= \—(5)5 [“;u—;znpgﬂso—{%)z PRES tpSO-f) (3™-3 143

|

SR [B gy sep 33 pRaac o |

=(\—[3)[(|-[%)};f-§(5—2'—0 3’(\-—[5)1— ,"ifﬂ\—/?)] =1

rs
1 S .

Sy = —S‘(ji;z'E‘t‘@ (3.10)
U—F)(3+2F)
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It follows upon substitution of Equations (3.8) and (3.9) into the momen-

tum Equation (3.7) that;
\ p '
I= Sn.u"dn. =Sn,vf‘cl/L + [ Luldn
o o ﬁ
F l ! / 2 2 '
=j/vf¢|n.+j nwdn =T+ I, ="7:{3 Y + 1,
> [
|
I}:=61J{n~-zrx(%{;ﬁ)z[\+§'<n.-x)] +m(%}%)4[)+?(n—n]z}dm
f

[.L;_ﬂ:] +Y S{ n —£> [H?(r\- |)]-r (L( ﬁ) [1+3 (- q]jf

2

t Y ‘(l =21 —E) +2r- n]m(" P) [1+3 =1y 7;

NI'

=1
2

\

- 1=7 7 Vlé{’m(%%E)l[ln@m—lﬂﬂl(%%)4 K +E(ﬂ—\)]z§ dn

Again let

%%z-?) 5 dn= Q-Prd%
n= U-{'ﬁ)?a*r(s
A== Q=3+ o) = G=fr(3=1
=, =i o=p, p=o

% l -
1o L aagriesas b5 s tepg oy

4

l—'

.ﬂ' + K([(\ P)yﬁ]g [Hé‘(\-r))(%-n]

(2.2A)

1*2*3 RS u-[‘é)tg—\ﬂ 15 O-frd%
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The integrand in Equation (2.2A) is split into two parts and carried out

separately, i.e.

(«)é)=gl[u—ﬁ)’pm{-2’{[\+§(\-/§>(§—'3]} G=Prdz
- (at-pr{ [0y pITs P30T 4
=£Llc\—p)§z{‘(\-fs)3 +(5-f5(\‘[5)23(2()—\)fb‘(ﬁéi—(%)(“‘a—t)}clg
- g S0 s ey G0 ]
=—2(\—p)f[u~{’>)}3+ (%51-« ?(\-(s)ztf— }3)15/3( l-ﬁ)(}gﬂ’bk) (¥
B E GO (R IN DAESE SERIATN SIS SERY
=20P[F (rp - Oy g - SPL-p
=—§‘; U-[ﬂ)[\su—fé)+zoﬁ-s¥o-{i>l- 55(“"!3)3
=—%5L|~(3>[15+5(5—3(\-ﬁ)(%—3}“3[%]
= —g‘;u—p) '[5'(3+(5>—5‘£\~[5)£3-3(“TI‘\)]

= U-F)[-éLB*F)+§;§(PP)(3*2F)]
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Recall
__S5G+2pi pY
(%+1fw(\-(’>)"

5 (32RO NEE 42+ (543 ()
210 (—5+:.T,) &40 (3+1F)LU_P>

P = -3—\0- U—Y:)(\o-rz}rz) -

or

P =—5(,(\—[531(5»«7.[%)(3“ﬁ)z-zo(z+z(5¢[3") M410B> =pI13+23) .
840(3+1ﬁ)2(\—f£)
25 (312p+p ) (5+3(3)
¥40 (3“{3)‘(\— {3

2
-Sé(\—ﬁi‘(snﬁn’:ﬂ[@)
= =50 (st (3-R- 2"
:—gé(Sﬂlﬁ)(ﬂ—eﬁ-n{zlﬂﬂ’eg—*ﬁrﬁ*)
= -5 (45-12 ~é7.;-1 3#1% 413 %)
L lsnpepposppty
_-1510+é7z{’>+35‘12[{.H\:_(Z,—\séz/%-448/3

-0 (3”.{5* rf)(nmo[%)(n—(’n(sﬂﬁ)
=-20(7%+ 113‘1—15{31—505[’33 -')7.[54- LoffD

:‘W?8O-J4QOFT5DCGE+MODF3ﬁP44DF+r4wch

15(%+zr;+[3‘)2(5+5(5)
_ kS 3 4
= 15(5*3(&)(%\1{3 +10 44!3 -r(? D

- > _ 3 =nt P
=h2s -tznb(lnlsol‘s 41250 r; -44?»(3 -r'u['é

Substituting these quantities into the definition of P, it is obtained.
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- 2 5 o n s
P _ TIN5 (Bt aca B34k 21217 f-aar
5;;,;;@«1{%3(\-(5)
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-

v 1 331543814402 4340 P2t 1
) g4o(5+zrs)1(\~[s>

—337154 %37 f5+é4-02/31+ 24 L2 ﬁ3+>‘?7 (34—7 //35-

sho (F73p3p’-a p?)

The momentum equation can now be written as

4 _ ‘ | L4y DU
— (1) = —-Sn,',t‘ JfL.+—7:B:Xﬂ + Lt‘ +(_3_[L_>[\=l

i_rkt)ﬂ:‘ = _}/-l:—-z &-——E [\+F(ﬂ*\)\3 —E (—/L—.E—)L ]/IF\

- {Fpes) v - ki

-9 —nf —‘1(31
(3+2fHy (="
%(544.[31-3[%1)
(3+z(§)u—r>)7’
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\

S(\—(ﬂ){{(\-pgﬂrp +25 (1= 35 - x)+2'5F<\-[%)t5-\)+§20-f9)?}té-\)z+[%5?»-ﬁ>73-f)lf33

i\ PPyt pgasaPy (3 =32 pu-prigmy 3 a5 40 PG ‘5*53

(R 0-P  LpaSl- Y m) zspc»(sx——)@o(snmnp - ()]
OSSP )= B s proparpls Flo0epieipep1]
- -plartsp - o - s Lopespoapl ]

—(‘"{UU—LST!’S) —§- e fﬂ(s-n

r>) L5+3(5 7;

Collecting the appropriate terms gives,

I=i‘b'1.+ };‘-(’4@)+ b”-(**) ‘( +y [ TBHPO-PY + ED '(331(7’*2/3)

5P “ 5 (=) + g 0o (543 2]

:"‘{ XLM}[——-—()—F)UO-H}P)-}%(\ F) (n—rnof) +— (I (S)g(g-raf)]

=S¢ rP
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and finally,

“ 3 5
\ @_{ " 1435410013 +4722 b+ 26223 -flq1/7>4+1”/3 _

T x| 340 (3+2(20-P>

ky 2(3+43+3R0)
= -p)3 - . (2.3A)
i (TR = Y (3+2f) (-

Likewise, the energy equation is utilized in a similar fashion, i.e.,

2 >t
vxjf“‘“"“ = (5% hm
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N - > T -43—82ﬁ-%\ﬁ3é1ﬁ3
‘e ?')( gnfl"-kd/‘l_ - ?x LW/‘E" ;’}10(3+1F) ]
by
bT) ) [ R ]
o T \“( - ) tl
on n=y ol | (5 -

Equating these two parts together, one obtains

2 49+@z$+!3H%+AzG _ 5. hp
[X)t 54_0('5-”,'(5) ] /3 ( )

Since the r-variation is taken care of, the final Equations (2.3A) and

(2.4A) are ordinary differential equations, namely

3 7R -
d IUL 1485 +1017 P+4i7?l[32+1e?-zf§414)’)(§ Tz’)E ]

[}
840(5+z{3)1u—(%) a

_t 3(3-1—4(‘“3(31).
5 O {E)(%d[a) (3+2(3)(\-(ﬁ)’~ (3.11)

4 7 45+ 132 413\ B+ oz o’
[, 4

} -t (3.12)
54 © (2+ ) 1=

Subject to the conditions

I
¢

—» < X
1} 1l
- ¢
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which are obtained from Equations (2.14), (3.8) and (3.9).

From Equation (3.11)

z 4 =
! _‘_l_ 2 ]4‘85-\—10!'][7014’)21[3+7.(,22{?¢342q—‘:(‘g42_’(%
¢ dx [8 40 (2+ zr,)"()__ !lng I
£, W (3-4p+335)
=5 O PP - (3-4p~2 ()
(3*7—{3)(\-{‘5)
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& 2 a8 —
fipy = EEa el B14722 [ ns632 342973 +27 3
(Z B4 = ( 3+->_/7,§‘( )= F’)
-~ ES o4 -
_ -1485+1017(1-%) 147220~y +2622(-%5) 4297 (1-%) 427 (1-%)
340(3+2<rﬁ)L3

R 2 E
, 2400 - 655075148505, 136,
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2 3 q —
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~.='l§‘%(4 %) =3P

3(\O~IO’§+3‘§Z) _ P \

(5-2%)%" %t

]

I

Therefore, Equations (3.11) and (3.12) can be written as
" dx 2 Jd‘g —_ — ._‘_-
O = (R, <Y R )

(tdy Yhdg _ Al
’g—}(j—+_§{z X = (*l%%Q‘YPI,_ §2>

or as,

5 a 3
A 3‘37 +y Pf?t—f? =Tk - L)

£99L 450y 2 =
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III. Brief Review of Lighthill's Solution
for Boundary Layer Flow Regime(25)

If the Prandtl number of the fluid is very large, then o=l
approaches zero. With this condition, Equation (3.7) is reduced to an

algebraic form, i.e.,

1
Sarc\m=t<l@—;&+t) (3% ), (3.14)

on o
o

Now from Equation (3.1) and Equation (3.9), & is solved for as previously:

5—__ 5(.5‘?’7—(%" P?l) (3,10)
(\—{%)H%u(s)
Due to the simplification shown in Equation (3.1A), Equation

(2.3A) is reduced to the solution of 7y in terms of B. Equating the

left side terms of Equation (2.3A) to zero, one obtains

ko _ 3(3+4L3RT)
O =z (rprerfy =Y (B+2f30= )3
or
\X _ (3+[§)(’6+1[3)(l—[3)3 (3.24)
2@(3+4(5+5(31) !

Equation (3.2A), combined with Equation (3.11), gives the energy equation

for large Prandtl number.

£ _d_'(!‘[57)3(3+7—(5)(4’5+\3L(5’r|3|{52+ng7>3 _ (3.34)
ldx[ 30140(34‘4(&%{%‘) ] \-/5

or if . . s
FIp) = (=B (3+2B) (454132 +151 o + (2 f3

30240(3+4 [b+3 (3’-)
then Equation (3.3A) can be written as

ﬁlt\_ﬁ)d‘:(ﬁ) :Ol,)( (3.AA)
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When the right side of Equation (3.4A) is integrated from

x =0 to x =1, the 1limits of integration of the left side are from
B =1top =By, where By 1s the value of p at the orifice. There-
fore

P
l=t5<vde¢) (3.54)

|
Now, if t; 1is given one can solve for f7.

Recall the average Nusselt number is given by

Nu = L—‘ X(— %%) =a\x (2.16)

and by Equation (3.8) and Equation (3.L4A)

! ﬁ

Nw = zj T:"(s““‘ =zt,f dd—‘:;(@doc: 2k, F(B) (3.64)

o I

Thus, the final solution of this problem with large Prandtl
number depends on the integration of Equation (3.5A). It does not appear,
however, that an analytical expression exists for this integrand. The
numerical solution was carried out by Lighthill in his original paper.
Later, the author programmed this integrand and obtained the same results
which can be seen in Figure 4 of the text.

It can be seen that when t7 1is large (and consequently B is

small) Equation (3.2A) converges to
tl 3
= . TA
Y 3 f (3.7A)

a result which can be obtained from Equations (3.35) and (3.36). This
is, of course, only natural since Lighthill's solution is Jjust a special

case of the general solution shown before.
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Since from Equation (3.9), 7y 1is the dimensionless core velocity,
the dimensionless volumetric flow rate at the orifice is proportional to
2
B vy, which by Equation (3.2A) is

{53(3+{3)(3+2(3)U~[3)3
3@(3+4p¢3pz)

This function has a relative maximum when B = 0.38 as mentioned before.




IV. Details of the Similarity Solutions

It has been shown previously that with the assumption of suffi-
ciently large Prandtl number, the equations of motion (2.21), (2.22) and
(2.23) possess a similarity transformation and the resulting equations

are
ﬂg"+(f+\)?'—f'% =0 (4.10)
B S IS ROTN (4.11)
and the boundary conditions are

«f{\) = f'(l) ={(o) =0 (4.14)

?jcx)=o 3 3(0)=t\ (Lk.2n)
[ Lm 7 fo]| <M (4.9)

It has also been proposed to solve these equations by a combined Green's
Function and power series method. In this section these details are
carried out.

The Green's function method to solve a linear ordinary differ-
ential equation involves to solve the homogeneous part of the given equa-
tion, to construct the appropriate Green's function and, finally, the
integration of the Green's function over the given interval of the dif-
ferential equation. It appears that between Equation (4.10) and Equation
(4.11), the latter one is more suitable to Green's function solution since
its homogeneous part is linear and boundary conditions in Equation (k4.1A)

are all homogeneous.
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In fact, the solution of the homogeneous part of Equation (L4.10)

I

" "
nff -—;xf + f =0
is readily obtainable. It is of Euler's type and the general solution

is
2
Wf(rn) =G T (G r G A (L.34)
the Green's function accordingly assumes the form

J al+(6l7_'|“0\3£y\/\.)/LL OS/Lé'g
G(nig) = (k. 4a)
bl-\-(b-‘d—bs?_m[\.)/\} ‘§</L$\

There are altogether six unknown quantities in Equation (L4.4A). To de-
termine these quantities, three conditions in Equation (4.1A) are utilized
and the rest of the necessary conditions are from the basic properties
of the Green's function.
The Green's function for a linear ordinary differential equation
of third order should possess the following three properties;
(i) G(&;¢) is continuous ovér the entire interval O <t <1.
(ii) Gp(&;&) is continuous over the entire interval O < & < 1.
(iii) Gpp(r;&) has a finite discontinuity at r = &. This dis-
continuity is determined by the coefficient of the highest

derivative of the given equation, i.e.,
-— \ .
é[p_(\. C%;g) - GT/\_;\.(J{@) = -.—gz (4.54)

Therefore, these six independent conditions suffice to determine the

Green's function in Equation (L4.L4A) uniquely.
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Note that
!
n 0 &u‘ﬂ T~ I N
L‘\n\ L ﬂhn- = Klm = ﬂ““TﬂfC— zﬂ-‘."“__/.l— =
=0 n=o0 [l -0 _f\.‘_ﬂ a»o M
for all n> O. Thus,
by
‘f(o) =0 ; g, =o
foy =9 5 by =ba
and Dby
-F(I) =0 5 b5=zl0Z
osn<%g

' GIUL’%) =}Ca2+6">ﬁn ﬂ)/xl
(21 A= 27T A ) by 4ang)
By (i), (ii), (iii), respectively

(Qutfz fut) = (1+£7-25 0. %) ],
2€0,1%50+2dns)as = 45 4% b,

| (L.64)
202+ 3+ 2 g day + 4 U+ fng )b = "

Applying Kramer's Rule, the linear system (L4.6A) is solved. The results

are

G,=0
(1-%424u%)
0\Z= 4‘%2.

__ 0-%
Gz = ~ 7»%2‘
b= &

|
b, =- 7
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Thus, the desired Green's function is

f [l-'gl'\'Z/@u‘i _ (\*‘%Z)A\ n /Ll
L 447 A4 }
Ginsgy = E E (h.15)
Ll ; <
4{1 A+Z/Qhﬂ7} R IR
It can be seen that when r = 0, the first equation in the set (L4.15)

of 1s identically zero; so is the second when r = 1. In a rather
straight forward but tedious fashion, it can be verified that Equation
(4.15) does satisfy all the prescribed conditions, as does the homogene-
ous part of Equation (4.11).

Now the solution of Equation (4.11) can be obtained in terms

of the unknown function g(r), and the constant C, i.e.;
l 3
f(i\.) = jé\(’“’%)[%(g)”(:]% d4 (4.74)

0
After a lengthy integration, Equation (4.7A) is found to be

l

n .
£y = 4l— { 5?"‘5&4@ + Z;UMJLS
0

! |
+ lellg“%/&m@dﬁ- fm%ngf,c“i [+ig etz ban-r) ()
n

n

|

|
19 - [gats 1 1t
0 ~

(o]

As mentioned before, the unknown constant, C, is now to be determined
by Equation (4.9). In doing this Liebnitz Rule of differentiation is
invoked. As the result of this elimination, Equation (4.20) is obtained

3.

il.e.,

-f(10=[—;2( {%{Z{g +Zﬂlﬁx\ﬂ£%‘i 44+ /C'LI?%J‘; +Z/\‘jﬂ|€/@v«€ %e)g
-2n g\%{‘ag Tnf‘ﬁ{‘ug . rfj%gdg - ;L“fgg A4 }

(4.20)
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Now, the solution of function g(r) is assumed in power series

form,

2 ¥
Z(M =) wa (4.21)

n=o
such that g(r) satisfies simultaneously the conditions in Equation

(k.2A). By employing following integrals

and

, N 1 Nt c
A2 = ——
{ d”(d ntl Z T4

SNy S i, o | n+\
jbx”ﬁdz 1w13 /“3 uwwzﬁ

the final solution of Equation (4.11) is

(9] Q 2 h+2
-f(r\) =7L, _dnl [(lHZ)H*A ) —20-1 )j (k.22)

(n+L)(n+4

and for the reason discussed before, g(r) is an even function, the even
solution of f(r) is thus
=_L Ei Azn 2n+2 (1.23)
f 7 () uwl)[(“*‘)“ N y=C- L )J .
It is of interest to varify that (4.23) is the correct solution
of Equation (4.11) since the method of obtaining this form of solution is
so indirect, and the steps of computation so involved. Equation (4.23)

has to satisfy the following conditions:

(1) fTw=fuy=fw=o (4.1A)
(11) az{"‘-n{"n«f"——(c—j)ﬁ (4.11)
(iii)  ¢= f”(\)— {w(\) Sincé au)=<3 ba (k.2n)

and

(iv) % f'(r) be bounded at r = O.
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Since

0
feod=o- \Z _‘Ié— (wfn”;nwz) Lia-oy- C\-o\)] -
| 2 Azn
‘g(‘\ q ! Z ()" (mz)[(“*')'o - O] se

) \ < Aun
(= — —_ -
‘f ) 2 \Z [(n-ﬂ)(l 4)- (Z2-2n- 4)] o

o () ()

Thus, the conditions in (i) are all satisfied.

Define
Azn s
St e g
(W11 (h42)
then

+iy= Z S L= /") - ne- MM)]

n=v

— 3
‘f“‘)‘z_sn}_(ww(zn 4;\)-(2/\ 2nt4 P )]

W0

f“((\) :\\2;05“ [(”'1‘\)(7\_\2/\7’)* (2 - '2)‘\_‘1'4 + Int3 ‘/'Lz“-‘z)]
2h=t)
-f“l(ﬂ)_Z‘SHE*/ I(H*l-\)/'\.‘{‘ (2»\‘0’4)(2“*3)(2“[2)/\’ J

The left side of FEquation (4.11) is, by substitution,

< 2n+3
ZOSH{ =24 (w-)) /\ +(2Znt4)(An+3)(An+2) /L
n=

(40 (2 =12 %) Fan- (2n+4)( 2nt ) A 203

() (2n-4n32d =T zn- (2nr4y 270 }
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o>

)2 Sn [—xé(mr)/), -r8(n+s) (ML)/LGn]

n=o
2 Gy mre
- Zl‘ o 18 (i RIS TR TAURT T
feo Gy (h+2)
X M+ < Az 32 3. 3 < Z(\;n_
= Z Aon o~ Z’Z (et = % ﬂa((L>~[" Z— O (hr2) (1 80)
n=v ‘ h=0 n=e
Since by Equation (4.19),
CI = A (?@Jﬁ _4{3% 4%
0
o
- Zf@% (4-4)a
e
_ T Oan e _Gan L. OA
= 4’\%0 L;(n—!—\) - 2 (h=+12) & Z \\Z (l‘rl)(lH?_) ( & )

Substituting Equation (4.9A) into (4.84), Equation (4.11) is obtained.
Thus the item (ii) is verified.
Now

Ss]

'F/(l)‘fm(\) _ Z —3n3—32nz—24r\

- 2n
nso F(MN(nt2)

_ i nt3)lan  _  -n"3-2+42 i
S (et o (A1) Mtz =

L x) . .
- ’(l\'fl)(]\'t‘l ya 3 Uan
2. LA g =Ty ]

ho (ht1) lv+2) o b )
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Since

%u)=o f_am,=o

n=o

5 Qo

- C= _\[""(ﬂ—{ ()= =~ Z ; (k1) nt2)

and item (iii) is verified.

Item (iv) is easily verified since

£

e
20+
= Z_Sn [Z(H'r\)(\—?n,l) +(Z2nt4 )n_”
h=o0

2 2 Ndan |
- 2‘] Z (N+)* (hty 4

If the series of g(r) is convergent (which is assumed) this series is

also convergent.



V. The Details of Digital and
Analog Computer Program
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READ
START GR,PR,U
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Correspondence between the notations used in

machine and in the text:
machine | text | machine | text
X,U B PF Pe
Y,V y PFP Pt
Z x G g
NU Nu GP g'
PR o PI1 Py
GR tl PI2 PIZ
: 1> NS
B (1): 7 = Sy nose) ¢
BQ(2): xm 1M ¢
1600(1+ 1.050)
1.
EQ(3): Mu = —ok 5 -

AL =0,
A2 = H/3,
A3 = 2H/5,
Ak = H,
A5 = 2H/3,
A6 = ku/5,

600(1+ 1, 050)

Bl =0
B2 = J(1)/3

B3 = (67(2) + W(1))/25

Bh = (157(3) - 127(2) + J(1))/4
BS = (87(4) - 507(3) + 907(2) + 63(1))/85
B6 = (87(4) + 107(3) + 363(2) + 63(1))/75

These are known as Runge-Kutta Equations

Eq. (3.45) end Eq, (46) are written as

@

= -NA+ NB+ NC
ag DA + DB + DC

+NC ., ¥
U

& . YR(G-PFP -2:U-PF.GR) 2

at DC

+ DA + DB

The terms NA, NB, ... etc are corresponding to
those appearing in the text.

J(N)
K(N) = H -

L1
M) =2 2

S -4

&
ag
=3
at

- K(N)

Those are known as Runge-Kutta correction terms.

ZH = (23K(1)

YH = (237(1) + 1257(3) - 8LI(5) + 125J§6)§/192

+ 125K(3)

- 81K(5) + 125Ki
NUE = (234(1) + 125M(3) - 81M(5) + 125M(6

6))/1%2

)/192

FLOW DIAGRAM FOR RUNGE-KUTTA FIFTH ORDER PROGRAM
Y = EQ.EJ.) PRINT H = 0.001
Z = EQ.(2) TITLE X=U | °
NU = EQ.(3) GR, PR,
L(1); A = AL
TRANSFER TO ™ = BL [
L(N)
L(2); A= A2 | ]
B = B2
=X+ A
=Y+ B
L(3); A = A3
—_— B = B3 —
EVALUATE PF, PEP, G,
GP, PI1, PI2, NA, NB,
(Ref. NC, DA, DB, DC.
Eq. (3.17) | JL(4); A = Ak | ]
in text B = B4 1
EVALUATE
| J(§), K(N), M(N)
L(5)5 A = A5 |
(3.29) B = BS
From Eq. (3.30) p P
L(6); A = A (o)
ot B = Bé -
- From Eq. (3.33)
X=X+H Y=Y+ YH
Z=2+H,
NU = NU + NUH
A
Z < 1
z>1 Z = 1
CORRECTION PRINT PRINT
FOR H. X.Y.Z X.Y.Z
(L. EXTRAPOLATIONY (1-x)2.Y (1-x)<.Y.NU

TO START

Flow Diagram of the Digital Computer Program.
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OIMENSTIOM JOED KOS LA MO
RERD FERD FORMBT IN-GR.PR.U
VECTOR VALUES IN = FF12.2,2F12.4%%
_FF quD +U§f—u3qﬂ +H+(qﬂ S0 +U*C-1 200+ 01 44,

P )

- E¥IIDD

R

IR0 SCT0L RS FUR =20,
O = (420, +Us -G080+ 30T, 02, U

FI1 = CGg,=Urs12.

____________________ PIZ = L3 #CQ10,+Us =10, 43, #U000 - C S~ U .
W= (3.#PR*GR#PIfsGsUslsly. #PF+PFF+3. *FR#G4P 120
3__=__*;';'5_U_*_'-_‘f':';_' (. #PR*GR#PI1#G%GD G #FF+PFR+

HU = CCUsU#10 %09, *PR*GR=PI1#0%0G0
1\+t- A3
H = Q.00

PRINT FORMAT TITLE.PR,GR:Z:H,Y4,
__________________JiEgIEUE_!BLJUEi_JJ:[gE_;z_Slﬂjgjzlu_j ______________
R TYFE FLOW REGIME.1HO,510, 4HPR =FG. 4.5 S4HGR ZE10. S THO TS 16
21 3HDTMENSIONLESS, 512, 13HDIMENSIONLESS, 512, 1 SHODIMENS IDHLE‘
3512, 1 JHODIMENSTONLESS/1H 515, 1 4HAKIAL-DISTANCE, 511, 1 4HE, L. TH

S14: 2HVELOCITY 514, 14HCORE FLOW RATE-1HO,522,F7.4.

‘“1->F-.4~2E ‘5. T%%F
START THREOUGH RLFHA.FOR M=1.1.M. 6.6
""""""""""""" TRAMNSFER Ta LENY - T
LD g =0
E = 1
TREAMSFER TO CALC
""""""" LE3s TR =THSETTTTTT
E
TERRERER - T SR == —mm e -
LC3D H = 2.%H~s5,
E = Co.xJ020+4, 2012025,
TRAMSFER TO CALC
Lodd [T
B = C15.%JC30-12, #JC20+ 01004, -
TERMSFER TQ CALC
LCSD 0 = ?.xHs3.
B = (2, #J042-50,%JC30+90, #JC22 40, #J 0120 -81,
TREMSFER TO CALC _
(R B = 4.%H-5. TTTTTTTTTTTTTTT o
B =
CaLlc ™S =
I“l c=
FF =S x¥UDD000

1280, 028, v =20, +4, U000
2000, + ¥ 3500, +Urr—45u+u+g—-'n +lle 540, +UsC-117.+
SETDL #0259, +U% X . 4 *(5.-2-*”JJ
D-+U*"LED.+U*C3Df._LL-*U})
—ESEU.+U*C36?0.+U*C-1664.+24o.*UJJ}
IiF.—E.*U}*£S.~2.*U3)

*k1“ +U*( 10.+3. U000/ (5.-2. =13

Program of Runge-Kutta Fifth Order Method for the Solutions in the Boundary layer
Type Fiow Regime
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PR*GR#GFFI1=Usllxllelt

~MEPR#GP&FI2%1)

“NEPFF

F°4UP*M*PI1*H¥H¢H

-WEPReGsPI2

-2, VEFF

_'HfU+U+Cu*PFP-2.+H+FF+uF" SO+ COR+DED D,

0E =

_BLEHA

134125, #KC30-

) CEMCTID+125. #MC30
MH:HE“EF E.G.1.H
y i

[ ——— La PJ_D,!.:,,J-;" - ———
3 ) -;.F 0,752
AH = MUSCC1.0023 . P, 750

2 = 1.1

EMO OF COMOITIOMAL :

FRIMT FORMAT QT ZaWa Vs Ol =Hie ], —Hixy
VECTOR MALUES OUT = E1H S22.F7.4.518.F7.4,0E25, 788
WHEMEVER Z.L.1.0.TRANSFER TO STRRET

“RIMT FORMAT HERTTC.GR.FRE:HU

_r" i

JALUES

HEHTTF = F1H4, TEHGRASHE
{UMBER = FT.4-1H . 10




or
| ve = N71107g1yvA kh‘A
8¢ A — @l INL 40 SIAV-X o4
e 1 ® kc?uon\xlé L oor 1wVl -
(I | .
o 2o OOr¢ (oppr- 200+ oor+
Ta

‘wexdoxd Jsqndwo) FoTeUY JOJ ATNOIT) SYJ,

\ﬁ%/“k““d“

B
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VI. The Physical Properties of Mercury
as Functions of Temperature
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Figure 3A. Thermal Conductivity of Mercury, K, Btu/FtZ2-Hr-(°F/Ft) vs Temperature, °F.
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