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Abstract. A reanalysis approach for geometrical changes
in structural systems is presented. The solution procedure is
based on the combined approximations method, where the
binomial series terms are used as basis vectors in reduced
basis approximations. The calculations are based on results
of a single exact analysis, calculation of derivatives is not
required, and each reanalysis involves a small computational
effort. The method is easy to implement, and can be used
with general finite element programs. Exact solutions are
obtained efficiently for low-rank modifications in the
geometry. Accurate solutions are achieved in cases where
the basis vectors come close to being linearly dependent.
Such solutions are also achieved for nearly scaled geo-
metries, when the angle between the two vectors representing
the initial design and modified design is small. Numerical
examples demonstrate the high accuracy achieved with a
small number of basis vectors.
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1. Introduction

The structural response cannot usually be expressed
explicitly in terms of the structure properties, and
structural analysis involves the solution of a set of
simultaneous equations. Multiple repeated analyses
are needed in various structural analysis, design and
optimisation problems. In a typical design process,
it is necessary to analyse repeatedly modified struc-
tures due to changes in the design. In structural
optimisation  problems, the cross-sections of
elements, the geometry of the structure (coordinates
of joints) and the topology (number and orientation
of elements and joints) are changed successively
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until the optimum is reached. In many design and
optimisation tasks the analysis part will require most
of the computational effort. The high computational
cost involved in repeated analysis of large-scale
problems is one of the main obstacles involved in
the optimisation of such problems. Therefore, only
methods that do not involve numerous time consum-
ing implicit analyses might be considered.

Reanalysis procedures are intended to analyse
efficiently modified structures due to changes in the
structure properties. The goal is to evaluate the
structural response (e.g. displacements, stresses and
forces) for such changes without solving the com-
plete set of modified implicit equations. Reanalysis
methods can be divided broadly into exact (direct-
closed form) and approximate methods. In this
study, both exact and approximate solutions will
be considered.

Several exact methods for calculating the modified
response due to changes in the design have been
proposed in the past. Most of these methods are
based on the Sherman—Morrison—Woodbury formu-
lae [1,2]. Exact methods are suitable for changes in
a relatively small number of elements, and are inef-
ficient in cases of changes in a large proportion of
the structure. Improved versions of the Sherman—
Morrison—Woodbury approach have been proposed
by several authors [3.4].

Approximate methods are more efficient than
exact methods, and are usually suitable for moderate
changes in the whole structure. In general, the
efficiency of the calculations and quality of the
results are conflicting factors that should be con-
sidered. Better approximations are often achieved at
the expense of more computational effort. Approxi-
mate methods can be divided into the following
classes [5,6]:

(a) Global (multi-point) approximations, such as
reduced basis [7] and response surface methods
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[8]. These approximations are obtained by ana-
lyzing the structure at a number of design
points, and they are valid for the whole design
space. However, global approximations may
require much computational effort, particularly
in problems with large number of design
variables.

(b) Local (single-point) approximations, such as
the first-order Taylor series expansion or the
binomial series expansion about a given design
point. Local approximations are based on
information calculated at a single point. These
methods are more efficient, but they are effec-
tive only in cases of small changes in the
design variables. To improve the quality of the
results, various means have been proposed
[9,10].

In this study a third class, attempting to give global
qualities to local approximations, is considered. The
method has been used in previous studies for various
problems and different types of design variables
[11-17]. The solution procedure is based on the
Combined Approximations (CA) approach, where
the binomial series terms are used as basis vectors
in reduced basis approximations. Similar to local
approximations, the calculations are based on results
of a single exact analysis. Each reanalysis involves
a small computational effort, and calculation of
derivatives is not required. The method is easy
to implement and can be used with general finite
elements programs.

The changes in the structure usually describe
member cross-section sizes, the topology and the
geometry. Cross-sectional changes are the simplest,
since the response functions are often nearly linear
functions of some cross-sectional variables. Topo-
logical changes are more complicated, particularly
in cases where the number of degrees of freedom
is changed. In previous studies, reanalysis pro-
cedures have been developed for topological
optimisation [11,15,17]. Geometrical changes are
conceptually similar to cross-section changes, in the
sense that the number of degrees of freedom is
unchanged. However, since the response is highly
nonlinear function of the design variables, it is
difficult to achieve accurate approximations.

In this paper, both exact and approximate sol-
utions for geometrical changes are presented. Exact
solutions are obtained efficiently by the CA method
in cases of low-rank modifications in the structure.
For changes affecting a large proportion of the
structure, approximate solutions are more efficient.
Accurate approximations are achieved in many cases
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where the basis vectors come close to being linearly
dependent. Such solutions are also achieved for
nearly scaled geometries, when the angle between
the two vectors representing the initial design and
modified design is small.

In Section 2, the reanalysis problem under con-
sideration is formulated. A procedure to obtain
approximate solutions by the CA method is briefly
described in Section 3. Exact solutions for low-rank
modifications are introduced in Section 4, and some
general cases of accurate solutions for high-rank
modifications are developed in Section 5. Numerical
examples demonstrate the accuracy of the results in
Section 6, and the conclusions are drawn in Section 7.

2. Problem Formulation

The reanalysis problem considered in this study can
be stated as follows:

(a) Given an initial design, the corresponding stiff-
ness matrix K, and the initial load vector
R,. The corresponding displacements r, are
computed by the equilibrium equations

Ky ro =R, (D

It is assumed that the stiffness matrix K, is
given from the initial analysis in the decom-
posed form:

KO = U(Y)- UU (2)

where U, is an upper triangular matrix.

(b) Assume changes in the geometry (coordinates
of joints) so that the modified stiffness matrix
K and the modified load vector R are given by

K =K, + AK
R =R, + AR 3)

where AK and AR are the changes in the
stiffness matrix and in the load vector, respect-
ively, due to change in the geometry.

(c) The goal is to find efficient and accurate
approximations of the modified displacements
r due to various changes in the geometry,
without solving the complete set of modified
analysis equations

Once the displacements are evaluated, the explicit
stress-displacement relations can readily determine
the stresses. Thus, the presented approximations of
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r are intended only to replace the set of implicit
analysis Eqgs (4).

The above formulation is general, and it is suit-
able for different types of design variables and
structures. For illustrative purposes, discrete struc-
tures are considered in this study, but the approach
presented is suitable also for shape changes in
continuum  structures.

3. Approximate Reanalysis

In the procedure presented below, the computed
terms of the binomial series expansion are used as
high quality basis vectors in reduced basis approxi-
mations. The unknown coefficients of the reduced
basis expression are determined by solving a reduced
set of the analysis equations. The efficiency and
accuracy are further improved by introducing an
uncoupled set of basis vectors, using a Gram—
Schmidt orthonormalization. A detailed discussion
of the solution process is given elsewhere [12].
For completeness of presentation, evaluation of the
displacements by the CA method is briefly described
in this section.

Given the initial stiffness matrix K, in the decom-
posed form of Eq. (2), the initial loads R, and the
initial displacements r,, calculation of the modified
displacements r for any assumed changes AK, AR,
in the stiffness matrix and in the load vector,
involves the following steps:

(a) The modified stiffness matrix K and the modi-
fied load vector R are first introduced. Since
K, and R, are given, this step involves only
introduction of AK and AR

(b) The basis vectors r; are calculated. Define
matrix B as

B =K;' AK &)

Pre-multiplying Eq.(4) by K;!, substituting
Eqgs (1) and (5), and premultiplying the resulting
equation by (I+B)~!, gives the following
expression for the displacements:

r=I+B)'r, (6)

For small changes AK this expression can be
approximated by the binomial series

r=0I-B+B>—,...,+B""r, (7

Equation (7) is the series of basis vectors,
defined as

I'] = Kal R
r,=-Br,, i=2,...s (8)
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Where s is the number of vectors considered
(it is assumed that s << number of degrees of
freedom). The matrix of the basis vectors ry is
defined by

rB = [r19r29' . 'srs] (9)

In cases where AR =0, the first basis vector is
simply r; =r,. Calculation of the basis vectors
by Eq. (8) involves only forward and backward
substitutions in cases where K, is available in
the form of Eq. (2) from the initial analysis of
the structure. For example, assuming that r, is
given, the vector r, is calculated by

Kor, = -AK T, (10)

We solve first for the vector of unknowns t by
the forward substitution

Ult=-AKr, (11)

The vector r, is then calculated by the back-
ward substitution

U0r2 =t (12)
Similarly, r; is calculated by

Kor; = -AK r, (13)

(c) The reduced matrix Ky, and the reduced vector
R;, are calculated by

Ki=rf!Kry; Ri;=riR (14)

(d) The vector of unknown coefficients y is calcu-
lated by solving the set of (s X s) equations

K:y=Rg (15)
(e) The modified displacements r are evaluated by
r=yr +yrn+...+yr,=rgy (16)

To improve the efficiency and accuracy of the
approximations, the reduced set of simultaneous Eqs
(15) can be transformed into an uncoupled form.
An uncoupled set of new basis vectors V;
(i=12,...s) is introduced using a Gram-Schmidt
orthonormalisation [12,18]. The new vectors are
determined by the original ones r; from

V.= |1'{Kr1|_1/2 r, (17

i—1
V.=r,- >, (T KV)V,

1

V. =|VIKV['?V, i=2,...5 (I8)
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where V,- and V; are the ith non-normalised and
normalised vectors, respectively. Defining the matrix
Vs of new basis vectors and the vector z of new
coefficients, the reduced system of Eq. (15) becomes
uncoupled, and the final displacements are given by
the explicit expression

r = Vzz = V4(VER) (19)

The displacements calculated by Eq. (19) can be
expressed as an additively separable quadratic func-
tion of the basis vectors V; by

r=> V,(V/R) (20)
i=1

For any assumed number of basis vectors, identical
results are obtained by considering either the original
set of basis vectors or the new set of uncoupled
basis vectors. The advantage in using the new vec-
tors is that all expressions for evaluating the dis-
placements are explicit functions of the original
basis vectors. Calculation of any new basis vector
V; results in an additional term of the displacements
expression (Eq. (20)) that is a function of the orig-
inal vectors r; (G = 12,...i. Consequently,
additional vectors can be considered without mod-
ifying the calculations that were carried out already.

The accuracy of the results achieved by the CA
method have been demonstrated in previous studies
[11-19]. The approximations provide accurate sol-
utions even in cases where the series of the original
basis vectors (the binomial series) diverges. Several
criteria for evaluating the errors involved in the
approximations have been developed [17,19]. These
errors can be reduced when necessary by considering
additional basis vectors.

The efficiency of reanalysis by the CA method,
compared with complete analysis of the modified
design, can be measured by various criteria, e.g. the
CPU effort or the number of algebraic operations.
It is then possible to relate the computational effort
to various parameters such as the number of degrees
of freedom, the number of basis vectors considered
and the accuracy of the results. It has been shown
that calculation of each basis vector involves about
2% of the CPU time needed for complete analysis.
In many cases, a small number of basis vectors is
sufficient to achieve adequate accuracy. For moder-
ate changes in the design 2-3 vectors are often
sufficient, while 5-6 vectors might be needed for
large changes. Considering the latter number of basis
vectors, results for various problems showed that the
total CPU effort compared with complete analysis
of the modified design can be reduced by more
than 75%.
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4. Exact Solutions for Low-rank
Modifications

Exact solutions are efficient in cases of low-rank
modifications in the structure and are applicable to
situations where the number of modified elements
in the stiffness matrix is small. The rank of matrix
AK (rank AK) is the dimension of the linear space
spanned by its columns. Rank AK is equal to the
maximum number of linearly independent columns
(or maximum number of linearly independent rows)
of AK. Rank AK is also equal to the order of the
square sub-matrix of AK of greatest order whose
determinant does not vanish. Exact methods are
usually based on the Sherman—Morrison [1] and
Woodbury [2] formulae for the update of the inverse
of a matrix. It has been shown recently [3] that
various exact methods may be viewed as variants
of these formulae.

In this section, exact solutions for low-rank modi-
fications by the CA method are presented. In such
cases, the basis vectors are selected in a different
way, though similar to that of Eq. (8). Consider,
for example, the case of simultaneous changes in m
truss members. The exact solution is achieved by
the CA method if one basis vector is introduced for
each changed member by [14]

r=K;' AKxr, i=1,..m 21

where AK, is the contribution of the ith member to
AK. Note that the basis vectors in Eqgs (8) and (21)
are selected in a different way. If some of the basis
vectors are linearly dependent, the exact solution is
achieved for a smaller number of vectors. The exact
solution for the case under consideration is given by

r=ro+ ), N (22)
i=1

This procedure is efficient in cases where the num-
ber of changed members is much smaller than the
number of degrees of freedom. Exact solutions achi-
eved by the CA method and the Sherman—Morrison—
Woodbury formulae in such cases are equivalent.
The above procedure can be used to achieve exact
solutions efficiently for geometrical changes, by
viewing these changes as corresponding topological
changes. For example, changing the coordinates of
a single joint, it is possible to obtain the exact
solution for the new design by viewing the change
in the geometry as two successive changes in the
topology. That is, all members connected to the
joint are deleted, and new members are added at
the modified location of the joint. Exact solutions
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for low-rank modifications in the geometry will be
demonstrated by numerical examples in Section 6.1.

S. Accurate Solutions for High-rank
Modifications

In general, the CA method does not provide exact
solutions for high-rank modifications. In this section,
two general cases where accurate solutions are achi-
eved for high-rank changes in the geometry by the
method are developed. It is shown that accurate
solutions are achieved if the basis vectors come
close to being linearly dependent. Such solutions
are also achieved for nearly scaled geometries, when
the angle between the two vectors representing the
initial design and modified design is small. The
solutions presented explain the high accuracy achi-
eved by the CA method with only a small number
of basis vectors.

5.1. Nearly Scaled Geometries

Scaling of the initial design is carried out by multi-
plying the initial stiffness matrix K, by a positive
scaling multiplier p to obtain the modified matrix

K =pK, (23)

From Eqgs (1), (4) and (23), it is clear that the
exact displacements after scaling can be calculated
directly by

r=pr (24)

The condition of Eq. (23) requires linear dependence
of the stiffness matrix on the change in the design.
In general, the elements of K are some nonlinear
functions of the design variables. A typical case
where the condition of Eq. (23) is satisfied is scaling
of the geometry of a truss, where the lengths of all
elements are multiplied by W and their direction
is unchanged.

Consider the above case where the modified
design is a scaled design pK,, as given by Eq.
(23). Then, from Eq. (5)

B=K;' AK = (p. - DI (25)

where I is the identity matrix. It can be observed
that the resulting basis vectors (Eq (8)) become lin-
early dependent

I'l =I’0

n=—(-Dr
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r;=(u—1)r, (26)

Thus, consideration of a single basis vector with a
coefficient y, = ! will provide the exact solution
as given by Eq. (24).

Consider the case where the change in the
stiffness matrix AK is expressed in terms of a
corresponding change in the design variables X by

X =X, + AX 27)

The angle 6 between the vector of the modified
design X and the vector of initial design X, is
given by

cos 0 = (X7 X)/(X] X)) (28)

where |X| denotes the absolute value of X. It will
be shown in Section 6 that high accuracy is achieved
with a small number of basis vectors for nearly
scaled geometries, corresponding to small 6 values.
In general, more basis vectors are needed in cases
of larger 0 values. This result has been demonstrated
in many examples where the space formed by the
vectors X, and X is considered. For the complete
design space, smaller 6 values do not always guaran-
tee better approximations.

5.2. Nearly Linear Dependent Basis Vectors

It is shown in this section that when the reduced
basis expression is equal to the exact solution, then
the basis vectors are linearly dependent. Therefore,
it would be reasonable to expect that accurate sol-
utions will be achieved in cases were the basis
vectors come close to being linearly dependent.

To obtain a convenient expression for the exact
solution of the modified design, premultiply Eq. (4)
by K,' and substitute Eqs (1) and (5). Assuming
for simplicity R =R, and premultipling the resulting
equation by (I + B)~! gives the exact modified dis-
placements (see Eq. (6))

r=I+B)'r, (29)

To obtain a convenient expression for the approxi-
mate solution in terms of the assumed s basis vec-
tors, substitute the expressions of the basis vectors
(Eq. (8)) into Eq. (16). The resulting CA
expression is

r=y,ro—»%Bry+y;Bro—...+y,B!r,
(30)

Assuming that the approximate expression of Eq.
(30) is equal to the exact solution of Eq. (29),
premultiplying both equations by (I + B) and
rearranging gives the linear expression
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L= ar, (31)
i=1

where a; are scalar multipliers given by

a, =y, — Dly; (32)
a; = (yl - yi—l)/ys i= 2,3,. oS

Equation (31) shows that when the reduced basis
expression with s terms is equal to the exact sol-
ution, then the s + 1 basis vector is a linear combi-
nation of the previous s vectors. That is, the s + 1
basis vectors are linearly dependent. Consequently,
it is expected that accurate solutions could be achi-
eved in cases where the high-order basis vectors
come close to being linearly dependent. Two basis
vectors r; and r;,, are close to being linearly depen-
dent if

cos B, = (xr/ B ri)/(|ri| |B ri|) =1 (33)

where (3;;,, is the angle between the two vectors.
It has been noted that the basis vectors determined
by the CA method satisfy the condition of Eq. (33),
as i is increased, even in cases of very large changes
in the geometry. In all the examples presented below
linear dependence has been reached with only a
small number of basis vectors. The degree of linear
dependence of additional vectors could serve as a
convergence criterion for the CA method, but better
alternative criteria have been developed recently
[19].

6. Numerical Examples

The solution approach presented in this study is
suitable for different types of structure and design
variables. For illustrative purposes, truss structures
are considered in this section. Arbitrary units have
been assumed and all cross-sectional areas equal to
unity. The accuracy of the results is demonstrated
only for displacements; similar accuracy has been
achieved also for stresses.

6.1. Low-rank Modifications (Nine-bar Truss)

It has been noted that in cases of low-rank modifi-
cations, exact solutions can be achieved efficiently
by viewing the change in the geometry as two
successive changes in the topology. To demonstrate
the solution process, assume the nine-bar truss with
the initial geometry shown in Fig. 1(a). The object is
to calculate displacements for the modified geometry
shown in Fig. 1(b), where the coordinates of joint
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Fig. 1. (a) Initial geometry, nine-bar truss; (b) change in the
geometry, viewed as deletion of members 8, 9 and addition of
members 10, 11.

4 have been changed. In this case, members 8, 9
connected to joint 4 are first deleted and members
10, 11 are then added in the new location of the
joint.
The matrix of all changes in the stiffness is
AK = AK (8,9) + AK (10,11)

Since four members have been changed, four corre-
sponding basis vectors are needed to achieve the
exact solution. However, in the present case the
matrices corresponding to the two vertical members
9, 11 are linearly dependent, therefore only three
basis vectors are required. The resulting exact dis-
placements achieved with three vectors are

r’ =

{2.40, 5.80, -3.60, 15.19, -2.40, 5.80, -2.30, 15.19}

6.2. Nearly Scaled Designs (Fifty-bar Truss)

To illustrate nearly exact solution for structures with
a larger number of degrees of freedom, consider the
initial geometry of the cantilever truss shown in
Fig. 2. The truss is subjected to a single load at the
end, the modulus of elasticity is 10,000, and the
forty unknowns are the horizontal and the vertical
displacements at joints 2 through 21, respectively.
Two geometric variables have been considered, the

1 2 3 4 5 6 7 8 9 1011

D=1 (initial)
2221 2019 18 17 16 15 14 13 )12
10w=10 1100

()

Ao 1%

Fig. 2. Fifty-bar truss, initial and modified geometries.
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depth D and the width 10W. Exact solution is
achieved with a single basis vector for all designs
where the ratio between the depth and the width of
the truss is unchanged. The reason is that the vertical
and the horizontal joint coordinates are changed
simultaneously, such that the geometry is scaled (the
lengths of all members are changed by the same
percentage, whereas the direction cosines are
unchanged).

Assuming the initial design D=W=1.0, two
cases of geometrical changes have been solved:

(a) The changed geometry is given by D=1.2 (a
change of 20% in the depth, Fig. 2(a)).

(b) The changed geometry is given by D=2.0,
W=1.9 (a change of 100% in the depth and
90% in the width, Fig. 2(b).

Since the stiffness coefficients of many members
have been changed, exact reanalysis is not efficient.
Assuming only two basis vectors (first-order
approximations, CAl), the results are given in
Table 1. Comparing the results obtained for the two
cases of geometrical modifications, it can be seen
that better approximations have been achieved in
case b, for larger changes in the geometry. The
better results in case b are attributed to the fact that
the modified geometry is relatively close to a scaled
geometry (D= W), for which the CAl provide the
exact solution.

Table 1. First-order approximations of displacements,
fifty-bar truss

Joint Direction Case (a) Case (b)
CAl Exact CAl Exact
2 X 0.09 0.08 0.20 0.20
Y 0.11 0.08 0.25 0.24
3 X 0.16 0.15 0.38 0.38
Y 0.35 0.28 0.90 0.88
4 X 0.22 0.21 0.54 0.54
Y 0.69 0.60 1.90 1.87
5 X 0.26 0.27 0.68 0.67
Y 1.12 1.01 3.21 3.18
6 X 0.29 0.31 0.79 0.79
Y 1.60 1.51 4.79 4.74
7 X 0.32 0.35 0.88 0.88
Y 2.13 2.07 6.58 6.54
8 X 0.34 0.38 0.95 0.96
Y 2.69 2.69 8.54 8.50
9 X 0.35 0.40 1.01 1.01
Y 3.27 3.36 10.63 10.60
10 X 0.35 0.41 1.04 1.04
Y 3.86 4.05 12.81 12.79
11 X 0.35 0.42 1.05 1.05
Y 4.45 4.75 15.02 15.02
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Fig. 3. Ten-bar truss.

6.3. Nearly Linear Dependent Basis Vectors
(Ten-bar Truss)

Consider the ten-bar truss shown in Fig. 3 with two
geometrical variables, the depth D and the width
2W. Assuming the initial design W=D =360, then
for W=D =720 (increase of 100% in the length of
all members), the exact solution is simply

r'=2rl=
{4.68, 11.16, 5.64, 25.30, —6.34, 26.26, —4.92, 12.02}

To demonstrate the accuracy of low-order approxi-
mations achieved by the CA method for various
geometrical modifications, assume first-order (CA1l)
and second-order (CA2) approximations of displace-
ments for the following three cases shown in Fig. 4:

(@) W=360, D=540 (increase of 50% in the
depth).

(b) W=360, D=720 (increase of 100% in the
depth).

(c) W=180, D=720 (increase of 100% in the
depth and decrease of 50% in the length).

From the results summarised in Table 2, it can be
observed that the changes in geometry result in
significant changes in the displacements. The high
accuracy of the results is explained by the 8 values
(Eq. 34)) obtained for the basis vectors. In case (b),

Initial (a) (b) (c)

b , . b

XA

Fig. 4. Ten-bar truss, initial and modified geometries.
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Table 2. First- and second-order approximations, ten-bar truss
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L D Method Displacements
1 2 3 4 5 6 7 8
360 360 Exact 2.34 5.58 2.82 12.65 -3.17 13.13 —2.46 6.01
360 540 CAl 1.49 4.02 1.71 7.86 —2.06 8.40 —1.60 4.48
CA2 1.53 393 1.81 7.83 —2.17 8.46 —1.64 445
Exact 1.55 3.94 1.82 7.84 —2.18 8.47 —1.66 444
360 720 CAl 1.17 3.78 1.26 6.72 —1.61 7.29 —1.28 4.27
CA2 1.14 3.67 1.34 6.62 —1.68 7.35 —1.24 4.25
Exact 1.15 3.67 1.34 6.60 —1.66 7.36 —1.25 4.24
180 720 CAl 0.43 2.59 0.36 3.83 —0.59 4.27 —0.50 297
CA2 0.31 2.52 0.43 3.86 —0.55 4.44 —0.35 2.98
Exact 0.29 2.47 0.33 3.85 —0.42 4.53 —0.31 2.94

for example, the first two values are cos
B1,=0.9912, cos B,5=0.9999. These results show
that the basis vectors determined by the CA method
are close to being linearly dependent.

6.4. High-rank Modifications (Hundred and
Thirty-bar Truss)

To illustrate high-rank modifications in the geometry
of larger structures, consider the hundred and thirty-
bar truss shown in Fig.5. The ten-story three-bay
truss is subjected to ten equal horizontal loads of
10.0. Two cases of changes in the geometry have
been considered:

Case a

Change in the location of the 3rd column from the
left (Fig. 6(a)). The following changes have been
considered (for the initial geometry X = 200):

(al) X =250 (increase of 25%).
(a2) X =300 (increase of 50%).
(a3) X =350 (increase of 75%).

Case b

Symmetrical changes in the location of the outer
joints (Fig. 6(b)). The following changes have been
considered (for the initial geometry X = 200):

(b1) X =100 (decrease of 50%).
(b2) X =50 (decrease of 75%).

The maximum horizontal displacements at the top
left joint obtained for various numbers of basis
vectors are summarised in Table 3, and the corre-
sponding errors in the approximations are shown in
Table 4. It can be seen that the larger the change
in the geometry, the more basis vectors are needed

A

X

10x200

BEREERER

i

L4
X
X
X

%

200 200 200

600

!4

Y

Fig. 5. Ten-story three-bay truss, initial geometry.
to achieve accurate results. Similar errors have been

obtained for other displacements.

6. Conclusions

A reanalysis method intended for highly non-
linear geometrical changes in structures has been
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Fig. 6. Ten-story truss, modified geometries.

Table 3. Maximum horizontal displacements, hundred and
thirty-bar truss

Case (a) (b)

Geometry (al) (a2) (a3) (bl)  (b2)

2 14.06 13.12 11.42 13.37 10.67
Number of 3 14.26 13.61 12.68 15.28 13.22

Basis 4 13.82 13.33 15.61 15.31
vectors 5 13.52 15.99

6 16.18
Exact 14.26 13.83 13.56 15.63 16.28

Table 4. Errors (%) in maximum horizontal displacements,
hundred and thirty-bar truss

Case (a) (b)
Geometry (al) (a2) @3) (bl) (b2)
2 14 5.1 158 144 34.5
Number of 30 1.6 6.5 2.2 18.8
Basis 4 0.1 1.7 0.1 16.0
vectors 5 0.3 1.8
6 0.7
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presented. Using the solution procedure, accurate
approximations of displacements are obtained
efficiently for large changes in the geometry. Most
of the computational effort is needed for calculation
of the basis vectors. This calculation involves only
forward and backward substitutions in cases where
the initial stiffness matrix is given in a decomposed
form from initial analysis of the structure. It has
been found that calculation of each basis vector
involves about 2% of the CPU time needed for
complete analysis. In many cases, a small number
of basis vectors is sufficient to achieve adequate
accuracy. For moderate changes in the design, 2-3
vectors are often sufficient, while 5-6 vectors might
be needed for large changes. Considering the latter
number of basis vectors, results for various problems
showed that the total CPU effort, compared with
complete analysis of the modified design, has been
reduced by more than 75%.

Exact solutions are obtained efficiently for
changes in a small number of elements (low-rank
modifications in the structure). Such solutions are
also obtained in cases of scaling of the initial
geometry, or when a basis vector is a linear combi-
nation of the previous vectors. Accurate solutions
are achieved for nearly scaled geometries, when the
angle between the two vectors representing the
initial design and modified design is small, or when
the basis vectors come close to being linearly depen-
dent. The exact solutions presented in the paper
explain the high accuracy achieved by the approxi-
mations with only a small number of basis vectors.

In the examples demonstrated, accurate approxi-
mations have been achieved for some discrete struc-
tures. The accuracy of the results illustrates the
potential of the CA method in cases of large changes
in the geometry. The procedure presented might
prove useful for various problems of geometrical
changes, such as shape optimisation of continuum
structures.
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