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1. INTRODUCTION

Due to the tremendous cost involved in constructing and operating a multiple-
computer system, it is obvious that preliminary analysis of the performance of a pro-
posed system should be made before the actual system is built. Furthermore, even with
an existing system it is advantageous to explore analytically the capability of the system
without interrupting the daily operation of the system. Because of the varying natures of
jobs, their equipment requirements, service durations, and times of arrival can only be
described in terms of statistics. At present, as far as the state-of-the-art allows, it
seems the two most effective means of analyzing a large-scale multiple-computer system
are: (1) To examine the system analytically by queueing theory and (2) To simulate the
system on a computer and run the simulated system sufficiently long that reliable statistics
on system performance can be obtained.

The principal merit of the simulation method is that it can be applied to any

system regardless of its complexity, while it is generally difficult to model a complex

system by the queueing theory method or to obtain its analytical solution. However, the

simulation method is not without drawbacks. The worst defect of this method is that in

order to obtain reliable and meaningful statistical results, a tremendously large number
of runs should be performed. This imposes a serious financial limitation on its use and
requires the availability of the large amount of time spent on the computer runs. On the
other hand, the queueing theory approach is analytical in nature and consequently the re-
liability of its results (which are usually easy to interpret) depends only on the faithfulness
with which the theoretical model describes the actual system.

According to our experience in both simulation and queueing analysis in previ-
ous work, it is highly desirable to study multiple-computer systems by queueing methods

because of the high reliability of their statistical conclusions.



The purpose of this report is to describe the extension of the analytical aspect
of queueing theory to its synthesis aspect. That is, one not only analyzes the performance
of a given multiple-computer system but also devises a scheme or a strategy to optimize
the given system against a set of preassigned return or cost functions. This approach con-
trasts with the ordinary queueing method, and may be considered as an active queueing
method in the sense that it changes the structure of the computer system to meet the current

demand (state) of the system.

2. MARKOVIAN MODEL FOR QUEUEING ANALYSIS

In order to facilitate an understanding of the meaning of the transition from an
analysis model to a synthesis model a brief review of a commonly used analysis model--a
Markovian model--is given in this section.

The simplest Markovian model used in queueing analysis is one which possesses
stationary transition probabilities. The behavior of this system is characterized by a single
variable which is called the state-of-the-system. In ordinary queueing theory this state
variable or state usually indicates the number of jobs waiting (both in the waiting line and in
the computer proper). Mathematically, the system can be described by the following state

equation

qt+at) = q(t) + a(at) - s(At)

where
q(t) = number of jobs in waiting at time t
= state variable
a(At) = number of jobs arriving in time interval At
s(At) = number of jobs completing service and leaving the

system in time interval At.

In the above equation we use the fact that the system is a stationary system so
that the number of jobs arrived in time interval At and the number of jobs completed in

time interval At are independent of present time t. Otherwise, a and s would be functions

of both t and At, i.e., a(t,At) and s(t, At).



Suppose that a(At) and s(At) are statistically independent and suppose further-
more that in time interval At, the probability that one job arrives is (At)A and that two or
more jobs arrive is 0(At), where the symbol 0(At) denotes the quantity that becomes
negligible compared with At as At—-0. Similarly, assume that the probability that one job
has completed the service and left in time interval At is (At)u and that the probability that
two or more jobs have completed the service and left is 0(At). Then under these assump-
tions it can be shown that as At -0, the probability of finding the system in any one of the

states at time t satisfies the following Chapman-Kolmogorov equations:

(A) If infinite states are allowed

dP0

® - Pt Py

dp

_1 = AP - (u+2)P, + uP

dt ) 1 2
dPn"

- MPpr (H+A)Pn *EPL

where Pn(t) = the probability that the state of the system is n at time t.

(B) If only a finite number N+1 of states are allowed

dp_
o = MNPyt EPy
dp,
o = M Pe1 T NP uP
dp
N _
- = MPne1 HPy



A multiple-computer system which allows simultaneous operations may be
considered as a multiplicity of service channels in parallel, and the total service rate
changes as a function of state. For this system the above Chapman-Kolmogorov equations
continue to hold, but with different values replacing some of the pu-coefficients. For sys-
tems which cannot be described by a Markovian queueing model for every instant of time,
a consideration of the state at a sequence of special time points will often yield the system
as a Markovian model. This technique is known as the imbedded Markovian chain method.
In view of the above brief description of Markovian queueing models, it is clear that
Markovian stochastic processes are powerful tools for queueing analysis. However, it is
worthwhile to note that in queueing analysis we assume that the queueing systems studied
are fixed in structure; that is, we analyze the system without attempting to change the struc-

ture of the system.

3. MARKOVIAN DECISION PROCESSES WITH
CONTINUOUS-TIME PARAMETERS

If a stochastic system such as a multiple-computer system can be changed by
the command of a central executive system, then obviously the following two approaches

for studying this type of system are possible:

(1) Assume all possible environments for the system. Then
use queueing methods to study the behavior of the system
against a set of return functions under various possible

sequences of commands.

(2) Assume all possible environments for the system, but
use a dynamic programming method to find the sequence
of commands which will optimize the system against a

set of given return or cost functions.

The first approach is essentially analytical in nature and is time-consuming,

because we are forced to analyze all possible sequences of commands, some of which may



not be useful for actual operation. The second approach is most efficient because it allows
us to select directly only the commands that are optimal.

Loosely speaking, the difference between these two types of approaches re-
sembles the difference between analysis and synthesis techniques in circuit theory.

When the system under study is a Markovian system, the second approach
(dynamic programming) is called a Markovian decision process. This process was first
studied by Bellman and developed into a useful tool by Howard (Refs. 1-3). In order to
make this report self-sufficient, a brief discussion on Markovian decision processes will
be given in the next paragraphs.

A Markovian decision process is a generalization of an ordinary Markovian
process such that the transitional probabilities of the process depend on a command signal
u(t) which is a member of the set U of allowable commands. Mathematically, this process
can be represented in the following manner.

Let us consider a stochastic service system which can be at any one of the
states 0,1,2,...,N. Let Pk(t) be the probability that the system is in kth state at time t
and let (pi].)At be the transitionail probability of the system from ith state to jth state in the
time interval At. Since every pij is assumed to be a function of the command signal u(t),

it is clear that p.. =p..(u). Furthermore, since it is assumed that the system is a

ij ~ o

Markovian system, the probabilities of the system satisfy the following Chapman-Kolmogorov

equations as At—-0

dp N
at 121 Pio(@) P; - [1-py(W]Py

ue U

N-1
Tat o 120 PN Py = [1-pyye(w)] Py

The process of selecting a control process u(t)e U such that it maximizes or

minimizes a return function is called a Markovian decision process.



4. MARKOVIAN DECISION PROCESSES WITH
DISCRETE-TIME PARAMETERS

For computational ease, we often treat Markovian decision processes as dis-
crete-time processes; that is, the time t in these processes is a member of a countable
set {nAtin =0,1,2,...} and consequently, a command signal can be applied only at each
time instant nAt. Furthermore, a discrete time process may naturally arise in modeling
a system in which observations and decisions are made periodically.

The associated Chapman-Kolmogorov equations reduce to the following set of

differential equations:

N
P [(n+1)at] = 20 p (W) P(nat)at
u(nAt)eU
’ N
P [(n+1)at] = 120 P (W) P(nat)at

The process of selecting a control process u(t) such that it maximizes or mini-
mizes a set of return functions reduces to a sequence of controls {u(nAt)} wheren =0, 1,

2, ..., . Insubsequent text the At will be assumed equal to unity, without loss in generality.

5. RETURN FUNCTIONS

In the preceding two sections, return functions were mentioned in connection
with the study of both discrete- and continuous-time parameter Markovian processes. As
in all engineering system studies, a return function indicating 'the best performance" in-
evitably involves a certain amount of subjective judgement. Moreover, in choosing between
two different candidates for a return function, we are sometimes forced to accept the less
meaningful one simply because it can be solved mathematically and the other can not.

Here we shall choose our return as a value [depending on u(t) or u(nAt)] associ-
ated with each transition of states. For example, whenever a transition is made in time

interval At at time instant nAt with control u(nAt), a value rij[u(nAt)] will be assigned to



this transition if state i is the initial state and j is the final state.

The physical significance of these return functions for discrete-time cases can
be explained as follows. With a discrete-time system the occurrence of a transition within
a time interval At usually serves as a rough indication of the service efficiency or ineffici-
ency of the multiple-computer system. For example, from a user's point of view, the
queue in the system would ideally be zero at all times; i. e., the computer system would
always be available. This means that a large positive value (return) should be assigned to
a state transiti‘on from greater to lesser queue length, and a large negative value (return)
should be assigned to a transition from lesser to greater queue length. From the point of
view of the management of the multiple-computer system, however, there should always be
someone in the queue to guarantee that at least part of the system is never idle; yet to
maintain good will or to keep from losing customers, the queue must not be allowed to grow
too long. This means that a different value (return) should be assigned to each transition of
states. Consequently, in making the proper choice and assignment of values (returns) to
various state transitions, a compromise must usually be made between the interest of the
customers and that of the rﬁanagement.

In general, the return functions associated with transition of a finite state sys-

tem can be expressed as a (N+1) by (N+1) square matrix function of control u(nat).

rOO(u) r01(u) rON(u)

rlo(u) rll(u) rlN(u)
[R(w)] =

rNO(u) er(u) rNN(u)

For continuous-time cases, rij(u) can be interpreted as a fixed rate of return
during the time of a transition from state i to state j with control u(t). For a finite system,

return functions again can be expressed in a (N+1) by (N+1) square matrix function of control.



6. DYNAMIC PROGRAMMING AND RECURRENCE RELATION

We are interested here only in a discrete-time parameter system. This sys-
tem reduces to the continuous parameter system if At—0, but otherwise is applicable to
systems which are Markovian and in which only periodic decisions can be made.

The basic tool for establishing a recurrence relation is the principle of opti-
mality which states that an optimal sequence of controls has the property that given any
initial state and initial control, the remaining controls must constitute an optimal sequence
of controls with regard to the state resulting from the first control.

Using the principle cited above, we can derive the recurrence relation as
follows:

Suppose that the general transition probability matrix [P(u)] is known and that
the return matrix [R(u)] associated with the transition of states is specified. Let the sys-
tem be in state i; and fn(i) be the expected optimum total return in the next n transitions.

Then, by the principle of optimality, the following recurrence relations are obtained:

. Max N .
1) = 400 jZJO pyy(@) [ry(@) + 11 0)]

-

—
—

=
1]

Ci i=0,1,2,...,Nand n=1,2,...

where Ci are specified boundary conditions, usually set equal to zero. If we define

Y pi(w) ri(w) = b.(u)
=0 ij ij i
then these recurrence relations can be written as

Max N
fl'l(l) = ueU {bl(u) + ]go pu(u) fn_l(])}

-
—
—-
~
n

Ci i=0,1,2,...,Nandn=1,2,...

The problem now is to choose a control u at the beginning of each transition

such that the sequence of controls over the total time interval n(At) maximizes the total



expected return of the system. If the system is allowed to operate indefinitely, then

n(At) - oo and the problem is to determine which sequence of controls maximizes the total
average return over the infinite time interval. The case of optimization over an infinite
time interval is closer to reality than is the case over a finite time interval, especially in
computer systems, because the operating life of the system is much longer than the interval
between each state transition. Therefore, the long-term return is the more important and
corresponds mathematically to the asymptotic solution of the recurrence relations given

above.

7. ASYMPTOTIC SOLUTION OF RECURRENCE RELATIONS

/
The following theorem on asymptotic behavior of the sequence {fn(i)} implied

by Bellman in his discussion on Markovian processes has been proven in detail. Both the
theorem and the proof are essentially the same as those of Bellman except for the important

condition (c), where Bellman requires the much more restrictive condition [P(u)] > 0.
Theorem
Let us assume the following:
(a) bi(u) and pij(u) are of finite dimension and are

functions of vectors u, whose components

assume only a finite set of values.

(b) bi(u) > 0forall iandall u, and bi(u) > 0 for

some i and all u.

(c) [P(u)]k > 0, where k is some finite number,
for all u. (Every element of [P(u)]k is greater

than zero.)

N
(d) [P(u)] is a stochastic matrix; i.e., Z pij(u) =1,
j=1

i=0,1,2,...,N and p..(u) > 0.
ij =



Under these conditions, we have the asymptotic result

fn(i) ~ nr , n-wo , i=0,1,2,...,N (1)

where the scalar quantity r is obtained as follows:

Max lim b(w)+ [P@]b(@) + ... + [P@)]"" b(w

rl " ueU n-w = n @)
Here
-1- -bo(u)-
1 bl(u)
_]_' = _b(Ll) = ’ [P(u)] = [plj(u)]
.IJ LbN(u).
Proof

(A) On the Markov Matrix

From the stochastic matrix theorem it can be shown that a dominant charac-
teristic vector 1 exists. Furthermore, by iteration, for any vector y which is nonnegative

and nontrivial, we have, for large n,

where r is a scalar quantity depending on y.

It can be shown that
. m
lim k
m-oo< z_/ [P(u)] y- mrl) = X

exists.

Now let us consider the following:

<

y + [P(u)]{ ) [P@]*y - mr 1} - kfo [P !y - mr [P@] 1+

10



Since 1 is the characteristic value of [P(u)] and 1 is its associated character-

istic vector, then it follows that [P] 1=1. This results in the relation

m K m+1 K
y + [P(u)]{ Z [P)]"y - mrl} = Z [P(w)]" y - (m+)r1  +rl
k=0 k:o

Now letting m+1 -, we obtain
y+ [Pw]x = x+rl
If we let y = b(u) we obtain the following equation:
b(u) + [P(u)] x =x+rl

which is a result useful in the remaining proof of the theorem.

(B) Equivalence of Equations

We have the following equations:

b(u) + [Pu)] x = x+rl

where u is the control which maximizes the limit in Eq. 2 and

ﬁdeaé {E(u) + [P(u)] i(} = x+rl

In order to prove the equivalence of these two equations, we examine the con-

sequence of their nonequivalence. In such a case

Max
ueU{E(u) + [P(u)] 5} z x+rl . (3)
It we let u = u° be a value of u which maximizes b(u) + [P(u)] x, then

acv {b(u> + [P)] x } = b(u’) + [PO)] x “

From Eqs. 1and 2

b(u®) + [P(uo)] Xz x+rl (5)

Without loss of generality we can say that, for i =0,1,2,...,N, the strict inequality occurs

11



in the first component of the vector inequality in Eq. 5:

N
bo(uo) + 20 poj(uo)xj > X+ (6)

N
0 0
b.l(u ) + jzz;o p.lj(u )xj > ox+r (1)

Equation 6 can be changed to > by adding a positive constant a to the right-hand

side:

+

N
) >
‘20 poj(u )xj 2 X+ (L+a)r

N
X = bo(u0)+ 20 poj(uo)xj - (1+a)r (8)

Now iterate the inequalities of Eqs. 7 and 8. For Eq. 7, the following inequality results:

N

Z p]k(uo) Xk - ri|

k=0

._.
o)
<5
+
o
]
&
=
o
N
M !
o
=
+

1A
=
+
>
—
©
Nt

For Eq. 8, the following inequality results:

N N
0 0o ) [¢]
by(”) + 321 Do) [bj(u )+ L ey - r]

+

N
Poo(t”) [bo(uo) + k}:o Py (07) % - (1+2) r]

v

r+x +arzr+x (10)
o 0

Combining Egs. 9 and 10 into a vector equation, we obtain the following vector inequality:

or

12



—

x=b(w%) + [P(u”)] b®) + [PE%)]* x - 2r1 - a v [PO)]

Combining Eqs. 11 and 12 and iterating (N=3), we obtain

A

X

£=1

In general, for the Nth iteration we have the following inequality:

2N-1 2N-1
X = b(u’) + [P(uo)]ﬁ l_)(uo) + [P(uo)]2N>_< - 2Nrl-ar Zl [P(u”)]
£=1 i=

Since [P(uo)]k > 0, then for 2i - 1>k, all

13

+
I [>Jeo
ge]
=
=
o
—
=
=4
=
(=
=}
—
+
—_—
dJ
=
=
<}
-
=
~
1
1
N
=
f =
]
[
~
—
J
=
=
o
N
+
—_
dJ
=
=
@]
<
=
w
—

2i-1
0

—

p—t

5
_b(uo) + E [P(uo)‘]ﬂ b(u®) + [P%)]° x-6rl-ar {[P(uo)]5 + [P™)]? + [P(uo)]}



» ]

1 1 1 1

, 1 1 1 1

[P(uo)]21'1 > e

Ll 1 1 1

where € >0 is the greatest lower bound of all pi].(21_1) for 2i - 1> k. Therefore
0 2N-1 0 0 0,12N
x= b’ + ) [PW)] b”) + [P(”)]”" x - 2Nrl - are(@2N - k/my )1
£=1

where my is the smallest integer z (k+1)/2 .

The maximal property of r = r(u) asserts that as N increases, the vector

b(u®) + [PWO)] b®) + ... + [P’)]2N]

b(uo) - 2Nr (1 - ae)l +are mk_l

becomes an arbitrarily large negative vector. This contradicts the inequality of Eq. 13.

Hence part (B) of the theorem is proved.

(C) f,(i) ~ nr, for large n

Assume thatnr+xi-k§fn(i)§nr+xi+kforn =0,1,...,¢. Then from

the principle of optimality

. < Max N
fﬂ+1(1) S LeU b.l(u) + j;o pij(u) [er + X, + k]

1A

Max 3
fr + Kk + LeU bi(u) + jZ::O p.lj(u)xi:l

A

ﬁr+k+r+xi=(12+1)r+x.1+k QED

Therefore fn(i) ~ nr.

Remarks

" k
For many finite-state queueing matrices, [P(u)], the condition that [P(u)]™ >0,

where k is a finite constant, holds. Therefore, it follows from the above asymptotic theorem

that in such a case a steady-state strategy exists.

14



8. A PROPERTY OF SIMPLE QUEUEING MATRIX

In this section we want to show that a simple queueing matrix has the property

that [P(w)]¥ > 0.

It can be shown for the simple queueing system with a negative exponential
service time distribution and Poisson arrivals that if At is small, the transition matrix
[P(u)] for the simple queue system is merely nonnegative and only its main diagonal ele-
ments and the two adjacent elements are nonzero. For this type of matrix it can be shown

by the following theorem that [P(u)]k > 0 for k > N where N+1 is the number of states.

Theorem

Any finite state simple queueing matrix [P(u)] has the following property
k
[P(w)]® > 0 for k > N
where N+1 is the order of the matrix [P(u)].

Proof
For a simple queueing matrix
pij>0 if j=i-1,i,i+1 and 0<i, j<N

= 0 otherwise.

(For simplicity, pij(u) is written as Dy - )

(m)

Let us denote the elements of [P(u)]m by Py; ; then, for m =2,

N
Y = )

ij o Pike Py = Pigi-1) Pei-1); Py Pyj T Pi(ia1) Plist)

Then, from the assumed property of the queueing matrix it follows that

(2)

(AV4

Pjj 0 for j=i-2,i-1,i,i+1,1+2 and 0<i, j<N

0 otherwise.

15



For m =3,

®_ 3 (2) (2) (2) (2)

Pj; Pig Pij = Pi(i-1) Pa-1)j " Pii Pij " T Pi(is1) Plis1);

3 k=0
From the properties of pi] and pij(2) it can be readily shown that

pij(3)> 0 for j=i-3,i-2,1i-1,i,i+1,i+2,1i+3 and 0<i, j<N

= 0 otherwise.

In order to use mathematical induction, we assume that p; j(m) >0forj=i-m, i- (m-1),
H
voyiyen., i+ (m-1), i+ m, and that pij(m) = 0 otherwise. The element pij(m+1) of the
(m+1)th iteration of matrix [P(q)] has the following form:
(m+1) _ (m) _ o (m) (m) (m)
Pij ) kéo Pik Py 7 Pii-1) Pa-1); PPyt Pigie1) Piv)

On the basis of the induction hypothesis and the above iteration formula, it is evident that

pij(m+1)> 0 for j=i-(m+l),i-m,...,i,...,i+m, i+m+1 and 0<1i, j<N

= 0 otherwise.

Thus the number of nonzero elements in a row of the matrix [P(u)] m is increasing with m and
every iteration of the matrix [P(u)] increases the number of nonzero elements by two,. until

one end of the row is filled and then by one until the entire row is filled. The extreme left

(m)

nonzero element in the ith row of the [P(u)]m matrix is pi(i—m)’ and the extreme right nonzero

elements in the same row of the [P(u)] ™ matrix is pggljm

(m)

0,m"’

) For an (N+1)-order queueing

matrix the furthest right element of [P(u)] M s p If this element is nonzero then

(m)

m. ..
[P(u)] ™ >0;if Pg, m

> 0, then m = N. Therefore,

[P(u)]K > 0 for k > N. QED

9. THE COMPUTATIONAL METHOD CF FINDING OPTIMUM
CONTROLS BY POLICY ITERATION

A method of finding the asymptotic returns and optimum controls (developed by

16



R. Howard) is summarized in the following paragraphs.

9.1 Asymptotic Solution of a Markovian Decision Process as n-w

It can be shown that for a given policy (not necessarily optimal) the expected

return, fn(i), is given by the following recurrence equation:

N

£() = b, + jz—:0 by fpg@) 120,12, N

n=12,3

LRt A AR

Earlier we proved by the asymptotic theorem that if [P(u)]k > 0, then fn(i) ~ nr. Making

use of this result, we can write fn(i) into the following equality form:
fn(i) = nr+v; i=0,1,2,...,N as n—~w

where r and v, are some constants. Substitution of this asymptotic form back into the above

recurrence equations yields the following equation:

N
nro+v, o= bi+j§1 [(n-l)r+vj]pij’

N
Since Z Py =1
j=0 1
N
r+vi=bi+.z pijv]. i=0,1,2,...,N
j=0
where VgrVqsVgs+++,Vyand r are unknowns. Now we are facing an (N+2) unknown and (N+1)

equation problem. However, if we let v,, = 0, we can solve for Vor Vs Voot VNC and r.

N

Indeed, if a constant a is added to Vi i.e.,

N N
r+(vi+a) = bi+j§Opi].(vj+a) = bi+].z’0pijvj+a

the original recurrence equation is obtained. This shows that the absolute value of vy does

not enter the calculation; only the relative value can be obtained.

9.2 Howard Iteration Cycle

The computational techniques developed by R. Howard are shown in Fig. 1.
If there is no a priori reason for selecting a particular initial policy, it is

convenient to start the policy improvement routine with all v, = 0. Then the starting de-

17



cision will be the decision which maximizes bi’ and the routine will be stopped when the
policies on two successive iterations are identical.

Value-Determination Operation

Use pij and bj for a given policy to solve

N
r+Vi:bi+.Z pijvj i=1, 2,.
=0 N=0

1

Policy Improvement Routine

For each state i find the alternative u'
(control) that maximizes

g
b, + p.. V.
Loy=0 0 I

using the v.1 of the previous policy. Then u'
becomes new decision in ith state.

Fig. 1 Howard Iteration Cycle

18



10. CONCLUSIONS

It has been shown that under the assumption that the transition probabilities of
a queueing system are controllable, a steady-state optimal control exists which is a function
of current-state only. This conclusion is important for operating a multiple-computer sys-
tem because the dependence of the optimal control on current-state alone allows the manage-
ment of the system to construct an optimal control table a priori.

Optimum operation of the system can be obtained by automatically observing the
current-state of the system and by changing the organization of the multiple-computer sys-

tem according to the optimum control table.

19
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