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Abstract. Let G be a compact group acting in a real vector space V . We obtain
a number of inequalities relating the L∞ norm of a matrix element of the represen-
tation of G with its L2k norm for a positive integer k. As an application, we obtain
approximation algorithms to find the maximum absolute value of a given multivariate
polynomial over the unit sphere (in which case G is the orthogonal group) and for
the assignment problem of degree d, a hard problem of combinatorial optimization
generalizing the quadratic assignment problem (in which case G is the symmetric
group).

1. Introduction

A general optimization problem has to do with finding the maximum (minimum)
value of a real-valued function f : X → R. Often, the set X is endowed with
a probability measure µ and the function f possesses a certain degree of sym-
metry which allows one to compute the kth moment

∫
X f k dµ efficiently at least

for small values of k. Thus one may ask how well the kth moment approximates
the maximum value. In this paper, we describe a fairly general situation where
some simple and meaningful relations between the maximum and moments can
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be obtained. We provide two illustrations: one, continuous, has to do with opti-
mization of multivariate polynomials on the unit sphere with possible applications
to solving systems of real polynomial equations and the other, discrete, deals with
optimization on the symmetric group, namely, with the assignment problem of
degree d , a hard problem of combinatorial optimization.

1.1. The General Setting

Let G be a compact group with the Haar probability measure dg acting in a finite-
dimensional real vector space V . To avoid dealing with various technical details,
we assume that the representation G → GL(V ) is continuous, where the general
linear group GL(V ) is considered in its standard topology.

Let us choose a vector v ∈ V and a linear function � : V → R. We consider
the orbit {gv : g ∈ G} of v and the resulting function f : G → R defined by

f (g) = �(gv).

In other words, f is a matrix element in the representation of G. We are interested
in the relation between the following quantities:

The L∞ norm of f :

‖ f ‖∞ = max
g∈G

| f (g)| = max
g∈G

|�(gv)|.

The L2k norm of f for a positive integer k:

‖ f ‖2k =
(∫

G
f 2k(g) dg

)1/2k

=
(∫

G
�2k(gv) dg

)1/2k

.

As we remarked earlier, for many examples in computational mathematics, the
quantity ‖ f ‖∞ is of considerable interest and is hard to compute, whereas ‖ f ‖2k

is relatively easy to compute for moderate values of k. First, we relate ‖ f ‖∞ and
‖ f ‖2.

Theorem 1. Let G be a compact group acting in a finite-dimensional real vector
space V and let dg be the Haar probability measure on G. Let us fix a vector v and
a linear function � : V → R and let us define a real-valued function f : G → R

by f (g) = �(gv). Then

‖ f ‖2 ≤ ‖ f ‖∞ ≤
√

dim V · ‖ f ‖2.

The bounds of Theorem 1 are generally sharp, see Section 2.1. To estimate how
well ‖ f ‖2k approximates ‖ f ‖∞ for a larger k, we invoke a general construction
from the representation theory, see, e.g., Fulton and Harris [6, Lecture 6].
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1.2. Tensor Power

For a positive integer k, let

V ⊗k = V ⊗ · · · ⊗ V︸ ︷︷ ︸
k times

be the kth tensor power of V . There is a natural action of G in V ⊗k , defined on
decomposable tensors by

g(v1 ⊗ · · · ⊗ vk) = gv1 ⊗ · · · ⊗ gvk for g ∈ G.

There is a natural action of the symmetric group Sk permuting the components of
the tensor product. Thus, for decomposable tensors, we have

σ(v1 ⊗ · · · ⊗ vk) = vσ−1(1) ⊗ · · · ⊗ vσ−1(k) for σ ∈ Sk .

The action of Sk commutes with the action of G. Let Symk(V ) be the symmetric
part of V ⊗k consisting of the tensors x such that σ x = x for all σ ∈ Sk . It is known
that

dim Symk(V ) =
(

dim V + k − 1

k

)
,

since Symk(V ) can be thought of as the space of all real homogeneous polynomials
of degree k in dim V variables. Let

v⊗k = v ⊗ · · · ⊗ v︸ ︷︷ ︸
k times

be the kth tensor power of v. Thus v⊗k ∈ Symk(V ) and gv⊗k ∈ Symk(V ) for
all g ∈ G. It turns out that how well ‖ f ‖2k approximates ‖ f ‖∞ depends on the
dimension Dk of the subspace spanned by the orbit {gv⊗k}. This dimension may
be different for different v ∈ V . Roughly, if Dk is small then v lies in a certain
algebraic variety constructed from the action of G in V and for such v the functions
f are “smoother” than for those v for which Dk is large.

Thus we obtain the following corollary of Theorem 1:

Corollary 2. Let G be a compact group acting in a finite-dimensional real vector
space V and let dg be the Haar probability measure on G. Let us fix a vector v and
a linear function � : V → R and let us define a real-valued function f : G → R

by f (g) = �(gv). For a positive integer k, let

Dk = dim span{gv⊗k : g ∈ G}
be the dimension of the span of the orbit of v⊗k in V ⊗k . Then

‖ f ‖2k ≤ ‖ f ‖∞ ≤ (Dk)
1/2k · ‖ f ‖2k .



396 A. Barvinok

Again, generally speaking, the estimates of Corollary 2 cannot be improved.
H. Derksen informed the author that numbers Dk turn out to be quite useful for

the constructive invariant theory, see Derksen and Kraft [5].
A straightforward estimate of Dk ≤ dim Symk(V ) produces the following

corollary:

Corollary 3. Let G be a compact group acting in a finite-dimensional real vector
space V and let dg be the Haar probability measure on G. Let us fix a vector v and
a linear function � : V → R and let us define a real-valued function f : G → R

by f (g) = �(gv). Let k be a positive integer. Then

‖ f ‖2k ≤ ‖ f ‖∞ ≤
(

dim V + k − 1

k

)1/2k

· ‖ f ‖2k .

There are examples showing that the bounds of Corollary 3 are “almost tight.”
For instance, if G = SO(n) is the orthogonal group acting in V = R

n , computa-
tions of Section 3.1 show that the upper bound for ‖ f ‖∞ is tight up to a factor of√

2 (uniformly on k and n).
It follows from Corollary 3 that ‖ f ‖2k/‖ f ‖∞ → 1 as long as (dim V )/k → 0.

As we remarked earlier, in many cases we are able to compute ‖ f ‖2k efficiently if
k is not very large. Quite often (see examples of Sections 3 and 4), we can compute
‖ f ‖2k in polynomial time for any fixed k. The following estimate shows the type
of bound that we can achieve if we fix k in advance.

Corollary 4. For any ε > 0 there exists a k0 = k0(ε) = O(ε−2) such that for
any positive integer k > k0, for any compact group G acting in a real vector space
V with dim V ≥ k, for any linear function � : V → R, for any v ∈ V and for the
function f (g) = �(gv), f : G → R, we have

‖ f ‖2k ≤ ‖ f ‖∞ ≤ ε
√

dim V · ‖ f ‖2k .

The paper is structured as follows. In Section 2, we prove Theorem 1 and Corol-
laries 2–4. In Section 3, we apply our results to the problem of finding the largest
absolute value of a real homogeneous multivariate polynomial (form) on the unit
sphere, in which case G = SO(n), the orthogonal group. In particular, we present
a simple polynomial time approximation algorithm to compute the largest abso-
lute value on the sphere of a fewnomial, that is, a polynomial having only a small
(fixed) number of monomials. More generally, our method is applicable to forms
with small (fixed) dimensions of their Newton polytopes. The results have poten-
tial applications to constructing efficient algorithms for testing the feasibility of a
given system of real polynomial equations, since the latter problem can be reduced
to estimating the maximum absolute value on the unit sphere of an appropriately
constructed “penalty” form f .

In Section 4, we discuss an NP-hard problem of combinatorial optimization,
which we call the assignment problem of degree d, in which case G = Sn , the
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symmetric group. In particular, our results lead to an approximation algorithm
for finding a bijection between vertex sets of two hypergraphs H1 and H2, which
maximizes the number edges of H1 mapped onto the edges of H2. For d = 2,
the corresponding optimization problem is known as the quadratic assignment
problem, see, e.g., Çela [4]. In the quadratic assignment problem, the objective
function f : Sn → R is defined by f (σ ) = ∑

i, j ai j bσ(i)σ ( j), where A = (ai j )

and B = (bi j ) are two given matrices. Interpreting f as a matrix element in a
representation of Sn , for any given ε > 0, we obtain a polynomial time algorithm
approximating ‖ f ‖∞ = maxσ∈Sn | f (σ )| within a factor of εn.

We use the real model for computational complexity, counting the number of
arithmetic operations performed by the algorithm, see Blum et al. [3]. Eventually,
to compute ‖ f ‖2k from ‖ f ‖2k

2k , we need to extract a root of degree 2k, which we
count as a single operation.

2. Proofs

In this section, we prove Theorem 1 and Corollaries 2–4. We need some standard
facts from the representation theory, see, e.g., Fulton and Harris [6].

Let G be a compact group acting in a finite-dimensional real vector space V .
As is known, V possesses a G-invariant scalar product 〈 〉:

〈u, v〉 = 〈gu, gv〉 for all u, v ∈ V and all g ∈ G.

We introduce the corresponding Euclidean norm:

‖x‖ =
√

〈x, x〉.

The action (representation) is called irreducible if V contains no proper G-invariant
subspaces. As is known, if G acts in a finite-dimensional real vector space V , then
V can be represented as a direct sum of pairwise orthogonal (with respect to a
given G-invariant scalar product) invariant subspaces Vi such that the action of G
in each Vi is irreducible.

A somewhat “nonstandard” feature of our construction is that we consider
representations over the real, rather than over the complex, numbers. The same
results can be obtained by using the more standard representation theory over C,
but switching from real to complex numbers and back somewhat obscures the main
simple ideas of the proof and makes it harder to see when the obtained bounds are
sharp.

We need a “real” substitute for Schur’s lemma. It comes in the form of the
following observation. Suppose that q : V → R is a G-invariant quadratic form,
that is, q(gx) = q(x) for all x ∈ V and all g ∈ G. We claim that the eigenspaces
of q are G-invariant subspaces. A possible way to see this is to notice that the unit
eigenvectors of q are precisely the critical points of the restriction q : S → R

where S = {x : ‖x‖ = 1} is the unit sphere in V .
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Our first lemma is a real version of the orthogonality relations for matrix ele-
ments.

Lemma 5. Let G be a compact group acting in a finite-dimensional real vector
space V endowed with a G-invariant scalar product 〈 〉. Suppose that the repre-
sentation of G is irreducible and let dg be the Haar probability measure on G.
Then ∫

G
〈x, gv〉2 dg = ‖v‖2 · ‖x‖2

dim V
f or all x, v ∈ V .

Proof. Let us choose a vector v ∈ V and let us define a quadratic form q : V → R

by

q(x) =
∫

G
〈x, gv〉2 dg.

Clearly, q(x) is G-invariant: q(gx) = q(x) for all x ∈ V and all g ∈ G. Let λ be
the largest eigenvalue of q and let W be the corresponding eigenspace. Then W
is an invariant subspace of V and hence W = V . Thus q(x) = λ‖x‖2 for some
λ ≥ 0. To find λ, let us compute the trace of q.

On one hand, we have tr(q) = λ dim V . Let qg(x) = 〈x, gv〉2. Then qg is
a quadratic form of rank 1 with the nonzero eigenvalue ‖gv‖2 = ‖v‖2 which
corresponds to an eigenvector x = gv. Hence tr(qg) = ‖v‖2 and since q(x) is the
average of qg , we have tr(q) = ‖v‖2. Thus λ = ‖v‖2/dimV . Hence

q(x) = ‖v‖2 · ‖x‖2

dim V

and the proof follows.

Now we use that every representation is a sum of irreducible representations.

Lemma 6. Let G be a compact group acting in a finite-dimensional real vec-
tor space V endowed with a G-invariant scalar product 〈 〉. Let dg be the Haar
probability measure on G. Let us fix a vector v ∈ V . Then there exists a decompo-
sition V = V1 ⊕ · · · ⊕ Vk of V into the direct sum of nonzero pairwise orthogonal
invariant subspaces such that for every x ∈ V we have∫

G
〈x, gv〉2 dg =

k∑
i=1

‖xi‖2 · ‖vi‖2

dim Vi
,

where xi and vi are the orthogonal projections onto Vi of x and v, respectively.

Proof. Let us define a quadratic form q : V → R by

q(x) =
∫

G
〈x, gv〉2 dg.
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Then q is G-invariant, q(gx) = q(x) for all g ∈ G and all x ∈ V . Thus the
eigenspaces of q are G-invariant subspaces of V . Let us write every eigenspace as
a direct sum of pairwise orthogonal invariant subspaces Vi such that the action of
G in each Vi is irreducible. Thus we obtain the decomposition V = V1 ⊕ · · · ⊕ Vk

and we have

q(x) =
k∑

i=1

λi‖xi‖2,

where xi is the orthogonal projection of x onto Vi and λi are nonnegative numbers.
To find λi , let us choose a nonzero x ∈ Vi . Then 〈x, gv〉 = 〈x, gvi 〉 and, by
Lemma 5, we get

q(x) = λi‖x‖2 = ‖vi‖2 · ‖x‖2

dim Vi
,

from which

λi = ‖vi‖2

dim Vi
.

The proof now follows.

Remark. A decomposition V = V1 ⊕ · · · ⊕ Vk of a representation into the
direct sum of pairwise orthogonal irreducible components is not unique as long as
some irreducible representation appears with a multiplicity greater than 1 (which
means that the representations of G in some subspaces Vi are isomorphic). One
can construct some simple examples showing that the decomposition of Lemma 6
indeed depends on v.

Now we are ready to prove Theorem 1.

Proof of Theorem 1. The inequality

‖ f ‖2 ≤ ‖ f ‖∞

is quite standard. Let us prove that

‖ f ‖∞ ≤
√

dim V · ‖ f ‖2.

Let e be the identity in G. We note that it suffices to prove that

| f (e)| = |�(v)| ≤
√

dim V · ‖ f ‖2,

because the inequality for f (g) = �(gv) would follow by choosing a new vector
v:

new v := g(old v).
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Let us introduce a G-invariant scalar product 〈 〉 in V so that �(x) = 〈c, x〉
for some c ∈ V and all x ∈ V . Applying Lemma 6, we obtain a decomposition
V = V1 ⊕ · · · ⊕ Vk of V into the direct sum of pairwise orthogonal invariant
subspaces Vi such that

‖ f ‖2
2 =

∫
G
〈c, gv〉2 dg =

k∑
i=1

‖ci‖2 · ‖vi‖2

dim Vi
,

where ci and vi are the orthogonal projections onto Vi of c and v, respectively. We
have

f (e) = 〈c, v〉 =
k∑

i=1

〈ci , vi 〉

and, hence,

| f (e)| ≤
k∑

i=1

|〈ci , vi 〉| ≤
k∑

i=1

‖ci‖ · ‖vi‖.

Let

αi = ‖ci‖ · ‖vi‖√
dim Vi

.

Then

| f (e)|2 ≤
(

k∑
i=1

αi

√
dim Vi

)2

≤
(

k∑
i=1

α2
i

)(
k∑

i=1

dim Vi

)
= (dim V ) · ‖ f ‖2

2.

and the proof follows.

2.1. When Is the Upper Bound for ‖ f ‖∞ Attained?

Analyzing the proof of Theorem 1, it is not hard to find out when the bound
‖ f ‖∞ ≤ √

dim V · ‖ f ‖2 is sharp. For example, if the action of G is irreducible, it
follows by Lemma 5 that the equality ‖ f ‖∞ = √

dim V · ‖ f ‖2 holds if and only
if �(x) is proportional to the scalar product of x with one of the orbit vectors gv.
Generally, the bound is sharp for the class of linear functions on the orbit of v as
long as the orbit of v spans V . Here are some natural cases when the bound is
attained.

Suppose, for example, that we have an absolutely irreducible representation ρ

of G in a real vector space W (i.e., the representation remains irreducible after
complexification). Thus, for every g ∈ G, ρ(g) is an operator in W . We interpret
ρ(g) as a point in the space V = End(W ) = W ∗ ⊗ W of all linear transformations
W → W . Let χ(g) = tr(ρ(g)) be the character of the representation. We think of
χ(g) as of a linear function on the orbit of the identity operator I ∈ End(W ) under
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the action g(x) = ρ(g)x for all x ∈ End(W ) (in other words, G acts identically
in W ∗ and by ρ in W in the tensor product W ∗ ⊗ W ). Then ‖χ‖∞ = dim W =√

dim V . The orthogonality relations for the characters, see, e.g., Fulton and Harris
[6, Lecture 2], state that ‖χ‖2 = 1 and hence the bound of Theorem 1 holds with
equality.

As another example, let us consider a finite group G of cardinality |G| and
an arbitrary function f : G → R. The function f can be thought of as a linear
function on the orbit of a point in the regular representation of G. The space V
in this case is the vector space of all linear functions f : G → R where G acts
by shifts: g f (x) = f (g−1x). Let v ∈ V be the delta-function at the identity:
v(e) = 1 where e is the identity in G and v(g) = 0 for all g �= e. Then f is a linear
function on the orbit of v and dim V = |G|. Of course, in this case, the inequality
‖ f ‖∞ ≤ √|G| · ‖ f ‖2 is the best we can hope for as it is sharp on delta-functions.

To prove Corollary 2, we use the construction of the tensor power (see Sec-
tion 1.2).

Proof of Corollary 2. Let us define a function h : G → R by

h(g) = f k(g) = �⊗k(gv⊗k).

Thus h is a linear function on the orbit of v⊗k . Let

W = span{gv⊗k : g ∈ G}

be the span of the orbit of v⊗k . Hence dim W = Dk . Applying Theorem 1 to the
linear function h on the orbit of v⊗k in W , we get

‖h‖2 ≤ ‖h‖∞ ≤
√

Dk · ‖h‖2.

Now we note that ‖h‖∞ = ‖ f ‖k
∞ and that ‖h‖2 = ‖ f ‖k

2k .

Remark. The bound ‖ f ‖∞ ≤ (Dk)
1/2k‖ f ‖2k is rarely sharp. One example when

it is sharp is provided by a generic orbit in the regular representation of a finite
group G, see Section 2.1. In Section 3.1, we present a series of examples of matrix
elements of G = SO(n) for which the estimate is sharp up to a constant factor
uniformly on k and n.

Corollary 3 follows by a general estimate of Dk .

Proof of Corollary 3. We apply Corollary 2. The orbit {gv⊗k} lies in the sym-
metric part Symk(V ) of the tensor product V ⊗k and hence

Dk = dim span{gv⊗k} ≤ dim Symk(V ) =
(

dim V + k − 1

k

)
.
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2.2. Obtaining Sharp Estimates

As follows from Section 3.1, the upper bound for ‖ f ‖∞ is sharp up to a constant
factor uniformly on k if G = SO(n), V = R

n , and G acts in V by its defining
representation.

We describe below classes of functions f : G → R for which some sharp
estimates can be obtained. Let us fix a representation ρ of G in a real vector
space W , let V = End(W ), and let f be a linear function on the orbit of the
identity operator I ∈ V , see Section 2.1. Then for some constant C(ρ, k) we
have ‖ f ‖∞ ≤ C(ρ, k)‖ f ‖2k . Let us assume that ρ is absolutely irreducible (see
Section 2.1). In principle, the best possible value of C(ρ, k) can be computed from
the representation theory of G as follows. Shifting f , if necessary, we may assume
that the maximum absolute value of f is attained at the identity e of G. Let us
define h : G → R by

h(x) =
∫

G
f (g−1xg) dg for all x ∈ G.

Then ‖h‖∞ = ‖ f ‖∞ and ‖h‖2k ≤ ‖ f ‖2k for all positive integers k. Thus the
largest ratio ‖ f ‖∞/‖ f ‖2k is attained when f satisfies f (g−1xg) = f (x) for all
g ∈ G and all x ∈ G, from which it follows that f is a multiple of the character
χ(g) = tr(ρ(g)), see Section 2.1. We observe that ‖χ‖∞ = dim W . Moreover, the
orthogonality relations, see Fulton and Harris [6, Lecture 6], imply that ‖χ‖2k

2k is the
sum of squares of multiplicities of the irreducible components of the tensor power
ρ⊗k . Summarizing, we conclude that to compute the best possible constant C(ρ, k)

such that ‖ f ‖∞ ≤ C(ρ, k)‖ f ‖2k , it suffices to know how the tensor power ρ⊗k

decomposes into the sum of absolutely irreducible representations. This example
also shows that the algebra of tensor powers is indeed relevant for estimating ‖ f ‖∞
in terms of ‖ f ‖2k .

Finally, Corollary 4 follows by an estimate of the binomial coefficient.

Proof of Corollary 4. Let us choose a k0 such that (k!)1/k > 2ε−2 for all k > k0.
By Stirling’s formula, we can choose k0 = O(ε−2). Then(

dim V + k − 1

k

)1/2k

=
(

dim V · (dim V + 1) · · · (dim V + k − 1)

k!

)1/2k

≤
(

2k dimk V

k!

)1/2k

= 21/2(k!)−1/2k ·
√

dim V ≤ ε
√

dim V .

The proof follows by Corollary 3.

3. Applications to Polynomials

In this section, we apply our results to approximate the maximum absolute value
of a homogeneous multivariate polynomial on the unit sphere.



Estimating L∞ Norms by L2k Norms for Functions on Orbits 403

Let p be a homogeneous polynomial of degree d in n real variables ξ1, . . . , ξn .
Thus we can write

p(x) =
∑

1≤i1,...,id≤n

γi1···id ξi1 · · · ξid for x = (ξ1, . . . , ξn),

where γi1···id are some real numbers.
Let R

n be the n-dimensional Euclidean space and let x = (ξ1, . . . , ξn) ∈ R
n be

a point. Then V = (Rn)⊗d can be identified with the space R
nd

. The coordinates
of a typical point (tensor) X ∈ V are

(Xi1···id : 1 ≤ i1, . . . , id ≤ n)

and the scalar product in V is defined by

〈X, Y 〉 =
∑

1≤i1,...,id≤n

Xi1···id Yi1···id .

For x = (ξ1, . . . , ξn) ∈ R
n , the coordinates of x⊗d are

(ξi1 · · · ξid for 1 ≤ i1, . . . , id ≤ n).

Therefore, we can write

p(x) = 〈c, x⊗d〉 where c = (γi1···id ).

Let G = SO(n) be the group of orientation-preserving orthogonal transformations
of R

n . Then G acts in V by the dth tensor power of its defining representation in
R

n . Let us choose w = (1, 0, . . . , 0) ∈ R
n . Then, for any g ∈ G, we have

〈c, gw⊗d〉 = p(gw)

and the orbit {gw : g ∈ G} is the unit sphere S
n−1 ⊂ R

n . Thus the values of p(x),
as x ranges over the unit sphere in R

n , are the values of the linear function

�(gw⊗d) = 〈c, gw⊗d〉 = 〈c, x⊗d〉
as g ranges over the orthogonal group SO(n).

Moreover, the push-forward of the Haar probability measure dg on G is the
probability measure dx on S

n−1. Thus we connect the values of a polynomial
on the unit sphere with the values of a linear function on the orbit of the group
G = SO(n).

Corollary 7. Let p be a homogeneous polynomial of degree d in n real variables,
let S

n−1 be the unit sphere in R
n , and let dx be the rotation invariant probability

measure on S
n−1. For a positive integer k, let us define the L2k norm of p by

‖p‖2k =
(∫

Sn−1
p2k(x) dx

)1/2k
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and let us define the L∞ norm by

‖p‖∞ = max
x∈Sn−1

|p(x)|.

Then

‖p‖2k ≤ ‖p‖∞ ≤
(

kd + n − 1

kd

)1/2k

‖p‖2k .

Proof. We apply Corollary 2. Let w = (1, 0, . . . , 0) be as above. Then, for
v = w⊗d , we can write p(gw) = �(gv) for some linear function � : V → R and
all g ∈ G. The dimension Dk of the span of the orbit {gv⊗k = gw⊗kd : g ∈ G} is
that of the space of homogeneous polynomials of degree kd in n variables. Hence

Dk =
(

kd + n − 1

kd

)
.

We have ∫
G

�2k(gv) dg =
∫

Sn−1
p2k(x) dx .

The proof now follows.

One way to integrate polynomials over the unit sphere is to take the sum of the
integrals of the monomials. The following result is certainly known, but for the
sake of completeness, we sketch its proof here.

Lemma 8. Let p(x) = ξ
α1
1 · · · ξαn

n be a monomial. If at least one of the αi ’s is
odd, then ∫

Sn−1
p(x) dx = 0.

If αi = 2βi , where βi are nonnegative integers for i = 1, . . . , n, then∫
Sn−1

p(x) dx = �(n/2)
∏n

i=1 �(βi + 1
2 )

πn/2�(β1 + · · · + βn + n/2)
,

where dx is the Haar probability measure on S
n−1.

Sketch of Proof. If αi is odd, then

p(ξ1, . . . , ξi−1, −ξi , ξi+1, . . . , ξn) = −p(ξ1, . . . , ξi−1, ξi , ξi+1, . . . , ξn)

and hence the average value of p over the unit sphere is 0.
Assuming that αi = 2βi for i = 1, . . . , n, we get∫

Rn

p(x)e−‖x‖2
dµ =

n∏
i=1

∫
R

ξ 2βi e−ξ 2
dξ =

n∏
i=1

�(β1 + 1
2 ),

where µ is the standard Lebesgue measure in R
n .
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On the other hand, passing to the polar coordinates and using that p is homo-
geneous of degree d = 2(β1, + · · · + βn), we get

∫
Rn

p(x)e−‖x‖2
dµ = |Sn−1| ·

(∫
Sn−1

p(x) dx

)
·
(∫ +∞

0
rd+n−1e−r2

dr

)
,

where |Sn−1| = 2πn/2/�(n/2) is the Euclidean volume of the unit sphere in R
n .

The proof now follows.

The estimates of Corollary 7 are probably not optimal (apart from the case of
k = 1), but the following simple example shows that, in some sense, they are close
to being optimal.

3.1. Powers of Linear Functions

Let p be the power of a linear function, for example, p(x) = ξ d
1 . Then ‖p‖∞ = 1

and, by Lemma 8,

‖p‖2k =
(

�(n/2)�(kd + 1/2)√
π�(kd + n/2)

)1/2k

.

Then Corollary 7 gives us the estimate

‖p‖∞ ≤
(

�(n/2)�(kd + 1/2)�(kd + n)√
π�(kd + n/2)�(n)�(kd + 1)

)1/2k

≤
(

�(n/2)�(kd + n)

�(kd + n/2)�(n)

)1/2k

=
(

n(n + 1) · · · (kd + n − 1)

(n/2)(n/2 + 1) · · · (kd + n/2 − 1)

)1/2k

≤ 2d/2.

Hence, among all homogeneous polynomials of a given degree d, powers of linear
functions give the largest ratio ‖ f ‖∞/‖ f ‖2k up to a constant factor depending on
the degree of f and independent of the number of variables n and the value of k.
In particular, if d = 1, the upper bound of Corollary 3 exceeds the tight bound by
at most a factor of

√
2.

This may serve as an indication that the bounds of Corollary 3 are not too
bad, see Sections 2.1 and 2.2. G. Blekherman [2] pointed out to the author that the
powers, in general, do not provide exactly the largest ratio ‖ f ‖∞/‖ f ‖2k among all
polynomials of a given degree d . Such “extremal” polynomials f were computed
by G. Blekherman when some of the parameters n, d, and k are small.

Suppose we want to approximate ‖p‖∞ by ‖p‖2k for a sufficiently large k. Let
us see what trade-off between the computational complexity and accuracy we can
achieve.
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3.2. Low Degree Polynomials

Let us fix the degree d and allow the number n of variables to vary. Suppose that we
are given a homogeneous polynomial p of degree d and that we want to estimate
‖p‖∞. This problem is NP-hard already for d = 4 (one can infer it from the results
of Blum et al. [3, Part 1] and is suspected to be hard for d = 3.

Let m be the number of monomials in p, so m = O(nd). We observe that for
any fixed k, the direct computation of p2k(x) and computing ‖p‖2k via Lemma 8
has O(m2k) complexity. One the other hand, using Corollary 7, we get that

‖p‖∞ ≤ C(k)nd/2‖p‖2k where C(k) = O(k−1/2).

In other words, for any fixed ε > 0, there is a polynomial time algorithm estimating
‖p‖∞ within a factor of εnd/2. If we want a better estimate, we have to take a larger
k. Thus, for any constant C > 1, from Corollary 7 we get that

‖p‖∞ ≤ C‖p‖2k for some k = O(n).

Since p2k(x) contains at most
(

2kd+n−1
2kd

)
monomials, we can compute ‖p‖2k by

Lemma 8 in 2O(n) time. Summarizing, for any C > 1 there exists a γ > 0 such
that we can approximate ‖p‖∞ within a factor C in 2γ n time.

3.3. Fewnomials and Their Extensions

Suppose that we do not fix the degree d of p but fix instead the number m of
monomials in p. Thus we can write

p(x) =
m∑

i=1

pi (x),

where

pi (x) = γiξ
αi1
1 · · · ξαin

n

are monomials. For a positive integer k, by the multinomial expansion, we get

p2k =
∑

r1,...,rm≥0
r1+···+rm =2k

(2k)!

r1! · · · rm!
pr1

1 · · · prm
m .

Thus p2k contains at most
(

m+2k−1
m−1

)
monomials, which is a polynomial in k when

m is fixed. Using Lemma 8, we compute ‖p‖2k in O(dn(2k)m) time. Given an
ε > 0, for some δ > 0 let us choose an integer k = O(ε−1n1+δ ln d) such that

n − 1

2k
ln(kd + 1) < ln(1 + ε).
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Using Corollary 7 and a simple estimate(
kd + n − 1

n − 1

)
= (kd + 1)(kd + 2) · · · (kd + n − 1)

1 · 2 · · · (n − 1)
≤ (kd + 1)n−1

we conclude that

‖p‖2k ≤ ‖p‖∞ ≤ (1 + ε) · ‖p‖2k .

Hence as long as the number of monomials is fixed, we get a polynomial time
approximation algorithm, which, for any given ε > 0, computes the maximum
absolute value of a given polynomial (“fewnomial”) over the unit sphere within a
relative error of ε, in time polynomial in ε−1, the number of variables n and the
degree d of the polynomial. In fact, the only place where we have to use poly-
nomially many in d arithmetic operations is when we compute gamma-functions
(factorials) in Lemma 8. Apart from this, the running time of the algorithm is
polynomial in ln d .

One can define a wider class of polynomials p for which a similar polyno-
mial time approximation scheme exists. For a monomial xa = ξ

α1
1 , . . . , ξαn

n , let
a = (α1, . . . , αn) ∈ Z

n be its multidegree considered as a point in R
n . For a poly-

nomial p, let us define the subspace Lp ⊂ R
n to be the span of all a such that the

monomial xa has a nonzero coefficient in p. In other words, Lp is the span of the
Newton polytope of p, see Khovanskii [7]. Let us fix a positive integer m and con-
sider the class of homogeneous polynomials p such that dimLp ≤ m. We note that
for any k, the multidegrees of monomials in pk are points from Lp ∩ Z

n contained
in the cube 0 ≤ αi ≤ kd with d = deg p. In particular, the number of monomials
in pk grows polynomially in k. Using that, one can compute the monomial expan-
sion of pk recursively in time polynomials in k, d, and n. Hence, for any ε > 0,
one can estimate ‖p‖∞ within relative error ε in time polynomials in ε−1, n, and d.

Computing or approximating the maximum absolute value of a polynomial on
the unit sphere can be used for testing whether a given system of real polynomial
equations has a real solution, a difficult (NP-hard) and important problem, see
e.g., Blum et al. [3] and Renegar [9]. Suppose that pi : i = 1, . . . , s, are given
homogeneous polynomials of degree d in n variables x = (ξ1, . . . , ξn) and that
we would like to test whether the system

pi (x) = 0 for i = 1, . . . , s

has a real solution x �= 0. Let

q =
s∑

i=1

p2
i (x).

Thus we want to test whether

min
x∈Sn−1

q(x) = 0.
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Let us choose a

γ > max
x∈Sn−1

q(x)

and let

p = γ ‖x‖2d − q.

Thus the problem reduces to checking whether

max
x∈Sn−1

|p(x)| = γ.

If the polynomials pi of the original system do not have too many monomials or
belong to other easy cases described above, we can try to approximate ‖p‖∞ by
‖p‖2k for a reasonably large k, see Section 3.3. Similarly, to choose an appropriate
γ , we can compute ‖q‖2k for a sufficiently large k. The number of monomials in
the system is relevant to the “topological complexity” of the set of real solutions
(Khovanskii [7]), so it should not be surprising that it is also relevant to the com-
putational complexity of the decision problem. In particular, this approach may be
useful for detecting “badly unsolvable” systems (systems for which the value of
‖p‖∞ is substantially smaller than γ ) of fewnomial equations.

4. Applications to Combinatorial Optimization

Let us fix a number d and let V = (Rn)⊗d = R
nd

be the vector space of d-
dimensional arrays (tensors)

X = (xi1···id : 1 ≤ i1, . . . , id ≤ n).

To simplify the notation somewhat, we denote the coordinates of X by xI , where
I = (i1, . . . , id).

We introduce the scalar product by

〈X, Y 〉 =
∑

I

xI yI for I = (1 ≤ i1, . . . , id ≤ n).

Let G = Sn be the symmetric group of all permutations g of the set {1, . . . , n}.
We introduce the action of Sn on V by the dth tensor power of the natural action
of Sn in R

n:

Y = gX provided xI = ygI where g(i1, . . . , id) = (g(i1), . . . , g(id)).

Let us choose two tensors A, B ∈ V and let

f (g) = 〈B, g A〉 =
∑

1≤i1,...,id≤n

ai1···id bg(i1)···g(id ), f : Sn → R

be the corresponding matrix element.
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We call the problem of optimizing f the assignment problem of degree d . It
is straightforward for d = 1. For d = 2, it is known as the quadratic assignment
problem, one of the most general problems of combinatorial optimization, see,
e.g., Çela [4]. The quadratic assignment problem is NP-hard and viewed as one of
the “hardest” among NP-hard problems, compared, for example, with the traveling
salesman problem.

4.1. An Application: Matching Edges of Hypergraphs

Recall that a d-hypergraph H on the set {1, . . . , n} is a set of subsets E ⊂
{1, . . . , n}, called edges of H , such that |E | ≤ d for the cardinality |E | of ev-
ery edge E of H . A hypergraph is called uniform provided |E | = d for every
edge E of H . Let H1 and H2 be uniform d-hypergraphs with the set of vertices
{1, . . . , n}. Let us define the adjacency tensor A = (ai1···id ) of H1 by

ai1···id =
{

1 if {i1, . . . , id} is an edge of H1,

0 otherwise.

Let us define B = (bi1···id ) by

bi1···id =
{

1/d! if {i1, . . . , id} is an edge of H2,

0 otherwise.

A permutation g of the set {1, . . . , n} is interpreted as a bijection between the
vertices of H2 and the vertices of H1, and the value of

f (g) = 〈B, g A〉

is the number of edges of H2 mapped onto the edges of H1. The value of ‖ f ‖∞ is
the maximum number of edges of H1 and H2 that can be matched by a bijection
of the vertices of H1 and H2. If H1 and H2 are not uniform, we can modify B by
letting

bi1,...,id = k1! · · · kr !

d!
,

provided {i1, . . . , id} is an edge of H2 and the multiplicities of the elements in the
multiset {{i1, . . . , id}} are k1, . . . , kr , so that k1 + · · · + kr = d. Then again the
value of ‖ f ‖∞ is equal to the maximum number of edges of H1 and H2 that can
be matched by a bijection of the vertex sets.

One can extend this construction to oriented hypergraphs whose edges are
ordered subsets of {1, . . . , n}. By introducing weights on the edges of H1 and H2

we can introduce “prices” for matching (or mismatching) particular edges.
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Applying Corollary 3, we get the inequality

‖ f ‖2k ≤ ‖ f ‖∞ ≤
(

nd + k − 1

k

)1/2k

‖ f ‖2k

for the function f of a general assignment problem of degree d.
In various special cases, the bound can be somewhat improved by using Corol-

lary 2. For example, if the coordinates of A (or B) are 0’s and 1’s, one can prove
that

‖ f ‖2k ≤ ‖ f ‖∞ ≤ D1/2k(n, d, k) · ‖ f ‖2k where D(n, d, k) =
k∑

j=1

(
nd

j

)
.

We claim that for small (fixed) values of k the value of ‖ f ‖2k can be computed
relatively easily (in polynomial time). First, we observe that computation of ‖ f ‖2k

reduces to computation of the average of a matrix element for larger tensors.

Lemma 9. Let us fix two tensors A = (aI ) and B = (bI ) for I = (1 ≤
i1, . . . , id ≤ n). For a positive integer m (in particular, for m = 2k), let us
define tensors X = A⊗m and Y = B⊗m as follows:

X = (xJ ) and Y = (yJ ) where J = (1 ≤ j1, . . . , jdm ≤ n)

and where

xJ = aI1 · · · aIm and yJ = bI1 · · · bIm provided J = (I1, . . . , Im).

Then

1

n!

∑
g∈Sn

〈B, g A〉m = 1

n!

∑
g∈Sn

〈Y, gX〉.

Proof. The proof follows by observation that

〈B, g A〉m = 〈B⊗m, g A⊗m〉 = 〈Y, gX〉.

Next, we show how to compute the average.

Lemma 10. Let us fix a positive integer l (in particular, l = md = 2kd). For a
partition � = {�1, . . . , �r } of the set {1, . . . , l} into nonempty disjoint subsets,
we say that a sequence I = (i1, . . . , il) has type � if for each �p the indices
ij : j ∈ �p are all equal and if for each pair of subsets �p and �q the indices
ij : j ∈ �p and ij : j ∈ �q are different.

Let X = (xI ) and Y = (yI ), I = (1 ≤ i1, . . . , il ≤ n) be tensors (in particular,
we can have X = A⊗m = A⊗2k and Y = B⊗m = B⊗2k).
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Let us define the tensors X̄ = (x̄ I ) and Ȳ = (ȳI ), I = (1 ≤ i1, . . . , il ≤ n) by

x̄I = (n − r)!

n!

∑
J : type J=type I

xJ provided type I = (�1, . . . , �r )

and

ȳI = (n − r)!

n!

∑
J : type J=type I

yJ provided type I = (�1, . . . , �r ).

Then
1

n!

∑
g∈Sn

〈Y, gX〉 = 〈Ȳ , X̄〉.

Proof. The two index sets I = (i1, . . . , il) and J = ( j1, . . . , jl) belong to the
same orbit of the action I �→ gI of Sn if and only if they have the same type
{�1, . . . , �r }. Moreover, the stabilizer of I consists of (n − r)! permutations.
Hence

X̄ = 1

n!

∑
g∈Sn

gX and Ȳ = 1

n!

∑
g∈Sn

gY.

We have

1

n!

∑
g∈Sn

〈Y, gX〉 =
〈

1

n!

∑
g∈Sn

gY,
1

n!

∑
g∈Sn

gX

〉

and the proof follows.

Combining Lemmas 9 and 10, we observe that as long as d and k are fixed, we
can compute ‖ f ‖2k in O(n2kd) time, that is, in polynomial in n time.

In particular, from Corollary 4, we conclude that for any fixed d and for any
fixed ε > 0 there exists a polynomial in n algorithm for estimating ‖ f ‖∞ within a
factor of εnd/2. This result seems to be new already for d = 2, see Arkin et al. [1].

4.2. Finding a Permutation

So far we have shown how to approximate ‖ f ‖∞ by ‖ f ‖2k but we did not discuss
how to find a particular permutation g which gives the value of | f (g)| close
to ‖ f ‖∞. In fact, it is not hard to construct a permutation g ∈ Sn for which
| f (g)| ≥ ‖ f ‖2k and, hence, | f (g)| approximates ‖ f ‖∞ within a factor of εnd/2

at the cost of some extra work, which still results in a polynomial time algorithm
when k is fixed. The idea is to use the “method of conditional probabilities,” see,
e.g., Motwani and Raghavan [8, Section 5.6]. We split the symmetric group Sn into
the union of cosets Sj = {g : g(1) = j} and then compute the average value of f 2k
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over each coset separately (this would require some straightforward modification
of Lemma 10). Then a coset should be chosen which gives the largest average.
Thus we have determined g(1) = j and we proceed to determine g(2), . . . , g(n)

successively.
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