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PREFACE

Project MICHIGAN is a continuing research and development program for ad-
vancing the Army's long-range combat-surveillance and target-acquisition capa-
bilities. The program is carried out by a full-time Willow Run Laboratories staff
of specialists in the fields of physics, engineering, mathematics, and psychology,
by members of the teaching faculty, by graduate students, and by other research
groups and laboratories of The University of Michigan.

The emphasis of the Project is upon basic and applied research in radar, in-
frared, acoustics, seismics, information processing and display, navigation and
guidance for aerial platforms, and systems concepts. Particular attention is given
to all-weather, long-range, high-resolution sensory and location techniques, and
to evaluations of systems and equipments both through simulation and by means of

laboratory and field tests.

Project MICHIGAN was established at The University of Michigan in 1953. It
is sponsored by the U. S. Army Combat Surveillance Agency of the U. S. Army
Signal Corps. The Project constitutes a major portion of the diversified program
of research conducted by the Willow Run Laboratories in order to make available
to government and industry the resources of The University of Michigan and to
broaden the educational opportunities for students in the scientific and engineering
disciplines.

Progress and results described in reports are continually reassessed by

Project MICHIGAN. Comments and suggestions from readers are invited.

Robert L. Hess
Technical Director
Project MICHIGAN
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A STOCHASTIC METHOD OF SOLVING PARTIAL DIFFERENTIAL
EQUATIONS USING AN ELECTRONIC ANALOG COMPUTER*

ABSTRACT

This report presents an analog-computer method for solving a general class
of two-dimensional boundary-value problems in which only a small number of op-
erational amplifiers is required. The method simulates the boundary-value prob-
lem under consideration as a stochastic model by a technique commonly designated
the "Monte Carlo method." In this case, the stochastic method becomes a tool for
the numerical analysis of the partial differential equation. Although the Monte
Carlo method of digital-computer solution of partial differential equations has been
extensively studied, its application to the analog computer is believed to be new.

The boundary-value problems for which the stochastic method is applicable
belong to a family of generalized Dirichlet problems of the form:

2 2
d f a f of of
P2 Do 3 KBy Xla - Kol % =0
R axz 1 2

f(x1 , xz) = ¢(x1, x2) on the boundary C

where Kl(x and Kz(xl, X,) are arbitrary functions of x, and Xo) respectively

p %) 2 1
The boundary C is an arbitrary, finite closed curve—a Jordon curve

The boundary-value function ¢(x1, X

continuous function of x1 and x2

D1 and D2 are constants

The analog computer, using the stochastic method, solves the boundary-value
problem at a desired point within the region bounded by C. This solution, which
can be shown to be a statistically convergent quantity, appears as the mean value
of the summation of discrete boundary values that are randomly generated by the
computing system.

) is a bounded, single-valued, piecewise
2

A number of one- and two-dimensional boundary-value problems of the type
described, whose analytical solutions are known, have been experimentally solved.
A comparison of the experimental and analytical solutions corroborates the validity
of this method.

1
INTRODUCTION

The fundamental importance of partial differential equations in our physical universe, and

the inherent difficulty of solving them analytically, have resulted in a large number of methods

*This research was performed in the Feedback Control Systems Laboratory of the Electri-
cal Engineering Department of The University of Michigan.
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for obtaining their solutions. Since the analytic techniques available are limited in number,
and when applied often lead to cumbersome results, several important methods have been de-
veloped which utilize the capabilities of digital and analog computers. Such machine methods
vary in their approach to the problem and have relative advantages and disadvantages as to
accuracy, generality, complexity, cost, etc.

Analog-computer solution of partial differential equations requires special techniques to
overcome the computer's inherent limitation, namely, time, the unique independent machine
variable. To solve a partial differential equation deterministically on an analog computer, one
must replace some of the equation's partial derivatives by finite difference quotients and thus
convert the partial differential equation into a system of simultaneous ordinary differential
equations. The major drawback of this method, however, is the number of amplifiers and
associated equipments needed. For example, for a ten-station problem (i.e., a partial dif-
ferential equation reduced to ten simultaneous ordinary differential equations), a minimum
number of ten amplifiers must be used. For convenience of adjustment of complex boundary
conditions, as many as 30 amplifiers may sometimes be preferred.

The purpose of thisreport is to present a new approach to the analog-computer solution
of partial differential equations. The method is based on the intimate relation that exists be-
tween partial differential equations and the random process that arises in the analysis of
electric éircuits subjected to random excitations. Instead of being used to solve a partial dif-
ferential equation which governs the probability distribution of the randomly excited circuits,
the random process becomes a tool for numerical analysis of the partial differential equation.
This probabilistic method of solving partial differential equations can be considered a sophis-
ticated simulation method. It is commonly referred as the ""Monte Carlo method." Its ad-
vantages are that it requires a smaller number of operational amplifiers than the usual
differential-difference method, and that the number of amplifiers and associated equipments

does not increase appreciably even if the problem to be solved becomes more complex.

2
STOCHASTIC PROCESSES and RELATED DIFFERENTIAL EQUATIONS

2.1. MARKOFF PROCESS

A discrete Markoff process can be interpreted as a process in which the occurrence of an
event depends only on the occurrence of the event immediately preceding it. For continuous
cases the direct generalization of this statement is not exactly true. In such a case, the con-
tinuous process can best be defined by the following fundamental equation known as the Chapman-

Kolmogoroff equation:’

It is possible to write two equations into a single Stieltjes integral (see Reference 1).
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f(s +t, y|x) = j f(s, £’x)f(t, y]&)d& (1a)
integrated over
all £ space

where I f(t, ﬂ;{) d_y’ equals the probability of the vector random process ;in the region R at
R

time (t + to) on the condition that, at time t,, the vector random process was at point x. For

0’
discrete cases this becomes:
P(s +t, y|x) = Z P(s, £|x)P(t, y|§) (1b)
sum over
all

where P(s, ?’;) = the conditional probability of finding £=% at time (t, + s) on the condition

—_ - 0

£=xattimet=t0.

The above equations may be described as stating that the passage of a random process ;
from state x at time t = t0 to ;at time (s +t + tO) must occur via some intermediate state &

at some intermediate time (s + to).

2.2 DISCRETE RANDOM WALK WITH ABSORBING BOUNDARY

For the sake of simplicity, we will restrict our discussion in this section to a one-
dimensional case; the extension to higher-dimensional cases follows (at least heuristically)
immediately.

Consider a particle which starts a random walk at a point x lying inside an interval [a, b].
The particle has the probability p(x) of moving to (x + h) and the probability q(x) of moving to
(x - h). Let P(tm, b |x) be the probability that the particle starting at x will reach boundary b

at time tm = (m At), then P(tm, b \x) satisfies the following Chapmann-Kolmogoroff equation:

P(t_, b[x) = p(x)P(t blx +h) + q®Pt_ 1, blx - h) (2)

m-1’

The above equation implies that the procedure for the particle to reach the boundary, b,
att = tm = m(At) can be broken down into the following steps: (1) att = t1 the particle moves
to x + h, then reaches the boundary, b, at the next (m - 1) Attime; (2) at t = ’c1 the particle
moves to x - h, then reaches the boundary, b, at the next (m - 1) Attime. The boundary con-

ditions for the particle to be absorbed into the boundaries, b, are:

P(t, b|x sa) = 0, Pt , b|xzb) =1 (3)
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Similarly, the probability that the particle disappears into boundary,a,before it reaches

boundary, b,is given by

P(t,» a[x) =p@P(t  , alx+h) +q&)PE_ ., alx-h) (4)
P(t alxsa)=1 P(t, alxzb) =0 (5)

From these two particle-diffusion probabilities, the following theorem can be proved.

Theorem. Given a function U(x, tm) defined by the following difference equation,

U(x, tm) = p(x)U(x + h, tm-l) +q(x)U(x - h, tm-l) (6)
Ux,t )=A for x <a
o B (7)
Uix, t )=B for x>b
m p—
then
Ulx, t ) = AP(t , ax) + BP(t_, bx) (8)

is the solution of Equation 6 with the boundary conditions of Equation 7.

Proof. If Equation 8 is substituted in Equation 6, since P(t o 2 ]x) and P(t b] x) are the
solutions of Equations 2 and 4, respectively, it becomes ev1dent that Equation 8 satisfies
Equation 6. Equation 8 with the boundary conditions stated in Equations 3 and 5 satisfies the

boundary conditions stated in Equation 7.
Since P(O b|x =0forx< b
b|x) =p(x)ifx=b-h
=0ifx< b-h

then
, b]x) > P(0, blx)

and then by inductive methods it can be proved that

Pt . D|X)> Pt , bx)

Since P(t b |x is a probability, its upper bound is unity. From function theory: as tm—-oo,

the monotomc sequence P( , b|x) approaches a limit given by lim P(t b]x P(b|x)
t —o
Similarly, m
lim Pt , a|x) = P(a|x)
t —w
m
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From the above monotonic properties of these absorbing probabilities it follows immediately

that
lim Ulx, t ) =U(x) = lim [AP(t_, a|x)] + lim [BR(t b|x)]
t = t —ow t —ow
m m m
= AP(alx) + BP(b]x) (9)

Under these conditions Equation 6 becomes
U(x) = P(x)U(x + h) +q(x)U(x - h) (10)

Ux)=Aforx=sa
(11)

U(x)=Bforxzh
Physically, Equation 6 implies that the solution of the boundary-value problem described in
Equations 10 and 11 is equal to the mean score of particles that start from x, diffuse into
boundary a or b, and make scores equal to A at a, B at b, and zero within the interval [a, b].
2.3. PASSAGE TO THE DIFFERENTIAL EQUATION AND DIRICHLET PROBLEM IN THE

ONE-DIMENSIONAL CASE
If the functions p(x) and q(x) are so chosen that p(x) - q(x) = 2K(x) + O(h2), where K(x) is

2
a function of x only and O(hz) is the higher-order function of h, i.e., hz, h3, .«.. then, since

p(x) +a(x) = 1,

(x) _ 2
%-l+hK(x)+O(h) (12)

and Equation 10 can be written in terms of difference quotients:

U(x +h) +U(x - h) - 2U(x) , [p(x) - a(x)][U(x +h) - U®)]| _
2 [ [ o (1)
If h is small enough, then
dzU ~ Ux +h) +U(x - h) - 2U(x)
d.X2 h2

and
dU _U(x +h) - U(x)
dx h

where Ax = h. By using the condition stated in Equation 12 and passing h—0, Equation 13

formally becomes the following differential equation:

— +KEx)—=0 (14)
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The problem of finding the solution of Equation 14 with boundary conditions U(a) = A and
U(b) = B is called the Dirichlet problem, or the first boundary-value problem, for a one-
dimensional case.

In Section 2. 2 it is shown that the mean score of a discrete random walk is a solution of
the difference Equation 10 with the boundary conditions of Equation 11. If h is chosen small
enough and the condition of Equation 12 holds true, then the mean score of this limiting dis-
crete random walk will give an approximate solution to the first boundary-value problem in a

one-dimensional case.

2.4. PETROWSKY THEOREM

Petrowsky in 1933 proved an important theorem about the generalized Dirichlet problem
and stochastic process for a two-dimensional case. This theorem is fundamental to the present
research, in the sense that it guarantees the convergence of the stochastic random-walk prob-
lem and the generalized Dirichlet problem. Only Petrowsky's result will be stated here; the
details of his proof are omitted, since they are readily obtainable from his original paper

(Reference 2). The theorem states:

If F}\ (A [x, y) denotes the conditional probability function that a moving point starting
from x, y will reach the inner domain of a point region A and the following limiting re-
lations hold:

1
lim (£ - X)F, (dE|x, y)~M_(x, y) (15)
A—0 fxy(}\) '[E A X

1
lim —= | (7 - y)F, (dE|x, y) ~ M_(x, y) (16)
A0 fxy()\) IE A y
lim 'f_l(_)T) S (¢ - x)sz(dElx, y) =~ M_(x, y) (17
A0 ‘xy E xx
lim x)(n - y)F. (dE]x, y)- M _(x, y) (18)
A—0 xy J Xy
lim n - y dE Xy —~M (x,9) (19)
A—0 xy fE ‘ yy

and

1 2
lim —— (§-x)°F (dE|x, y)—~0 (20)
A—0 fxy(}‘) JE-KXy A
lim f_l()_\j _[ (n - y)2FA(dE|x, y)—~0 (21)
A—0 xy E-K

Xy
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where fxy()\) is a positive function of A and fxy(}\) - 0as A0, ny is a circle of arbitrary
radius around (X, y), and E is the domain of interest, then, as A— 0, the function U(x, y)

defined by the relation

Uk, ¥) = | #@P, (@le, 3 (22)
Q
approaches the solution of the following generalized Dirichlet problem

2 2 2
M 32U, om 22U oy U, o U, oy (23)
XX aXZ Xy 0X 0y yy ay2 X0X yoy

where M M -M 2 >0andM__>0and M__ > 0, and with boundary condition U(x, y) =
XX yy Xy XX Yy

¢(x, y), where ¢(x, y) is uniformly bounded and piecewise continuous on the boundary C.

The function U(x, y) defined above could be considered as the mean tally of a random walk
starting from point x, y, where ¢(Q) is tallied every time it reaches a point Q on the boundary C.
For the one-dimensional case, the Petrowsky theorem is the same as for the two-dimen-

sioﬁal case, except that U(x, y) becomes U(x) and the corresponding generalized Dirichlet

equation is reduced to an ordinary differential equation.

2.5. APPLICATION OF THE PETROWSKY THEOREM

The importance of the Petrowsky theorem is that it guarantees the convergence of the
stochastically obtained solution of the generalized Dirichlet problem to the analytical solution
given by Equation 23. For instance, in Section 2. 2 it was stated that the mean tally of the
discrete random walk will approach the solution of the generalized Dirichlet problem for the
one-dimensional case. By applying the Petrowsky theorem to this special case, it can be
shown that, as h — 0, the mean tally defined by Equation 8 does approach the solution of the
Dirichlet problem in a one-dimensional case (Reference 3).

In the use of Petrowsky's theorem, the stochastic process which approaches the solution
of a generalized Dirichlet problem is not unique; in other words, any stochastic process that
satisfies the conditions stated in Equations 15 to 21 will approach the solution of the generalized

Dirichlet problem, Equation 23.
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3

TWO-DIMENSIONAL PARTIAL DIFFERENTIAL EQUATIONS and
STOCHASTIC PROCESSES in ELECTRIC CIRCUITS

3.1.

ELLIPTIC AND PARABOLIC DIFFERENTIAL EQUATIONS

If tm =t + Atand tm—l =t are substituted into Equation 6, then the following equation

results:

U(x, t + At) = p(x)U(x + h, t) + q(x)U(x - h, t)

Assuming the following relations, which were given in Section 2. 3,

p(x)

p(x)

and

+q(x) =1
- 4(x) = 3K(x) + O(n%)

Equation 24 can be written in the following difference-quotients form:

U(x, t + At) - Ux, t)
At

g(Agt)[U(x +h, t) + U(x - h, t) - 2U(x, t)]

Ux + h, t) - U(X, t)
At

+ DK (x)

From the relations of Equation 25, it is seen that q(x) is of the form

a) =3 - 3K - 2%

(24)

(25)

(26)

If At = h2 and Equation 27 is substituted into ‘Equation 26, then letting At — 0, Equation 26

formally becomes the following differential equation:

U(x, t)

2200, 1) , 1oy UK, 8)

K(x)—2>—

ot

1
272 2

ax 0X

fort> 0, U(x, t) = Afor x=a; U(x, t) = Bfor x = b.

Equation 28, which is known as the Kolmogoroff first differential equation, is an important

parabolic differential equation in mathematical physics in the areas of diffusion theory and the

Brownian movement of a particle. If

or

U(x, t)

ot

= 0, equation 28 reduces to the form:

(29)
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.

Inspection of Equation 29 reveals it to be the same as Equation 14, which means that the elliptic
differential equation (Equation 14) and the parabolic differential equation (Equation 28) have an
intimate relation. Roughly speaking, a boundary-value problem with an elliptic differential
equation can be considered as corresponding to an asymptotic or a steady solution of a para-
bolic differential equation with consequent emphasis on terminal positions rather than on the

numbers of steps required to reach a given position.

3.2. THE ADJOINT DIFFUSION EQUATIONS
For simplicity, a one-dimensional Markoff continuous stochastic process is again con-
sidered here. Since the process is a Markoff process, it implies that its conditional prob-

ability density function satisfies the Chapmann-Kolmogoroff equation
+00
£y, t +s|x, ty=0) =J (¢, s|x, ty= 01y, t|¢ s)dt (30)
-

If s = At, then Equation 30 is of the form

+00
£(y, t + Atx) = j £(¢, At|x)(y, t]€, At)dé (31)
-0

If y and t are fixed and f(y, t | £, At) is expanded into a Taylor series in & around x, then

Equation 31 becomes

+00
f(y, t + At]x) = S f(¢, At|x) {f(y, t|x, At)

-0
2
» A0 L% 80 412 f(y, o 886 . %+ ...}dé (32)
since
+00
S f(¢, At|x)dé =1 (33)
-0
and by assuming
1 +00
lim A_tg (¢ - (¢, At|x)dE — a(x) (34)
At—0 -0
VI 2
lim j (€ - x)%(E, At|x)dE — 2b(x) (35)
At—0 -0
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and

1 +oo-(x + &) 9 '
lim A—tg (€ - x)%(5, At|x)ds — 0 (36)
At—0 -00-(X - &) '
Equation 32 reduces to the first Kolmogoroff equation:

2
)—b(X) (t X) +a(X) (t, x) (37)
Bx

of
8t(

For fixed x, it can be shown that f(y, tIx) as a function of y and t also satisfies the second
Kolmogoroff or Fokker-Planck equation. In addition, Kolmogoroff's first and second equations

are adjointed to each other, the second having the form

2
=§—§[b(y)f(t, 9] -2 layit, )] (38)
ay

o
at

-

It is of interest to note that the conditions stated in Equations 34, 35, and 36 are the same as
those stated in Equations 17 and 20 (Petrowsky's theorem), except in this case fxy()\) is equal
to At. The details of the derivation of the two Kolmogoroff equations for the n-dimensional

case can be found in Reference 4. These equations have the following forms:

n n aZf
Z A (t, Xy Xgy ey xrl K Z Z Bij(t’ Xis oo xn)_ax. % (39)
i=1 i=1 j=1 i
n n 2 n
of Z Z 0 [ 0
EYie B--(t,y’y"'-,y ]Z_': tY;y"",Y)f] (40)
ot io1j=1 ayiayj ij 1”72 5 ay 1’72
where
1 §
B, = lim —— (& —x)(é —x)fd§ d% eo. dé (41)
i Ao 28t I ] n
n
and
L
A, = lim — (&, - x.)fdé, dé, ... dE (42)
a0 8ty g 1T TR

3.3. ELECTRIC CIRCUITS AND DIFFUSION PROCESSES
It has been shown by Wang and Uhlenbeck (Reference 5) that, when an electric circuit is
subjected to an exciting input voltage of Gaussian white noise, the response current of the cir-

cuit undergoes a diffusion motion or the current response is a Markoff stochastic process.
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Consequently, the conditional probability density function of the current satisfies the Chapmann-
Kolmogoroff equation and Kolmogoroff's two differential equations.

If the initial condition, x, of the current is fixed, then the conditional probability density
function is a function of the current, y, and t. Therefore, as shown in Section 3. 2, the con-
ditional probability density function f(y, t) satisfies the second Kolmogoroff or Fokker-Planck
equation.

Given an electric circuit which has an absorbing boundary (that is, whenever the current
reaches any value corresponding to the value of the boundary the process is terminated), the
conditional probability density function will be a function of the initial value, x, and t. Con-

sequently, the conditional probability density function satisfies ‘the first Kolmogoroff equation,
" which is the adjoint equation of the Fokker-Planck equation.

An example will illustrate this idea. Let an RL circuit, which is subjected to a Gaussian

white noise, F(t), be described by the following ordinary differential equation:

dy -

S+ By = F(t) (43)
where B is a constant and F(t) is a Gaussian random white noise that has the following proper-
ties:

<F(H)>, =0 (44a)

< F(t)F(t +17) >av = 2D 6(7) (44b)

If the conditional probability density function f(y, t [x) as a function of y and t is of interest,
then the conditional probability density function can be obtained as a solution of the following
Fokker-Planck equation:

of o 0
=7 = —5[by1] -=-[ay)] (45)
ot 2 ay
ay
where b(y) and a(y) are the conditional moments given by Equations 34 and 35.
If in a small time interval, At, the value of the quantity y in Equation 43 changes only a

very small amount, then Equation 43 can be approximately written in a difference form:

t+At
Ay + By At =S F(t) dt (46)
t
t+At
wherej F(t) dt implies that, although the function y changes very little in time interval At,
t

F(t) does not necessarily change very little.

11
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From Equation 46, with the properties of F(t) as given by Equations 44a and 44b, the

functions a(y) and b(y) are readily obtained:

“AYav At
ay) = lUm —=— =-fy 5z =-fy (47a)
At—0
and
1 <Ay’ 2D
b(y) =—2' lim T =T =D (47b)
At—0
The Fokker-Planck equation for this case is of the form:
of 82f 9
3{ = D;)? + ﬁa‘g; (yf) (48)

If the current y starts from an initial position x and has a fixed absorbing boundary, then the
conditional probability function f(y, t|x) = f(x, t) is a function of x and t and accordingly sat-
isfies the first Kolmogoroff equation (Equation 37). Since the first Kolmogoroff equation is

the adjoint equation of the Fokker-Planck equation given by Equation 48, then Kolmogoroff 's

first equation for this case is of the form

2

of 9 f of
i D—2 - Br (49)
dx
For steady state, % = 0 and Equation 49 becomes an ordinary differential equation:
2
Dd—% - Bx%f; =0 (50)
dx
If the resistance in the RL circuit is nonlinear, then Equation 43 is of the form
&+ K(y) = F) (51)
dt
where K(y) is a function of y.
The first Kolmogoroff equation then has the form
of 82f of
—a—E = D;p - K(X) 3% (52)

12
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3.4. TWO-DIMENSIONAL GENERALIZED DIRICHLET PROBLEM AND TWO INDEPENDENT
CIRCUITS

If two RL circuits with nonlinear elements Kl(yl) and K2(y2) are given and the corres-
ponding currents of these two circuits are connected to the x and y inputs of an ordinary oscil-
loscope, then the conditional probability density function f(yl, Yoo t le’ x2) satisfies one of
the two-dimensional Kolmogoroff equations, depending on whether one treats it as a function
of x's or y's.

An example of the two-dimensional case is given below. Let two independent RL circuits
with nonlinear resistances be given. The equations describing the responses of these circuits

subjected to two independent Gaussian white noises are

dy

1 _
o K0y vy = F4 0 (53a)
and
dy2
5+ Ko(ygr ¥g) = Fylt) (53D)

-

where Kl(yl’ yz) and K2(y1, yz) are the functions of V4 and Vg and Fl(t) and Fz(t) are the

Gaussian random inputs with the following properties:

<F,()F,(t +7)> =2D,0(7) (54)

Fy()Fo(t + 7)>, =2D ()

2

<F1(t)F2(t)>aV = <F1(t)>av' <F,(t)>

2 av
The conditional probability density of (yl, y2) is given by the Fokker-Planck equation:

2 .2 2
of ) 3
RAR) - B..f] - —[A.f] (55)
ot oy ayiayj[ ij 7 ayi i

The Bij and Ai functions can be calculated using Equations 41 and 42.

13
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For Equations 53a and b and the condition stated by Equation 54, the Bij and Ai functions

are of the following form:

2
g Lm 17y
11°2at—0at - Py
g o1 tim BViYoay
12 2 At—0 " At =
2
B _1 lim <Ay2 "av -D (56)
22 7 2 At—0 At ~ T2
: <Ay.>
lim 1 av
Al = at-0at KU vy
. <Ay,>
lim 2 av
Ay = at—0"at = Kylypr ¥y)

If the conditional probability function, f, is considered as the function of Xy Xg and t,
then the f(xl, Xg t) satisfies the adjoint Fokker-Planck or first Kolmogoroff equation. In
this instance the following equation results:

82f azf - of of of

Dy==g + Dym—y - K,y Vol 3 - Kol Vo) 3 =75¢ (57)
axl ax2 1 2

For steady state, Equation 57 reduces to an elliptic partial differential equation. Given a
boundary, C, in two-dimensional space and a boundary function ¢(C), the following procedure
is prescribed: The boundary, C, is placed on the face of the oscilloscope whose horizontal
and vertical plates are driven by the random voltages Yy and Vo The oscilloscope beam start-
ing from point (x1, xz) within boundary C performs a random walk which eventually reaches
boundary C at a point Ci' The random walk is then terminated; the boundary point Ci is re-
corded; the oscilloscope beam is reset to the point (Xl’ xz). A second random walk is then
initiated. After a large number of repetitions of this procedure, the mean value f defined by

the equation

m.
D
Zisb(ci)ﬁ =1
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approaches in the mean the solution of the following two-dimensional Dirichlet problem:

2 2
2% 22 of o1

15 Dy - Ky(xp Xolgi—- Kolxys x)3—_

axl ax2 1 2

(58)

where f = ¢(x1, x2) on the boundary C and X and X, are the initial position of the cathode-ray

spot.

4
PHYSICAL SIMULATION of DIFFUSION MOTION for PROBLEM SOLVING

4.1. REQUIREMENTS OF A COMPUTING SYSTEM USING THE RANDOM-WALK

METHOD

Based on the theory presented in Sections 2 and 3, the solution of a Dirichlet problem of
the type described by Equation 58 can be obtained through stochastic computing methods, if
the following requirements are fulfilled in a physical simulation:

(1) Two RL circuits of the form

dy1
5 K vy) = Fy() (592)
dy2

must be simulated where Kl(yl’ yz) and Kz(yl, yz) are equivalent to coupling resistances
having some prescribed characteristics which, in general, will be nonlinear.
(2) Two independent voltage sources of white noise, Fl(t) and Fz(t), with adjustable

spectral density D, and D2, respectively, for driving the two RL circuits must be available.

(The simulateil two-dimensional random walk resulting from requirements (1) and (2),
above, can be observed on a cathode-ray oscillograph if ¥y and Yo the response to the driving
voltages Fl(t) and Fz(t), are used to drive the horizontal and vertical inputs, respectively, of
a cathode-ray oscilloscope. )

(3) The prescribed boundary, C, must be introduced in such a way as to make detectable
the absorption of the random movement of the oscilloscope beam.

>(4) A value of ¢(Q) must be generated to correspond to any point Q on C at which the ab-
sorption occurs.

(5) A continuous record of successive generations of ¢(Q) must be kept or, alternatively,

successive values of ¢(Q) must be continuously recorded. Either method will allow the tallying
n

of a mean value of IZ=1 ¢>(Qi).

15
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(6) At each occurrence of an absorption, the oscilloscope beam must be reset to the initial
point (xl, x2) inside the boundary C, the point at which the solution of Equation 58 is desired
and at which each random walk of the oscilloscope beam must begin.

(7) This cycle of operation must be repeated continuously until such time as the value of
the mean of the summed boundary values ¢(Q) ceases to change; that is to say, the g—i in
Equation 57 tends to zero or the function, f, reaches its stationary solution.

4.2. ANALOG-COMPUTER SIMULATION OF THE RANDOM WALK

An accurate and convenient means of generating the random walk in a real-time simulation
includes a d-c analog computer for simulation of the RL circuits having requirement (1) above.
Equations 59a and b may be simulated by the operational amplifier circuit shown in Figure 1.

Appropriate gain factors in this circuit will, of course, allow D to be varied at will.

o———p\ > 0
F(t) / -dy {]> yit)

dt

| K(y) |
-K(y)

FIGURE 1. ANALOG-COMPUTER CIRCUIT SIMULATION OF A RANDOM WALK

 J

An additional requirement is that each computer circuit must be repeatedly reset to a
particular initial condition, (Xl’ x2) (which in general has nonzero value), at random intervals
of time. A further reason for the use of an electronic analog computer is its convenience for
resetting initial conditions.

Requirement (2) of Section 4. 1 forces the use of two independent white-noise sources of
voltage; this is, physically, an imposing requirement. This implies that the ideal sources
have constant spectral density and Gaussian amplitude probability distribution over an infinite
bandwidth of frequencies.

A closer examination of the type of noise sources needed will reveal that the actual re-
quirement need not be as rigid upon F(t) as the ideal source implies, in view of the choice of
the d-c analog computer used for simulation of the RL circuits.

Since the RL circuits simulated on the d-c analog computer are low-pass, narrowband
circuits, a physical noise source, F*(t), which has a power spectrum of the type shown in

Figure 2, can be used. When F*(t) has a uniform spectral density of bandwidth, Wy which is
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four or five times wider than the passband of the RL circuits, it can be considered as a white-
noise source. The particular requirement stated for the bandwidth, Wy necessary for F*(t)
to be considered as a white-noise source, is commonly used in engineering applications re-

quiring a white-noise source. For the general case of a nonlinear element in the circuit of

Figure 1, however, the adequacy of this requirement has not yet been analytically proven.

However, for a linear case, an analytical approach can be made. Consider the case in

which
K(y) = Coy (60)

When a gain factor, g, is inserted in the forward path of Figure 3a, and if Laplace transfor-

mations are performed on the elements of the system, Figure 3b is obtained. It follows that

D*(w) A
|
i
m m
FIGURE 2. POWER SPECTRUM OF A PHYSICAL NOISE SOURCE
14
F(t) \ 2 . yi
F¥(t) =t 1 ”
-1 y*(t)
/ .
-Cay
02 <
Coy*
(a)
F(s) 1 Y(s)
e -1 > e > g >
Fi(s) s Y(s)
C, |e
(b)

ANALOG-COMPUTER CIRCUIT SIMULATING EQUATION 61.
(b) in a complex s domain.

FIGURE 3.

(a) In a time domain,

17



The University of Michigan Willow Run Laboratories

18

YXs) _¥(s) _ g/s __ &g

F*(s) ~ F(s) =T(s) = 1+ ng/ s s+Cyg (61)
where Y*(s), Y(s), F*(s), F(s) are the Laplace transforms for y*(t), y(t), F*(t), and F(t),
respectively. And if

(w) is the spectral density of y(t)

y*

D

D (w) is the spectral density of F(t) (62)
D

DF "

(w) is the spectral density of y*(t)
(

w) is the spectral density of F*(t)
then

D D

y* D— = |T(jw) |2 ———5——— (63)
F

Oyt i -
w + (ng)2

DF*

Inspection of Equation 63 reveals that, if g is made small enough, practically speaking
the energy at and above wg in both y(t) and y*(t), can be eliminated, thus yielding Dy* - Dy.
Since doing this has in no way changed the characteristics of y(t) as a response to a perfect
white-noise source, y*(t) should have the characteristics necessary to solve a Dirichlet prob-
lem of the type proposéd.

However, there is a price that must be paid for limiting the gain of the RL circuits. The
gain factor, g, which can be defined as the open-loop gain of the circuit of Figure 3, consists
of only an integrator. If the open loop is driven by an "error" voltage, E(t), the following

results:
g JE(t) dt = jE(t)[g-dt] = [E(n ar (64)

where t A real time and 7 = gt = machine time.

This illustrates that g can equally well be regarded as a time-scale factor for the integrator.
1t can be seen that, if g is required to be small so that Dy* - Dy, there is an upper bound
placed on machine time, which differs from real time by the factor g. This limits the speed
with which the random walk will reach the boundary, C, on the average and, hence, the average
rate at which the experimental boundary values ¢(Q) can be accumulated.

The statistical convergence to the solution of any Dirichlet problem by the random-walk
method is inversely proportional to the square root of the number of times the beam crosses
the boundary, C, which in turn depends on the bandwidth of the noise source; therefore, for a
given convergence to the solution, a minimum fixed time is required.

Nevertheless, because of the foregoing, it appears that, for some simple functions of
Kl(yl) or Kz(yz), at least a random walk can be physically generated that will have approx-

imately the desired characteristics.
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4.3. DETECTION OF BOUNDARY ABSORPTIONS

The requirement that the absorption of a random walk by the boundary, C, be detectable
can be conveniently accomplished by placing on the oscilloscope face an opaque mask which
represents the region, R, bounded by absorbing boundary, C. One or more photosensitive
circuits, when appropriately shielded from any light except the oscilloscope beam, will signal
the exit of the random walk from the region, R. If this technique is used, C can be completely
general.

The mask of the region, R, will have width and height in the units of the Xy and X of

Equation 58. Since the oscilloscope beam is driven by computer voltages representing Xy and

Xg» then by the mere use of the mask for detection, two important scale factors, S1 and S2,

will have been implied. S1 relates Xy of Equation 58 to the corresponding Xy voltage, and 82

relates the X, of Equation 58 to the X,

S1 and 82 are factors in the closed-loop gain of their respective RL circuits. Thus, to be

correct, they must be included in the gain, g, in Figure 3 and in Equations 61 through 63, in

voltage.

order to estimate the degree to which Dy* -~ D_ and Dy* -~ D_ . For example, Equation 63,

y y
amended, becomes 1 2 2 2

Dy*(w) = — 5D (65)
(@)L [2
<s1g> <S1 >
4.4. GENERATION OF BOUNDARY VALUES
In general, it will be necessary to generate ¢(Q) at every occurrence of an absorption by
C of the random walk, Q being the point of absorption on C. A detailed study into the ways in
which a detecting device can be instrumented reveals that the complexity of necessary electronic
equipment increases as the complexity of C and ¢(C) increases. A detecting device for a com-
pletely general C and ¢(C) would probably be very involved.
One possible technique for instrumenting such a device is described in this section; this

technique could be appropriately used for generating any arbitrary single-valued ¢(C), where

C satisfies the following conditions:

(1) Cisa Jordan curve.

(2) C can be divided into two parts by a dividing line of the form

x2=mx1+b

such that the arc length (which is usually a function of x, and x,) of each part is a single-valued

1 2)
function of the length of the dividing line.
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For example, if a line X, =a can be found which divides C into two parts so that C = Cl(xl)
for X, > aandC = C2(x1) for Xy <a, where Cl(xl) and Cz(xl) are single-valued functions of
Xp then the condition is satisfied.?

It is important to point out that the choice of a dividing line which will cause the condition
to be satisfied is not, in general, unique. The choice of a dividing line must be left to the
ingenuity of the computer operator. However, in the search for an appropriate dividing line,
the following property is useful. Of all the line segments of a particular slope, m,, which
begin and terminate on C, the only possible dividing line (if it exists) which will cause C to
Satisfy the condition will be the segment of unique maximum length.

In Figure 4, for example, two different boundaries are tested with a dividing line of the

~ form X9 =2 to see whether the condition is satisfied. In part a of the figure, the condition is

satisfied; in part b it is not satisfied.

xzﬁ‘ Cy(xy) xzﬂk Cy(xy)

FIGURE 4. GRAPHICAL EXAMPLE OF A TWO-DIMENSIONAL FUNCTION. (a) A single-

valued function. C = Cq(xq), for x9 > a; C = Cy(xq), for xg < a, where C; and Cy are single-

valued functions of x1. (b) A multi-valued function. C = Cy(xq), for xg >a; C = Cy(xq), for
x9<a, where Cy and Cg are not single-valued functions of x1.

If the condition imposed on C is satisfied, then it is possible to approximate the function
#(C) with two diode function generators. In Figure 4, the corresponding boundary-value

function, ¢(C), is of the form:

#(C) = ¢[C1(x1)] for x, > a

$(C)

¢[C2(x2)] for X, <a

The functions ¢[ Cl(xl)] and ¢[C2(x2)] can be approximated in straight segments by
X It should be noted,

however, that the boundary-value function is not uniquely defined by the variable x

driving the two diode function generators by a voltage proportional to x

1 alone, but

2The use of a dividing line of more general form than x1 = constant or, Xy = constant some-
what complicates the computational setup. Details are included in the appendix.

20
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depends also on whether x,, is greater than or less than a. In other words, either ¢(C) =

q)[Cl(xl)] or ¢(C)=¢ [Cz(iz)] is properly the boundary-value function, depending on whether
the argument of the decision function, D(x2 - a), is greater than or less than zero. It can be
seen that some decision scheme has to be incorporated with the function generators for gen-
eration of ¢(C). One possible scheme is developed below.

An opaque divider passing through X9 = a, which is placed perpendicular to the oscilloscope
face, separates two phototubes for boundary-absorption detection. When an absorption occurs
along any portion of C, a signal is sensed by a phototube, which opens a gate or a related de-
vice depending upon the voltage generated from the diode function generator. Thus, at each
absorption, a ¢(C) is generated by one or the other of the function generators. This operation

is illustrated in Figure 5.

Random Walk /
. l
Bounded Region Mask PV
Divider (x,=a) //IE"[?
// -
P b
= CRO
_. 7 _ _ 7
o =z,
i\ ® o
— .
P 7
P [ | L 0y, (t)
Y Y Phototubes J
w -0 y 5(t)
Trigger Trigger
Pulse Pulse .
Circuit Circuit Y
J ”
C,(x,)
O < Gate ¢ [: 11 ] Diode Function <
Generator
(C)
¢ D(x,—a)
C
G _ ¢ [Ca (x,)] Diode Function _
ate < <
Generator

FIGURE 5. DECISION SCHEME WITH FUNCTION GENERATORS FOR GENERATION OF ¢(C)
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The advantage of this scheme is that, from a practical point of view, the restriction on C
is mild, i.e., all common geometric shapes satisfy the condition, and only two single-variable
function generators would be required. ’

4.5. ACCUMULATION OF BOUNDARY VALUES

Since a mean value of the experimental boundary values is desired, a technique for con-
tinuous summation of successive boundary values and a coexistent tally of the number of bound-
ary absorptions is most convenient. From the standpoint of accuracy, these would be best

done in digital form.
An example of a digital accumulating technique is included in Section 4.7 as part of a

complete random-walk Dirichlet problem solver.
4.6. NOISE SOURCES

A low-frequency noise source of Gaussian amplitude distribution having the power spectrum
of Figure 2 is a commercially available item. Such devices generally employ a gas tube sub-
jected to a cross-magnetic field as the source, the power of which is distributed along a band-
of frequencies in the audio range. This power band is then narrowed by a bandpass filter and
chopper demodulated to obtain a power spectrum extending from d-c to somewhat less than
100 cps. These devices have outputs, whose amplitude distribution is closely Gaussian, and

have a uniform power spectrum over this frequency range.
For the use that is described here, however, an additional requirement must be placed

on the noise sources, namely that, over a period of days, weeks, and even months, the spectral
densities of each source stay constant.. This results from the fact that the machine solutions

will be functions of D1 and D2 of Equation 58, Although, in general, D1 and D2 can be varied
to values other than the actual densities of the noise-generator outputs by introducing scale
factors in the analog computer, the noise-generator spectral densities must be constant, at
least for the duration of data-taking on a particular problem. Further, if one is to avoid fre-
quent measurement of these generator spectral densities, a method for long-term constancy

must be arranged.
A noise generator of the type described ordinarily fails to meet the requirement of long-

term stability of spectral density for periods greater than a few hours.

One possible way to obtain two noise sources with long-term stability is to record the
output of a gas-tube noise source simultaneously on two channels of a dual-channel tape re-
corder equipped with two playback heads whose spacing along the tape can be varied. If the
delay time, 7', which for a particular tape speed is proportional to the separation between the
playback heads, is made large enough, the two noise sources obtained from these playback heads
can be considered to be statistically independent. This results because the cross correlation

between the two taped sources at any frequency is a decreasing function of 7.

22
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As has been implied, the requirements placed on the low-frequency response of the tape
recorder is severe, but no problem occurs if certain recorders employing frequency modulation
are used. As an alternative, however, the output of an audio range source could be directly
recorded on a standard dual-channel audio recorder, which again is equipped with variably
spaced playback heads. If the playback channels are equipped with identical® narrow passband
filters and demodulators, two independent noise sources are again produced.

4.7. A COMPLETE DIRICHLET PROBLEM SOLVER

A block-diagram representation of a system that employs the stochastic method described
in this paper, which automatically solves the Dirichlet problem, is shown in Figure 6.

The types of Dirichlet problems that this system could solve would be limited to those for
which:

(1) The feedback elements Kl(yl’ yz) and Kz(yl, yz) of the analog-computer RL circuits
are functions that will cause the RL circuit to exhibit a low-pass characteristic of cutoff fre-
quency w g, which is much lower than wl, the highest frequency over which the corresponding
F(t) may be said to have uniform spectral density.

(2) The boundary C satisfies the conditions stated in Section 4. 4.

(8) The two boundary-value functions resulting from the condition on C can be reasonably
approximated by diode function generators.

In Figure 6, an additional refinement has been made, namely, the inclusion of the '"hold"
circuitry. Its purpose is to hold the RL circuits at the point of boundary absorption, Qi’ during
the millisecond period in which the boundary value is being generated and summed.

The generation and summing procedure is accomplished by two identical units which consist
of a diode function generator, a phantastron delay circuit, a gate, a high-frequency pulse gen-
erator, and a pulse counter.

For one of these combinations, at the occurrence of a detection signal from the phototube,
a triggering pulse is produced which simultaneously actuates the phantastron delay circuit and
the hold circuit. The phantastron delay circuit then produces a pulse of duration proportional
to the value of an external voltage, namely, the output voltage of the diode function generator.
However, because the hold circuit has also been actuated during the period of pulse generation
of the phantastron delay circuit, the diode function generator receives a constant input voltage
corresponding to Qi during this period of time. Therefore, the function generator output is a
constant voltage proportional to ¢(Qi), and this causes the phantastron output pulse to have

duration proportional to ¢(Qi)'

*It will be an advantage if the spectral densities of the two noise sources are the same.
Otherwise, the unpleasant task of "matching' the sources would result if a problem were

specified such that D1 = Dz.
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This phantastron pulse opens the gate for a time proportional to qs(Qi) and thereby allows
a number of high-frequency pulses, again proportional to ¢(Qi)’ to reach the pulse counter.

The pulse-counter total, therefore, is at all times proportional to:

:/2:1 ¢ [C1<Xliﬂ Xy 2

or

Jij o [eaf)] e

The total of pulse counter 3 (Figure 6) will at all times be equal to the number of resets
that have occurred, which is the same as the number of ¢(Qi) values that have accumulated.
The mean of the sum of these accumulated boundary values is equal to:

A X (total of pulse counter 1) + B X (total of pulse counter 2)
total of pulse counter 3

(66)

The proportionality constants, A and B, must, of course, be calibrated.

The reset of the oscilloscope beam to the point (Xl’ X,) after each absorption is accom-

)
2
plished by the "reset" circuit. Again, there is in the reset operation a suitable delay for

boundary-value generation.

4.8. SOLUTION TIME

The basic disadvantage of the system described in Section 4.7 is the time that is required
to obtain the solution of a problem to a reasonable degree of convergence based on the relatively
narrow bandwidths of the modulated gas-tube noise sources previously described, and on the
use of a d-c analog computer. A considerabie part of an hour would be required to solve a
typical problem at one point.

The choice of the noise sources and the kind of analog computer described as part of the
computing system of Section 4.7 were limited by the availability of components and the need for
economy.

However, nothing mentioned so far would prevent the computation rate from being vastly

increased if the following modifications in equipment were made:

(1) Using a randomly repetitive analog computer for simulation of the RL circuits.
(2) Using white-noise sources having wide bandwidths, for example, which can be ob-

tained by tape-recording a gas-tube source which is not demodulated.*

“Some such physical sources exist and have constant spectral density over approximately
the same frequency band as a repetitive computer.
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(3) Redesigning the detection and boundary-value generation equipment to require less time

for performing their functions.

The computing rate, if the above modifications were made, would probably be limited by
the operating speed obtainable from the equipment in modification (3). Unfortunately, time
has not permitted an adequate investigation of the feasibility of a rapid computing system em-
ploying a randomly repetitive computer.

4.9. LABORATORY EQUIPMENT

In this section, the experimental equipment used to demonstrate the principles of this
stochastic method to solve partial differential equations is discussed. The reader should
understand that the purpose of these procedures was to demonstrate the feasibility of the
method, not to develop an elaborate computing machine. Features highly desirable in a work-
ing computing machine, notably, rapid rate of computation and, to a lesser degree, accuracy
of computation have been sacrificed in order that available laboratory equipment might be
utilized wherever possible.

The computing system used to obtain the results in Section 5 is shown in Figure 7. It is
similar to, but is somewhat less elaborate than, the one described in Section 4.7. The follow-

ing additional restrictions were applied to all experimental problems considered:

I [Cl(xl)] = T1 = constant X, >a

) [Cz(xl)] = T2 = constant Xy <a (67a)

or alternatively,

[ _ o
) [Cl (xz)] = T1 = constant X > D

) [Cz'(xz)] = T2' = constant  x, <b (67b)

These restrictions of course, eliminated the need for function generators, holding circuits,
and the equipment described for the boundary-value summing that was presented in Section 4. 7.
A detection by one phototube of an absorption caused a count on one scalar, and a detection by
the other phototube caused a count on the other scalar; therefore, the mean value of the

boundary values was merely

T, X (counts of scalar 1) + T

1 X (counts of scalar 2)

2
(counts of scalar 1) + (counts of scalar 2)

(68)
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FIGURE 7. EXPERIMENTAL EQUIPMENT. (a) Block diagram; (b) Physical detail.
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The d-c analog computer used was a Sterling Model LM-10, a small, inexpensive, ten-
amplifier, electronic differential analyzer type. Its amplifiers are unstabilized, but after a
brief warmup period exhibit relatively little drift. The reset operation is controlled by a relay
in each integrator circuit.

The primary noise source was the low-frequency Gaussian noise generator, Pace Model
201 A. This uses a regulated thyratron tube source and employs chopper demodulation to
obtain the output. The spectral density of the device is stated by the manufacturer to be con-
stant (0. 1 db) from 0 to 35 cps and Gaussian distributed in amplitude to +1%. The spectral
density of the device at an average setting was measured to be 0. 96 voltz/ cps.

For the two-dimensional case, the Pace noise-generator output was recorded on an Ampex

' Model FR 107 tape recorder. This elaborate recorder employs frequency modulation, as pre-

viously mentioned, and thereby can reproduce low frequencies extending down to d-c. It was
equipped with two sets of seven recording heads and had seven playback heads the position of
which was changeable to allow a wide variation of calibrated delays between channels. Only
one of four available forward tape speeds was used, namely, 3.75 ips, which allowed a pla&ing
time of more than an hour hefore rewinding. The delay time used between playback heads was
about 2 seconds.

The circuit shown in schematic form in Figure 8 was designed and built for detecting
boundary absorptions, triggering the two scalars, and resetting the computer. The latter oper-
ation was done by driving the computer relays as slaves to the relay shown in Figure 8. While
this method gave a slower solution time than others considered, it proved to be more convenient
because it required no internal changes in the computer® and was reasonably dependable.

The upper and lower portions of this circuit, when excited by the phototube, generate a
single, negative triggering pulse that contains a very steep leading edge. This was necessary
because the counting devices used (Tracerlab Model SC-19 utility scalars) had to be used with
sensitivities prefixed for nuclear measurements. The remaining portion (reset control) has a
recovery-time constant of about 0.5 second, which was necessary to allow a complete reset
of the computer integrators before the next random walk was initiated.

Boundary-region masks were fashioned out of cardboard and placed on the oscilloscope
(Tektronics Type 532) face, with a plastic piece showing the coordinate axes.

The entire system was capable of a modest 2000 random walks per hour with no appreciable

error in the detection circuit.

5The computer had to be kept available for other uses during most of the experimental
work.
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5
EXPERIMENTAL RESULTS

5.1. EXPERIMENTAL PROCEDURES

The technique used to demonstrate the feasibility of this stochastic method for solving
partial differential equations was to solve a number of representative one- and two-dimensional
boundary-value problems by the stochastic method, problems in which a graphical comparison
of the machine solutions with the known analytical solutions of these problems could be made.

In order to compare graphically, the solutions found by the machine and analytical methods,
it was necessary to (1) restrict the problems to be considered to those with simple boundary con-
ditions whose analytical solutions can be found, and (2) to solve each problem by the machine
method at many points within the bounded region R (for example along a straight line in R).
Procedure (2) allows the machine solutions at points along such a straight line to be plotted
against the length of the straight line for visual comparison with a continuous curve represent-
ing the analytical solution along the same straight line in R.

An additional restriction on the kinds of boundary-value problems to be considered ex-
perimentally is the restriction on the ¢(C) functions of problems considered. The restrictions
stated in Equation 67 were motivated by the simplicity and economy of experimental equip-
ment available to obtain the solutions by the machine method.

The stochastic method described herein is probably of more value for solving two- rather
than one-dimensional boundary-value problems, because most one-dimensional boundary-value
problems, of the type described in Equation 69 below, can be solved in other ways, for example,
by analytical methods or by a more conventional use of the analog computer than the one de-
scribed here. Nevertheless, one-dimensional boundary-value problems can be solved by the
method suggested by this report, as has been shown in Section 3, and can be solved with less
laboratory equipment than is required for the two-dimensional case; i. e., only one noise gen-
erator and one RL circuit are needed for the one-dimensional case.

A general statement of the one-dimensional boundary-value problem that can be solved by

machine method is as follows:

(69)

where a, b, A, and B are constants.
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The differential equation in this case reduces to an ordinary differential equation, and the
boundary of the problem consists merely of two points, a and b. The random walk which begins
at Xy for the one-dimensional case occurs along the straight line connecting a and b (the X
axis) and can terminate only by absorption at a or b. The simplified scheme and the equip-
ment needed for generating boundary values described in Section 4.9 for the two-dimensional
case can be appropriately used for the one-dimensional case as well, since each boundary
value generated is either one or the other of the two numbers A or B.

The initial phase of the experimental work of this research was devoted to the comparison
of machine and analytical solutions of some representative one-dimensional boundary-value

problems of the type described in Equation 69. This was done for the following reasons:

(1) A qualitative evaluation of the accuracy of the average machine solution at a point in
the one-dimensional case, as a function of the number of random walks used to obtain
the solution, was desired.

(2) The performance of the experimental phototube-trigger-reset circuit of Figure 8 was
tested.

(3) The adequacy of the available noise generator was evaluated without complicating this
evaluation by tape recording the generator output to obtain two independent noise

sources, as would be required for solving two-dimensional problems.

Following the attainment of these objectives by comparison of machine and analytical
solutions in the one-dimensional case, the additional laboratory equipment needed for solving
two-dimensional boundary-value problems was acquired and several two-dimensional problems
were treated.

Results of these procedures, with graphs (Figures 9-16), are presented below.

5.2. LABORATORY RESULTS: ONE-DIMENSIONAL CASE
The first boundary-value problem considered experimentally involves the one-dimensional

Laplace equation

%

QL

|

(70)

&

2

The comparison of the machine solution and its corresponding analytical solution for the par-
ticular boundary-value problem solved appears in Figure 9. The number of random walks per
experimental point indicated in Figure 9, also indicated on subsequent graphs, refers to the
number of boundary values accumulated to find the solution at each experimental point on the

graph.
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FIGURE 9. STOCHASTIC SOLUTION OF LAPLACE EQUATION,ONE-DIMENSIONAL CASE.
700-900 random walks per experimental point.

Inspection of Equation 69, reveals the Laplace equation, for which K(x) =0, as the only
case of this problem for which the solution is independent of the value of the input spectral
density, D.

In order to plot the analytical solutions of boundary-value problems of the type of Equation
69, other than the special case above, the value of the spectral density of the noise generator,
D . , must be known. This results from the fact that the analytical solutions are

noise generator
generally functions of the ratio K/ D where D, the actual input spectral density of the RL circuit,
is relatedto D_ . by certain known scale factors of the RL circuit.
noise generator

The spectral density of the noise generator can be directly measured by several known

methods, but, in this instance, an indirect method was used which involved the solution of the

following one-dimensional boundary-value problem by the machine method.

2
D‘(i—t;z—+K'g—fx—=0
dx 2

2
£(0) =0

(1) =1 0<x2<1
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which has the analytical solution

1-exp (- %x2>
f(xy) = — ( S ) (72)
P\'D
If in Equation 72, Ié >> 1, this solution can be expressed approximately as
~ K K
f(xz)— 1 - exp <— ) xz) —D->> 1 (73)

The procedure for finding the spectral density was first to set up the stochastic computing
machine to solve the boundary-value problem described in Equation 71 and then to arrange the
value of K to vary in the RL circuit used.

Machine solutions of the boundary-value problem of Equation 71 in the range 0.7 < X, <1
were found for various positive values of K until, for a particular positive value of K, the

solutions indicated that

fx,)=1 (0.7<x,<1) (74)

2) 2
This condition assures that, for this value of K, %» 1, as can be seen from Equation 72.
When the condition of Equation 74 was realized, K was fixed and its value recorded. Machine

solutions for other values of Xq were then found, so that the point X9 at which

1~
f(xyy) = 1- 5= 0.636 (75)

could be approximately located graphically from a plot of the machine solutions as a function

of x2.

From a comparison of Equation 73 and 75, it can be seen that, at X0

Kx20 .
) =1 or D=Kx20 ' (76)

The spectral density of the noise generator, D , is related to D by known

noise generator
scale factors in the RL circuit used, and thus can be computed directly.

The graphical procedure involved in finding D is shown in Figure 10, from which

~ 2
noise generator 0.96 volt™/ cps
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FIGURE 10. DETERMINATION OF SPECTRAL DENSITY OF NOISE GENERATOR. 300
random walks per experimental point.

The second one-dimensional boundary-value problem to be considered involves the or-

dinary differential equation,

2
df df
D— - K-

dx2 2

N

0 (77)

The graphical comparison of machine solutions and analytical solutions of a particular
boundary-value problem having this differential equation appears in Figure 11. In this case,
the machine and analytical solutions are compared for three different values of K, where the
input spectral density, D, has the same value throughout. The analytical solutions that appear

in Figure 11 were plotted, using a value for D corresponding to D =0.96 v01t2/ cps,

noise generator
which was found by the procedure outlined above.

The agreement between the analytical and machine solutions in Figure 11 is good, partic-
ularly so because the spectral density of the noise generator was known to change somewhat
during the course of data taking. The data taking in this case occurred on several different

days, for several hours each day.
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FIGURE 11. STOCHASTIC SOLUTION OF BOUNDARY-VALUE PROBLEM, ONE-DIMENSIONAL
CASE. 300-400 random walks per experimental point.

The final boundary-value problem solutions in the one-dimensional case which are included

for comparison involve a differential equation of the type

=0 (78)

The machine and analytical solutions for two distinct values of K appear in Figure 12. D, again,
has the same value for both sets of solutions. As in the second case, the analytical solutions
were ploécted with a value of D found by relating the experimental value of Dnoise generator =
0.96 volt™/cps, using scale factors of the RL circuit.
5.3. LABORATORY RESULTS: TWO-DIMENSIONAL CASE

The multichannel FM tape recorder was arranged to provide two independent noise sources
by recording the output of the gas-tube noise generator simultaneously on two of the recording
channels. This was done in such a way as to make the spectral density of the noise on each
tape channel approximately the same. Subsequently, a procedure similar to that used to find

D . , described in Section 5.2, was used to measure the spectral densities of the
noise generator
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FIGURE 12. STOCHASTIC SOLUTION OF BOUNDARY-VALUE PROBLEM, ONE-DIMENSIONAL

CASE, FOR TWO VALUES OF K. 200 random walks per experimental point.

two taped noise sources. These measurements revealed that the value of the spectral density

of the noise on each channel was approximately equal to 0.6 x 10'4 voltz/ cps.6
The first two-dimensional boundary-value problem which was solved by the machine method

with the tape-recorded noise sources involved the Laplace equation

2 82f +32f

axl2 ax2 =0

(79)

with a square boundary.
The comparison of the machine and analytical solutions of the boundary-value problem
appears in Figure 13. Comparing the Laplace equation of Equation 79 with the general partial

differential equation of the Dirichlet problem reveals that if in Equation 58

D1 = D2 (80a)
and

Kl(xl) = K2(x2) =0 (80Db)

8This value is much smaller than D because the noise-voltage level was

noise generator
deliberately reduced during the tape-recording process so as not to exceed the maximum input
voltage which could be properly modulated by the tape recorder.
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FIGURE 13. STOCHASTIC SOLUTION OF LAPLACE EQUATION WITH SQUARE BOUNDARY.
1200 random walks per experimental point.

then the Laplace equation results. As a result of the restrictions imposed by Equation 80 the
solutions of boundary-value problems involving the Laplace equation are independent of the
value of D1 = D2.

The machine solutions shown in Figure 13 were obtained by using two identical RL circuits
on the computer; the circuits were driven by two independent noise sources which had the same
spectral density.

The omission of machine solutions near the boundary in Figure 13 is explained in Section
5.4 as part of a more general discussion of experimental results.

Figure 14 shows a comparison between the machine and analytical solutions of the Laplace
equation with a circular boundary. The Laplace equation for this case is more conveniently

stated in terms of the polar coordinates (r, §) as
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FIGURE 14. STOCHASTIC SOLUTION OF LAPLACE EQUATION WITH CIRCULAR BOUNDARY.
2200 random walks per experimental point.

where

X
g A tan-1 (—?->
%

In Figure 15, a comparison is made between the machine and analytical solutions of a

boundary-value problem in which the partial differential equation is

2 2
.a_L + -a_f_. + Kif_ =0 (82)
2 2 0x
axl ax2 1

D

‘ and in which the boundary of the problem is a square. The analytical solution of this problem
is a function of K/D and was plotted; the value of D was obtained from the value of the spectral
density of the tape-recorded noise sources mentioned above.

In Figure 16, a comparison is made between the machine and analytical solutions of a

boundary-value problem involving the partial differential equation

2 2
D af+af +K<—af— i>=0 (83)

2 2 ox, 0X
1 9 1 2
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FIGURE 15. STOSCHASTIC SOLUTION OF BOUNDARY-VALUE PROBLEM, EQUATION 82.
Two-dimensional case, square boundary. 300 random walks per experimental point.

and a square boundary. Again, when the analytical solution was plotted, the value of the
spectral density of the tape-recorded noise sources was used for D.
When the computing machine was instrumented for solution of the boundary-value problems

of Figure 15 and Figure 16, the phototube divider was placed along a diagonal line (x1 =X,) of

)
the square boundary. As mentioned in Footnote 2, the use of a dividing line of a more gerzleral
character than Xy = constant or X, = constant requires that the RL circuits used be specifically
altered from the usual arrangement in order to solve the desired partial differential equation.
The method of properly altering the RL circuits, which is discussed in detail in the appendix,
was used to obtain the machine solutions of Figure 15 and Figure 16. These solutions constitute
an interesting corroboration of the particular procedure described in the appendix as well as

the over-all theory of the stochastic method.

5.4. LABORATORY RESULTS: DISCUSSION
Examination of the machine and analytical solutions of various boundary-value problems

presented in Section 5. 2 and in Section 5.3 reveals that, although the machine point solutions
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Two-dimensional case, square boundary. 300 random walks per experimental point.

taken together provide agreement with the analytical solutions, there are point-by-point devia-
tions from the analytical curves. These deviations are caused by the stochastic nature of the
solution.

In order to discuss the feasibility of the stochastic method as a tool for solving partial
differential equations, more must be said of the stochastic convergence of a random process.

If the experimental equipment can be said to introduce no error, a machine solution at a
point that is the mean value or mathematical expectation of discrete boundary values as they
are accumulated by the computing system is a random variable subject to purely statistical
variation. Furthermore, the standard deviation of the statistical solution from its true value
varies as the inverse square root of the number of boundary values that have accumulated.
Therefore, the solutions can be said to be statistically convergent, in the sense that, as the
number of accumulated boundary values is increased, the probability is also increased that the
deviation of the machine solution from the stationary solution is less than a given amount. The
word "convergent" is advisedly used because, for any finite number of accumulated boundary
values, there will always be a finite probability, however small, that the deviation of the

machine solution will exceed a given amount, i.e., that the solution will not "converge' at all.
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Thé inherent random deviations of the machine solutions discussed in Sections 5.2 and
5.3 are believed to outweigh most errors introduced into the computation results by components
of the computing system.

There are some exceptions. It is likely that the one-dimensional results, notably those in
Figure 11, were influenced by the unstabilized spectral density of the gas-tube noise generator
used.

In both the one-dimensional and the two-dimensional cases, the solutions at points close to
the boundary were erroneously influenced as the result of the limited duty cycle of the reset
portion of the phototube-trigger-reset circuit of Figure 8. Because the triggering portions of
this circuit have a much shorter recovery time than the reset portion, it was occasionally
possible, when the initial conditions placed the oscilloscope beam near a portion of the boundary,
for the second of two random walks to be absorbed before the reset portion of the circuit had
recovered from the first. When this occurred, the boundary value was erroneously counted a
second time. For the machine solution in Figure 13, this difficulty was circumvented by omit-
ting points near the boundary. In later solutions, by reducing the rate of boundary-value ac-
cumulation for points near tllle boundary, the errors caused in this way were reduced sufficiently

to allow the machine solutions to be used.

5.5. CONCLUSIONS

The question of the feasibility of the stochastic method for solving partial differential
equations is largely influenced by the statistical nature of the ""convergence' of solutions, as
discussed in Section 5. 3. Since this statistical "convergence' is not an absolute or guaranteed
convergence as the time of computation is increased, the stochastic method is not a feasible
tool for scientific applications requiring a high degree of accuracy.

However, the method is potentially useful in engineering applications where:

(1) An approximate solution is sufficient.

(2) Solution time is not the controlling factor in the choice of a computing method.

(3) The bulk, weight, and/or cost of computing equipment must be kept relatively low.

The precision’

of a point solution and the time required to obtain the solution are inter-
related parameters of the stochastic computing method. For a given computing system, so-
lution time can be reduced only by reducing the precision which can be attributed to the solution;

precision can be increased only by increasing the time of computer operation.

"The precision of a point solution can be expressed in terms of a "confidence interval' and
a "confidence coefficient.' The confidence interval is an interval with the point solution as
center within which the stationary value is likely to be situated. The confidence coefficient is
a statement of the probability that the stationary value does indeed occur within the confidence
interval.

4]
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The feasibility of applying the stochastic method will therefore often depend upon the rate
of boundary-value accumulation which can be realized, and can be enhanced by the use of re-
petitive analog-computer circuitry and the associated equipment mentioned in Section 4. 8.

In this regard, it should be emphasized that the precision realized in this research, where-
in solutions were obtained by generating only a few hundred boundary values, is encouraging
from the standpoint of possible application, and warrants further investigation.

A second, more general, observation that deserves some emphasis is this: the analog
computer, because of the advantages of real-time simulation, is a natural and convenient tool
in the study of random processes. As mentioned in the Introduction, numerical analysis of
random processes in the past has been conducted almost exclusively with digital computers.
Since the parameters of random processes are statistically varying, the accuracy with which
these parameters are controlled and by which they can be measured is not of major importance,
particularly if the objective is to study the random processes involved. It therefore seems -
unnatural to confine the tools of study of random processes to digital computers, wherein the

great advantage of accuracy is not fully utilized.

5.6. EXTENSIONS

The machine solution of a boundary-value problem can be described as follows:

N /T
f(xys x,) = Zl F) $(Q) (84)
n=

where Tn is the number of absorptions occurring at the point Qn on C

T is the total number of absorptions occurring during the computation

T
The computer data, (—,i,ll, n=1, 2, 3, ..., N) , possess a property that is analogous to the
T
Green's function. A set of data, (Tn, n=1, 2, 3, ..., N/, which is found by the machine

method for a particular partial differential equation anda particular absorbing boundary, can be

used to solve the partial differential equation for any boundary-value function, $(C). I will

merely be necessary to carry out the arithmetic operations indicated in Equation 84 to find the
solution for a particular ¢(C); no further use of the stochastic computing machine is required.

The Green's function analogy suggests additional applications of the stochastic method. A
T
set of data, <Trg, n=1, 2, 8, ..., N), can be recorded in some convenient fashion and stored,

thus constituting a means of solving a particular set of boundary-value problems of arbitrary
#(C), without further need of a stochastic computing machine.
There are practical limitations to this procedure. As the absorbing boundary C and function

#(C) are made more complicated, carrying out the arithmetic operations indicated in Equation
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84 becomes, in general, unreasonably tedious. At this point, one would have to choose between
further use of the stochastic computer method and that of some other computing device.
The Green's function property might be well utilized where the boundary-value function,

#(C), is to be varied in order to optimize in some fashion the solution of a boundary-value
T
problem. Again this could be done by manipulating the data, (%1, n=1, 2, 3, ..., N>, arith-

metically after a single run with the stochastic method on the computer.

It appears likely that additional investigation, with the present discussion as a base, will
lead to the means for solving more general types of partial differential equations than are de-
scribed here.

Among the possibilities is the two-dimensional generalized Poisson's equation (Reference 3).

2 2
22 2% o1 of

13t Dy 5 * K g+ Koz =glxx,) (85)
axl 8x2 1 2

D

and certain kinds of eigenvalue problems (Reference 6).

The underlying theory of tl}e stochastic method discussed in this paper has been extended
to boundary-value problems of more than two dimensions (Reference 3). However, the re-
strictions on the absorbing boundary, C, become considerably greater in this case. There may

be some possibilities of extending the machine method to three dimensions.
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Appendix
BOUNDARY-VALUE GENERATION with COORDINATE AXES ROTATED

The method of boundary-value generation which is described in Section 4. 4 is straight-
forward if the phototube divider is appropriately placed on a dividing line of the region R which

has the form

Xy = constant or Xy = constant (86)

However (see Footnote 2), if a dividing line of the form of Equation 86 cannot be used and

"a more general dividing line of the form

Xo =mX, + b (87)

is used, some complication is introduced. The phototube housing for this case must be de-
signed so that the phototubes and divider can be pivoted into any position with respect to the
oscilloscope face. In addition, the voltage needed to properly drive the two diode function

generators is

E =y, cos (tan_1 m) + y, sin (tan-1 m)

1

which, for example, may be generated by using a '""summing" operational amplifier.

During the laboratory work of the present research, an alternative procedure was devised
so that the phototube divider (which was fixed in a position parallel to one of the oscillograph
coordinate axes) could be used to solve problems for which only a dividing line of the most

general form, x, = mx, + b, was satisfactory.

2 1
This procedure is valid only for certain special cases of the general partial differential

equation, Equation 58.
Consider the effect of placing the boundary mask on the oscilloscope face so that the di-

viding line, x, = mx, + b, is parallel to one of the oscillograph coordinate axes. It is apparent

2 1
that the boundary-value problem has undergone a coordinate transformation with respect to the

oscillograph coordinate axes in which the oscillograph horizontal coordinate axis is referred to
as u and the vertical axis as Ug (
is one of pure rotation; that is, the origin of each coordinate system is the same.® This trans-

Figure 17). In this figure, the coordinate transformation used

8 The transformation can involve translation as well as rotation; however, there is no ad-
vantage gained by it for present purposes.
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formation can be described as:

Xy = Czu1 +C,u (88)

where

{ u, = constant
Xy,=mx;+b

VHC

FIGURE 17. COORDINATE TRANSFORMATION OF A
BOUNDARY-VALUE PROBLEM, TWO-DIMENSIONAL
CASE

In addition, since Cl2 + C22 =1, the inverse transformation is valid:

u1 = Clx1 + C2x2

u2 = -C2x1 + Clx2

45
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By use of the latter set of coordinate transformation equations, Equation 89, a partial

differential equation of the form

2 2
9 f 9 f of of
D1 5+ D2 5+ Kl(xl) pral KZ(XZ) " 0 (90)
0x 0x 1 2
1 2
is transformed, in general, to a form
2 22 2
y 01 y O f y 0 f , of , of
Dy 2D augn. "R T3t Ky gy T Ky =0 (91)
aul 172 au2 1 2

VA2 2
where D1 -Cl D1+C2 D2

D,' =2C,Cy(D, - D,)
L2 2
D, =C,°D, +C,D,

Kl = CIKI(XI) + C2K2 2)

Ky =CKylxg) - CpK,(x))

The transformed boundary-value problem can be handled through use of the computing

(x

system of Figure 6 only if Equation 91 reduces to the form of Equation 90 with uy and u, sub-

stituted for X and Xy respectively.

Therefore, the transformation result must be such that

Dyg =0
K1 = K1 (ul) = K1 (Clx1 + szz) = C1K1(x1) + Csz(xz) (92)
| 1 - 1 - = -
K2 = K2 (u2) = K2 ( C2X1 + Clx2) C1K2(x2) CZKI(XI)

From inspection of the definitions of the quantities Dlz', Dl” and D2', the implication of

Equation 92 is seen to be

0
Kl(xl) = {constant (93)

K-x1

0
K2(x2) = {constant

K-x1
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where K = constant.
If the conditions of Equation 93 are satisfied by the coefficients of the original partial dif-

ferential equation, two RL circuits of the form

dv1
Ht— + Kl (Vl) = Gl(t)
(94)
dv2
a T Ky(vy) =Gylt)
where <G1(t)G1(t + T)>av = 2<t‘>D1 (95
<G2(t)G2(t + 7)>alv = 26D2'

corresponding to Equation 91, can be used to solve the original boundary-value problem.
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