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I. INTRODUCTION

The response of a nonlinear system to a random input usually
cannot be obtained using the phase space or the describing function
methods of analysis, since these methods are applicable only to a non-
linear system whiéh contains only prescribed functions for its input.
On the other hand, when a system contains a random input, this input can
be characterized only by a set of statistical properties. To overcome
this difficulty, Booton first introduced a linearization technique<l),
which was based upon the assumption that the probability distribution of
the response of a nonlinear closed-loop system containing a zero memory
nonlinearity when excited by a Gaussian random input, is approximately
Gaussian. This statistical linearization method has been checked ex-
perimentally and the results agree with the theoretical calculations
within the limits of experimental measurement.

This paper determines the theoretical probability distributions
of Booton's type of nonlinear system when some special conditions are im-
posed on the random input function. It simultaneously explains, therefore,

the validity of Booton's assumption under these special conditions.

II. STATISTICAL IDEA FROM PHASE SPACE POINT OF VIEW

It is well known by most engineers that the response of any
dynamical system can be represented by a point in phase space. For a
second order system the phase space reduces to a phase plane. In this
plane a point represents the position and the velocity of the dynamical
system at a certain instant of time. With increasing time the representa-
tive point, which is continuously moving in this plane, describes a phase

trajectory. Its path is analogous to the stream line of flow in
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hydrodynamics, and it represents the history of the dynamical system.

If the input to the system is a random function of time which has a wilde
uniform power spectrum, then under this condition the representative point
of the system, when described in the phase space, undergoes a random mo-
tion. This random motion if observed on an oscllloscope reminds one of
the Brownian movement of a particle on the surface of liquid. It is this
analogy that led the authors to consider a Markoff random process tech-
nique for this motion. It is interesting to point out that the analogy
between the phase space flow and the nonlinear differential equation was

(2)

first considered by Kaplan. The present idea of the random motion of
a representative point in phase space could be considered as an extensioh
of the ideas of phase space flow. A moment's reflection would have re-
vealed that both of the;e ideas could have been derived from Boltzmann's
equationo(3)
III. CONDITIONS IMPOSED ON THE FUNCTIONS
AND EFFECT OF FEEDBACK
In order to apply the Markoff random process technique to a

dynamical system, some conditions must be imposed on the random input,

F(t). These conditions(h) are:

<F(t)>py = 0 (1)
<F(t) Flt + >y = 2D5(T1) (2)
F(t) is Gaussian distributed (3)

Condition (2) implies that the input function F(t) has a white
spectrum.
By imposing conditions (1) and (2) on the random input function,

one might assume that the Markoff random process technique is not useful



in analyzing a feedback control system. This impression is based upon

the fact that the power spectrum of the random input to a feedback con-

trol system usually is limited to an extremely low frequency region, while

condition (2) requires the random input to have a white power spectrum.

However, in the following discussion it is shown that this impression is

not true. In reality the feedback action of the system creates an ef-

fective input, which is a linear combination of the true random input

and its higher order derivatives, rather than a true random input.
Consider, for example, the first order servomechanism which

contains an integrator and a nonlinear element K(e) in its forward path.

The following two equations define the dynamic behavior of the system:

€ = Qi - QO, )
and "

de

a_'-’gg = K(G)J ' (5)

where ©,, ©; and € are respectively the output, input and error. Substi-
tution of Equation (4) into Equation (5) results in an equation relating

the error, €, and input, ©;.

£+ K(e) = e IO (6)

The random function F(t) is called an effective random input
and is assumed to have the properties prescribed by Equations (l), (2),
and (3). Since F(t) is a linear function of the true random input 0; (t)
which is a Gaussian random function, it follows immediately that the
conditions (1) and (3) are satisfied by F(t). According to power spec-

trum analysis, the power spectrum @F(w) of the effective random input
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~F(t) and the power spectrum Pg. (w) of the true random input Qi(t) are
i
related by

9p(@) = [10]* g, (). (7)

If the power spectrum cpgi (w) is of the following form:

g, (®) = (8)

D
i (0 + @) (e + p2) ’
where &, B, D are constants, then from Equation (7) the power spectrum
ch(a)) of the effective random input, F(t), will have the following form:

a>2D
(w2 + 042)(032 + 52)

opl®) = (9)

If in the frequency range of interset the value of the constant,
OL2, in the expression (9) is very much smaller than na , and if the value
of the constant 62 is very much larger than Iz , then under these condi-

tions the power spectrum ch(a)) can be approximated by the following

equations:
2Rl
CPF(CD) = 52? for w*< (10.a)
CPF(cD) 'S'E'Q— for o2 < o £ g2 (10.1)
D
ch(w) i~ w_e- for of > g° (10.¢)

In Figure 1 will be found the power spectra %, (w) and ch(m)
as function of w.

Inspection of Figure 1 reveals the power spectrum of the effec-
tive random input, F(t), to be almost flat over the frequency range
o< ®w < B. If the frequency range & < w < B is much larger than the system

bandwidth, and, if in addition, the value @& is very small, then the
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Figure 1. Power Spectrum of True and Effective Inputs
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power spectrum.@F(m) of the effective random input can be considered as
a white spectrum.* Under these conditions the effective random input
has approximately the properties described by Equation (2). The Markoff
random process technique can be applied therefore to the first order
system provided that the random input ©4 has the power spectrum ¢gi(m)
of the form described by Equation (9).

In general, if the error of a servomechanism or of a feedback

system can be described by the following equation:

N N ae

n
% a, 9_% +K(e) = L ay —-ﬁi (11)
n=0 = dt n=0 = dt

where an‘s are constants, as previously defined, then the right-hand side

of Equation (11) can be lumped together to form an effective input function

F(t) which is given by the following equation:

(12)

Accordingly, the power spectrum QF(w) of the effective input
F(t) and the power spectrum gg, (@) of the true input 0; (1) are related
i
as follows:
N 2
= Y ,
op(@) = | L (50)" en|” g (0) (13)

n=0

By properly choosing the form of the power spectrum (w), it
Po;

* In an actual case, 1f a power spectrum is uniform over a frequency range
which is greater than the frequency range of the system, then the power
spectrum can be considered as a white spectrum.
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is always possible to obtaiﬁ a power spectrum @F(m) which is approxi-
mately a white spectrum from a physical point of view.
The block diagram representation of Equation (11) can be given
in two equivalent forms: (I) As a closed-loop representation as shown
in Figure 2; (II) as an open-loop representation as shown in Figure 3.
From Figure 3 it is readily seen that the effective input to the
system is essentially white nolse provided that the input power spectrum
is restricted to a special form determined by Equation (13). Because of
the above power spectrum's changing property in feedback system, 1t 1is
possible to use Markoff random process technique to analyze several commonly

encountered nonlinear servomechanisms.

IV. MARKOFF RANDOM PROCESS AND FOKKER-PLANCK EQUATION

A discrete Markoff process can be interpreted as a process in
which the occurrence of an event depends only on the occurrence of an
event immediately preceding it. For a continuous case it is usually de-
fined in terms Qf its conditional probability density function by an im-
portant relation given by Equation (14) which is known as the Chapmann-

Kolmogoroff equation:

£(tps ¥15 Yps «-- yn| 53 E1s B2y oo gn)
SN CTI PR VNS T T SRR A L)
f(tz; yl’ y2’ 0o ynl tl; Xl) X2’ 000 Xn)
d-)(lj d-X-a a0 o an
The function £(ty; X1, Xp -vo X | 85 &5 Eps -oo &) stands

for the probability density function which states mathematically that
at time t] the random variables are at x1, xp, ... Xp on the assumption

that at time S they were at 51’ EE’ .o Ep. For simplification in writing,
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Figure 2. Closed Loop Representation of an nth Order
Nonlinear Servomechanism
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vector notation is often used, Equation (14) when written in vector form

becomes:

£ltps 7183 B) = £t ¥ |85 B) £(tps ¥ [tys ¥) &X' . (15)
Based upon some conditions imposed on the conditional moments
of those random variables, Equation (15) can be reduced to a linear par-
tial differential egquation known as Fokker-FPlanck equation(h):
Of N s ¥ o3 3
3t = - T [31 £l + 5 ) -3 B, .f1] (16)
where

lin 1, | | |
Py :At-inoZ?f (by;) £(t + &5 ¥+ &7 |8 5) a (49)

1im L

Bij = atoo Ap ) (Ly) (by)E(t + At 78 6T aley) a (a9)

\f

By ik..l. 0 for any B whose subscripts have three or more
e letters.

V. A SECOND ORDER NONLINEAR SERVO SYSTEM AND
ITS RELATION WITH FOKKER-PLANCK EQUATION

The dynamical behavior of a second order servo system can be

described by the following second-order differential equation:

deg ae

0 o i}
RS — = : 7
Tt eI 00, K(e) (17)

where K(€) is a function €, a and b are constant, and 0; and QO are as
previously defined. By substituting € = @i - 04, Equation (17) can be

written into the following form:

,dfug+ §£+b€+K()_-,d_-i€i_ f_iij;_l..
a 3T (¢) = T2 +a Fr be

ate i
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If the left side of Eguation (18) is written as a single function

F(t), Equation (18) will reduce to the following form:

2
d~e de
:1-;5 + a E‘-E + be + K<€> = F(t) (J.9)

Since the function F(t) is a linear combination of a Gaussian input func-
tion 64, it follows that F(t) is a Gaussian random function. Furthermore
by properly choosing the power spectrum of ©; as shown in Section III,
F(t) can be approximately treated as Gaussian white noise, and the Markoff
random process technique will apply under this condition.

If we now let %% = Y15 € = Yo then the above equation becomes

two first order simultaneous differential equations in phase space y; - ¥p:

d‘yl oy .

TL o+ ayy + byp + K(yg) = F(t) (20.a)
dyp .
= =7 (20.b)

Let t be increased to t + At where At is very small compared with
the response time of the system, but is not necessarily small compared
with the function F(t). Putting the above two simultaneous equations into
the incremental form they become:

t+At

Ay, + ay it + [oyp + K(yp) 1ot = { F(t) dat (21.a)

and
byp =y (21.p)
t+AL
where { F(t) dt indicates the fact that F(t), in this small time inter-
val At, is a rapidly changing function of time. By using Equations (21.a)

and (21.b), 1t is possible to calculate the functions Bs » Bi,j’ Bijk!

G0y 5iquom of the Fokker-Planck equation given in Section IV.
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For the case of the second order servomechanism expressed by

Equation (19), the Fokker-Planck equation has the following forms:

> > : | '
6% S (y1£) + &5 {[ayl + byp + K(yg)]f} +D 5;;5 (22)

Here we use the assumption that <F(t) F(t + T)>A.V = 2D8(7) where &(T)
is a delta function and D a constant.

The solution of Equation (22) gives the conditional probability
density function of the nonlinear servo system. This solution, in gen-
eral, 1s a function of MEREE t and initial conditions Y102 Y205 too
However, as t — o the solution becomes independent of Y107 Y20 and tO.

This is what one would expect, sinee any random variable after a long

time interval becomes independent of its initial conditions. Consequently,
as t — o the conditional probability function becomes a first probability
functiono<5)

Since we are interested in the first probability density function,
this is equivalent to finding the steady state solution or having %% =0

in Equation (22). The Fokker-Planck equation (22) reduces, in this case,

to the following form:

2

The additional conditions that the stationary solution must satisfy are

listed below:
L f(ye, y1, t = ®)—0 as ]yllmam or as lygi—am or both [yll and |y2[~>m

2, f(yg,yl, t = «) should always be a positive function

+00 400
3. [ [T f(yp, yp b= w) dyy dyp =1

=00 =00
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If we assume a stationary solution of the form f[myl2 +n [ [by2+K(y2)]dy2]3

and use the above three conditions, it can be shown that
-2 2 a
fyp,y1 t =w) =Aexp [55 v, - 5/ [byp + K(yp)1 dypl,  (24)

where A is determined by the normalized condition 3.

The steady-state solution or the first probability density
function in phase-space is the most general type solution that can be
obtained from a second order system which has an arbitrary zero memory
nonlinearity in its forward path, when it has been subjected to a Gaussian
random input. From this solution it is readily seen that in spite of a
nonlinearity in this type of second order system, the rate of the response
of the system, namely Y17 still retains the Gaussian property. However,
the response yp itself is changed to a random process that 1s of a non-
Gaussian type.

For the case when the nonlinear function K(yé) is approximately
linear in the region around Yps such as in the case of saturated ampli-
fier approximated by K(ye) = tanh (cy2)3 the first probability function
f(ye, MR t = w) can almost be considered as approximating a Gaussian
probability density function.

This can be seen from the expression:

2 2
= - =2 L1 2
f(ye, Yy, &= w) = A exp [2D ¥y Jexp [ 5 [ tanh (cya) dyp ]

- exp 122 1,2] exp [ 1n cosn (cy,)
=Aexp [75= 1) exp [~y 1n cosh (cy, ]

when '|cy21< 1 1n cosh (cyg)?’/(cy-e)z

then
£ b= w) = A exp [y, 2] exp [ (ey,)2]
Jps» Y1, U = @) = A €Xp D Yy 1 EXp LTy \CYp

which is evidently the same as a Gaussian probability density function.
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VI. HIGHER-ORDER SYSTEM
The above technigue which was applied to a class of second order
systems in Section V can be extended to higher-order systems. However,
in the case of higher order systems, only under very specilal conditions
could the steady state solution be obtained by the authors. To be specific,
only those systems that can be decomposed into the following form can the

steady state solution of the Fokker-Planck equation be obtained:

2

i y (25)
:;',—é‘ +ay it + Kj’_(xi) + ) giJ(xJ> = Fi(t)y 1=1,2, c00y No

where a,'s are constants, g, (xj) and gy (Xj) are of the same functional

form, and Fi(t)'s are Gaussian white noise. The first probability density
function usually has the following form:

N o N N N
T =Aexpd L b, V.” + % Cif Ki(xi)dxi + dy L[ g

(x.)ax
1=1 i=1 1=] =l J

1j 1
dXi

where Vi =3t and bi‘s, C,'s, di‘s are constants. The constant, A, is

i
the normalization factor.

It should be pointed out that when a higher-order system is de-
composed into a system of equations (25) then it is no longer of the form
of Equation (11), namely:

fi , n
N atg, N dfey
2 a

— +K(¢) = L a
n=o ©9F n=0

(11)
n att

Consequently, the argument used in Section IV is no longer true,
because in this case one cannot write the effective input, F(t), as a
linear combination of the true input Qi’ However, if the input is non-

Gaussian distributed and the overall effect of the nonlinear combination
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of the true input ©; still gives an effective input, F(t) which is Gaussian
distributed and has white spectrum, then it is possible to obtain the first

probability density function of this system.

VII. COMPUTER STUDY
In order to verify the result of the analysis presented in the

previous sections, an analog computer study was made on a second order
nonlinear servomechanism. Before the results of the computer study are
discussed, the measuring equipment or the single channel amplitude distri-
bution analyzer will be described. The functional diagram of the analyzer
is given in Figure 4. This analyzer measures the probability distribution
function P(x) of a random variable x, the relation between the probability
distribution function P(x) and the probability density function f(x) which
is of the form:

X

P(x) = [ f(x) ax. (26)

=00

The resolution of the analyzer was checked against a known
function of time such as a triangular wave. It can be shown the proba-
bility distribution function P(x) vs. the amplitude, x, of the triangular
wave theoretically is a straight line. The agreement between the theoreti-
cal straight line and the experimental points was found to be excellent.

The noise generator which was used, was constructed in the Servomechanism

1
Laboratory. It had a flat spectrum from approximately 37.5 cps to 25 cps
and was Gaussian distributed.

The equation of the second order servomechanisms under study is

of the form:
2 320 de.
dce de i i
- = e+ = ) 7
pve + Bgp + K(e) 3 BEE— F(t) (27)
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Two different kinds of function K(e) were used, these are listed below.

For the case of the saturated amplifier:

100 € > 1
(1) x(e) = 5 100e |e|]< 1% and B =10 (28)
-100 e <1

For the case of the relay amplifier:

K, €>0
(2) k(e) = where K = 100 and B = 20.  (29)
-K, €<0
In the first case, the measurements were intended to show the
departure of the distribution of the error, €, from normality in the non-
linear region; therefore, under these conditions only, is the test of
normality of the error important. In order to confirm the belief that the
departure from normality was not due to statistical fluctuation of the
data, a confidence interval test was performed. The results of the ex-
perimental data were plotted on normal probability papers and are given
in Figure 5 and Figure 6. In the second case, a detailed study was made
because of the nonlinearity occurring for small values of error as well as
for large values of error. It presents, therefore, a severe test of the
validity of the analysis given in previous sections.
For Equation (27) with K(¢) and B as given in (29), the first
probability dénsity function f(e, é), according to Equation (24), is of

the form:

il

f(é, €) = A exp [é% & 4 %E €] for e<0 (30.a)

B .o KB . :
A exp [2D & -3 €] for € >0, (30.b)
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where A is a constant. By using the normalization condition

“+00 . R
T(é, €) de de =1 ,

=00 =00

1t is possible to determine the constant A. The first probabllity density

function of € alone is determined from the relation:

+00 X
f<€) — f f(é’g) d_é = % exp [B‘B" 6] for €0 (31.&)
= & exp [2 €] for €30 (31.b)

The probability distribution function P(¢), which is defined below, is

related to the probability density function f(e) by the following relations:

- 1 K

P(e) = fe £(t) at = 5 exp [BE €] for €<0 (32.a)
1 -K|

Ple) =1 - 5 eXD ['=-5E ¢] for €>0 (32.p)

Since the functions P(€) and 1 - P(€) are equal to some expo-
nential functions of €, it is evident that the graph of the data plotted
on semi-logarithmic paper should be a straight line. Furthermore, if
€ = g}% is substituted in Equation (32.a), P(e) is found to equal 0.1834.
Based upon this fact, by finding the point on the graph of P(e) vs. € at
which the function P(e) is equal to 18.34% per cent, it is possible to
determine the value of € which corresponds to the quantity gﬁ. The re-
sultsvof the experimental data were plotted on semi-logarithmic paper and
normal probability paper. They are given in Figure T, Figure 8 and Fig-
ure 9. The effects of the parameters on the probability distribution were
checked by comparing the change with an arbitrarily chosen standard system.

The theoretical calculation and the measured data are listed below, the

results were amazingly close:
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Curvé Changed Theoretical Measured
Parameter Calculation Data Remarks
B = e D Bi = 2.25 Ei = 2,22 Dy = ch d effecti i t
Dy = T2l Oy = 2, Dy = 2 n=C gnge effective inpu
power spectrum
C - L B Ei = 2,0 'Ei = 2.0 Ry = changed dampin
Pu =2 Ps By By N T Chene pEne
S o666 =06
D Ky = 1.5 Kg o 0. o = 0,090 Ky = changed force
A STANDARD D, = effective input power
SYSTEM spectrum of the stand-
ard system
58 = damping of the stand-
ard system
Ks = restarting force of
the standard system
SUMMARY

The purpose of this paper is to present a method of determining
the first probability density function of a nonlinear system subJjected to
a Caussian random input. The Markoff random process technique was used.
The results from the computer study agree with the theoretical calculations
within the limits of experimental error.

Although this study is limited to a Gaussian input with some
definite power spectrum, this analysis can be applied to a large class of

nonlinear systems.
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