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ABSTRACT

A QUERY OPTIMIZATION
IN DISTRIBUTED DATABASE SYSTEMS

By
Chin-Wan Chung

Chairman: Professor Keki B. Irani

This research is concerned with a model and a method of
minimizing the inter-site data traffic incurred by a query
in distributed relational database systems. 1In order to
process a query which references data from multiple sites in
a computer network, portions of the database at other sites
have to be transferred to the wuser's site. The usual
methodology for distributed query processing consists of
reducing the referenced relations wusing a sequence of
semijoin operations after initial local processing.

The mathematical model has been developed to determine
an optimal seguence of semijoins which minimizes the total
inter-site data flow in processing a distributed query. The
core of this model is a method which efficiently and
accurately estimates the size of an intermediate result of a
guery. In particular, the assumption that joining
attributes are independent during the processing of a query

by a sequence of semijoins has been relaxed.
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Since the distributed query optimization problem is
known to be NP-hard, a heuristic algorithm has been
developed to determine a low-cost seqguence of semijoins.
The efficiency of the algorithm is increased by partitioning
the set of Jjoining attributes into blocks and sequencing
these blocks, as well as by a straightforward, yet effective
sequencing among the semijoins between the joining
attributes inside a block. The algorithm decreases the cost
of a query by selecting the 1low-cost, highly reductive
semijoins first. Cost comparisons with the existing
algorithms have been provided. The time complexity of the
main featu;es of the algorithm has been analytically
derived.

The algorithm has been implemented in PASCAL. The
tests show that the scheduling time for a sequence of
semijoins for a reasonable size gquery is less than 0.05

seconds when the program 1is executed by a main-frame

computer.
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CHAPTER 1

INTRODUCTION

1.1 Background

In this section, we will briefly review the concept and
the development of the area in which our research problem is
embedded.

The value and size of data in organizations have been
continuously increasing in recent years. In order to
provide an efficient and flexible use of data while
maintaining its consistency and security, the technology of
database management has been rapidly developed.

A database is a collection of stored interrelated data
used by the numerous application programs of any
organization. In traditional file systems, each application
program has its own private data files [NOLA 73]. This
results in redundant storage of data, generally in different
formats. The uncontrolled separate update of redundant data
by each application program leads to the severe problem of
data inconsistency. Also because of the lack of wunity of
formats, it is difficult to develop new application programs
to operate against many existing data files. The purpose of
the database system is to overcome the drawbacks of the file

system through the integration of the organization's data so



that the stored data can be shared. An integrated database
provides the organization with centralized control of its
operational data. There are many advantages of having
centralized control of data [DATE 77, MART 77)]. A database
management system is a set of generalized system software
which manipulates databases and provides interfaces with a
broad range of languages to aid all users. An information
processing system which uses a database management system is
referred to as a database system.

Database systems are mainly classified into two
categories: centralized database systems and distributed
database systems. In a centralized database system, the
whole database is stored at one computer site at which a
database management system also resides. In a distributed
database system, the database 1is scattered among the
computer sites, each of which 1is equipped with a local
database management system and supporting modules to
interface with other local database management systems. A
distributed database system is implemented on a computer
network, that is, a set of computer sites which communicate
with one another via a communication network consisting of
the switching computers and the communication channels.

The main characteristics of the distributed database
system is that it acts conceptually as a centralized system
in terms of user view and system control, while physically
permitting the geographic distribution of an organization's

data and accesses to them. For this reason, the distributed



database system is a suitable solution to the information
processing problems of geographically dispersed
organizations such as the military, government affiliated
organizations and large corporations.

The major advantages of the distributed database system
over the centralized database system, in terms of
applications requiring access to an integrated database from
geographically dispersed 1locations, can be stated as
follows:

1) A portion of the database is stored at or near the
sites where it is frequently accessed.
Consequently, the communication cost and delay are
reduced.

2) Since the distributed database system is implemented
on a computer network including multiple computer
sites, the breakdown of some computers or a part of
the communication network does not cause the total
failure of the system. Therefore, the distributed
database system is more reliable.

3) Evolution of one subsystem 1is possible without
disturbing the rest of the system. Hence the
expansion of the system is easier.

4) For transactions referencing data from multiple
sites, 1intermediate processing can be performed at
each site at the same time. This indicates
increased parallel processing and load distribution

among sites.



There have been a number of special purpose distributed
database system implementations reported in the 1literature
[cHAM 77]. However, there are only a few prototype systems
[ROTH 80, STON 77] which can be «classified as general
purpose systems. No general purpose distributed database
system is available because an assortment of difficult
technical problems must be solved before a workable system
can be produced. These problems include:

1. Database distribution,

2. Distributed query processing,

3. Distributed concurrency control,

4, Continuity of operation in the presence of failures,

5. Directory management.

Research in distributed database systems has been
continuing since the 1late 1970's. Many new results have
been found. Nevertheless, none of the above problems has

been completely solved.
1.2 The Problem and the Approach

In this section, we will state the research problem and
discuss the major issues of our approach. We will present
them first in general terms and then in more specific terms.

In this investigation we are concerned with developing
a model and arriving at a methodology for deriving an
optimal strategy for processing a distributed query. A
query is a user transaction to retrieve information from the

database. The wuser transactions in database systems are



queries and updates. An update 1s always preceded by a
query to locate the necessary part to be updated. A query
is called distributed if data from multiple sites 1is
necessary to answer the query. The locations of necessary
data are known to the distributed query processing routine
beforehand. In order to process a distributed query, the
portions of the database referenced by the gquery at each
site have to be transferred to the user site where the final
processing 1is performed. Distributed query processing is
fundamentally different from centralized query processing in
two respects:

1) The delay caused by the transfer of data among the

sites involved in the query is substantial.
2) Local processing can be performed simultaneously by
the computers at the sites involved in the query.

The type of communication network assumed 1in this
research is the point-to-point packet switching network
which uses ground lines as communication channels. In a
packet switching network, the delay due to transmission of a
fair amount of data between source and destination is
proportional to the volume of the data [KLEI 76]. It was
observed by [WONG 77] for the Arpanet that the data transfer
rate between sites 1is some 100 times slower than the
transfer rate between disk and main memory in typical large-
scale computers. Consequently, the minimization of the
inter-site data transfer is of primary importance in

processing the distributed query. The efficiency of a



strategy for distributed query processing is mainly
determined by the way the 1inter-site data transfer is
handled. As illustrated in [ROTH 77], there 1is enormous
variation in communication delay among a set of plausible
distributed query processing schemes.

A relational model [CODD 70] 1is assumed to be the
underlying data model. A relational model represents data
logically and can be used as a conceptual framework for
other data models. Some basic concepts of the relational
model are presented in Appendix A. In order to describe the‘
problem more precisely, the terminology of the relational
model will be used. We assume that a relation is a unit of
distribution. A relation may be further partitioned into
smaller units by performing selection and/or projection on
it to increase flexibility. The original relation can be
recovered by joining the smaller relations. This extension
to relations partitioned among many sites is straightforward
[DAYA 79]. We will only consider the conjunctive queries.
For a non-conjunctive query, the qualification clause can be
transformed into a disjunctive normal form and the query can
be decomposed into conjunctive queries. The answer to the
complete query then is the wunion of the partial answers
obtained for each conjunctive query.

Since selection and projection are the unary
operations, they are always performed locally. Join can
also be performed locally if the relations involved in the

join are stored at the same site. Hence a query which does



not require a join of the relations stored at different
sites can be decomposed into local queries. Such a query
need not be considered a distributed query even if the query

references relations from multiple sites.

Definition 1.1: A query is distributed if its

qualification clause contains at least one join term which

includes relations stored at different sites.

For any distributed query, initial local processing is
mandatory to reduce the amount of data to be transferred
locally. Initial 1local processings are performed in
parallel at the sites containing the relations referenced by
the query. Large portions of referencéd relations are
reduced by initial 1local processing for most of the
distributed queries.

A crude way of processing a distributed query may be to
transfer all the remaining portions of relations after
initial 1local processing to the user site. Another
possibility 1is to transfer relations involved in joins to
other sites to enable local joins. Among many alternatives,
the data reduction strategy we will attempt to model is
based on the properties of the semijoin.

Suppose a distributed query contains a join term R.A =
S.B where R and S are located at different sites. The semi-

join (Appendix A) has the following properties [BERN 79]:

(1) R[A=B]S (R<A=B]S)[A=B]S

(2) R<A=B]S ¢ R



(3) R<A=B]S = R<A=B](S[B])

From (1), the join term can be processed with R<A=B]S
instead of R. From (2), R<A=B]S is smaller in size than R.
From (3), to perform R<A=B]S at the site of R, only S[B] is
needed to be transferred instead of S itself from the site
of S to the site of R. Hence if ||R - R<A=B]S|| > ||S[Bl|],
where | |R|| denotes the size of a relation R, then the
transfer of S[B] contributes to the reduction of the total
amount of data transfer without affecting the final query
answver. After R 1is reduced to R<A=B]S, (R<A=B]S)[A] can
also be sent to reduce S. Basically the distributed query
processing strategy after initial 1local processing is a
sequence of semijoins which consists of a set of inter-site
data moves combined with local processings between the data
moves. When the relations at each site cannot be further
reduced, the remaining relations are transferred to the user
site, where the final processing of the query is performed.

We assume that the delay caused by the local processing
between inter-site data moves is constant compared with the
great variation of the communication delay. This is
especially valid when the data manipulation operations are
performed by database machines because the processing time
of operations is less dependent on the size of the operands
and much shorter than when general purpose computers are
used. Also the fact that the computing cost is reducing at
a faster rate than the communication cost indicates that the

communication delay will become the more dominant term in



the future.

In summary, our approach is to find a sequence of
semijoins which minimizes the total amount of inter-site
data communication necessary in transferring the data to the
user site for the final processing.

In addition to the operational importance to the
distributed database system, distributed query processing is
crucial for the optimization of database distribution which
is known as the problem of file allocation. The file
allocation problem has to assume a certain distributed query
processing method to formulate the communication cost in
terms of file allocation variables. If the distributed
guery processing transfers all the remaining portions of
relations, after initial local processing, to the user site,
the formulation is straightforward. However, the resultant
file allocation may be far from optimal. 1If the distributed
guery processing uses semijoins, the effect  of semijoins on
the communication cost has to be considered for an optimal
allocation. Even if the data flow generated by semijoins
for each pair of relations before the allocation are given
as input, the contribution of semijoins to the communication
cost cannot be formulated using only file allocation
variables. One of the reasons is that when two relations
are clustered at the same site, not only the semijoin
between them vanishes but also the data flow generated by
semijoins between each of these two relations and the rest

of the relations change in a complex way. Hence the choice
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of a good distributed gquery processing strategy and the
successful modeling of 1its features are essential for

realistic optimal database distribution.
1.3 Literature Survey

The purpose of this section is to review the published
results of related work by others and to analyze their
inadequacies.

The primitive concept of distributed query processing
appeared in the <context of file allocation problems. As
mentioned before, every file allocation model has to use
some type of distributed qgquery processing method. In
traditional file allocation models [cASE 72, CASE 73,
CHU 69, 1IRAN 82, LEVI 75, MAHM 76], the derivation of the
communication cost is based on the amount of data flow from
each site to each file. This implies either that there is
no distributed query, or that distributed queries are
processed at the point where the qﬁery originates with all
the necessary data moved to that point possibly after some
degree of local processing. This type of distributed query
processing incurs large volumes of unnecessary inter-site
data traffic which can be screened out by using semijoins or
local joins.

Among the file allocation models, [RAMA 79] introduced
a somewhat different distributed query processing method to
reduce inter-site data transfer. A technique was proposed

to add redundant information onto the distributed database
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so that distributed queries can be decomposed into local
queries. The redundant information is an extra bit for each
tuple 1indicating whether the tuple will participate in
processing some specific join term. Hence if the relations
in the join term are located at different sites, the
necessary tuples 1in each relation can be selected by
checking the extra bits without moving one relation to the
site of the other. This approach often requires a great
deal of system overhead to maintain redundant information in
accordance with the wupdate of the database. From a
distributed query processing point of view, the impact of
initial 1local processing 1in reducing the amount of inter-
site data traffic is not properly reflected. The use of
semijoins can further decrease the amount of data transfer.

The earliest work reported in the area of distributed
query processing as an independent subject was in [WONG 77].
Since then, numerous strategies have been developed for
distributed query processing. We will review some of the
more important ones.

Among the distributed query processing algorithms
reported in the literature, [WONG 77] was the first one to
consider communication delay as a key element of query
processing cost. Communication delay depends on the
quantity of data transferred between sites. Thus the
minimization of data transferred is the primary objective in
optimization though not the only one. The concept of query

decomposition in [WONG 76] is adapted to reduce a
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distributed query to a series of 1local queries. A basic
tactic proposed in [WONG 76], to decompose a guery which
references many relations into a set of queries referencing
only one relation, is tuple substitution. Tuple
substitution is a procedure by which one of the relations in
a join term is successively replaced by the actual tuples.
Tuple substitution for a distributed query implies the
transfer of data, one tuple at a time, between sites.
However, bulk transfer of data is more efficient than tuple-
at-a-time transfer because of the overhead per message.
Hence a distributed query is transformed into local queries
by moving subrelations. The 1initial solution for this
strategy 1is to transfer all the remaining relations
referenced by the query to a single site after the initial
local processing. An improved solution is a set of cost-
effective subrelation moves among sites followed by local
processings. The optimization procedure is applied
recursively wuntil no improvement is gained. Since the
algorithm 1looks for an immediate improvement, it is
classified as a greedy one and terminates at a local
optimum. It is necessary to estimate the sizes of the
relations resulting from 1local operations in order to
determine the cost-effectiveness of subrelation moves. This
problem was left unsolved. Moreover, the move of a
subrelation 1is less effective than the semijoin in reducing
the inter-site data transfer because the semijoin only

requires transmission of values of the joining attributes.
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The approach in [EPST 78] is basically the same as the
one in [WONG 77]. The following modifications were made on
the framework established in [WONG 77]: (1) each relation
may be at a unique site or may be spread over several sites
in a computer network; (2) the cost criteria considered are
minimum response time and minimum communication traffic; (3)
the algorithm treats point-to-point and broadcast networks
separately. Some of the rules to determine the values of
the variables are based on heuristics rather than well-
grounded analysis.

The basis of the model developed in [CHU 79, CHU 82] is
also the reduction of inter-site data transfer by using the
transmission of subrelations. A qQuery operation graph was
defined, in which a node represents a subset of the sequence
~of operations that must be executed at the same site and
arcs represent data transmissions between sites. Given a
query, the set of query operation graphs which represent the
sequence of operations is constructed. To determine a query
processing policy, it 1is necessary to select a site for
performing the operations represented by each node.
Theorems were developed to find the best sites for
performing the operations of a given graph. A linear
operating cost function was derived to compute the cost of
a processing policy represented by each query operation
graph. The major considerations of the proposed operating
cost model are communication cost, processing cost, and data

reduction functions for processing a query for a given
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environment. Data reduction functions describe the volume
of output data in relation to the volume of input data for
performing a specific operation. The operating cost
function assumes the values of many parameters as given.
Data reduction functions are key elements which make the
distributed query optimization problem difficult. However,
they are assumed to be estimated by simulation or
measurement on the actual distributed database.

[HEVN 78] developed an optimal processing algorithm for
a narrow class of distributed queries called simple queries.
A simple guery was defined as one by which, after initial
local processing, each relation that is referenced contains
only one attribute - a common joining attribute, which is
also the only attribute in the target 1list. Hence the
subrelation move in this case is the move of current values
of the common joining attribute for each relation. Although
the class of queries considered 1is so narrow that the
algorithm is of 1little practical value, this strategy
introduced the concept of the semijoin.

The result of [HEVN 78] was extended for general
distributed queries by the same authors [HEVN 79b]. The
semijoin is used as a major tactic to reduce inter-site data
transmission. The general algorithm is heuristic and wuses
an improved exhaustive search. Two cost measures, response
time and total time, were used. The data transmission
pattern containing the transmission of a relation to the

result node is called the schedule for the relation. Each



15

joining attribute in a relation is handled separately. The
schedule for a joining attribute is a sequence of semijoins.
The minimal cost schedule for each joining attribute is
selected from a set of cost beneficial schedules. However,
the algorithm maintains other <cost beneficial schedules
since they may lead to more beneficial cost reductions on
other attribute schedules. When the minimal time schedules
are found for each joining attribute, the algorithm
integrates these schedules into the overall schedule for the
relation. The query processing strategy is then constructed
by synchronizing the schedules of all referenced relations
in the query. Schedules to minimize response time 1include
as much parallelism of data transmission as possible. This
parallelism is not taken into consideration in the schedules
for the minimization of the total time. It was emphasized
that the consideration of parallel transmissions to minimize
the response time increases the complexity of the algorithm
by a significant amount while the reduction 1in schedule
response time 1is limited in almost all cases. The time
complexity analysis of the algorithm was carried out only
for total time minimization. The major weakness of the
strategy presented here comes from the assumption that
joining attributes within each relation are independent.
Thus a reduction of values of a Jjoining attribute by the
semijoin does not reduce the values of other Jjoining
attributes in the same relation under this assumption. This

assumption simplifies the problem 1in many respects. For
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example, each joining attribute in a relation can be handled
separately, due to attribute independence. 1In reality, this
assumption is clearly not true. Consequently, the validity
of the query processing strategy is seriously affected by
this assumption. Another shortcoming is that the schedule
of each relation 1is separately constructed and these
schedules are not integrated. As a result, if an optimal
strategy contains non-cost-beneficial schedules for some
relation, such an optimal schedule can not be found.

An improvement over [HEVN 79b] was suggested in
[cca 8ODb]. The assumption of attribute independence is
partially relaxed. Attributes 1in the same relation are
considered to be dependent. However, attributes in
different relations are assumed to be independent throughout
the processing of a query. The objective is to process the
distributed query with a minimum qQuantity of inter-site data
transfer. That 1s, network bandwidth is regarded as the
system bottleneck, and the optimization objective 1is to
minimize the wuse of this resource. The semijoin is
extensively used to reduce the inter-site data transfer.
The proposed algorithm 1is a greedy optimization algorithm
whose main function is to construct a profitable sequence of
semijoins. Starting with a null sequence, the algorithm
iteratively appends the cheapest profitable semijoins to the
sequence until all such semijoins have been used. Then the
algorithm determines the cheapest site at which to assemble

the remaining relations, and appends commands to move the
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remaining relations to that site. Techniques for improving
the generated sequence were presented to help compensate for
the short-sightedness of the greedy algorithm. While the
consideration of attribute dependence is essential to the
development of a realistic distributed query processing
strategy, it substantially increases the complexity of the
problem. The effects of the attribute dependence were not
completely modeled in this work. The estimation of the
reduction of relations by arbitrary semijoins is
particularly important, but was not considered.
Consequently, the reduction of relations due to an arbitrary
sequence of semijoins can not be estimated accurately.
Hence the class of sequence of semijoins allowed 1is very
limited. The restriction of the solution space has a
significant impact on the development of the algorithm. The
reoccurrences of a semijoin are not allowed 1in the greedy
algorithm. The assembly site is used because the relations
are not completely reduced by all possible semijoins. The
extra cost of sending the result from the assembly site to
the query origin is generally substantial compared with the
cost of sending the completely reduced relations directly to
the query origin. The second pass enhancement is necessary
to compensate for the deficiencies caused by the greedy
nature of the algorithm and the use of an assembly site.

An improved version of the algorithm in [CCA 80b] was
reported in [BERN 81]. Specifically, the following

improvements were made: (1) the assumption that the
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attributes 1in different relations are independent is
relaxed; (2) the reoccurrences of a semijoin are allowed in
the modified greedy algorithm which appends the most
profitable semijoin to the sequence. The shortcomings of
the algorithm in [BERN 81] are as follows: (1) the
estimation method of the intermediate result size involves a
complex graph search; (2) when the assembly site and the
user site are different, the cost of moving the assembled
answer to the wuser site was not considered; (3) both
reported enhancements sometimes require significant
computation.

Another improvement of the method presented in
[HEVN 79b] was made in [CHEU 82]. A general query is
decomposed into simple queries, the number of which is equal
to the number of domains associated with the general query.
To minimize the total time, a sequence of semijoins is
scheduled by applying STRATEGY SERIAL [HEVN 79b] for each
simple query. The remaining relations, except those which
do not contain any target list and are involved in only one
of the equijoin clauses of the given query, are transferred
to the user site. This method also assumes that the joining
attributes within each relation are independent.

All the distributed query processing strategies we have
discussed assumed knowledge of the necessary data locations
to be accessed.

Query processing experiments on a distributed database

were reported in [EPST 80]. The strategies were compared by
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simulation on the basis of number of bytes moved. The
conclusions were: (1) limited search performs very poorly
compared with exhaustive search; (2) good intermediate size
estimates are crucial; (3) dynamic decision  making
consistently performs better than static decision making;
however, because dynamic decision making has a greater run-

time cost, it may not be a big winner.



CHAPTER 2
DATABASE STATE TRANSITION MODEL

In this chapter, we present a mathematical model for
database state transition which allows us to estimate the
change 1in database parameter values for any possible
sequence of semijoins to process a given distributed query.
This model will be used as a basis for developing a query
optimization model in the next chapter.

The database state transition model includes two
components described in set-theoretic terms.

These components are:

(1) Information from the user Qquery,

(2) The effect of the semijoin on the database.

The database state transition model can be considered a
function which determines the next state of the database
given the current database state and a semijoin. The

initial set of all possible semijoins is derived from the

user query.
2.1 Query Information

In this section, the query is formally defined. From
the query definition, the necessary information is derived

and the parameters to describe the database are defined.

20
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The original user query is reduced after initial 1local
processing has been performed. During the initial local
processing, all the selection terms and the join terms whose
relations are stored at the same site are processed. Also
the columns of the attributes which are neither in the
target list nor in the remaining join terms are eliminated
by projections. As a result, the reduced query contains
relations and attributes which are necessary to further
process the query. Some of the relations referenced by the
reduced query may have been created by local joins.

Hereafter, the term "query" will represent the reduced
query which necessitates distributed query processing. The
attributes are differenciated whenever they are used in
different relations. In other words, if an attribute A is
used both in relations R and S, R.A and S.A are considered

different attributes, since R.A and S.A represent different

sets of values.

Definition 2.1: A gquery Q is an ordered six-tuple
Q=<7T,3, R, 0, u v>
where T is the target list of the user query,

J is the set of joining attributes of the user query,

R" is the set of relations referenced'by the user
query,

I is the partition of J induced by the equivalence
relation '=",

w: (T U J) --» RY is a membership function,

and y: J --> Il is a partition function.
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Since an attribute in the target list can also appear
in a joining term, T Q@ J, where Q denotes the set
intersection, may not be empty. TUJ 1is a set of all
attributes referenced by the query Q. The membership
function y specifies the relation to which each attribute
belongs.

The partition II is a set of blocks.

I = {By, By, «o., B/}
Here B, € I is an equivalence <class under equality.
Therefore for any attributes a;,as € Bk' a; = a;. Suppose

J ]
u(ai)=Ri and u(aj)=R- for R, Rj € R'. Since all the local

J

joins were performed during initial local processing, R, and
Rj are necessarily stored at different sites. Consequently
a semijoin is possible between any pair of joining
attributes in Bk €n for k=1, 2, ..., n. The partition
function ¢ indicates the block to which a joining attribute
belongs. It is clear that the attributes in each block have
a common domain.

Example 2.1 1illustrates how to formulate a query

information model.

Example 2.1

The following relations are stored in a hypothetical

distributed database.

DEPARTMENT (D#, DNAME, COLLEGE)
COURSE (C#, CNAME, SUBJECT)

STUDENT (S#, SNAME, YEAR)
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OFFER (D#, C#, TERM)

ELECTION (C#, S#, GRADE)
Consider the following user query.

"Find the names of the computer courses offered

by the

departments in the college of engineering during the fall

term of 1980 in which a senior student received an A

with the corresponding names of the senior students"
The user query in relational form is:

FIND (COURSE;CNAME, STUDENT.SNAME)
WHERE (DEPARTMENT.D# = OFFER.D#)
AND (DEPARTMENT.COLLEGE = 'Engineering')
AND (OFFER.TERM = 'Fall 1980')
AND (OFFER.C# = COURSE.C#)
AND (COURSE.SUBJECT = 'Computer')
AND (COURSE.C# = ELECTION.C#)
AND (ELECTION.S# = STUDENT.S#)
AND (ELECTION.GRADE = 'A')

AND (STUDENT.YEAR = 'Senior')

grade

Suppose the relations selected to process the above

user query are all stored at different sites. The re
and the user query are reduced by the initial

processing as follows.
Reduced relations:

DEPARTMENT (D#)

lations

local
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COURSE (C#, CNAME)
STUDENT (S#, SNAME)
OFFER (D#, C¥#)

ELECTION (C#, S#)
Reduced query:

FIND (COURSE.CNAME, STUDENT.SNAME)
WHERE (DEPARTMENT.D# = OFFER.D#)
AND (OFFER.C# = COURSE.C#)
AND (COURSE.C# = ELECTION.C#)

AND (ELECTION.S# = STUDENT.S#)

Now we formulate the query information model of the
reduced query.
Let a; = DEPARTMENT .D#
a, = COURSE.C#
a; = COURSE.CNAME
4 = STUDENT .S#
ag = STUDENT .SNAME
6 = OFFER.D#
a; = OFFER.C#
ag = ELECTION.C#
ag = ELECTION.S#
1= DEPARTMENT
9 = COURSE

R

R

R3 = STUDENT
R4 = OFFER

R

5 = ELECTION
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Then Q'

]

< Tr Jr R ’ Hr W w >

T = {a3, a5}

J = {aj, ay, @y, ag, ag, ag, ag}
+

R" ={R;, Ry, Ry, R,, Rc}

I = {By, By, Byl

= {<a1r R1>I

<a2! R2>r <a3r R2>r

<a,, Ry>, <ag, Ry>,

3

<ags Rp>, <a4, Ry>,

4
<ag: Rg>, <ag, Rg>}

‘b = {<a1l B“>l <a6! B1>I
<a2' B2>, <a7, B2>, <38, B2>’

<a4, B3>, <ag' B3>} -

Definition 2.2: Attributes a; and aj are equivalent 1if

i aj € Bk for some Bk € I. EJAi is the set of all

a

attributes equivalent to a; excluding a,.

Since Y(a;) is the block in which a; is included,

EJA; = w(ai)-{ai} for all a; € J.

We define the following parameters:
(1) a; = the set of component attributes of relation R;
(2) |X| = the cardinality of a set X
(3) Dy

the domain of the attributes in block Bi

(4) K, = the current set of values of joining attribute a;

(5) A, = the initial set of values of a; after initial
local processing

(6) w. =

i the width (in bytes) of attribute a;, €ETUJ
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(7)£;; = the semijoin from a; to as, where a, and aj are

the joining attributes in the same block

Consider equivalent joining attributes a; and aj.

Suppose u(aj)=Rj. The semijoin f.. reduces |K.|. As a

13 Jl
result, le| is decreased. From the attribute dependence,

|K, | is reduced for all k such that a,€J and u(ak)=Rj.

Definition 2.3: Two attributes aj and a, are associated

with each other if as, ay € J and u(aj)=u(ak). AJAj is the

set of all attributes associated with aj.

It is assumed that the query being considered 1is not
decomposable further into simpler queries. That is, for
each block, there is an attribute which is associated with
an attribute in another block.

The set of values of a joining attribute a; necessary
to process a query is completely included in the relation

containing aj after a semijoin fi As a result, if the

5
relation containing a; does not contain any attribute in the
target list, the set of values of a; can be 1ignored after
fij in some cases which will be explained in detail in
Section 3.1. This is always true when a relation consists

of only one joining attribute. We want to distinguish these

relations,

Definition 2.4: A relation Ri is a joining relation if

a €J for all a € aqy. JR is the set of all joining

relations. Ri is a singleton joining relation if R.€ JR and




27

o

1|=1. SJR is the set of all singleton joining relations.

Let & be the set of all possible semijoins to process a
given user query. ® 1is 1initially obtained from Q by
identifying equivalent joining attributes.

o = {f | a;,a; € B, and B, € I}

ij i3

The query information model Q determines most of the
parameters which describe the portion of database necessary
to process the user query. Furthermore, the initial values
of some of the parameters are provided by Q. Such a set of

parameters is defined separately and called INFO.

INFO = < NR' NB' JR, SJR, EJA, AJA, ¢ >

+
WHERE Np = {|a;| | R; € R},
EJA = {EJA, | A, € J},
AJA =

{aga; | A, € 3},
and JR, SJR, ¢ are defined as before.

Example 2.2 shows the derivation of the initial value

of INFO from Q.

Example 2.2

Consider Q formulated in Example 2.1.

The initial value of
INFO = < NR' NB' JR, SJR, EJA, AJA, & >
is derived from Q.

(1) Ny = {Jag| | i

1]
—
-

2, 3, 4, 5}

|a1| =1, lazl =2, |u3| =2, |a4| = 2, |a5| =2
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(2) Ng = {|By] | 1 =1, 2, 3}
IB,| =2, |B,| =3, |By| =2
(3) JR = {Ry, Ry, Rg}
(4) SJR = {R,}
(5) EJA = {EJA; | 1 =1, 2, 4, 6, 7, 8, 9}

EJAa

1 {ae}, EJA, = {a7, ae}, EJA, {ag},

EJA {a1}, EJA, = {az, as}, EJA8 = {az, a7},

6

EJAq {a4}

(6) AJA = {AJA, | i =1, 2, 4,6, 7, 8, 9}

AJA1 = ¢, where ¢ denotes an empty set,
AJA, = ¢, AJA, = ¢,
AJA6 = {a7}, AJA, = {as}, AJA8 = {ag},
AJAg = {as}
(7) ¢ = £, £gqs f59, £950 fog0 fg5r fqg,
fg7: f49r fgyl -

The initial values of the rest of the parameters can

not be derived from Q. This set of parameters is called

PAR.
PAR = < Cgp, Cp, C,, W, >
+
where Cp = {|R;| | Ry € R},
Cp = {ID;| | B; € 1},
Cp = {IK;| | a; € J},

and W, {w, | a; € TUJ}.

There are basically two approaches to determine the
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initial value of PAR. One way is to use estimation. In a
database system, the data directory maintains necessary
system informations and periodically updates them. By
estimating the effect of 1initial local processing on the
value of PAR obtained from the data directory, the initial
value 1is determined. The other way is to get the actual
value of PAR after initial local processing from the sites
involved in handling the query.

Although estimation 1is a simpler way, there are many
advantages of using the actual value. Since large portions
of referenced relations are reduced by initial local
processing, the accuracy of the value of PAR after initial
local processing is important for accurate estimation of the
effects of subsequent semijoins. Also'it sometimes happens
that users issue queries without being certain of the
existence of tuples satisfying the qualification clause. 1In
this case, if any of the results of terms locally processed
is null then the final answer to the query must be null.
Consequently no further processing of the query is
necessary.

These observations are consistent with the conclusion
derived in [EPST 80] 1in favor of dynamic decision making.
While dynamic deciéion making for the entire processing of a
query is not practical because of great run-time delay, the
delay of the initial dynamic decision is preferable to the
‘inaccuracy of the initial value of PAR. Since initial local

processing is performed simultaneously at multiple sites and
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the counting on tﬁe partial results can be done at the same
time, the delay caused by initial dynamic decision is not
significant either.

The values of Ch and W, are static, so they can be
obtained from the data directory without the need of further
manipulation. The initial values of Cr and C, are obtained
using either approach discussed above. We define the state
DB of the database as follows:

DB = < INFO, PAR >
2.2 Lattice Model of the Effects of Semijoin

In this section, we discuss a method of estimating the
effect of semijoins on the database which involves
probabilistic analysis. Based on this analysis, a very
general model is developed using a lattice which represents
the reduction of the set of values of a joining attribute by

an arbitrary sequence of semijoins.
2.2.1 Estimation of Effects

In this subsection, an estimation method is presented
to determine the change of values of parameters describing
database. The basic assumptions are stated and formulas are
derived. We have completely relaxed the assumption of
attribute independence in the process of a sequence of
semijoins. The use of conditional probability to handle

attribute dependence has not been considered in past

research.
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Our strategy for distributed query processing 1is to
construct a sequence of semijoins which minimizes the total
amount of data communication. In order to determine the
contribution of a member semijoin to the total data flow of
the sequence, we must know the volume of data flow involved
in the semijoin and the amount of data reduced by the
semijoin. The values of the database state before and after
the semijoin are sufficient to determine these. Since we
start from a given initial database state, our problem is to
estimate the next database state induced by a semijoin given
the current database state.

Note that the actual database is not affected by any
semijoin. Temporary copies of referenced relations are
retained after 1initial local processing and then the query
is processed on the temporary copies.

The change of the INFO value is deterministic. It can
be simply determined by inspecting the current value of INFO
and the semijoin to be wused. Since it does not require
estimation and is more closely related to the optimization
model, we will discuss it in the next chapter.

Among the elements in PAR, the values of CD and W, are
static during a certain period. So they are not affected by
a semijoin. The most important and difficult problem is the
estimation of values of CR and CA, which are 1indispensable
for the determination of the size of the intermediate
result. The estimation of the size of the intermediate

result 1is crucial for the optimization of qQuery processing
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in centralized as well as distributed database systems.
We discuss a method of estimating the cardinality of a

relation reduced by a semijoin.

Consider a relation Rg and its attribute aj such that
j| = m. Define a counting random variable X; for each v,
€ Kj which counts the number of tuples in R_ in which the
value of aj is v, Then for each Xi’ possible values are 1,
2, ooy |Rg|-m+1 and ZT=1 X, = |Rg|. Assuming that X;'s are

identically distributed,

ElfT_, x,1 = X?=1 E[X;] = mE[X,;] = |R

gl

where E[X] denotes the expected value of X. Hence

E[X;] = |Rg|/|Kj| for all v; € K, (2.1)

I1f a semijoin changes the value of a variable, we will
append 'N' to the name of the variable to designate the new

value. After applying a semijoin fi R_ and Kj are reduced

3" g
to RgN and K.N, respectively. Since |RgN|

i X

Z 7
viGKjN 1
from (2.1),

X1

IRN| = E[zviSKjN i

) E[X.]
viGKjN 1

KNI x IRg] /IRy

N (2.2)

gl
Therefore, if we know ]Kle for some a. which 1is an

attribute of Rg' then we can_ compute IRgNI. Hence we
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investigate the reductions in Kj's caused by semijoins.

There are two different ways by which a Kj can be

reduced:

(1) By a semijoin from the equivalent joining attribute of

a.:

]
If attributes a; and aj are in a block, a semijoin fij
reduces Kj to a new set Kin, where Kin denotes KiQKj,
the intersection of Ky and Kj.

(2) By a semijoin to an attribute associated with ay:

If aj and ag are the attributes in the same relation,
they are in different blocks. The reduction of Kg by

the semijoin f£ where a, is in the same block as

rs’
agy also reduces Kj.

First, we discuss the estimation of |KjN| due to a

semijoin f... Suppose B, = {a1, cee, @:, a

1]
Consider fij as the first element in a sequence of semijoins

U IR a,l.
to process a query. If Dy is perceived to be the sample
space, any X c D, is the probabilistic event that v € X for
v € D,. Initially Ky = Ay for all a, € By, and the only
restriction on Ah‘s is that they be subsets of D,.
Therefore the events Ah's are mutually independent events.

After fij' KjN = AiAj. From P(AiAj) = P(Ai)P(Aj),

IKjN|/|Dk| = (K5 171D 1) x (JR51/1D )

which reduces to

x |xj| / |Dp| (2.3)

RN = IRy
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This result, obtained differently, was used in
[cca 80b]. A new procedure must be established to derive

the correct estimation of |KjN| or |K,N| for a subsequent

f or f

i3 5y respectively. The reason is that Kj is a subset

of K, as a result of the first fij' This implies that a

dependence between the events Ki and Kj is created as a

consequence of the initial f Initially K. and K. are

]
independent and the only restriction is that they are both

ij°

contained in D,. As a query is processed, more restrictions
are added on Ks and Kj by themselves or through some other
subset of D, . We want to characterize the set which imposes
a restriction on K, and K; in estimating the effect of £,

J ]
or f

ji°

We generalize (2.3) by using conditional .probability.
The dependence formed by a semijoin comes from the
containment relation among the value sets of joining
attributes 1in the same block. However, not all the subsets
of D, represent the set of values of some a; € By during
guery processing. Unless a set can be generated by applying

a sequence of semijoins to A, for some a; € By, the identity

of the set 1is not known. Let 9. be the ith semijoin in a
sequence of semijoins.

Definition 2.5: For a block B, = {a1, ceos an}, let H

be a proper subset of Dy - Consider a sequence of semijoins

Sm = Bqs Bor eeey Po. H is a reachable set for Bk after %

if there exists a concatenation V, W of two sequences of

semijoins, V and W, where: (i) V is a subsequence of Sn’
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(ii) any semijoin in W is between the attributes in Byi and

(iii) the seguence V, W reduces A; to H for some a; € By.

When a query 1is partially processed after a sequence

S the current set of all reachable sets for B, denoted by

m!

RS, , is defined to be the set containing D, and all
reachable sets for B, after S . Since Sm is a special case
of the sequence V, W, every K. is an element of RS, . S, is
a null sequence after initial local processing. In this

case, V, W = W, and the current set of all reachable sets

for Bk is called the initial set of all reachable sets for

B,, and is denoted by RSj.
Consider a set K € RSk which 1is the smallest set
containing both K, and K.. The only information available

J
for Ki' Kj and K is that the wvalues of K. and K. are

1 ]
distributed 1in the set of values K. Hence the knowledge
that the event Kj has occurred does not affect the
probability of occurrence of the event K. when the effective

sample space is reduced to the event K. That is
p(xi|ij) = P(K; |K)
Multiplying both sides by P(KjIK) gives
p(xilex) = P(K; |K) P(Kj|K) (2.4)

Hence the events K, and Kj are conditionally independent
given the event K. Note that conditional independence does

not imply independence. For any K' € RS, such that K ¢ K'
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p(Kilij') = P(Ki|KjK) = P(K; |K) > P(K;|K")

Hence the events K. and Kj are conditionally dependent given
the event K'. By using Definition 2.5, we formally define

the restricting set.

Definition 2.6: Let a.,a. € Bk for some Bk € NI. The

i’93
restricting set of K. and Kj is the smallest set in RS, that

is a superset of both K and K..

J
For example, initially K, = A, and Kj = Aj. The
restricting set of K4 and Kj is D,. After fij' Kj c K.
Hence K, is the restricting set of K, and K..
The estimation of |KjN| after a semijoin fij as an

element in an arbitrary position in a sequence of semijoins

is as follows:
P(K;Ky) = P(K;K5|K)P(K) + P(K;K;|R)P(R)
Since KinR = ¢ because Kin c K, we have

|K1Kj|/|Dk| = P(Kin|K)(|K|/|Dk|)

Multiplying both sides by |D,| and using (2.4) gives

- 1K1 x IKg] / IK]

Initially the restricting set is D, for any K, and Kj. In

this case, (2.5) is reduced to (2.3). 1In order to evaluate
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(2.5), it is necessary to develop a method to calculate the
cardinality of the rgstricting set of K, and Kj at any point
in the sequence of semijoins. This will be discussed in the
subsequent subsections.

Next we consider the change in the cardinality of the
set of values of a joining attribute ay by a semijoin s
which goes to an attribute ag associated with a..

This change is caused by the dependence among
associated joining attributes. We consider the dependence
among associated joining attributes in set level. 1In other
words, associated joining attributes aj and a  are dependent
in the sense that the change of |Kj| depends on the change
of |Kg|, and vice versa. For cardinality estimation
purposes, it is proper to handle the attribute dependence in

set level.

To estimate IKjNI due to a semijoin £ where a_ is in

rs’
the same block as ag, and aj and ag are the attributes 1in
the same relation Rg, a solution to the problem considered

by Yao [YAO 77] is used. This reduction was ignored in most
of the previous semijoin strategies. It was first observed
in [CCA 80b] that Yao's solution 1is applicable for the

estimation of ]KjN

rs
computed using (2.2) and (2.5). Suppose |Rg| =n, |Kj| = m

. ]RgN[ due to a semijoin f can be

and leN| = k. Then lKjNI after a semijoin f_. is given by:
mox [1 - 5 {nx(1=1/m) = i + 1)/(n - i + 1}] (2.6)

2.2.2 Initial Lattice
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In this subsection, we show that the set Rsi forms a
lattice. This, we show by generating the elements of Rsi in
a step by step manner. The lattice (Rsi, c) is called an

initial lattice and it will be used as a building block to

generate a lattice for more general cases.

Consider B, = {a1, Bor eeey an}. As the dependence
among attributes in By is formed by a sequence of
semijoins, the pairwise relationship of the sets in {Ki | a;
€ Bk} plays an important role in parameter estimation.
Because of the probabilistic nature of estimation, at any
instance during the query processing, Kin # ¢ for any ai,aj
€ B. At some point 1in the process of a sequence of

semijoins, there are four difference cases:

(1) K, = Kj
(2) K, ¢ Ky
(3) Ky c Ky
(4) Ki 4 Kj and Kj 7 Ki
Let Tij be the restricting set of K, and Kj. We have the
following equivalences:
(a) Ky = Ky iff Tiy = Ky = K
(b) K; c K, iff Tiy = Ky
(c) Ky c xj iff Tij = Ky
(d) K, ¢ Ky and K; ¢ K, iff Ti; * Ky and Tiy * K
Hence the relationship between Ky and Kj can be determined

from the knowledge of T, Consequently, it 1is sufficient

jn
to develop a model from which we can find the restricting

set of K, and Kj at any point in the sequence of semijoins.
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Since the characteristic of the model is common to each
block B, € I, we will drop the block index for the rest of
this chapter for simplicity wunless it is necessary. For
example, B denotes a block, RS denotes the set of all
reachable sets for B, and so on.

Without loss of generality, let B = {a,, a,, ..., a,l.

Ai is the set of wvalues of a; after initial local

processing. fij reduces Kj and generates a new set KjN.

Since K:N = {v € K. v € K. K.N = K.K.. From the remark
] { ] | 1}' J 1]

after Definition 2.5 concerning RSI, we observe that for any

X € RSI, X can be reached from Ai for a, € B after a

sequence of semijoins each of which is between the

attributes of B, Hence for any X € RSI, X = Q.

1€IAi where 1

c {1, 2, ..., n}. We will discuss later the dynamic change
of RS. This is caused by the generation of new sets which

cannot be represented by the intersection of sets in { Ai' |

1 _ :
a;, € B}. Let RS, = {A, | a; € B}, i.e.
I _
RSy = {A,, Ay, ..., A }.

The elements in Rsﬁ are pairwise incomparable sets with

respect to the set-inclusion relation. The set Rsi is
generated by intersecting i sets in Rsﬁ at a time for i = 1,
2, «e., N,
Let C. denote the number of combinations of n objects taken
i at a time. There are nCi elements in Rsi.

RSy = {A,A,, AjAg, ..., A _.A}
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I

RS, = {A1A2 ... A_}

Let ng = {D}. Then

In developing a lattice model, we try to wuse the
standard terminologies and notations from the existing
lattice theory. Some definitions used in lattice theory are
presented in Appendix B. If new concepts are introduced or
it is necessary to modify the existing definition because of
the particular structure of our model, separate definitions
will be given. In a lattice, g.l.b.{X,Y} 1is denoted by
X A Y, and 1l.u.b.{X,¥Y} is denoted by X v Y,

We will show that (RSI, c) is a lattice. Let X, Y and

Z be the elements in RSI. Define

g.l.b.{X,Y} XY,

I

l.u.b.{X,Y} minimum{Z € RS

| X c Z and Y c 2}
It was proved as a theorem in [BIRK 67] that any family of
subsets of a set which is closed under intersection forms a
lattice under set-inclusion by taking the g.l.b. of two sets
as the intersection of the two sets and the 1l.u.b. of two
sets as the smallest set in the family which contains the
union of the two sets. It follows that (RSI, c) is a
lattice.

From the above discussion, we state the theorem which

relates the lattice theory and query processing in database

systems.
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Theorem 2.1: Given a block B € II, the 1initial set of
all reachable sets RSI forms a lattice under set-inclusion

with

g.l.b.{X, ¥} XY and

l.u.b.{X,¥}

minimum{z € RST | X c 2 and Y ¢ Z}

I

for any X,Y € RS°. 1In estimating the effect of fi or f

J ji
for 2j.ay € B, the restricting set is l.u.b.{Ki, Kj} and the

reduced set is g.l.b.{K;, Kj}. .

The initial lattice (RS?, c) is denoted by L!. The
greatest element of Ll is D, the domain of the attributes in
the block. Since a block 1is finite and nonempty, the
lattice which models our problem 1is also finite and
nonempty. The structure of the 1initial 1lattice and the
exbanded sublattice, which will be discussed in the next
subsection, are exactly the same. The structure of b s
important in generalizing the model. Especially the concept
of 1level, which has already been indicated by the subscript
i in Rsi, is essential in expanding the lattice and
performing the search in the lattice when searching is

necessary during the query optimization procedure. We will

devote the rest of the subsection to identify the structure

of LI.

First, the relationships among {RS{ | RS% c Rs!} are

investigated. These relationships will be used to establish

the level structure in LI.

Lemma 2.1: The following is true for rs!:
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(i) For any Xj € ng and 0 < i < j £ n, there exists X, €

I
RS} such that Xj c X,

(ii) For any X, € RS% and 0 £ i < j £ n, there is no xj €

RS% such that xi c X.,

J
(i11) If X X, € RS% and X, # X then X, and X, are

1’
incomparable,

2

: 1 I . .
(iv) 1f Xj c X; for X, € RS, and xj € st then i < j.

Proof: Obvious.

Lemma 2.2: 1In RSI, if Xj c Xi and there is no Xk such

I I
that Xj c xk c xi for Xi € RSi, X. € RSj

i and X, € rRS! then j

= i+1,
Proof: Obvious.

The next lemma further restricts the structure of the

initial lattice.

Lemma 2.3: LI is a boolean lattice.

Proof: Let P'(X) be the power set of a set X. For any
set X, (P+(X), c) is a boolean lattice under set-inclusion.
Intersection and union are wused for meet and join,
respectively. Hence L = (P+(Rsﬁ), c) is a boolean lattice.
Define a function 8,: L --> L such that 61(Y) = Y', a set
complement of Y € P+(Rsﬁ). It can be shown that 6, is a
dual isomorphism, Hence L' = ({61(Y)|Y € P+(Rsﬁ)}, c) is
also a boolean lattice with the ordering relation reversed.

I

Define a function 62: L' -->» L° such that 62(X) =D Q (QA.

1€X
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Theorem 2.1: Given a block B € II, the 1initial set of
all reachable sets RSI forms a lattice under set-inclusion
with

g.l.b.{X,Y} = XY and

I

l.u.b.{X,¥} minimum{Z € RS

]

| X c Z and Y ¢ 2}

I

for any X,Y € RS°. In estimating the effect of £, or f

3 ji
for ai,aj € B, the restricting set is l.u.b.{Ki, Kj} and the

reduced set 1is g.l.b.{Ki, Kj}. n

The 1initial 1lattice (RSI, c) is denoted by L!. The

I

greatest element of L~ is D, the domain of the attributes in

the block. Since a block 1is finite and nonempty, the
lattice which models our problem is also finite and
nonempty. The structure of the 1initial 1lattice and the
exbanded sublattice, which will be discussed in the next
subsection, are exactly the same. The structure of ! s
important in generalizing the model. Especially the concept
of 1level, which has already been indicated by the subscript
i in RS%, is essential in expanding the lattice and
performing the search in the lattice when searching is

necessary during the query optimization procedure. We will

devote the rest of the subsection to identify the structure

of LI.

First, the relationships among {Rsi | Rsi c RSI} are

investigated. These relationships will be used to establish

the level structure in LI.

Lemma 2.1: The following is true for RSI:
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Ai)' Clearly 6, is an isomorphism. It follows that ! is a

boolean lattice. u

In a poset P, 'a covers b' means that a > b and there
is no x such that a > x > b for any x € P, We introduce the

concept of level in the lattice.

Definition 2.7: A leveled lattice is a lattice L with a

strict antitone function v: L --> Z from L to the chain of
all integers such that if x covers y, then

vix] = v[y] - 1 for all x,y € L.

Definition 2.8: The length 1(L) of a lattice L is the
l.u.b. of the lengths of the chains in L, where a chain in L

is a subset L' of L such that x < y or y < x for all x,y €

L' .
When 1(L) is finite, L is said to be of finite length.,

Definition 2.9: In a lattice L of finite 1length, the
depth d[x] of an element x € L is the l.u.b. of the lengths
of the chains I = Xg > Xy > ... > X = X between the

greatest element I and x.

It is obvious that d[0] = 1(L) where O is the least
element. The following theorem completely characterizes the

structure of LI.

Theorem 2.2: LI is a leveled boolean lattice with

vIX] = da[X] for all X € RS,
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Proof: In a boolean lattice ! = (RSI, c), rs! = U?zo
Rsi and D 1is the greatest element. The mathematical

induction is used. The length of maximal chains from D to X

is 1 if and only if X € RS%. Hence d[X,] = 1 if and only if

I . I
X, € RSy. From Lemma 2.1.(i), for any X;,, € RS;, ,,
1

exists at least one Xi € RSi such that Xi+1 c xi. Also from

there

lemma 2.1.(ii), there is no xj € RS% such that xi+1 c Xj for

. . . . . I
j > i+1. Hence d[X;,,] = i+1 if and only if X;,, € RSy ,.

Consequently, d[xi] = i if and only if X; € Rsi for all 1i.
Now 1let v[X} = d[X] and consider X, € Rsi and xj € RS%. X,

> xj implies < D, X;, Xj > is a chain. clearly v[xi] <
v[xj]. If X; covers Xj' then from Lemma 2.2, i = j-1.

Hence v[xi] = v[xj] - 1. .

Note that v[X] = i if and only if X € RS] for all X €

t!. since L! is completely characterized by the elements in

Rsﬁ, we can consider that Ll is generated by the elements in
I

RS1.

Definition 2.10: The dimension dim(LI) of the initial

lattice L! is the cardinality of the elements in Rsﬁ. The

elements in RS? are the generators of LI.

I

For the initial 1lattice L-°, l(LI) = dim(LI). 1f

dim(LI) = n, the number of elements in level i is nCi and

the total number of elements in LI is

n _ N
Zi=0 nCi = 2
Since L! is of finite length and leveled by d[X], it
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satisfies the condition that all maximal chains between the
same endpoints have the same finite length which is known as
the Jordan-Dedekind chain condition.

We give an example of an initial lattice model to

illustrate the effect of a sequence of semijoins.

Example 2.3

In this example, we construct L'I for B = {a1,a2,a3}.
Then L! is used to determine the restrictihg set and the
reduced set for each semijoin in a sequence of semijoins
between the attributes in B.

From the initial value sets {A1, Ay, A3}:

RS} = {A,, Ay, A,)
RS, = {A;A,, AjAg, A,A5)
RSy = {A,AA,]
With Rsé = {D}, rs! is given by:
Rrs!

= {D, A1, A2, A3, A1A2, A1A3, A2A3, A1A2A3}

It is obvious that v[X] = 1 iff X € Rsﬁ. The Hasse diagram
of L is depicted in Figure 2.1.
Consider an arbitrary sequence of semijoins
217 f320 fq30 fpq
Let ¢.: the ith semijoin in the segquence

f f f

12

T, the restricting set for g

E;: the reduced set by g4

Initially K, = A; for all a; € B. If g, = fjk

reduced to E.,. The effect of each semijoin is:

then Kk is

(1) o, = f,,



L6

Level 0

Level 1

Level 2

Level 3

The Hasse Diagram of the Initial Lattice
and the Effect of Each Semijoin for Example 2.3

Figure 2.1



T1 = K1 v K2 = A1 v\A2 =D

E1 = K1 A K2 = A1 A A2 = A1A2
(2) 9, = £5,

T2 = K2 v K3 = A2 v A3 = D»

E, = K2 A K3 = Az A A3 = A2A3
(3) ¢5 = £,4

T3 = K1 v K3 = E1 v A3 =D

E; = Ky A Ky = E; A Ay = AA A,
(4) o, = £,

T4 = K1 \ K2 = E1 v E2 = A2

E, = K, A Ky, = E; AE, = AA A
(5) o5 = £, ‘

T5 = K1 v K2 = E4 v E2 = A2A3

E5 = K1 A Kz = E4 A E2 = A1A2A3

Since Ky = K, = K3 = A1A2A3 after Be K, will not be
reduced by any semijoin for all a; € B. The effect of each

2, is shown in Figure 2.1. ]

2.2.3 Expanded Sublattice

In this subsection, the preliminary = step in
generalizing the initial lattice model is presented. This
subsection and the next systematically generate the elgments
of RS at any instance during the query processing in order

to identify its structure and useful properties.

I

For B € I, K, for any a; € B is in L before any

i
semijoin to an attribute associated with a; is made. The

effect of a semijoin to a, € AJA; on a, cannot be modeled by
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LI. In other words, LI cannot model the effect of semijoin

between the attributes in one block has on the attribute in

another block.

Definition 2.11: An expanded sublattice 1is a lattice

generated to model the effect of a semijoin fjk' between the

equivalent joining attributes aj and ay in one block, on the

attribute a;, which is associated with ay in another block.

The expanded sublattice with the greatest element X

will be denoted by EX

denoted by RSX.

and the corresponding poset will be

We shall 1illustrate the generation of the expanded

sublattice by generating the first expanded sublattice.

I

Suppose K, = X € L for a; € B before fjk is performed for

ay € AJAi and aj € EJAk. The reduction of Kk results in the

reduction of Ki' The reduced Ki’ namely KiN, cannot be
expressed by the intersection of sets in RS%. The only

restriction on KiN_is that it has to be a subset of X.

I

Hence it 1is incomparable with the sets in L° covered by X.

The generation of an expanded sublattice that reflects fjk
can be described as follows:

I _
(ES1) Suppose RSy = {A1, Boy eees An}. Let A_,, represent

the K.N formed by semijoin fjk' Then Apyq © X and
An+J & A, if X ¢ Ai'
(ES2) Let C® be the set of elements in LP covered by X.

X

Let RSX = {x o a_..} u c%.

1 n+1
(ES3) Generate Ex with X as the greatest element and RS? as
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the set of generators.

A is the reduced K, by fjk' From Lemma 2.1, any two

n+1

elements in CX¥ are incomparable. From (ES1), A
X

incomparable with any element in C%. Consequently the

X is

elements in RS? are pairwise incomparable. From (ES3), if

|RS§| = |RS%| then EX and L' are isomorphic. Since c® ¢ X

I X

for any YE€E L°, Y ¢ X implies Y € E”.

Since A c X, A

n+1 Xa We prefer to denote the

n+1 - *%n+1°

new element by XA This will enable the elements in the

n+1°

X

same level of E® to be represented by the intersection of

the same number of elements in the set {A1, Aoy eeey AL,

An+1}' Also all the elements smaller than X are represented
by the intersection of X and the elements chosen from the

set {A1, cees AL, An+1}' Therefore, A is used when the

n+1

set 1is used as a basic element while XA is used to

n+1
designate a specific element in a lattice. For the mth

expanded sublattice, the reduced set will be represented by

An+m.

A lattice which is generated as Lt by the set of

incomparable elements covered by the greatest element is

called an LI-type lattice. The LI-type lattice with the
Z

greatest element Z is denoted by L
y/

and its least element is

denoted by O

GZ. The expanded sublattice is an LI-type lattice.

. The set of generators of_Lz is denoted by

Definition 2.12: In an LI-type lattice L% of finite

length, the relative depth dZ[X] of an element X € LZ is the
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l.u.b. of the lengths of the chains between Z and X.

The following lemma provides an wuseful property for

proving subsequent lemmas.

yA

Lemma 2.4: Let W€ L” and ¥ be an LI-type sublattice

of L2 generated by the elements in L? covered by W. Then,

o = o".

Proof: Let Rsf = {z

_ 10 Zor eeey Zn} and I = {1, 2, ...,
n}. If d,[W] = k then W = ¢

jeJZj for J ¢c I and |J| = k.

There are n-k elements in L% covered by W. Denote these n-k

~elements by W Wor eeey Wo_ ko Without loss of generality,

k

1'

let J = {1, 2, ..., k}. It follows that W = Qj=1 Zj and Wy
=WQ zk+h for h =1, 2, ..., n-k. Hence

W _ .n-k _ n-k

0" = Q1 W, = Wa (Q_7 2,

= k n-k _ AN _ AZ
= (@29 Zp) @ (@7 Zpap)= Qg 2y = 07 m

The following example shows when and how to generate an

expanded sublattice.

Example 2.4

Assume that we already have Lt as 1illustrated in
Example 2.3. Let B' = {ai, aj} be another block and aj €
AJA,. Consider the following sequence of semijoins:

£21r £330 fyy
The effect of g, = f21 and g, = f32 are the same as in
Example 2.3. As a result of gy = f.., K, = A, is reduced.
A 1] 3 3

The generation of L 3 is as follows:
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(1) Since Rsﬁ = {A1, Ay, A3}, introduce A, such that

A, © Az, By 4 A, and A, ¢ A,
, A3 B3
(2) Since C : {A1A3, A2A3}, RS, = {A1A3, AsAg, A3A4}
(3) Ge:erate E 3 with Aj as the'greateit element and
3 3

RS,” as the set of generators. RS =

{Ag, AjAg, AjAg, AgAy, AjAjAg, AjAgA,, AjAgR,, AAjAsA,R
Az
The relative depth dy [X] =1 iff X € RS.~. The
3

A

reduced set of K; by 94 is AjA,. The Hasse diagram of L 3

and the effect of gy are shown in Figure 2.2, .
2.2.4 Expanded Lattice

In this subsection, we show that RS at any instance
during the query processing also forms a lattice. An
algorithm to generate such a lattice is presented and its

correctness is proved.

Definition 2.13: An expanded lattice 1is the smallest

lattice that contains the 1initial lattice and all the

expanded sublattices subsequently generated.

The expanded lattice models the state transitions which
are caused by the dependence among equivalent joining
attributes and associated joining attributes mixed together.

The expanded lattice for a block B models RS, and is
denoted by L. Iﬁitially L = Ll Subsequently, L

dynamically grows as a query is processed by a sequence of

semijoins which contains a semijoin between the attributes



52

Relative depth

0

2 A1A2A3 AZABALJ'

AIAZABAL&

The Hasse Diagram of the Expanded Sublattice
and the Effect of a Semijoin for Example 2.4

Figure 2.2
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of a block other than B. Different expanded lattices will
be generated for different sequences. Consider the new
expanded lattice after the generation of EX, for X € L. The
new expanded lattice 1is denoted by LN, We define the

lattice union as follows:

Definition 2.14: Let L, = (P

1 <) and L

1 5 = (Pz, <) be

lattices such that:
(1) P, and P, are the collections of subsets of a set D,
(2) In both L, and L,, < denotes set-inclusion,
(3) In both L, and L,, g.l.b. and l.u.b. are defined to be
the same as in LI, |

The lattice union L, U L, is (P1 U P,, <) with g.l.b.,

l.u.b. and < as defined in L1 and Lz.

L,L,, L,-L, and L,-L, are similarly defined. It is
clear that L1 U L2, L1L2, L1—L2 and L2-L1 are all posets.
It can be shown that L @ Ex is a lattice. Since the

elements of L and EX are subsets of the domain D, LU Ex is

well-defined. However, L U EX is not always a lattice. The

X

following lemma determines when L U E” is a lattice.

Lemma 2.5: Let O be the least element of L. L U X s

a lattice if and only if O € X,

Proof: We have to show that Xivxj € LUEx and Xiij €
LUe® for any X X5 € LueX. It is obvious when xi,xj'e L or
S S X. Assume X, € L-EX and X, € EX-L. We will first

show that XivXj € LUEX. This does not require O € EX. Let
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UB be the set of upper bounds of X, and Xj' then UB ¢ L.

X

Since the greatest element of E” is X, Xj < X < D. Also X,

< D. Hence D € UB and UB # ¢. Since UiAUj € UB for any
Ui'Uj € UB, XivXj = g.1l.b.UB € L. Now consider Xiij.
(->) Suppose X;AX; € LueX and 0 ¢ EX. Since 0 ¢ EX, 0 is a

X X

minimal element in L U E®. E® is an expanded sublattice

such that X' € L for some X' € RS?. Hence OX ¢ L, which

implies oF is also a minimal element in L U X, since 0O and

0% are both minimal elements in L U Exi OAOx ¢ LueX. This

contradicts that xiij € LUEX.
_ X X_ _
(<-) For any X, € L-E” and X; € E"-L, XjAX, XiA(XAXj) .

From the associativity of A, XiA(Xij) = (XiAX)AXj.

xi,x € L, XiAX € L. On the other hand, for any Xk € L, O €
X

Since

E* implies X, € E

EX. x,1x € E® and X; € EX implies (;AK)AXS = X AX5 € EX.n

whenever Xk < X. Since XiAX < X, XiAX €

Therefore sometimes it 1is sufficient to generate an

expanded sublattice to form LN and sometimes not. 1If 0 ¢

Ex, we have to construct the smallest lattice containing L U

EX, It 1is necessary to construct a lattice in order to
generalize the properties of RS! to RS so that the g.l.b.

and l.u.b. of any two sets in {K;|a; € B} can be determined

i
at any time during the query processing. The algorithm to

generate an expanded lattice is given below.

PROCEDURE GEN_LAT (L, EX)

// GEN_SUBLAT (X, G) is a procedure to generate //

// an LI-type lattice with the greatest element X //
// and the set of generators G //
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IF 0 € EX
THEN LY <- L U EX
ELSE
BEGIN X
Y, <- max {Y | Y covers elements in L - E
and elements in EX - L}
Y
c !« (v | YELU X and Y, covers Y}
Y : : Y
L ' < GEN_SUBLAT (Y,, C ')
Y, o '
IF oetL
N X ool
THEN L «<- L UE” UL
ELSE
BEGIN
m <- 1
Y
WHILE O¢gL
DO BEGIN
Y <- max {Y | Y covers elements in
m+ 1 v ¥
L -L™and elements in L ™ - L}
Y A Y
c™ e gy |vyeruvefu @, 1"
and Y covers Y}
m <€- m+1 m+1
Ym Ym
L <- GEN_SUBLAT (Ym, c )
END
N X m Yk
L" <~ LUEYU (U,_, L")
END

END

END GEN_LAT

We show that GEN_LAT (L, eX) generates the smallest

lattice containing L U EX,

Y
Lemma 2.6: Suppose O ¢ EX. L UEX U (Ul . L ¥) is the
Y
smallest lattice containing L U EX if and only if O € L m

v
Proof: (<-) Consider EX and L '. Since Y, €L Q g%, Y,
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Y. X

X

€ EX. Let L' ! be the sublattice of EX generated by the
Y. X
elements covered by Y,. From Lemma 2.4, OX =0 1 . Since
W oo o x . Y | X LA
L cL ',0"€eL .. From Lemma 2.5, E U L 1s a
Y
lattice. Following the same procedure, EXU(U€=1L k) is a

Ym Yk
lattice. Since O € L L 7).

, 0 € EXu(u}_, Consider X, € L-

v, Y
(%o U™ .L %)} and x, e {EXU(U™_ .L K)}-L. Using the same
k=1 j k=1

Y
arguments of the proof of Lemma 2.5, Xivxj € LUExU(U€=1L k).

Y
h for some h, where 0 < h £m, and L 0. Ex.

Y
Suppose Xj €L

xiij = XiA(YhAXj) = (XiAYh)AXj. Since Y, 2 XA, 20 and O

X m Yk ¥

e Eu(uT_.L %), X.AY, € L 9 for some g 2 h. Hence X.AX. €
k=1 i“"h 177

X m Yk . X m Yk

EU(U,_4L 7). Consider LUETU(U,_,L ")-{2} for any z €

m Yk X ' .
Ug=qL = -(LUE®) and let C, be the set of elements in

Y
X m k .
LUE U(Uk=1L ) covering Z. For any 2,,Z, € Cg, Z,AZ, ¢

Y Y
LUEXU(U$=1L k) {Z}. Hence LUEXU(U$=1L k) is the smallest
lattice.
n ¥
(-») 1If 0O€ L then O and O are minimal elements in
Y Y Y
Lufu(u}_ L *). so ono ™ ¢ Luefuul_ L k). .

Y
Consequently LUEXU(U§=1L k) is the new expanded lattice

Y
after the generation of EX. Therefore N - LUEXU(U$=1L k)

Denote the level function and the depth function of LN by vy

and dyr respectively. Summing up the previous discussions,

we have the following theorem.

X m

' Y
Theorem 2.3: LN = LUE"U (Uk=1 L k) is the smallest
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leveled lattice containing L U EX with vN[Z] = dN[Z] for all
z € LN where dN[Z] is given such that:
(1) dylz] = alz] for 2 € L
(ii) aylz] = aglz] + alX] for z € EX.Y
(ii1) dylz] = dg [2) + dly,] for z €L K and 1 < k < m.
| N

Proof: We have only to show that L is a leveled
lattice. This follows immediately from Theorem 2.2 and the

fact that LY is a union of a finite number of LI-type

lattices. - Consider Z € LHLM, where LH M X

Y, ,
or Ll or one of the L k S. We will show that vN[Z] is

and L are either E
consistent whether we use dH[Z] or dM[Z]. Suppose Z, € Lo
covers Z and there is z, € tM such that Z,> 12, > . Since
t? is an LI-type lattice Z2,,2 € Lo implies z, € 2. This is

a contradiction. ]

The fact tﬁat an expanded lattice is a leveled lattice
can be used to reduce the search space wheﬁ some elements of
the lattice are stored and they are searched to retrieve the
data associated with those elements. Suppose an expanded
lattice L -contains m expanded sublattices. Since every
element in level k, 1 < k < n+m, of L is represented by the
intersection of k elements in the set {A1, Byy eeey An'
Aoyqr soer An+m}’ we can easily identify the level of an
element. Therefore, if the elements in the same level of L
are stored together, we have only to search the elements in

the 1level 1in which the element being searched is. We give

an example which shows how to generate an expanded lattice.
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Example 2.5

In this example, we generate an expanded lattice which
models the interaction among equivalent joining attributes
as well as among associated joining attributes by a sequence
of semijoins.

2 = {agl ah}l

B
B
B, {ai, aj},
B

4- {akl a

“m’ an}'

and ag € AJA1, ap € AJA2,

Consider a sequence of semijoins

a; € AJA4

f f f

£,50 f f f

a3’ 217 thgr T340 knr tyi
I

L- is shown in Figure 2.3. Initially L = !

The effect of each semijoin is given as follows:

(1) g, = £

12
- K, is reduced from A, to AA,.
(2) 9, = f,3
- Ky is reduced from A, to Agjh,.
(3) 95 = £,,
- K, is reduced from A, to AR,
(4) B, = fhg

- Introduce AS to create A1A2A5.

Apy Aqh,
- Generate E with G = {A1A2A3, AALR,, A1A2A5}.
A.A A,A
e _ 172 N _ 192
Since O = A1A2A3A4 € E , L = LUE .
- K1 is reduced from A1A2 to A1A2A5.

(5) 85 = f3,
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A1A2A3Au

The Hasse Diagram of the Initial
Lattice for Example 2.5

Figure 2.3
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- K

(6)

4 is reduced from A4 to A3A4

86 = fkn

- Introduce A6 to create A1A2A6.

A_A

182 A.A

1772

- Generate E with G =

{A1A2A3, AA,A,, A ASAg, A1A2A6}.

A_A A A
e _ 172 N _ 192
Since O -}A1A2A3A4A5 € E , L = LUE .
- K2 is reduced from A1A2 to A1A2A6.
- Introduce A7 to create A3A4A7.
Aghy Ajhy
- Generate E with G = {A1A3A4, A2A3A4, A3A4A7}.
. Azhy AzA,
- Since O = A1A2A3A4A5A6 ¢ E , LUE is not a
ALA

374

lattice. LUE is shown in Figure 2.4. Only the

greatest element, the least element and the generators

of each expanded sublattice are labeled.

Y
- In this example, Y, = A1A2A3A4. Generate L 1 with
Y, _
G {A1A2A3A4A6, A1A2A3A4A5, A1A2A3A4A7}.
Y ALA Y :
-sinceoetr |, tN=rwue 3% '. LN is shown in

Figure 2.,5.

- K4 is reduced from A3A4 to A3A4A7.

The expanded lattice is the generalization of the
initial lattice L!. The current set of all reachable sets
has the same properties as those for Rrs! given in Theorem
2.1, We summarize the above discussion in the following

theorem:
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Theorem 2.4: Given a block B = {a1, Aoy eeey an}, the

current set of all reachable sets RS at any point in the

sequence of semijoins forms a lattice wunder set-inclusion

with

0

g.l.b.{X,Y} XY and

l.u.b.{X,¥}

minimum {Z € RS | X ¢ 2 and Y ¢ 2}

for any X,Y € RS. 1In estimating the effect of fi' or f

j ji
for ai,aj € B, |
(i) K;,K; € RS,
(ii) The restricting set is l.u.b.{Ri, Kj},
and (iii) The reduced set is g.l.b.{K;, Kj}. .

The formula to compute |KjN| resulting from fij can be
obtained using Theorem 2.4. Substituting |K| = [l.u.b.{K,,
Kj}| in (2.5), we have the following basic formula:

K:N| = .1.b.{K;, K,
[KN| = |g.1.b.{R;, Ky}
= |K;| x |Kj| / |l.u.b.{K,, Kj}[ (2.7)

We. have modelled the effect of a sequence'of semijoins
using a lattice and carried out a strﬁctu:al analysis of the
lattice model to establish a basis for the future research.
The theory developed in this chapter is general enough that
it can be applied to a broad class of query processing
problems. The lattice model for estimating the reduction of
relations during query processing can be used for
broadcasting communication networks as well as for point-to-

point communication networks.
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The lattice model not only enables us to compute ]Kil's
but also gives information about the éontainment relation
among Ki's. This fact can be used to increase the
efficiency of the query optimization algorithm. For

f can be excluded from the set of the

example, if K; ¢ Kj’ 3i
next possible semijoins because fji does not reduce any
relation. Also if Ki c Kj, KjN = Ki after fij'

case, |KjN| can be determined without any computation.

In this



CHAPTER 3
OPTIMI ZATION MODEL

In this chapter, we present a mathematical model for
distributed query optimization. The cost reduction model of
a sequence of semijoins is developed in terms of the cost
and benefit associated with each member semijbih of the
séquence. The optimization model is formulated using the
cost reduction model and the database state transition model

presented in Chapter 2.
3.1 Cost Reduction Model

In this section, the computation of the'processing cost
of a query is discussed. The expressions of the benefit
achieved by a semijoin are derived for a few different cases
depending on the change of the value of INFO bylthe
semijoin. The net benefit of a sequence of - semijoins is
expressed in férmulae. .

our cost measure of the distributed query is the total
inter-site data flow transferring the necessary data'fo- the
user sité. As mentioned in Chapter 1, the transmission
delay between source and destination in packet switéhing
networks 1is  proportional to the volume of data being

transmitted. We also include the message overhead incurred

65
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by inter-site flow to the data traffic. Here, the term
‘ "message". is used not to designate a specific number of
packets but a continuous stream of inter-site data flow.

A message overhead is defined in [KLEI 76] as all those
characters that are transmitted but not exchanged between
user processes in the attached host computers. The message
6verhead can be approximately divided into.the following two
parts which are measured in bytes:

(1) V¢: the fixed portion of the message overhead,

(2) Vp:'the pdrtion of the message overhead which is

- proportional to the length of the message.
The transmission cost to transfer the message of length M

bytes is given by:

C(M) Ve + Vp + M

Vf + (1 + Vp/M) x M

.Vf + v x M (3.1)

where v denotes the proportional coefficient and it is given
by v=1+ Vp/M. Ve and v are the parameters determined by
the communication network being used. By 1including the
méssage overhead in the transmission cost function, we want
to include the effect of the 1length of the sequence of
semijoins in minimizing the total amount of dafa transferred
in processing a query. In other words, any semijoin which
has a negligible effect in reducing the amount of data

transfer 1is excluded from the sequence to avoid the message
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overhead.

After the initial local processing, there are one or
more relations of R’ at each site involved in the guery.
When the reduced relations are finally transferred to the
user site, all the relations at one site can be sent by a
single message. Consequently the message overhead to move
the relations depends on the number of sites. The relations
stored at the user site do not have to be moved. Hence we
have to make use of the site information in fcrmulating the
query cost.

R' is partitioned 1into blocks such that any two
relations in the same block are stored at the same site.v
This partition is called SITE. If there are m sites
involved in the query, - |

SITE = {ST,, STy, ... , ST}
The block STi can be considered a set of relations stored at
site 1i.

Let s'rliQ be ST; € SITE such that R; € ST, for R; € R
and let STU‘be the set of relations stored at the user site.
1f STU # 9, SfU = STj for some STj € SITE. The data
distribution information is described by a set of parameters

called DIST:

DIST = < ST ST,, >

R’ 70U |
- i +
where STp = {STp | R; € R }.
The following example shows the derivation of the

initial value of DIST from SITE and STU.‘

Example 3.1
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Consider the relations presented in Example 2.1. It was
assumed that the relations are all stored at different
sites. Let R, = OFFER be the relation at the user Site.
Since there are five sites involved in the query,

SITE = {ST1, ST ST

27 3
{Ri} for i =1, 2, 3, 4, 5.

where STi

Since STy = {R4}, STy

In this case, the initial wvalue of STh for data

= ST4.

distribution information
DIST = < STR, STU >
is given by ST; = {Ri} for i = 1,2, 3, 4, 5. .

The data distribution information ngether with the
state of the database gives a complete description of the
distributed database to which the user query is issued. We
define the state S of the distributed database as follows:

S = < INFO, PAR, DIST >
The state space is denoted by I.

. The initial cost of a query is the total communication
cost to retrieve all the relations in R’ to the user site
after initial local processing without using any semijoin.
Let IC be the initial cost of a query and S(R) the size of a

relation R.

IC = Ve x (|SITE| - ty) + v x XRi€R+-STU s(si)
= Ve x ([SITE| - ty) |
+ v x | +_ (JR; | x ¥ W) (3.2)
RiGR STU 1 ajeai j



69

where tU- 1 if STU # 0,

0 otherwise.

The vaiue of INFO makes it necessary to differenciate a
few cases in computing the benefit achieved by a semijoin.
The change in the value of INFO is caused by SJR. In
Chapfer 2, INFO is defined as follows:

INFO = < N, Ng, JR, SJR, EJA, AJA, ¢ >
If SJR # ¢, the initial value of INFO 1is not changed
throuéhout the query processing.

Consider a;,a; € By for some By € I. Suppose u(ai) =

]
Ry, u(aj) = Rj and R; € SJR. After fij’ all the values of
K; necessary to process the query. are included in K:N.

]
Since the information contained in R, has been completely

transferred to Rj, R; can be ignored. The elimination of R,
from R* causes the following changes:

(1) Ng = {|B,| | B, € I}
- Since a; is ignored, if [By| > 2, |[ByN| = [By| - 1.
- If |Bh| = 2, EJAj = ¢ after ay is ignored.

Hence if a;,ay g T then B, is ignored and |B,N| = 0.

' +
(2) Np = {|ay| | R, € R}
= |a;N| = 0, which implies R; is ignored.
- If |BhN| = 0, a, can also be ignored.

]

In this case, IajNI = |a.

_1.
5

(3) SJR

- SJRN = SJR - {R;}.
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- If |ajN| = 1 and Rj € JR, then Rj becomes a singleton

joining relation. Hence SJRN = SJR - {Ri} U {Rj}.

(4) JR
- JRN = JR - {Ri}'
(5) EJA .
- EJA N = EJAL - {ai} for all h such that a, € EJA,.
(6) AJA
- If |BhN| = 0, ay will not participate in any semijoin.
H AJA N = AJA_ - .} f 11 h A..
ence AJ g J g {aj} or a g such that ag € AJ 3
(7) ¢
- If |ByN| # 0, oN =90 - {f, ,f . | a, €EJA;}.
If ]BhN| = 0., ON = ¢ - {fij' fji}°
(8) DIST
_ iy _ eml _ N
STLN - ST {R%}.
If ST;N =9, ST; can be ignored.
+
(9) Cp = {|IR,| | Ry €ER }
- If Rj becomes a singleton joining relation, |RjN| = |KjN|.

The following example shows the change in the value of

state S caused by a semijoin.

Example 3.2

Assume the query information model Q in Example 2.1,
the initial value of INFO in Example 2.2, and the 1initial

value of DIST in Example 3.1.
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Consider the first semijoin 6, = f16‘ This semijoin is
to perform R, <a. = a1] R;. Here u(a1) = Ry, u(as) = Ry,
and y(a,) = w(a6) = B,. Since R; € SJR, the value of S is

changed after ¢, as follows:

(1) N

B
- Since |B1| = 2 and a;,ag T, |B1N| = 0.
(2) Np
= |ayN| = 0.
- Since |ByN| = 0, |a4N| = |a4| - 1= 1.
(3) SdR
- Since |a,N| = 1 and R, € JR,

SJRN = SJR - {R1} U {R4} = {R4}.

(4) JR

- JRN = JR - {R1} = {R4, Rs}.

(5) EJA

- EJAGN = EJAg - {a1} = 9.

(6) AJA

- Since [ByN| = 0, AJA;N = AJA, - fagl = o.
(7) ¢

- Since |B,N| = p, ON = 0 - {f, ., f.,]
= {£59, £950 fog0 fgp1 f9g0 fg90 f49s fgul.
(8)VDIST

- v = 1T _ _
STRN = ST {R1} = 9.
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(9) ¢y

- Since R, becomes a singleton joining relation,

IR N| = |KgN| .

We derive expressions for the net benefit of a semijoin
by using the parameters describing the database state.

Consider fij with u(a;) = Ry, u(aj) = Rj and 23,35
anyvpoint during the query processing. Let nij be the net

€ Bh at

benefit of ¢ the cost incurred by fi and b, . the

ijr Cij ] ]
benefit achieved by fij'

The cost ¢ is the communication cost to transfer the

ij
current set of values of a,.

Cij = Vf + vV X (IKil X wi) (3-3)

The benefit bij is classified into the following three

different parts:

1. bl:: The benefit due to the reduction of R,

ij° J[ which"
results from the reduction of |Kj|.
1 U ' ‘ |
bij = tR- X [U X (Ile-IRle) X Za ea' wh] (3.4)
B h™™3
U . .
where tp = 1 if R g STU,
0 otherwise.
2. b?j‘ The benefit due to the elimination of Ri'

If Ri ¢ STU and Ri € SJR, the benefit is:

V X S(Ri) =V X (IKi' X wi)

Furthermore, if ST%N =9, Ve is eliminated.
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2 _ .0 L
bl] = tRi x tRi X [Vf X tRi + U X (|Ki| X wi)]‘ (3.5)
where tg = { ] if R € SJR,
0 otherwise;
L _ . i, _
and tRi- { 1 if STRN = 9,
0 otherwise.
3. b?j: The benefit due to the elimination of aj.
If Rj g ST, and |BhN| = 0, the benefit is:
vV X leN' X wj
In addition, if Iaij = 1and a, €J where u(ak) = Rj' the
additional benefit_cah be given as follows:
v X (|RjN| - |KkN|) X Wy
3 U '
bij = tp, x tg x vV x [IRjN| x wj
J h -
+ taj x tak x (leNl = R N|) x W] (3.6)
where tBh = { 1 if lBhN|.= 0,
0 otherwise;
and taj = { 1 if Iale = 1,
0 otherwise;
‘and ta = { 1 if a €4,
0 otherwise.
From (3.4), (3.5) and (3.6),
b.. = bi. + b2, + b3, | (3.7)

i3 ij i3 ij

Using (3.3) and (3.7),
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n..=b..—c.. (3.8)

We now compute the cost of a query associated with a
sequence of semijoins. Consider the following sequence.

SEQ= ¢1, ¢2' ® o oy ¢m

where N € ¢ for 1 = 1, 2, ..., m. Let n, be the net
benefit of ®: ci'the cost incurred by ¢:,» b, the benefit

achieved by 4.

;» and SC the cost of a query associated with

SEQ.

sc = 1C + [1.; ¢ - Iioq by

IC - 2T=1 (bi - ci)

1c - {7, b,

i corresponds to the cost of retrieving the

remaining portions of the relations to the user site and
XT=1 c; corresponds to the cost of semijoins 1incurred by

SEQ. The cost reduced by SEQ is XT=1 n. which is the net

i
benefit of SEQ.

3.2 Problem Formulation

In this section, we formulate the optimization problem
of distributed query processing. The model for database
state transition was presented in Chépter 2. The
expressions for the cost reduction achieved by a sequence of
semijdins were derived in Section 3.1 in terms of database
state parameters. The optimization model is based on the

database state transition model and the cost reduction
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model.

The optimization problem of distributed query

processing is described as follows:

Given:
- Query information model Q of the user query reduced by
the initial local processing. |
Q=<7T,J, R, 1 u ¢ >
where T is the target list of the user query,
J is the set of joining4attributes of the user
query, | |
R is the set of relations referenced by the
uéer query,
I is the partition of J induced(by the
equivalence relation '=';

(T u.J) --> R specifies the relation to

=

which each attribute belongs,

and Y

J --> Il specifies the block of II to which
each joining attribute belongs.
- The value of PAR after initial local processing.
+
PAR = <{|R;| | R; € R}, {|D;| | B; € I},

URgl | a

; € J}, {w. | a;

i ; €ETU J}>

where |[R;| is the cardinality of tuples in relation R,
|D;| is the cardinality of values in the domain
of the attributes in block B,

K.

;| is the cardinality of the current set of

values of joining attribute a;,

and w, is the width (in bytes) of attribute
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a; € TUJ.

" - The data distribution information SITE and STU.
2, ¢ e oy STm}

SITE = {ST1, ST
where_ m is the number of sites involved in the user

query
and STi is the set of relations stored at the
ith site.

STU<is the setvof relations stored at the user site.

Determine:

A sequence of semijoins Bir Bor eeer By

which has the minimal cost of the user query
- w
IC = li=1 ™y
where . €9, the set of possible semijoins to process
the user query,

IC is the initial cost of the user query given by

(3.2),
and n; is the net benefit of ¢, given by (3.8). »
Since IC is fixed, minimizing IC - 2¥=]' ny is

. . . . w
equivalent to maximizing Xi=1 n;.

The initial state of the distributed database before
usiﬁg any semijoin is known:
- The initial value of INFO is derived from Q.
- The initial value of DIST is derived from SITE and STy-
- The initial value of PAR is given.
The subsequent change in the value of the distributed

database state S caused by a sequence of semijoins can be
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computed by using the methods presented in Chapter 2 and
Section 3.1. The state transition model for the distributed
database 1is considered a function which determines the next
state given £he current state and a semijoin.

The net benefit of a semijoin at any position 1in a
sequence can bé computed using the expressions derived in
Section 3.1. The cost reduction modei is considered a
function which deﬁermines the net benefit of a semijoin
given the current state and the next state of the
distributed database and a semijoin.

Consider the ith semijoin 8. .

Let S. be the state of distributed database before B30
Si+1 be the state of distributed databésé after 5
and REAL be the set of real numbers. |
Then Si+1 is a-function of Si and ¢i,vand this définition
can be expressed as follows:
s... 9 5(s.,0.) ~ (3.10)
i+1 1’71 .
where 5: £ X ¢ --> I is defined to be the state transition

function. Further, n, is a function c' of S;» S

i+1 and B3
which can be defined as follows:
n; ¢ C"Si'51+1;¢i)
= c'(s,,5(5;,8;),0;)
d a(si,¢ij | | (3.11)

(o}]
oo

where L X ¢ --> REAL is defined to be the cost reduction
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function.

Now, the optimization
follows:
Let

Where Y = ¢1, ¢2, e« o o ¢)\(Y).

The optimal sequence of semijoins can

"solving the following:

maximize Zéiq) n;

subject to S, is given,
S;yq = 5(8;,8;)
n; = E(si'¢i)

and o .

i € o

model.

can

be

be

1
1
1

described as

T be a set of sequences of semijoins and let y € T

obtained by

yeeead(Y)),
veea(Y)),
seeen(y)).



CHAPTER 4
'DOMINANT TERM OPTIMIZATION

The purpose of this chapter 1is to develop efficient
methods for computing the values of variables which need to
‘be evaluated frequently in the query optimization procedure.

There are two 1important standards in evaluating a
computer algorithm designed for an optimization problem.
One is the optimality of the solution produced by the
algorithm. The other 1is the efficiency of the algorithm
itself. The execution time of an algorithm is determined by
the product of the number of executions of the dominént term
"and the time requiréd to execute the dbminant term.

In solvihgvour problem; we have to frequently compute
the net benefits of semijoins. Hence it cén be.considered
the dominant term in our case to find out Si+1 and n, given
S; and ¢.. Especially efficient computations of the
cardinalities of the sets of values of Jjoining attributes:
reduced by semijoins are <crucial in reducing the time
requirea to execute the aominant term. In Chapter 2, we
have developed a | lattice model and a method which
systematically generates the lattice in order to
characterize the properties and the structure of the set of

researchable sets for a block of joining attributes. The

79
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efficiency in application, however, was not considered.
Also we have to develop én efficient approximation fér (2.6)
which requires long computation time for a lérgé value of k.

The dominant ﬁérm optimization is important.because it
is common whether we devélop an optimal algorithm or a

heuristic algorithm for the query optimization.
4.1 Efficient Use of the Lattice Model

In this section, we present an efficient algorithm to
compute the,cardinélity of the set of values of a joining
attribute reduced by a semijoin from its equivalent joining
attribute. |

Since the query optimization will be 'done wusing a
computer, all the operations involved in query processing
have to be developed with computer implémeﬁtations in mind.

First, we discuss the operations in the lattice.
Consider a block B = {a1, Bor ey an} and the current set
of all reachable sets RS for B. We havé to identify
1.u.b.{Ki, Kj} and g.l.b.{Ki, Kj} to apply Theorem 2.4 and
Equation (2.7) in estimating the»effect of fij or fji for

ai,

aj € B.

A natural way of implementing a lattice in a computer
is to use doubly linked lists. A node represents an elem%nt
and pointers are used to specify the covering relationship
amohg elements. HOWevér, searching for g.l.b. and l.u.b. by
following pointers takes a long time apart from the cost of

space.
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In our case, fhe special structﬁre of (RS, ¢c) and the
naming rule of 1its elements can be used to implement
efficient lattice operations. Suppose (RS, c) contains m
expanded sublattices. Let.I'be an index set {1, 2, ..., n,
n+1, ..., n+tm}. Since each reachable set in RS 1is the

intersection of elements from the set {A1, Ayy ooy A

nl

Blsqr voes An+m}’ for any X,Y € RS
X = Qierx A; for some I c I (4.1.a)
and Y = Qjer Ay for some I, 1 (4.1.b)

Furthermore, from the naming rule of the elements in RS, X >
Y if and only if I, ¢ Iy‘ Note that X = D if and only if I
=¢.

Hence,

g.l.b.{xX, Y} XY

(Q. A:) Q (Quer AL)
1€Ix 1 | Jer J

Ay (4.2.a)

= Q
kelz

where Iz = Ix U Iy

Similarly,

-l.Ucbo{x’ Y}

minimum{Z € RS | X ¢ Z and Y ¢ 2}

where Iw = Ixxy

In this way, we can identify l.u.b.{K,, Kj} and g.l.b.{K.,

Kj} without storing the whole lattice and searching it.
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The lattice model provides the theoretical basis for
computing ‘the state transifion of the database. There may
‘be mahy different algorithm designs based on the results
presented in Chapter 2. Our goal is to find an algorithm
which reduces the sum of the time for computing
cardinalities and the time for maintaining information
necessary for computation.

In ordef to use (2.7), Qevhave not only to identify
l.u.b.{Ki, Kj} but also to know |l.u.b.{Ki, Kj}l. Since A,,
A2' ceey An are the'SetS from which all other reachable sets
aré reachéd, their .cardinalities have to be available.
Suppose l.u.b.{Ki, Kj} ¢ {D, Ay Ay, eeey An}. ~In many
cases for n < 4, l.u.b.{Ki, Kj} is the reduced set by an
.earlier semijoin in the sequence. That is, |l.u.b.{Ki,' Kj}l
has been computed previously by‘using (2.6) or (2.7). 1If
this 1is always the case, we have only to store the

cardinalities of A1, Az, ..., A_and the reduced sets by the

n
previous semijoins.

The following counter example shows that this

conjecture is not true.

Example 4.1 -

In this eiample, we construct a sequence of semijoins
such that for a semijoin in the sequence,
(1) lou-.bo{Ki, Kj} ¢ {D' A1, LI An}
(2) l.u.b.{Ki, Kj} is not a set reduced by any previous

semijoin.
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We use the expanded lattice generated in Example 2.5:

Let B, = {a,, a,, a3, a,l,
B, = {ag, apl,
By = {ay, aj},
B, = {a,, ap aq},
and aj € AJA,, ag € ARy, a; € AJA,.

Consider a sequence of semijoins:

f £ f

12’ 43" “21' “hg’ “34' “kn’ “ji’* “31' "24’
The expanded lattice and the effects of g, = f

f f f £ f f f

41

12’ e o oy

9, = fji are shown in Figure 2.5. After 95, Ky = A ALA K

1727757 72

= A1A2A6, K3 = A3A4 and K4 = A3A4A7.

The effects of the rest of semijoins are:

(1) ¢g = £3,

- K1 is reduced from A1A2A5 to A,A,A_A,A

17273747°5°

- l.u.b.(K1, K3) =D

- K, is reduced from AgA A, to A1A2A3A456A7.
- l.u.b.(K

2v Kg) =D

(3) = f

210 41

- K1 is reduced from A1A2A3A4A5 to A1A2A3A4A5A6A7.

- l.u.b.(K1, K4) = A,ALAqA,

For ¢10,' l.u.b.(K1, K4) = A A AR, is not a set reduced by
any semijoin in the sequence. The effect of each semijoin

is shown in Figure 4.1. .

Hence it 1is not sufficient to store the cardinalities

" of the reduced sets and those of D, A1’-"" An in order to

find |l.u.b;{Ki, 'Kj}l by searching. I1f we store the



85

cardinalities of all the elements of RS, we can definitely
find the cardinalityvof a reduced set by using Theorem 2.4.

If the entire RS is to be stored with the cardinality
of each reachable set, the cardinalities can be computed
using the following properties:

(1) For - any LI—type lattice, the events corresponding
to the generators are mutually conditionally
independent given the event cprrespondihg to the
greatest element.

(2) Whenever an LI-type lattice is generated to.make a
new expanded lattice, the . cardinalities of the
greatest élement and generatoré of the LI-type
lattice have been computed and stored. |

Although the above method is a conceptually simple way

of finding the cardinalities of reduced sets, it involves
many complex >brocedures. - The hajor time consuming
components are as follows:

(1) Procedure GEN_LAT has to be run for each expanded

| sublattice to generate‘a new expanded lattice.

(2) The cardinalities of all the elements in RS have to
be computed and stored. |

(3) g.l.b.{Ki, Kj} has to be Searched.to retrieve its
cardinality. |

Since the lattice (RS, c) may grow very large depending on
the sequence of semijoins,'this method is not efficient. We
must develop an algorithm which does not need to store ﬁhe

entire lattice and the Cardinality of each reachable set.
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Therefore, we present a Trecursive ‘algorithm which
computes the cardinality of any reachable set in the lattice
without storing the lattice. Once |l.u.b.{Ki, ‘Kj}l is
computed by this algorithm, the cardinality of the reduced
set is obtained by.(2.7).

Since the number of tuples in each referenced relation
is finite and a semijoin has to reduce at least one tuple to
process a query, a sequence of semijoins to process a query
is necessarily finite. As a result, the lattice of
reachable sets correspohding to such a sequence 1is finite.
Even for an infinite sequence of semijoins, uniess a
semijoin reduces a tuple in a relation, éh expanded
sublattice Qill not be generated. Therefore the lattice of
reachable sefé is always finite. Since a finite lattice 1is
a complete lattice, every subset in (RS, ¢) has a g.l.b. and
a l.u.b. |

From the completeness of an expanded lattice and the
associative property of g.l.b., we have the following

general result:

Lemma 4.1: Let the lattice L = (RS, c) for a block B =
{a1, Byr eees an} contain n initial sets A,, Ay, «.., A  and
m sets AL ., A Loy «eey A ,n generated by semijoins between
“the attributes in other blocks. Let I = {1, 2, ..., n, n+1,
«es, n+m}. Then for any set X € RS with the index set I, ¢
I,
X = golcb.{x1, XZ’ e e o) xp}

for some Xj €RS, je€J= {1, 2, ..., p}, if and only if
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where Ij is the index set of Xj for j € J.

Proof: (->») Since A is associative, g,l;b.{x1, ooy xp}

= g'l.b.{(x1Ax2)' X3, .I" Xp} = (‘..((X1AX2)AX3)...)AXP.
From (4.2.a), X AX, = Qi€I1U12 A;. Following the same
procedure, g.l.b.{X1, cees Xp} = Qi€I1U12...Ip A;. Hence
I.=1_.

g.l.b.{X,, ..., Xp} = X implies Useg 5 x

(€5) If Ujeq I3 = I, then g.1.b.{X,, ..., X}
= Qiexduxz...xp Ai T fier, BT X .
Definition A4.1: In (RS, c) fdr‘a block {a1, aé, .eoy
a } with m gkpanded sublattices, let X = Qielx A, for I c 1

= {1, 2, ..., n, n+1, ..., n+m}. The 1index set of a

reachable set X is Ix.

Since the index set of a reachable set uniquely
determines the reachable set, we will represent reachable

sets by their index sets. Suppose the greatest element of

the kth expanded sublattice is Z. Then A_,, = 2A_,,. The
index set of ALtk is given, by cqnvention, by IAn+k =I,0
{n+k}.

Using (4;1.a); we represent a .reachable set by its
index set in the aigorithms to determine the cardinality of
a reachable set. In computing the cardinality of a set X €
L, we deﬁermine sets X,, X,, ey Xp such that X,, Xz,'...,
Xp € L, g.l.b.{x1, X2'.'f" Xp} = X and the cardinalities of
Xip X5y ooy X are easily obtainable. In fact, the

p

following algorithm generates the index sets of iy oony Xp
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I

such that either X; € {A A ceos An+m} or X, €L for

n+2'
A

n+1’

i=1, ..., p. IfX € {a A }, [xil can be

n+1’ “n+2’ **°’ “‘'n+m

computed by (2.6). If X, € LI, |xi| can be computed using

the Afact that the events corresponding to A1, A2, ey An

are mutually independent. The cardinality of the set X «can
then be computed by usihg the associativity of g.l.b. and

repetitive application of (2.7).

PROCEDURE SET_COVER (I )

// I, is the'index'set of X € RS. I, is the //

q .
// index set of A_ for @ = n+1, ..., n+m //

q
C < ¢ ; initialize the cover being constructed.
u <€- max Ix :

WHILE u>n : n: the size of block
DO ’
BEGIN
C<-CU {1, }
Au
I <=1 -1
X X ‘Au
IF - Ix = g
THEN u < 0
ELSE U €- maximum Ix
END :
IF u# 0 THEN C «- C U {Ix}
RETURN (C)

END SET_COVER

Let Ii and I. be the index sets of Xi' X.

] J
I . . .
and X., Xj € RS U {An+1' ceoy An+m}' Since A ., is in the

, respectively

kth expanded sublattice, A > ALtk implies g < h. Hence

n+g

X, > xj implies max I, < max Ij' Consequently, if I, ¢ Ij

then max I, < max Ij. Suppose X, > Xj 2 X and there is no

I
Xy € RSTU {A; 4, ++., Ap,p) such that max I, < max Iy < max
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1 where Ik denotes the 1index set of Xk' . Procedure

X 14
SET_COVER avoids producing I, by producing Ij first.
The following example illustrates the steps in

procedure SET_COVER.

Example 4.2

Consider the lattice shown in Figure 4.1. rRs! = {A1,
Ay 53, A4} and m = 3. Since Ag = A,AjAg, Ag = A,AA. and
Ay = AgA,A,, the index sets are: IA5 = {1, 2, 5}, IA6_= {1,
2, 6}, and 1, = {3, 4, 7}. We apply SET_COVER for X =

7
A A AR, ACA A, The index set I, = {1, 2, 3, 4, 5, 6, 7}.

“(1) Initially C = ¢ and u = max I, =17.
(2) First execution of'WHILE statement:
Since u =7 >4 = n,
-C=¢01U {IA7} = {IA7}
-1,=1{1,2,3,4,5,6, 7} - 13,4, 7} = {1, 2,5, 6}
- Since .Ix # ¢, U = max Ix = 6.

(3) Second execution of WHILE statement:

Since u = 6 > n,

-c={1, yu{, }=1{1, ,1I,}

g e A;" Thg
—IX= {17 27 5'1 6}— {11 2' 6}= {5}
- Since Ix # ¢, U = max Ix = 5,

(4) Third execution of WHILE statement:
Since u = 5 > n,
- C = {IA ' IA } u {IA }

-7 6 : 5 ) 6 5
-1, =15} - {1, 2, 5} = @

it
~a——
L]
>
L]
o
-t
>
Nt

X

- Since I, =9, us= 0.



(5) Since u=90, Cc= {1, , 1 I, }.
Ay" "hAg' TAg
From C = {IA7, IAG' IAS}, we have: X, = AR Ag, K, =
AJA A, X3 = AAjAg. Clearly g.1.b.{AzA,A,, AAA,, A A AL}

= A1A2A3A4A5A6A7 and A3A4A7, A1A2A6, A1A2A5 € {As, A6' A7},l

Once the 1index sets of X ...,xp € RSI U {AD+1' .oy
A ,p} are determined by using SET_COVER such that g.l.b.{X,,
cees Xp} = X, we can compute [X| bybapplying (2.7) p-1 times
using Xiy voer X ' |

p
We present an algorithm which takes the index set of X

€ RS and computes the cardinality of X. Let |B| = n and

(RS, c) contain m expanded sublattices.

PROCEDURE CAL_CARD (I )
// 1, is the index set of X. SET_COVER takes I _ and //

// returns,{11, ooos Ip} corresponding to {X1, ooy Xp}//

IF max Ix <n
THEN CARD <- |D| I, P(A.) ; P(A,) = |A-| / |D]
ELSE 1€Ix 1 ! 1 1
BEGIN
SET_COVER (I)
FOR . i = 1 UNTIL p DO ki <- max I,
" IF k1 <n ; suppose k1 € 4.0 S kp
THEN C_GLB <- |D]| nieI1 P(A;)
ELSE C_GLB <- |A, |
1
FOR i = 1 UNTIL p-1
DO
BEGIN
LUB <- I.I.,, ; LUB is the index
; set of‘xi v X
IF LUB = ¢

THEN C_LUB <- |D|
ELSE C_LUB <- CAL_CARD (LUB)
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C_GLB <- C_GLB x |A} | / c_LUB ; use (2.7)

, i+1
Iigq < 13 U ligy
END
CARD <- C_GLB : CARD = |X]|

END

END CAL_CARD

The following examples show how to compute' the
cardinalities of arbitrary reachable sets by Procedure

CAL_CARD.

Example 4.3

In this example, we compute the cardinality of the

reduced set by ¢ = f in Example 4.1. For (RS, c) shown
10 41 c

in Figure 4.1, let |D| = 10000, |A;| = 2500, |A,| = 4000,
|A;] = 5000, |A,] = 6000, |Ag| = 400, |Ag| = 600, |A;| =
1000, For gyg = £,9, Ky = AjAyRghhg and K, = A A AsA,ALA,.
From the given cardinalities, |K,| = 120 and |Ky| = 60. To
compute |K, A K,| = |A1A2A3A4A5A6A7|, we have to know |K, v
Kyl= |2 A R3R,]. |

CAL_CARD computes |X| = |A A A5A,| by taking I = {1,

2, 3, 4} as inputs. Since max I =4 =n,

CARD = |D| P(A,)P(A,)P(A;)P(A,)
= 10000 x (1/4) x (2/5) x (1/2) x (3/5)
= 300 | |
LW | |
By (2.7), |K; A K| = |K ] x |[Ky] / 300 = 24. .

Example 4.4
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Suppose the lattice shown in Figure 4.1 is a sublattice‘
of (RS, c) and l.u.b.{Ki, Kj}.= A A A A,AZAA,. We compute
|A1A2A3A4A5A6A7[ using CAL_CARD.

(1) Main procedure:
- Since I, = {1, 2, 3, 4, 5, 6, 7}, max I, > n.
- From Example 4.2, SET_COVER(I ) returns

I

1 {1, 2, 5?, I, {1, 2, 6} and I, = {3, 4, 7}.

- k1 = max 11‘= 5, k2 = 6, k3 = 7.

- Since k; > n, C_GLB = |Ag| = 400.

- For i = 1, LUB = I,I, = {1, 2}.
‘Since LUB # ¢, C_LUB = CAL;CARD ({1, 2}).
From the first recursion, C_LUB = 1000.
C_GLB <- C_GLB x |Ag| / C_LUB = 240.
1, <= 1,01, =1{1,2,5, 6}.
- For i = 2, LUB = 1213 = 0.
Since LUB = g, C_LUB = |D| = 10000.
C_GLB <- C_GLB x |A,| / |D| = 24.
1, <~ 1, U Iy ={1,2,3,4, 5, 6 7}.
- x| = C_GLBV= 24.'.
(2) First recursion:
- Since max i* = max {1, 2} < n,
CARD = |[D|P(A,)P(A,) = 1000.
- |X| = 1000.
The cardinality of X = A,A AZA, ACACA, is identical to that
obtained in Example 4.3. In this rather complicated

example, only one extra recursion is necessary. The

reachable sets used in this example form a sublattice of the
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‘A1A2A3A4ASA6A7

The Haése Diagram. of the Poset
of Reachable Sets Used in Example 4.4

Figure 4.2
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lattice shown in Figure 4.1. This sublattice is depicted in

 Figure 4.2. .

In order to use CAL_CARD, we have only to store the

A ees, A instead of

information of D, A n+m

oo.,A

17 n’ “"n+1’

the whole lattice. Since n is usually small and it is rare
that a reachable set becomes the greatest element of more
than one expanded sublattice, CAL_CARD generally terminates

after a few recursions.
4.2 Efficient Appoximation of Equation (2.6)

In this section, we derive an efficient approximate
formula to compute the cardinality of the set of values of a
joining atfribute'reduced by a semijoin to an attribute
associated with it. Then we validate the accuracy of the
approximate fo;mula by providing data from 'computer
simulation; | ' | _

Suppose ay and aj are the attribﬁtes of Rg‘ The effect

of f on |Kh| is determined using (2.6), as presented in

i3
Chapter 2, as follows:

IR N| = m x [1 - 15_ {(nxd - i + 1)/(n - i+ 1)}] (2.6)
where m ='|Kh|, k = ]RgNI; n = |Rg| and d = 1 - 1/m

Since k is the number of tuples belonging to the
reduced relation after a semijoin, k may be very large. 1In
this case, k iterations required in (2.6) take a 1long

computation time. We must eliminate the term involving the
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iteration from (2.6) while preserving sufficient accuracy.
In the literature, the following piecewise linear

approximation of (2.6) was suggested in [CCA 80b]:

k for k < m/2
K.N| = (k+m) / 3 for m/2 £ k < 2m (4.3)
h .
m for 2m < k

The above approximation generally produées large -error

because of'the-diSCOntinuity of the formuia. Especially,

the amount of error is prohibitive near k = m/2 and k = 2m.
We épproximate (2.6) from ité derivation. procedure. It

was shown in [YAO 77] that

k

where C?‘denotes C.. Since

nr

¢t / ¢ = {(n-n/m)!(n-k)1}/{n! (n=n/m-k)!}

“we have
Cﬁd / Cﬁ = {(ﬁ—k)!/(n-n/m-k)!}{(n~n/ﬁ)!/n!}
= {(n-k) / n}/®
- (1 - k/m)V/m i (4;4.a)
and
c;d / éﬁ = {(n-n/m)!/(n-n/m-k)t}{(n-k)!/nt}

{(n-n/m) / n}k
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= (1 - 1/m)k. | (4.4.b)
From (4.4.a)
|KyN| = m x (1 - cﬁd/cﬁ)
=mox (1 - (1 -k/m™™y, (4.5.a)
From. (4.4.b),
KNl = m x (1 - c’;d/cﬁ)
=mx (1 - (1 - 1/m%). (4.5.b)

By téking the smaller exponent in order to decrease the

error from approximation, we obtain the following

appréximate formula:

IKhNI = (mx (1 - (1 - k/n)n/m) ~if n/m < k, (4.6)

mx (1 - (1~ 1/m)k) otherwise.

As pointed out in [YAO 77], it is obvious that |KN| =

mif k >n - n/morm= 1. In summary, we can compute | KN

as follows:

k if m=n
1 if m=1
|RpN| = ( m if 1<m<n and k>n-n/m (4.7)

m(1-(1-k/n)n/m) if 1<m<n and n/m<k<n-n/m

m(1-(1—1/m)k) if 1<m<n and ksmin(n-n/m, n/h)

We have performed the computer simulation of (2.6),

(4.3), (4.5.a) and (4.5.b) for n = 50, 100, 1000, 10000,
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100000 and various values of m and k for each n. The result
of the simulation shows that the errer generated by (4.6) is
practically negligible and that the choice made between
(4.5.a) and (4.5.b) depending on the values of k aﬁd n/m is
always correct.'

Some of the data obtained from the simulation are
presented in Tables 4.1 through 4.4. Table 4.1 shows the
values of |K, N| for n = 100 and m = 30. Note that (4.6) is
still effective when n/m is not an integer. Table 4.3 shows
the data for n = 10000 and m = 100. Since n/m = 100}
(4.5.a).and (4.5.b) produce the same results for k = 100.
For - k < 100, (4.5.b) is more accurate, whereas (4.5.a) is
more agéurate for k- > 100. The plots of %error incurred by
using (4.6) vs. k for n = 1000, m = 500 and for n = 10000, m

= 2000 are shown in Figure 4.3.
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Table 4.1

Comparison of Approximations of Eguation (2.6)

for n = 100 and m = 30

k (2.6):YAO (4.5.a) (4.5.b) | (4.3):CCA
3 2.93 2.90 2.90 3.00
6 5.65 5.59 5.52 6.00
9 8.18 8.09 7.89 9.00
12 10.51 10.41 10.03 12.00
15 12.67 12.55 11.96 15.00
18 14.65 14.52 13.70 16.00
21 16.47 16.33 15.28 17.00
24 18.13 17.98 16.70 18.00
27 19.65 19.49 17.99 19.00
30 21.02 20.86 19.15 20.00
33 22.26 22.10 120,20 21.00
36 23.37 23.22 21.15 22.00
39 24,37 24.22 22.00 23.00
42 25.26 25.12 22.78 24.00
45 © 26.04 25.91 23.48 25.00
48 26.73 26.61 24.11 26.00
51 27.33 27.22 24.68 27.00
54 27.85 27.75 25,19 28.00
57 28.29 28.20 25.66 29.00
60 28.67 28.59 26.08 30.00
75 29.74 29.70 27.64 30.00
90 29.99 29.99 28.58 30.00
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Table 4.2

Comparison of Approximations of Equation (2.6)
for n = 1000 and m = 500

k (2.6):Y20 | (4.5.a) (4.5.b) | (4.3):ccCA
50 48.78 |  48.75 47.63 50.00
100 95.05 | 95.00 | 90.72 100.00
150 138.82 138.75 129.70 150.00
200 180.09 | 180.00 164.97 200.00
250 218.86 218.75 | 196.89 250.00
300 255. 12 255.00 | 255.76 266.67
350 288.89 288.75 | 251.88 283.33
400 320. 14 320.00 | 275.51 300.00
450 348.89 348.75 | 296.90 | = 316.67

'v 500 375.14 | 375.00 | 316.24 333.33
550 398.89 | 398.75 | 333.75 350.00
600 420.13 420.00 | 349.58 366.67
650 438.87 | 438.75 363.91 383.33
700 455,11 455.00 376.87 400.00
750 | = 468.85 468.75 388.60 416.67
800 480.08 480.00 | 399.21 433,33
850 488.82 488.75 | 408.81 450.00
900 195.05 495.00 417.50 . 466.67
950 498.77 1498.75 | " 425.36 483,33
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Table 4.3

Comparison of Approximations of Equation (2.6)

for n = 10000 and m = 100
k (2.6):YAO | (4.5.a) | (4.5.b) | (4.3):CCA
10 9.57 9.52 9.56 10.00
20 18.23 18.14 18.21 20.00
30 126.06 25.95 26.03 30.00
40 33.16 33.02 33.10 40.00
50 39.58 39.42 | 39.50 50.00
60 45.38 45.22 45.28 53.33
70 50.64 50.46 50.52 56.67
80 55,39 55,21 55,25 60.00
90 59.69 59,51 59.53 63.33
100 63.58 64.00 64.00 66.67
110 67.10 66.92 66.90 70.00
120 | - 70.28 70.10 70.06 73.33
130 | ~73.16 72.98 72.92 76.67
- 140 75.76 75.58 75.51 80.00
150 78.11 77.94 77.85 83.33
160 80.23 80.07 79.97 86.67
180 83.89 83.74 83.62 93.33
200 86.87 86.74 86.60 100.00
300 95.32 95,24 95. 10 100. 00
500 99,42 99.41 99,34 100.00
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Table 4.4

Comparison of Approximations of Equation (2.6)
10000 and m = 2000

for n =

k (2.6):YA0 | (4.5.a) | (4.5.b) | (4.3):CCA
400 369.49 369.25 | 362.61 400.00
11000 819.51 819.02 787.07 1000.00
1600 1164.16 1163.58 | 1101.50 1200.00
2200 1423.07 1422.57 | 1334.42 1400.00
2800 1613.44 1613.02 | 1506.96 | 1600.00
3400 1749.89 1749.53 | 1634.77 | 1800.00
4000 1844.77 1844 .48 .1729.45 2000.00
4600 1908.39 1908.17 | 1799.58 2000.00
5200 | 1949.18 1949.04 | 1851.54 2000.00
5800 1973.94 1973.86 | 1890.02 2000.00
8000 1999.36 1999.36 | 1963.40 |  2000.00
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Figure 4.3



CHAPTER 5
AN OPTIMIZATION ALGORITHM

An optimization model for distributed query processing
was described in Chapter 3, and a method to estimate
intermediate results of a query was developed in Chapter 4
based on the lattice model in Chapter 2. 1In this chapter,
an algorithm which solves the optimization model will be

presented.
5.1 Complexity Consideration of Optimal Algorithms

In this section, the computational complexity involved
in finding an optimal solution will be discussed.

It has been proven [HEVN 79a] that the distributed
query optimization problem is NP-hard. Furthermore, it is
unlikely that any of the -existing optimization techniques
can be used to solve the model because of the complexity of
the state transition function s and the unconstraint of the
final state in the optimization model.

We will examine the sizes of the solution spaces for
distributed queries to measure the amount of computational
effort when exhaustive searches are made to determine
optimal solutions. Since it 1is not always possible to

compute the size of the solution space of a distributed

103
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query, a few different cases will be considered separately
to take advantage of the structure of the guery. 1In all

cases, the number of relations referenced by a query is n.

CASE 1

There is one domain on which all joining attributes are
defined. n relations referenced by a query are all singleton
joining relations. |

Since a singleton joining relation is ignored after an
outgoing semijoin from the relation, the maximum length of a
sequence of semijoins 1is n-1, The number of possible
semijoins is nPaor where nPr denotes the number of
permutations of n elements, taken r at a time. Hence, the
number of sequences  of semijoins with length L are as
follows:

A=0: 1

A=1: P

A=k P

2 X eee X n—k+1P2
The total number of sequences of semijoins involved in an

nF2 X n-1

exhaustive search is given by

IR LS . S Y (5.1)

O—A

The value of (5.1) for n = 2, ..., 6 is given in Table
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5.1.
Table 5.1
The Size of the Solution Space for CASE 1

n _ Number of Sequences

2 3

3 ' 19

4 229

5 4581

6 137431
CASE 2

There is one domain on which all the joining attributes
are defined. Each of the n relations includes target lists.

The number of possible semijoins is nPor which is nz—n.
Since each semijoin cén appear only oncé in a sequence of
semijoins, the maximum length of a sequence of semijoins is
’an. Hence the total number of sequences of semijoins
involved in an exhaustive search in this case is given by

2
n“-n :
1+ 0521 n2-nP | (5.2)

" The value of (5.2) for n = 2,3,4 is given in Table 5.2.
CASE 3

[ _
In this case, 'a distributed query 1in general |is

considered. There are more than one domain. There are



106

Table 5.2

The Size of the Solution Space for CASE 2

n Number of Sequences
2 5
3 1957
4 > 10°

relations which .include joining attributes defined on
different domains. Joining attributes in such relations are
associated with other joining attributes.

Since a semijoin f can appear more than once in a

ij
sequence of semijoins because of the semijoin to an

attribute associated with a;

i the maximum length of a

sequence of semijoins can not be computed. Consequently,

the size of the solution space can not be derived.

From the above discussion, it 1is obvious '~ that an
exhaustive search method 1is prohibitive in ‘finding an
optimal solution for distributed query processing.

As observed in CASE 3, one of the major difficulties is
the possible reoccurrence of a semijoin in an optimal
sequence of semijoins. For this reason, the. length of an
optimal sequence of semijoins can not be determined a

priori.

5.2 A Block-Oriented Heuristic Algorithm



107

In this section, we present the main features of our
heuristic algorithm for deriving a sequence of semijoins.
Further, wé discuss the heuristics on which these features
are based. |

Hereafter, a modular approach will be used to explain
algorithms. A high-level description of a procedure will be
given in pseﬁdo-codes. Parts of a procedure that need to be
elaborated will be described as independent procedures.

So far, no general heuristic method has been developed
in the field of optimization for NP-hard sequencing
problems. One technique generally applicable for sequehcing
problems is a neighbourhood search technique  [BAKE 74].
This technique consists of the construction of a seed
sequence followed by exchanges of positions of elements in
the vseed sequence; 'Ih our case, howevef, the neighbourhood
search technique is very inefficient, since" the number of
sequences that can be generated from a seed sequence of
length n is n!-1 and the cost of each of these n! sequences
must be computed independently of tﬁe cost of another
sequence already computed.

Tﬁe net'benefit n, of a semijoin 9 is the difference

between the benefit b.

i the amount by which it reduces a

relation, énd the cost c;, the amount of data transferred
for 1its execution. A semijoin may ndt have net benefit at
all or it may not have significant net benefit.’ However, it
may cause substantial net benefits for the subsequent

semijoins. Therefore, placing such semijoins with low cost
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in the front part of a sequence of semijoins can decrease
the cost of a query considerably.

| In order to achieve this in an efficient manner, we
make use of the structure of a query. For a given gquery, a
block 1is a set of attributes defined bﬁ the same domain. A
semijoin is possible between any pair df attributes in a
block. .Since blocks are linked through attributes in the
same relations, the reduction of the cardinality of the set
of wvalues of attributes 1in one block can reduce those in
other blocks. Our strategy is to process a block as a unit.
That is, we select a block and schedule a sequence of
semijoins among ‘the attributes of the block, such that the
cost of this sequence is minimal and the reduction caused by
the sequence 1is maximally utilized in processing the
subsequent blocks. Since there are smaller number of blocks
than ‘that of semijoins, processing a block as a unit leads
to an .efficient solution algorithm, "Block-oriented
processing 1is divided into three major modules discussed in

the following subsections.
5.2.1 Process Blocks

This subsection discusses how a block to be processed

can be selected and processed.

First, we consider the processing of a selected block.

Definition 65.1: Let an attribute-ai be defined on a

domain D, . The density d; of a; is IKiI/IDkI‘
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Consider a block B, = {a1, ooy an}. Initially K, = A4

for all i, and fi reduces d. to d.d. Hence if dh < d.

j ] i73° 1’
then ay has more reductive power. Suppose d1 < ... < dn for

By . The basic strategy to process a block is to perform

R ETYTIIR fn-1,n to achieve a maximal reduction within a
block with a minimal cost. Processing a block by scheduling
semijoins which go from the attribute with the smallest
density in a block to the one with'the iargeSt density 1is

called a block visit.

We make the following observations about visiting a

block which are useful in reducing the query cost:

(1) It is generally beneficial to finish the visit of a
block at an attribute associated with a joining
attribute of an unvisited block. By reaucing’the
values of that attribute with the maximal reductive
power of the block being visited, the costs of
subseQuéht block visits can be reduced.

(2) 1f an attribute a, in a block B, is not associated
with any attribute in other block and if the visit
to the block Bk does not end in aj, then the
attribute a; can. be ‘excluded from further
scheduling ‘of semijoins because the values of a;
are contained in the current values of some other
attribute in the block By.

After a block 1is wvisited, the‘ remaining attributes are

called active attributes, and the excluded ones inactive

attributes.
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Next, we consider the selection of a block to be
processed. Suppose B, = {a1, ceey an} with d, < ... < 4.
The amount of data' transferred by the first semijoin f

12
in visiting a block B, is [K,|w, = |Dk|d1w1; Since |K2| =
|ID, |d, is reduced by f,, to lbk|d1d2, ﬁhe amount of data
transferred by f,, is |D |d,d,w, and is less than the data
transferred by f12. Following this argument it is. easy to
see that the amount of data transferred by each semijoin in
visiting B, is bounded by |k |w,. Therefore, we have
elected to take ]K1|w1 as a part of a measure for selecting
the next block to be visited.

In order to use the visit of a block to reduce the cost
of visiting other blocks, we consider not only the cost
incurred, but also the reductive power achieved by visiting
a block when the next block to be visited is selected.
since‘Bk éontains at least two joining attributes, d,4, is a
rough approximation of the reduction achieved by visiting
Bk‘ To complete.the measure for selecting the next block,
we, therefore, multiply |K1|w1 by a penalty factor 1 + d,d,,
'and we define the block cost BC(k) of an unvisited block B,

as follows:
BC(k) = |K1|w1(1 + d1d2) ‘ (5.3)

The purpose of procedure PROCESS_BLOCKS is basically to

'The data transfer incurred by transmission overhead is
not considered in order to avoid notational complexity.

This does not cause any difference for the purpose of
analysis.
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select and visit an unvisited block from the set of
unvisited blocks with the least value of the block cost
defined by (5.3) until there is no unvisited block left.
Procedure PROCESS_BLOCKS, which includes some control
features; will be presented in the next section. The
foliowing variables are defined to explain the algorithms:

(1) B: the set of all blocks

(2) UB: the set of unvisited blocks

(3) Vg: the set of visited blocks

(4) SVB: the sequence of visited blocks

(5) 6: the sequence of semijoins being scheduled

(6) A(B): the set of active attributes in block B

(7) S1(B): the sequence of inactive attributes in biock B
AB(ai) is the set of blocks which contains the attributes
associated with a;. The elements of AB(ai) are called the

associate blocks of aj. The set of end associate blocks,

END_AB, at the end of visiting a block B, which ends in a,

is given by Ag(a;) @ UB. Initially Up'= g, VB = ¢, A(B) =
B, c = ¢, SI(B) = ¢, and END_AB = g.

Procedure BLOCK_VISIT is shown below.

PROCEDURE BLOCK_VISIT(B)

//Suppose A(B)={ai1} cee, ain}.//

sort A(B) in ascending order of IKijI
//Supposé sorted list is {a1, ceey an}//
For 1=1 To n-1 '
- Do
BEGIN
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i,i+1 to o and reflect the effect? of fi,i+1

on the database state
IF a; is unassociated

append f

THEN
BEGIN
A(B) <- A(B)-{ai}

append a; to SI(B)
END |
END

IF a_ is unassociated AND a € A(B)-{an} is

associated with an attribute in B, € UB U VB
THEN k
//Suppose AR c UB U VB is the set of blocks in//
//which the attributes associated with an attribute//
//in A(B)-{an} are contained//

BEGIN

IF AR Q URB # ¢

THEN . :
//associated with an attribute in an //
//unvisited block//
BEGIN

FOR {a; € A(B)-{a }| éi is associated with

an attribute in AB Q UB}
DO FOR {Bj € AR Q UBla € B, is associated with a;}

DO compute block cost BC(j) after £;

select a. with minimum block cost after f .
END i ni

ELSE
select a; associated with an attribute in most

recently visited block in SVB

append fni to o and reflect the effect of fni
on the database state

A(B) <- A(B)-{a ]}

append a_ to SI(B)
END
IF |A(B)| > 1 _
//B contains more than one active attribute//
THEN
BEGIN

*The effect of a semijoin on the database state 1is
discussed in chapters 2, 3 and 4.
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Vg <«- vg U {B}
append B to SVB
END

END BLOCK_VISIT
5.2.2 Reverse Process Blocks

This subsection discusses how to make use of the
reduction of sets of values of joining attributes after all
blocks have been visited.

In procedure PROCESS_BLOCKS, the redﬁctive power of a
visited block is utilized by subsequent block visits
whenever possible. Consequently, a block visited later
benefits By "the reductions achieved by the blocks visited
earlier.

In order to reduce the sets of values of joining
attributes in the blocks visited earlier, using the
reductive power of a block visited later, roughly the order
of wvisits are reverséd with respect to the orde; of'visits
during PROCESS_BLOCKS. Note that in procedure BLOCK_VISIT,
a bldck whichv has more than one,active attribute after it
has been visited is appended to the sequence of visited
blocks, because atv least two joining attributes are
necessary in a block to perform a semijoin. Proéedure
REVERSE_PROCESS_BLOCKS is giQen below. In
REVERSE_PROCESS_BLOCKS, we make sure that a block has more
than one active attribute, since some control features which
will be explained in the next section may have excluded

active attributes after the block has been visited.
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PROCEDURE REVERSE_PROCESS_BLOCKS (SVB)

REPEAT .
B <- the last block in SVg »
IF B € VR AND B has more than one active attribute
THEN :
BEGIN

//Suppose A(B)={a,,, ..., a; }//

sort A(B) in ascending order of IKijl

//Suppose sorted list is {an, ooy a1}//

FOR i=n DOWN TO 2

DO IF fi,i—1 reduces lKi-1| at least by 1
THEN

BEGIN

append fi 1 to o and reflect the effect

i-

of £, ,_, on the database state
14

IF a; is unassociated

THEN
BEGIN
A(B) <- A(B)-{a;}
append a; to SI(B)
END
END
VB <- Vp-{B}
END
delete B from SVB
UNTIL SVB = ¢

END REVERSE_PROCESS_BLOCKS
5.2.3 Completion

In this subsection, we presenty_an algorithm which
reduces the size of the relations containing 1inactive
attributes and with at least one target attribute using the
reductive power accumulated in active attributes.

The sets of values of active attributes are reduced not
only by procedure PROCESS_BLOCKS but also by procedure

REVERSE_PROCESS_BLOCKS. For each  block, the active
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attribute with the smallest set of values is selected,

a sequence of beneficial® semijoins from this attribute to

inactive attributes is scheduled.

. Procedure COMPLETION is shown below.

PROCEDURE COMPLETION

FOR k=1 TO |B]
DO IF A(Bk) # ¢ AND SI(Bk) # 0
THEN
BEGIN

//Suppose A(Bk) = {a1, e ai_i} and //
//SI(Bk) =ai, ai+1, oo o an //

select a. € A(B,) such that |K.| is the minimum
s €- j J k J . '
t - 1
WHILE t < n
DO
BEGIN
IF ng, > 0
THEN
BEGIN , : ‘

append fst to o and reflect the .

effect of £ on the database state
st .
s <€- t
END
t €- t+1
. END
END

END COMPLETION

5.3 Control Features

In this section, we present additional procedures which

increase the robustness of the block-oriented heuristic’

algorithm for random input data.

Throughout the development of the block-oriented

A semijoin 9 is beneficial if n, = b;-c, > 0
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heuristic algorithm, the stress test of the algorithm has
been performed. We have tried to break up the algorithm by
providiné unusual input data. Solution'pfoduced using the
main features alone are sometimes not sufficiently close to
optimum. Additional <control features. are; therefore,
necessary. |

A few control features have been incorporated in the
algorithm to obtain better solutions. These control
features are mainly designed to take care of unusual
database states and complex queries, and, therefore, are not
invoked for typical applications. Four control feaﬁures are

presented in the following subsections.
5.3.1 Initial Inactivation of Attributes

This subsection discusses the exciusion of unassociated
joiniﬁg attributes with high 1initial density to avoid
semijoins which are neither beneficial themselves nor useful
for subsequent semijoins.

Even if absemijoin fij is not beneficial,.if it reduces
IKjl significantly, it can be wuseful to increase the
benefits of subsequent semijoins., However, if the 1initial

density of a. 1is high, £

; may not be beneficial and the

ij .
reduction of |Kj| is only |Kj|(1-di). ‘Therefore, in case
the initial density of an unassociatéd attribute a, is high,

it is better to exclude a; before using procedure

PROCESS_BLOCKS, and then perform a semijoin to a; in

procedure COMPLETION,
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In the algorithm, an attribute a; is rendered inactive
if its 1initial density 1is equal to or greater than 0.8.
This value was determined from many query examples. Suppose
a block contains‘unassociated attributes A5 eees ai+j with
initial density equal to or greater than 0.8. These
attributes are sorted in ascending order of their densities,
and the sorted sequence of inactive attributes 1is appended

by attributes inactivated by procedure BLOCK_VISIT. 1In this

e o 0oy a'

way, the reductive power of attributes a,. i+5

1 ’

although insignificant, is maximally utilized.

Procedure INIT_ATTR_INACTIVATION is shown below.
PROCEDURE INIT_ATTR_INACTIVATION

FOR k=1 TO |B]

DO
- //Initially A(Bk) = B, and SI(Bk) =9//
BEGIN ,
//Suppose B, = {ak1, ""_akn}//
FOR j=1 TO n |
DO IF dk' 2 0.8 AND a, . is unassociated
] k3

//Suppose R is the relation of which ay s is//

//an attribute// ]

THEN IF R € SJR OR R in user site

THEN
BEGIN
A(By) <= A(By)-{ay ]
append a,. to SI(B,)
~ Exp - KJ k
IF [SI(By)| > 1 |
THEN sort SI(B,) in ascending order of dkj
IF [A(Bk)l <2
THEN UR <- UR-{B,]}
END

END INIT_ATTR_INACTIVATION
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5.3.2 Path Construction

In this subsection, we shall describe the way to make
better use of the reductive power accumulated in visited
blocks to reduce the cost of visiting an unvisited block.

Suppose B. is a candidate for the next block to be
visited and there is an attribute a. € B. such that ac is

associated with a., in a visited block B and a.

31 'k By {7 1is an
associated attribute with the smallest set of values in Bp1.
Since fi1,j1 can lreduce IRl fi1;j1_may help reduce the

total query cost by decreasing the cost while increasing the
benefit of visiting B if B is selected as the next block

to be visited. Likewise, if a.

i1 18 associated wlthaj2 in a .

visited block sz, Bp1 #‘sz, and a;, is an attribute with
the smallest set of values 1in sz, then fiz,jz followed by
fi1,j1 may be more beneficial than fi1,'1 alone.

In this way, we can construct a path consisting_of a
sequence of semijoins leading to a candidate for the next
block to be visited. Each semijoin in the path is from a
visited block. 1In order to construct the most profitable of
many possible paths, we define the cost function of a path

as follows:

Let m be a path consisting of a sequence of semijoins ¢p1’

ey ¢pn where ¢pi’ 1<1i<n, is a semijoin between two
attributes in a visited block Bpi' Let BC be a candidate

for the next block to be visited. The cost function, of

path 7 leading to Beo used in determining a path is given by
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_ on _ on
P (m,C) = Li_; Cpi Li=1 bpi + BC(C)
——n
= -Li=1 Npy * BC(C) (5.4)

Note that the block cost of B, also depends on path =
because the set of values of an attribute in,BC is reduced

due to the semijoins in .

We now define the symbols which are used in procedure

BUILD PATH given below.

PR = {Bpi | 1 <i<n}. For each a € B, when 1 = ¢ and

for each a € By, when 7 # ¢ we define CAND_Pg(a) {B, €

Ag(a) @ VB | there exists a, € B which is associated with a

and ag € A(Bk) such that dg

< dyl. o= {a € B | CAND_Pg(a)
# g}. a' is an element of « with minimal density. |

PROCEDURE BUILD_PATH(B.)

PR <- ¢
//Initialize the path with a null sequence of semijoins//
mT < @
IF o # @
THEN
BEGIN %
select a € a
*
20
g* <- caND_Pg(a,)

REPEAT

J , _
the attribute with the smallest density in By to
the attribute associated with ag then Pn(¢Bj,n,,C)

select B. € 5* such that if ¢35 is the semijoin from

is minimﬁm
PR «- PR U {Bj}

T €- ¢Bj' i
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//Suppose g4 = fxy//

ap <" ax
g¥ <- CAND_PB(a,) - PB

UNTIL g* = ¢

//Suppose T = Poqr ? e ¢pn//

. p2
SElECt Trj = ¢Pj, ¢p'j+1, oo oy ¢pn _C_ m
such that Pn(ﬂj,C) is minimum

m €- T
END J

END BUILD_PATH

Procedure BUILD _PATH 1is an indecomposable control
feature of prdcedﬁre PROCESS BLOCKS mentioned in Section
5.2. Now that procedure BUILD_PATH has been presented, we
are in the position to elaborate on the procedure
PROCESS_BLOCKS.

In selecting a block to be visited, we sometimes choose
two candidate blocks. This also serves to prevent the
degeneration of the performance of the distributed query
processing algbrithm for unusual database states.

After the initial local processing, END_Ag = g¢. After
the block B, is visited ending with aj, thé sets of values
of attributes associéted with a, are reduced, not only by
the reductive power of By, but possibly the reductive power
of the previously visited blocks. Hence if END AR # ¢, we
select B_,, € END_AR with the minimum block cost as a
candidate block to be visited next. It is usually the case
that Bc1 has the smallest block cost among all unvisited

blocks, and is visited next. However, if this 1is not the
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case, we select another candidate block, B with the

c2’
minimum block cost among the blocks in UB.

We build paths for both of the candidate blocks using
(5.4) before selecting one as a block to be visited next.
In comparing the two candidate blocks, we‘usé another cost
function as follows:

Let 7 and B be defined as before. The cost function, of
path © and candidate block B., used in selecting the next

C
block to be visited is given by

p(n,0) = [}, cp; + BC(C) (5.5)

By usiﬁg (5.4) in constructing a path for a selected block,
we use the reductive power of visited blocks as much as
possible. By using (5.5) in sélecﬁing the next block to be
visited, the <cost -incurred by a seqdence of semijoins is
kept as low as possible.

In case END_AB = ¢, only one candidate block, Bci' is
selected such that B, is with the minimum'block cost among

the blocks in UBg.

Procedure PROCESS_BLOCKS is shown below.

PROCEDURE PROCESS_BLOCKS

END AR <- ¢
WHILE UB # ¢
DO
BEGIN | |
find candidate blocks
//NUM CAND is the number of candidate blocks//
//n is the path for candidate block B, //

FOR i =1 TO NUM_CAND
DO BUILD_PATH(B_;)
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//BN is the next block to be visited and n//

//is the path to it//
IF NUM_CAND = 1 OR P_(m_4, c1) < P_(n_,, c2)

THEN
BEGIN
BN < Bc1
T € 7
END cl
ELSE
BEGIN
BN < Bc2
T €= 1
END c2

//Process the path and visit the block//

append 7 to ¢ and reflect the effects of semijoins
in 7 on the database state

append the sequence of visited blocks, corresponding
to the senijoins in 7, to SV

VISIT_BLOCK(By) //Suppose visit ends with a € By//

Ug <- U - {BN}

END_AR <- Ag(a) © UB
END :

END PROCESS_BLOCKS
5.3.3 Hill-Climbing

A hill—climbing technigue can be addpted before using
procedure COMPLETION to further decrease the query cost.

Only the semijoins between active attributes need to be
considered. In order to maintain the efficiency of the
algorithm at the same time decrease the -query cost, the
beneficial semijoin which has the least cost is appended to
the scheduled sequence of semijoins until no éuch semijoin
is available. Basically, the semijoins are checked in

ascending order of their costs until a beneficial one 1is

found.
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Procedure HILL_CLIMBING is shown below.

PROCEDURE HILL_CLIMBING

SET_ACTIVE <- U, A(B,) where the union is performed over

those k for which |A(B, )| > 1
TEMP_ACTIVE <- SET_ACTIVE
WHILE TEMP_ACTIVE # ¢
DO
BEGIN

select a; € TEMP_ACTIVE such that the cost of f
to its equivalent joining attribute a, is the least

select a; € TEMP_ACTIVE such that n,, is the largest

IF nij >0

THEN
BEGIN

append fij to o and reflect the effect of
fij on the database state

TEMP ACTIVE <- SET ACTIVE - {a.}

END - 1

ELSE TEMP_ACTIVE <- TEMP_ACTIVE - {a;}

END

END HILL_CLIMBING

5.3.4 Screening

In this subsection, a procedure which deletes obviously
unnecessary semijoins scheduled by the procedures previously

described will be presented.

Suppose o] Bir eeer By Specifically, the foilowing

improvements are considered:

(1) Let 9y = £ and a. be an attribute of relation R. "

ij J

If mn neither comes from nor goes to the attribute

of R for all m > h, ¢h can be deleted from o

without affecting the costs or benefits of other
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semijoins. In this case, if nij < 0, the deletion
of ¢hbdecreases the query cost.

Let ¢, and R be defined as in (1), and a; be an
attribute of R'. In addition, let R be at the user
site. 1If m doeslnot go to an attribute of R' for
all m > h, |R'| will not be reduced after g¢,. In

this case, by moving R' to the user site instead of

performing ¢h,'the cost of ¢h'is saved.

Procedure SCREENING is shown below.

PROCEDURE SCREENING

//Suppose o = 8., ..., 8.//

FOR-h = t DOWN TO 1
//Suppose (28 =‘fij and ay is an attribute of R//
IF nij <0

THEN IF ¢ neither comes from nor goes to the attribute

//Suppose ¢ = Bir eoes P

of R for all m > h
THEN delete ¢h from ¢

. ST. is the set of//

s U

//relations at the user site//

IF ST

U

#0

. THEN FOR h = s DOWN TO 1
//Suppose 8y = f.., and a; and a. are attributes//

13’ ]

//of R' and R, respectively//

IF R € ST

U

THEN IF % does not go to the attribute of R'

for allm > h
THEN
BEGIN
delete 1 from ¢

insert "move R'" at the position of 2y
END



125
END SCREENING
5.4 Algorithm H and Its Complexity Analysis

In summary, Algorithm H which generates a sequence of
semijoins to process a distributed guery consists of the
procedures presented in Sections 5.2 and 5.3.

Algorithm H is presented below.

Algorithm H

INPUT: User query and the initial database state

OUTPUT: Sequence of semijoins

INIT_ATTR_INACTIVATION

PROCESS_BLOCKS

IF VB # ¢ THEN REVERSE_PROCESS_BLOCKS
HILL_CLIMBING

COMPLETION

. SCREENING

We now consider the time complexity of Algorithm H.
The R measure of the complexity is the number of sequences of
semijoins generated in accordadce with the complexity of an
exaustive search method discusséd in Section 5.1.

The existence of procedure HILL_CLIMBING in Algorithm H
makes it difficult to derive a narrow—bouhd time complexity.
Suppose there are s possible semijoins and m relations

involved in processing a query, then there are s choices for



126

the ith semijoin in the sequence of semijoins being
generated by .procedure HILL CLIMBING. The length ) of the
sequence of semijoins, however, cannot be determined a
priori as mentioned before. - Since a beneficial semijoin has
'to reduce at least one tuple in a relétion, in the worst
case ) = XT=1 |R;|. Hence the worst case complexity of
procedure  HILL_CLIMBING is O(SZT=1|R1|)- Fortunately,
procedureAHILL_CLIMBING is a refinement feature and very
seldom utilized.

The derivation of the worst case complexity of
procedure BUILD_PATH is as follows:
Let m = |g| and A the length of the path being constructed
by procedure BUILD_PATH. Since UB # ¢ when p;ocedure
BUILD_PATH is invoked, ) < |vg| < m-1. In the worst case,
procedure BUILD PATH generates \(m-)) sequences when )\ = 1,
2, ..., m?1. Therefore, the total number 65 sequences

generated is

zm-1

y=1 Alm o= 2)

m-1 m-1 .2
= m(ZA=1 x) - Zk=1 A

m{(m-1)m/2} - (m-1)m(2m-1)/6

(m3 - m)/6.

Hence the worst case complexity of procedure BUILD PATH is
O(|B|3). Just like procedure HILL CLIMBING, procedure
BUILD_PATH is very seldom utilized.

Since most gqueries are handled only by the main
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features of Algorithm H, we shall consider the complexity of

the main features of Algorithm H,

Theorem 5.1: The worst case complexity of the main
features of Algorithm H without procedure BUILD_PATH is

o(n*|g|), where n* = max {|B|] | B € Bl.

Proof: Procedures PROCESS_BLOCKS, REVERSE_PROCESS_
BLOCKS, and COMPLETION, the main features of Algorithm H,
are sequentially invoked. Since some of the active
attributes become inactive after the invocation of procedure
PROCESS_BLOCKS, the number of sequences generated by
procedure PROCESS_BLOCKS is greater than or equal to that by
either of the other two procedures. Hence we have only to
consider the complexity of procedure PROCESS_BLOCKS.
Procedure PROCESS_BLOCKS has two major loops, one embedded
within the other. For each block 1in B, procedure
BLOCK_VISIT generates sequences of semijoins. Consider B =
{a1, ceoy an} € B such that d, £ ... £ d_.. Procedure

1 n

BLOCK VISIT schedules a sequence f,,, ..., £ ; )
- 12 n-1,n

be appended by a semijoin fnj where 1 < j £ n-1. Therefore,

which may

procedure BLOCK_VISIT generates one sequence of 1length ),
for » =1, ..., n-1, and maximum_n-1 sequences of length n.
The maximum number of sequences‘that can be generated by
procedure BLOCK_ViSIT is 2(n-1), Siﬁce n < n*, the worst

case complexity of procedure PROCESS BLOCKS is O(n*lsl). .



CHAPTER 6
TESTING THE SOLUTION ALGORITHM

Algorithm H presented in the previous chapter has been
implemented' in PASCAL and runs on Amdahl 470V/8 under the
Michigén Terminal Systems at the University of Michigan.

The purpose of this chapter 1is to evaluate the
performance of Algorithm H with respect to the effectiveness
of the data reduction as well as the efficiency. The
results of the test runs of the PASCAL program implementing
Algorithm H are presented. In addition, comparisons with

the results of other algorithms are made.

6.1 Data Traffic Reduction

The goal of distributed query optimization 1is to
minimize the data traffic incurred by a distributed query in
a computer network. Reference solutions are needed to
evaluate the solutions produced by Algorithm H. Since no
optimal algorithm 1is available except an exhaustive search
method for distributed query optimization, and the wuse of
exhaustive search methods is prohibitive even for small-size
gueries as discﬁssed in Section 5.1, the solutions produced

by other algorithms in this area are used as a basis for

comparison.

128
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In order to make objective comparisons, we have
selected examples from recently published papers [HEVN 79b,
BERN 81, CHEU 82], which have similar formulations of the
problem to ours, as benchmarks for tests. Further, an
example is constructed to illustrate a particular feature of
‘Algorithm H. Using these examples, we also show the
execution steps of Algorithm H for different queries and
database states.

Throughout the computations involved in algorithms, the
costs, benefits and cardinalities are first computed in real
numbers, then the results are given in integers by rounding
the real numbers. 1In actual databases, the cardinalities of
tuples in relations or those of attribute values are
integers. However, integer arithmetic is not only
inappropriate to the nature of the statistical estimation

method being used, but is also the source of computational

overhead.

Example 6.1

The example by Hevner and Yao [HEVN 79b] is considered.
This example is also used by Cheung [CHEU 82]. The database
has the following four relations each of which is located at

a different site:

EMPLOYEE(E#, ENAME, SEX)
COURSE(C#, CNAME, LEVEL)
STUDENT_COURSE (E#, C#)

TEACHER_COURSE (E#, C#, ROOM)
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The relation TEACHER_COURSE is at the user site. The Iquery

is: for all male employees who are teaching advanced courses

in Room 103 and are students in at least one course,

the employees' names and the courses they are teaching.:

relat

FIND
WHERE
AND
AND
AND
AND

AND

defin

o
L}

the g

ional form of the query is as follows:

(EMPLOYEE .ENAME, COURSE.CNAME)

(EMPLOYEE .E#

"

STUDENT_COURSE.E#)

(EMPLOYEE . E# TEACHER_COURSE.E#)
(TEACHER_COURSE.C# = COURSE.C#)
(COURSE.LEVEL = 'Advanced') .
(TEACHER_COURSE.ROOM = '103')

(EMPLOYEE.SEX = 'M')

The parameters for the query and the database

ed as follows:

L[}

COURSE, R, TEACHER_COURSE

EMPLOYEE, R, = STUDENT_COURSE
COURSE.C#

TEACHER_COURSE . C#
TEACHER_COURSE . E#

EMPLOYEE . E#

STUDENT_COURSE.E#

COURSE.CNAME

EMPLOYEE .ENAME

list

The

are

After 1initial 1local processing, the reduced guery and

iven initial database state are shown below.
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The reduced query:

FIND (ac, ae)

WHERE (a1 = a2)

AND  (a; = a,)

AND (a, = ag)

From the reduced query, we have B, = {a1, 32} and B, = {a3,
ay, a5}

The initial database state is:

|R1| = 100, |R2| = 300, |R3| = 200, |R4| = 600
|A1| = 100, |A2| = |A3| = |A4| = 200, |A5| = 600
W, = 1 for i=1, ..., 5

W, = 11, we~=9

|D1| = 400, |D2| = 1000

In accordance with Hevner and Yao's example, the
communication network parameters, fixed overhead Ve and
proportional ‘coefficient v, are set to 10 and 1,
respectively. Then the initial cost of moving Ry, Ry and R,
after initial local processings to the user site 1is 3830.
For Hevner and Yao's method, the reported cost of the query
[HEVN 79b] was 1324. The cost reported by Cheung's method
[CHEU 82] was also 1324. We compute the cost for the same
example by Algorithm H énd the SDD-1 algorithm [BERN 81]
using our estimation method for the cardinalities of reduced

relations.
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Query cost by Algorithm H

The lattices L1 and L2 for B1 and B2, respectively, and
the changes of Ki's during the application of ¢ are shown in
Figure 6.1. The changes of values of database state
variables after each semijoin in ¢ are shown in Table 6.1

along with bi'-ci and n, for each semijoin.

1. INIT_ATTR_INACTIVATION

Since di < 0.8 for all a.

i all the attributes are

initially active.

- 2. PROCESS_BLOCKS

(1) Since 1initially END AR = ¢, a block to be visited is
selected from UB = {B1,Bz} with the minimum block cost.
Using (5.3),

BC(1) = |K |w (1 +.d.d,)
= 100 x 1 x (1 + 0.25x0.5)
= 112.5

BC(2) = |Rylwy(1 + dgd,)

200 x 1 x (1 + 0.2x0.2)
= 208
Since BC(1) < BC(2), B, is selected for the visit.

(2) Since VB = ¢, no path is built for B,. By procedure
BLOCK_VISIT, ¢, = f,, Iis appended to o, and a, is
inactivated. After f12, a new éet AjAc which represents
the reduced K3zis‘formed. After B, is visited, UR =
END_AB = {B,}. Since B, has only one active attribute,

B, is not included in VB.
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The Expansions of the Lattices by the
Sequence of Semijoins Generated by
Algorithm H for Example 6.1

Figure 6.1
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Figure 6.1 continued.
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(3) Since UB = {Bz}, B, is the next. block to be visited.
Since VB = ¢, no path is built for B,. 1In procedure
BLOCK_VISIT, 8, = f34, #3 = f45 are appended to ¢, and

a, becomes inactive. VB becomes {Bz} and UB becomes ¢.

3. REVERSE_PROCESS_BLOCKS
Since VB = {Bz}, 9, = f53 is appended to g. After f53,
a new set A AjA, which represents the reduced K, is formed.

Since R, € SJR, R, is ignored after f53.

4., HILL_CLIMBING

~Since none of the semijoins are beneficial, procedure

HILL_CLOMBING does not append any semijoin to o¢.

5. COMPLETION

(1) For By, a, is the only active attribute, while a, is the
only inactive attribute. Hence g = £, is appended to
0. |

(2) For By, aj is the only active attribute while a, is the
only 1inactive attribute. Hence Be = f34 is appended to

(o}

6. SCREENING

No semijoin is deleted from o by procedure SCREENING.

From Table 6.1, the cost of the query QC by Algorithm H

is:

QC

6
1€ - Liag ™y

3830 - 3352
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Table 6.1

The Sequence of Semijoins by Algorithm H
and Its Effect for Hevner and Yao's Example

i 1 2 3 4 5 6
8, £y2 £34 45 fg3 £a4 £34
|R1| : 8.7
K, | 8.7
IR, | 75.0 o 9.0

K, | 50.0 ‘8’.7

K, | 70.0 8.4

IR, | 14.0 8.4
K, | 14.0 : 8.4
|R4| 8.4

|K5| 8.4

b, 0.0 | 1860.0 | 591.6 | 18.4 | 1095.3 | 56.0
c, 110.0 80.0 24.0 | 18.4 18.7 | 18.4
n, -110.0 | 1780.0 | 567.6 0.0 | 1076.6 | 37.6
= 478

Query cost by the SDD-1 algorithm

We follow the same procedure used in the SDD- 1

algorithm and compute the cost of transmitting the data
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during the sequence of semijoins and transmitting the
reduced relations to the assembly site. However, for the
SDD-1 algorithm, we further include the cost of transmitting
the assembled‘answer from the assembly site to the user

site.

1. Hill—Climbing.

In this phase, the semijoin with the 1largest net
benefit is appended to the sequence of semijoins being
constructed until there is no remaining beneficial semijoin.
It should be noted that the reductions of relations at the
user site are considered as benefits in the SDD-1 algorithm.
Hence in computing the query cost, the costs of semijoins
are used instead of their net benefits. The sequence of
semijoins schéduled in this phase and its effect are
summarized in Table 6.2.

From Table 6.2, the part of the query cost QC1 incurred

by the sequence of semijoins is:

7
0y = Lioq 4

410.0

2. Assembly

In this phase, the reduced relations are moved to the
site where the largest relation is located. Let S(R) denote
the size of the relation R. After the hill-climbing phase,

the size of each relation is as follows:

S(Ry) = R |(w, + w_) = 104.7



138

Table 6.2

The Sequence of Semijoins by the SDD-1 Algorithm
and Its Effect for Hevner and Yao's Example

i 1 2 3 4 5 6 7
85 E34] f45 fg53 £21] fsa| Ei2| f3a
IR, | 8.7
K, | 8.7
IR, | 36.0 9.0
K, | 34.9 8.7
Ky 24.0 8.4
R, | 40.0 24.0 8.4
K, | 40.0 24.0 8.4
IR, | 24.0
|Kg | 24.0
b, ||1600.0|576.0 528.07]1095.3{160.0|54.07|155.9
cy 210.0| 50.0| 34.0| 44.9| 34.0| 18.7] 18.4

+ . c . .
The actual benefits of these semijoins are 0, since

R2 is at the user site.

S(Ry) = |Ry|(w, + wy) =

I
—_—
o]

n
(o]
>
L]
—

S(R3) |Ry| (W, + w )

S(R,) = |Ry|wg = 24
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Hence the site of R, is selected as an assembly site. The

part of the Qquery cost QC2 to move R2' R3 and R4 to the

assembly site is:

LI}

Qc, = I3, {10 + S(R))}

156.1

3. Enhancements

In this phase, the sequence of semijoins scheduled in
the hill-climbing phase is examined for possible reordering
and/or deletion of semijoins. Since neither reordering nor

deletion 1is applicable 1in this case, no enhancements are

made.

4., Answer Move

Since the assembly site is the site of R, and the user
site is the site of R,, it is necessary to move the query
answer assembled at the assembly site to the user site. Let

RA be the answer relation. Then

Ry = {Ryla, = a,]R,[ay = a,]R;la, = aglR,}la_, a.].

IRy| = 9, since |31l = |Ky|. Ky = Ky, |Rg| = |Kg|, Ky = Kg,

K, ¢ Kg and |R,| = 9." The width of R, is w_ + w,. Hence

4 c e

the part of the query cost QC; to move R, to the user site

is:

QC,

S(R,) + 10

190
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The cost of the query QC by the SDD-1 algorithm is:

ocC QC1 + QC2 + QC3

756

The query costs for Hevner and Yao's example are

summarized in Table 6.3.

Table 6.3

Query Costs for Hevner and Yao's Example

‘Algorithm Query Cost
Initial Cost 3830
Hevner and Yao 1324
SDD-1 756
Cheung | 1324
Algorithm H 478

Example 6.2

An example by Bernstein et al. [BERN 81] is considered.
Their example is incomplete, since the user site is not
specified. We assume that the user site is not one of the
sites at which the relations referenced by the user query
are located. The necessary informations to process the

query are as follows:

Database:
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S(S#, NAME, LOCATION)
Y(S#, P#)

P(P#, NAME, TYPE)
Each relation is stored at a separate site.
Query:

FIND (S.S#, S.NAME, S.LOCATION,
Y.S#, Y.P#,
P.P#, P.NAME, P.TYPE)
WHERE (S.LOCATION = 'MA')

AND (P.TYPE = 'Micro'")

AND (Ss.s# Y.S#)

AND (Y.P#

P.P#)

Parameters:

a, = S.S#, a, = Y.S#, ag = Y.P¥#, a, = P.P#
ag = S .NAME, a; = S.LOCATION
ap = P.NAME, a, = P.TYPE

The reduced query after initial local processing:

FIND (a1, ag, ay, @y, az, a,, ap, at)

WHERE (a1 = az)

AND (ag = a,)
From the reduced query, B, = {a,, a2} and B, = {a3, a4}.

The initial database state:

S| = 200, |¥Y| = 100000, |P| = 2000
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|a.| = 200, |A |A 1000, |a,| = 2000

11 2l = Ia3] = 2
All attributes have a width of 1. |D,| = |D,| = 10000

The communication network parameters:’

Vf =10, v =1

The initial cost of the query to move S, Y and P to the
user site after initial 1local processing 1is 206630. We

compute the cost of the query using different algorithms.

Query cost by Hevner and Yao's algorithm

The integrated schedule for each relation is shown in

Figure 6.2.

S 610
S: |--—--—=-- | User site
f12 210 Y
Y: | -==-=—=-- | 810
£5, 1010 f43 210 |--------- | User site

£y, 1010 P 610

PR P |==mmmmmmm- | User site

The Schedule by Hevner and Yao's Algorithm for Example 6.2

Figure 6.2

Adding all the edge values in Figure 2, the query cost
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is 4470.

Query cost by Cheung's algorithm

In Cheung's method, the qualification clause of the

guery is decomposed into simple query clauses as follows:

91 281 7 3

q, = a3 = 3,
where q; is the qualification clause of the simple query Q;
for i = 1, 2. Then, a serial schedule 1is constructed for

each simple query as shown in Figure 6.3.

The Serial Schedules by Cheung's Algorithm for Example 6.2

Figure 6.3

After the semijoins in Figure 6.3, S(S) = 60, S(Y) =
800 and S(P) = 600. Adding all the edge values 1in Figure

6.3 to the cost of moving reduced relations, the query cost

is 2950.

Query cost by Algorithm H
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The sequence of semijoins generated by Algorithm H and
its effect are shown 1in Table 6.4. The expansions of
lattices L, and L, corresponding to B, and B,, respectively,

are shown in Figure 6.4.
From Table 6.4, the query cost QC is:

QC

1]
—
O

|

o

2711

Query cost by the SDD-1 algorithm

The sequence of semijoins generated by the hill-
climbing phase is the same as that generated by Algorithm H.
However, since the site of Y is selected as an assembly
site, B3 = f43 is deleted 1in the enhancement phase.
Therefore, the part of the query cost QC1 by a sequence of

semijoins is as follows:

QCy = ¢y *cy tcy

1117.4

The part of the query cost QC2 by moving the relations

to the assembly site is:

s(s) + s(p) + 20

oc,

600.5

Let RA be the answer relation assembled at the site of

Y. Before assembling R,, K, = K,, Ky = K, and |Y| = 400.
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Table 6.4

The Sequence of Semijoins by Algorithm H and

Its Effect for the Example Given by Bernstein et al.

9 12 £34 f43 f21

S| 20.0

K, | 20.0

|| 2000.0 400.0

K, | 20.0 20.0

Ky | 867.4 173.5

|P| 173.5

1K, | 173.5

b, 196000.0 5479.5 3200.0 540.0

c, 210.0 877.4 183.5 30.0

n, 195790.0 4602. 1 3016.5 510.0
Hence lRAl 400 and the width of R, is 6. The part of

query cost QC3 to move RA to the user site is:

QCy = S(R,) + 10

= 2410

The query cost QC is:

QC = QC1 + QC2 + QC3

= 4128

the
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Table 6.5 shows the costs of the query for this example

obtained by different algorithms.

Table 6.5

Query Costs for the Example Given by Bernstein et al.

Algorithm ‘Query Cost
Initial Cost 206630
Hevner and Yao 4470
SDD-1 4128
Cheung 2950
Algorithm H 2711

If the site of Y is the user site, procedure SCREENING
in Algorithm H eliminates By = f43 from ¢. Also, since the
assembly site and the user site are the same for the SDD-1
algorithm, the assembled answer does not have to be moved.
In this case, Algorithm H and the SDD-1 algorithm produce
identiéal sequence of semijoins and query cost. However, if
the wuser site 1is the site of S ~or P, the query cost
according to the SDD-1 algorithm is also 4128. The quéry
cost obtained by Algorithm H is 2611 when S is at the user

site whereas the cost is 2181 when P is at the user site.

Example 5.3

An example by Cheung [CHEU 82] 1is considered. . The

query and the database are as follows:
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The database has the same relations as in Example 5.1:

R,

R3 COURSE R, EMPLOYEE

TEACHER_COURSE R

2 STUDENT_COURSE

The relation EMPLOYEE is at the user éite. Let
a; = EMPLOYEE.E#

a, = STUDENT_COURSE.E#

a; = TEACHER_COURSE.E#

a, = TEACHER_COURSE.C#

ag = COURSE.C#

The reduced query after initial local processing:

FIND (a1)

WHERE (a1 = az)
AND (a2 = a3)
AND (a4 = a5)

From the reduced query, B, = {a1, as, a3} and B, = {a4, as}.

The initial database state:

|R1| = 300, |R2| = 300, |R3| = 400, |R4| = 200

|A1| = 200, |A2| = 300, |A3| = 200, |A4| = 300, |A5| = 400
w, = 1 for all a;

|D1| = 400, |D2| = 600

The communication network parameters:

Ve = 10, v = 1

£

For this example, the initial cost of the query 1is 1330.

The cost of the query reported using Hevner and Yao's
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algorithm is 1240, whereas the cost using Cheung's algorithm
is 865. We compute the cost of the query using Algorithm H

and the SDD-1 algorithm.

Query cost by Algorithm H

The sequence of semijoins produced by Algorithm H is ¢

= f f f f

137 f300 o3, f45, f54. After ¢ is processed Ry, R3, R,
are 1ignored, since they are singleton joining relations.
Since a;, a, and aj are joining attributes defined on the
same domain D1, a; can be used as a target attribute after
a, is ignored. The cost of the query QC given by

Algorithm H is:

- 1c - 75

QCc = 1C - §7_, n;
= 1330 - 647
= 683

Query cost by the SDD-1 algorithm

1. Hill-Climbing
The sequence of semijoins constructed in this phase is

o = f £ f f f31; The part of the query cost QC,

13’ 45" 32’ "54’
incurred in this phase is:

oc, = |

639.6

2. Assembly
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After processing o, S(R1) = 150, S(Rz) = 75, S(R3) = 75
and S(R4) = 64.6. Hence the site of R, is selected as an

assembly site. The assembly cost QC? is:
oc, = Ti_, {10 + S(R;)}
2 1=2 i
= 244.6

3. Enhancements
In this phase, two enhancements are made:

(1) In o, the positions of f;, and f;, are switched.
Consequently, the cost of f32 is reduced from 110 to
74.6. Also, S(Rz) is reduced from 75 to 48.5.

(2) By the choice of an assembly site, 5, is deleted where
the cost of f54 is 85. The total reduction QCp of the

query cost by enhancements is:

QCr (110 - 74.6) + (75 - 48.5) + 85

146.9

4, Answer Move

Since the assembly site and the wuser site are

different, the answer relation R, has to be moved. IRA|

48.5 and its width is 1. The cost QC3 of moving R, is 58.5.

The cost of the query QC by the SDD-1 algorithm is:

QC = QC, + QC, + QC5 - QCp

795.8

The query costs for Cheung's example by different
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algorithms are compared in Table 6.6.

Table 6.6

Query Costs for Cheung's Example

Algorithm : Query Cost
Initial Cost 1330
Hevner and Yao 1240
SDD-1 796
Cheung 865
Algorithm H 683

Example 5.4

An example 1is constructed to illustrate the chain
effect on singleton joining relations. Consider a chain

query referencing five relations as follows:

Database:
Ri(ay), Ry(a,, a3), Ryla,, ag), Rylag, a;), Rglag, ag)
Each relation is stored at a separate site and the wuser |is

also at a different site,.

The reduced query after initial local processing:

FIND (ag)

WHERE (a1 a2)

AND (a3 = a4)

AND (a5 = )

ag
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From the reduced query, B, = {a1, a2}, B, = {a3, a4}

By = {as, a6} and B, = {a7, as}.

The initial database state:

550, |R

|R1| = 100, ]Rzl = 200, |R3l = 350, |R4| = 5| = 800
|A1| = 100, |A2| = 150, [A3| = 200, |A4| = 250
|A5| = 350, |A6| = 400, |A7| = 550, |A8| = 600
All attributes have widths of 1,
|D1| = 250, |D2| = 450, |D3| = 800, |D4| = 1200
The communication network parameters:
‘Vf = 10, v = 1
Algorithm H produces a sequence of semijoins ¢ = f12,
Eagr f56' f,g. Note that R;,, becomes a singleton joining
relation after ®; for 1 = 1, 2, 3. Consequently, o

completelj- solves the query. 1In order to avoid repetitive
details, only the results are given in Table 6.7.

The results in this section are summarized in Table
6.8. It is observed that Algorithm H performs uniformly

better than other algorithms.
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Table 6.7

Query Costs for Example 5.4

Algorithm Query Cost
Initiél Cost 3950
Hevner and Yao 2966
SDD-1 1646
Cheung 3112
Algorithm H 364
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Table 6.8

Summary of Query Cost Comparisons

Examples by

Algorithm H &Y Bernstein Cheung Example 5.4
Init. Cost 3830 206630 1330 3950
H&Y 1324 4470 1240 2966
SDD-1 756 4128 796 1646
Cheung 1324 2950 865 3112
Algorithm H 478 2711 683 364
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6.2 Efficiency of the Algorithm

We have measured the execution time of the program
which implements Algorithm H. The execution time of the
program is recorded at three points: after reading inputs,
after scheduling a sequence of semijoins,vand after printing
out results. Since reading inputs and printing outputs are
;elated to system I/0 and common to other algorithms, only
the time taken to schedule a sequence of semijoins is
relevant to the efficiency of the algorithm.

The scheduling time for the examples presented in
Sectioh 6.1 wusing Algorithm H is shown in Table 6.9. The
efficiency of Algorithm H 1is mainly achieved by the
following factors:

(1) Since the number of blocks is considerably less than the
number of semijoins, the block-oriented nature of
Algorithm H leads to a significant reduction of search
space.

(2) The estimation wusing the lattice model provides an
efficient computation method for the dominant term in

Algorithm H.
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Table 6.9

Scheduling Time of a Sequence of
Semijoins using Algorithm H

Example by No. Sites | Scheduling Time (Seconds)

Hevner and Yao 4 0.0039
Bernstein et al. 3 0.0027
Cheung 4 0.0043
Example 5.4 5 0.0055




CHAPTER 7
CONCLUSION

The problem of query optimization in distributed
relational database systems has been addressed. 1In order to
proceSs a query which references data from multiple sites in
a computer network, portions of the databaée at other sites
have to be transferred to the user's site. Due to the rapid
increase of computing power in recent years, it has been
observed that the delay caused by inter-site data
communication has become the more dominant factor in
processing a distributed query. Therefore, the main
objective in processing a distributed query is the
minimization of the inter-site data traffic in a
communication network.

The methodology which has been used in this research
consists of reducing the referenced relations wusing a
sequence of semijoin operations after initial local
processing. The semijoin strategy involves the following
subproblems:

(1) Estimation of the size of the relation reduced by

each semijoin of a sequence of semijoins.

(2) Design of an ~algorithm to determine an optimal

sequence of semijoins which incurs the minimal

157
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total inter-site data transfer.
The previous semijoin strategies for distributed query
optimization either produce erroneous estimations due to an
unrealistic assumption or derive sequences of semijoins
which do not sufficiently reduce inter-site data transfer.

A query information model has been established which
provides a compact represention of a user query.
Especially, the concept of a block has been introduced,
| which plays a central role for developing a model and a
solution algorithm for distributed query optimization. From
the query information model, necessary variables which
describe the database state have been defined.

A mathematical model has been developed to determine an
optimal sequence of semijoins which minimizes the total
inter-site data flow in processing a distributed query. The
net benefit of a semijoin in a sequence of semijoins has
been expressed in terms of its contribution in reducing the
total amount of inter-site data transfer in processing a
distributed query.
| The core of the optimization model is a method which
accurately estimates the size of an intermediate result of a
query. In particular, the assumption that joining
attributes are independent during the processing of a query
by a sequence of semijoins has been relaxed. The data
reduction due to a semijoin has been estimated using
conditional probabilities and these reductions due to a

sequence of semijoins have been modeled by a lattice.
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A structural analysis of the lattice model has been
carried out to establish a basis for developing algorithms
which make wuse of the 1lattice model. A method that
systematically generates the lattice has been developed.
This method allows us to identify the relationships among
the elements 1in the lattice, thus to construct examples of
query processing by a sequence of semijoins. It has been
proven that the lattice which models the data reduction is a
leveled lattice. This property can be used to reduce the
search space when some elements of the 1lattice are stored
and they are searched to retrieve the data associated with
those elements.

In distributed query optimization, the computation of
the reduction of the set of values of a joining attribute by
a semijoin 1is a dominant term. Therefore, an efficient
method for estimating the reduction is crucial in increasing
the efficiency of the optimization algorithm. A special
structure and a labeling rule of the elements in the lattice
have been wused to design a recursive algorithm which is
essential in computing that reduction. It has been observed
that this algorithm generally ferminates without any
recursion in processing resonable size queries.

When a relation referenced by a query consists of only
one joining attribuﬁe after initial local processing, this
relation can be ignored after an outgoing semijoin from this
attribute. In addition, if the block containing this

attribute has only two attributes and neither is in the
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target list, then both of them can be 1ignored after the
semijoin. Since this situation can cause a chain effect to
other relations, an additional reduction of inter-site data
transfer can be achieved. This feature has been
incorporated into our methodology.

Since the distributed query optimization problem is
known to be NP-hard, a heuristic algorithm has been
developed to determine a low-cost sequence of semijoins.
The algorithm decreases the cost of a guery by selecting the
low-cost,'highly reductive semijoins first. |

The main feature of this algorithm is to select and
"visit" an unvisited block with the least value of a
heuristic cost function defined on the set of blocks until
no more unvisited block exists. By "visiting" a block we
mean that semijoins are scheduled which go from the
attribute with the smallest cardinality in the block towards
the one with the largest cardinality. After all the blocks
have been visited, the visits are reve:sed. Several control
feaiures have been incorporated in the algorithm to increase
the robustness for random input data.

‘The time complexity of the main features of our
algorithm has been analytically derived. It has been proven
that the number of sequences of semijoins that can be
generated by the main features of our algorithm is O(n*|g])
in the worst case, where B is the set of blocks and n*. is
the size of the largest block. The comparisons of the query

cost produced by our algorithm with those by the existing
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algorithms, which schedule seminjoin strategies for general
distributed queries, have been made. The examples in the
articles which present existing algorithms have been used as
benchmarks. It has been observed that our algorithm
performs uniformly better than existing algorithms for those
benchmarks.

The algorithm has been implemented 1in PASCAL. The
tests have shown that the scheduling time for a sequence of
semijoins for a distributed query which references data from
less than or equal to five sites is less than 0.01 seconds
when the program 1is executed by Amdahl 470V/8. It is
considered that the efficiency of our distributed query
optimization algorithm is mainly achieved by the block-
oriented nature of the algorithm and the estimation of data

reductions using the lattice model.
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APPENDIX A
Some Concepts of Relational Model
1. Structures

In a relational database, the data is logically
arranged in two dimensional tables. Each table corresponds
to an entity. Here, a relationship between entities is also
considered as an entity. An entity consists of several

distinct attributes to describe it. Each row of the table

is called a tuple, which corresponds to an occurrence of the
entity with a specific value for each attribute. Each
column of the table corresponds to the values of a component
attribute. The set of all values that an attribute can take
is called a domain. Note that many different attributes can
take values from the same domain. The table consisting of a
set of tuples is called a relation with its name the same as
that of the corresponding entity. The number of attributes
of a relation 1is called the degree of the relation.
Relations of degree n are called n-ary and the tuples in
them are called n-tuples. Hence the relational database
consists of a collection of time-varying tabular relations.

Figure A.1 illustrates example relations.

2. Relational Algebra

The operators for the manipulation of relations must
be defined compatible with the data structure. The

definitions presented here are based on [BERN 79, CODD 79].
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SUPPLIER
S# SNAME CITY
S1 Smith N.Y.
S2 Jones L.A.
S3 Clark L.A.
S4 Adams N.Y.
SUPPLY
S# P# QUANTITY
S1 P1 400
S1 P3 290
S1 P4 240
S1 P5 160
S1 P6 380
S2 P2 300
S2 P3 290
S2 P5 160
S3 P1 200
S3 P2 350
S3 P4 240
S3 P6 300
PART
P# PNAME MATERIAL
P1 Nut Steel
P2 Pipe Plastic
P3 Screw Steel
P4 Screw Aluminium
P5 Bolt Plastic
P6 Wire Aluminium

The Examples of Relations

Figure A.1
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SELECTION:
SUPPLIER [CITY = 'N.Y.']
S# SNAME CITY
S1 Smith N.Y.
S4 Adams N.Y.
PROJECTION:
SUPPLY [QUANTITY, P#]
QUANTITY P#
400 P1
290 P3
240 P4
160 P5
380 P6
300 P2
200 P1
350 P2
300 P6

The Examples of Relational Operations

Figure A.2
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JOIN:
SUPPLIER [S# = S#] SUPPLY

S# SNAME CITY S# P# QUANTITY
S1 Smith N.Y. S1 P1 400
S1 Smith N.Y. S1 P3 290
S1 Smith N.Y. S1 P4 240
S1 Smith N.Y. S1 P5 160
S1 Smith N.Y. S1 P6 380
S2 Jones L.A. S2 P2 300
S2 Jones L.A. S2 P3 290
S2 Jones L.A. S2 P5 160
S3 Clark L.A. S3 P1 200
S3 Clark L.A. S3 P2 350
S3 Clark L.A. S3 P4 240
S3 Clark L.A. S3 P6 300

SEMIJOIN:

SUPPLIER <S# = S#] SUPPLY

S# SNAME CITY
S1 Smith " N.Y. -
S2 Jones L.A.
S3 Clark L.A.

Figure A.2 continued.
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SELECTION
Let A be an attribute of a relation R and D be the domain
from which A takes values. For v € D, the selection of R on

A for v, denoted by R[A=v], is defined as {r € R | r.A=v}

PROJECTION

R[A1, Bor veny An] is the relation obtained by dropping all
columns of R except those specified by Ay Ay weey AQ and
then dropping redundant duplicate rows.

JOIN

Let A be an attribute of a relation R and B be an attribute
of a relation S with A and B defined on the same domain.
Then the join of R and S on A and B, denoted by R[A=B]S, is
defined as {rs|r € R and s € S and r.A=s.B} where rs is a

concatenation of r and s.

SEMIJOIN
Let A,B,R and S be the same as in the definition of join.
Let A_ be the attributes of R. The semijoin of R by S on A

and B, denoted by R<A=B]S, is defined as (R[A=B]S)[Ar].

The selection, 3join and semijoin can be defined using
binary relations other than equality. R[A=B]S contains two
identical columns, one derived from A and the other from B.
The NATURAL JOIN is the same as JOIN except that redundant
columns generated by the join are removed. The examples of

relational operations are shown in Figure A.2.

3. Relational Query
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A relational query consists of a target list and a

qualification clause. A qualification clause is a boolean

combination of terms each of which equate two attributes or
relate an attribute to a value [ULLM 80]. 1f the
qualification clause is pure conjunctions of terms, the

query 1is <called a conjunctive query. The qualification

clause specifies qualified tuples from the referenced
relations and the target list specifies the attributes to be

projected out. ‘The following example shows the formulation

of a relational qguery.

Example A.1 -

Consider a user request to the database shown in Figure
A.1l:
For a supplier located in N.Y. who supplies parts made of
steel more than 320 wunits, find the supplier name, the
corresponding part name and the supply quantity.

The relational query formulation is:
FIND (SUPPLIER.SNAME, PART.PNAME, SUPPLY.QUANTITY)
WHERE (SUPPLIER.CITf

'N.Y.'")

AND‘ (PART.MATERIAL

'Steel')
AND (SUPPLY.QUANTITY > 320)
AND (SUPPLIER.S# = SUPPLY.S#)

AND (SUPPLY.P# = PART.P#) =

It is clear that a relational query can be answered by
applying a proper sequence of selections, projections and

joins to the referenced relations. The term equating two
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attributes is called a join term because it can be processed
by join. Similarly, the term relating an attribute to a

value 1is called a selection term. The attributes in a join

term is called joining attributes.
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APPENDIX B
Some Definitions from Lattice Theory

The definitions presented here are from [BIRK 67] and

[GRAE 78].

Definition A.1: A lattice is a partially ordered set
(poset) P any two of whose elements have a g.l.b. or "meet"

denoted by x A y, and a l.u.b. or "join" denoted by x v y.

Definition A.2: A bijection 8: P --> Q from a poset P

to a poset Q is an isomorphism if and only if

x <y implies 6(x) < 6(y)

and 6(x) < 6(y) implies x < y.

Definition A.3: A bijection 8: P --> Q from a poset P

to a poset Q is a dual isomorphism if and only if

x <y implies 6(x) 2 6(y)
and 6(x) < 6(y) 1implies x 2 y.

Definition A.4: A lattice L is complete when each of

its subsets has a g.l.b. and l.u.b. in L.

Definition A.5: A lattice L with the greatest element I

and the least element O is complemented if for all x € L

there exists y € L such that

X ANy =0and xvy-=1I.

Definition A.6: A lattice L is distributive if and only

if x A(yvz)=(xAy)v (xAz) for all x,y,z € L.
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Definition A.7: A boolean lattice is a complemented and

distributive lattice.

Definition A.8: A Sublattice of a lattice L is a subset

X of L such that a € X, b € X imply a A b € X and a v b € X.

Definition A.9: A join-semilattice is a poset P such

that x vy € P for all x,y € P. A meet-semilattice is dually

defined.

Definition A.10: A chain is a poset P such that x <y

or y £ x for all x,y € P.
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