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Topological design considering flexibility under periodic loads

S. Nishiwaki, K. Saitou, S. Min, and N. Kikuchi

Abstract Topology optimization has been extensively
considered to design the structural configuration for the
stiffness maximization and the eigenfrequency maximiza-
tion. In this paper, we construct a topology optimization
method implementing flexibility with the time-periodic
loading condition. First, the flexibility in the dynamic
periodic loading is formulated using the mutual energy
concept. Second, the multi-optimization problem is for-
mulated using a new multi-objective function in order to
obtain an optimal solution incorporating both flexibility
and stiffness. Next, the topology optimization procedure
is developed using the homogenization design method.
Finally, some examples are provided to confirm the opti-
mal design method presented here.

1
Introduction

We shall discuss a structural optimization method which
implements structural flexibility in the case where struc-
tures are subjected to a periodic applied force in time
using the homogenization design method. In general
structural design, the stiffest structure has been consid-
ered optimal. However, by implementing flexibility in
appropriate portions of the structure, we can obtain addi-
tional functions such as the mechanical function. A typi-
cal example of a structure with an additional mechanical
function is a compliant mechanism (a flexible structure).
It is designed to be flexible in order to achieve a specified
motion.

The idea of incorporating fiexibility into a structure
is not new. The earliest effort was made by Burns and
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Crossley (1966). Later, Midha and his associates de-
veloped a design method based on traditional rigid body
kinematics (e.g. Her and Midha 1987). On the other
hand, Ananthasuresh et al. (1994), Sigmund (1996), and
Nishiwaki et al. (1998) constructed design methods based
on the topology optimization technique. However, these
works focus on the design of compliant mechanisms for
static force input and do not consider the situation where
compliant mechanisms are subjected to periodic loads in
time.

It is also noted that we can design a high frequency ac-
tuator or a mechanical transducer by combining a flexible
structure with excitation devices such as piezo-ceramic or
electromagnetic devices (e.g. Onituska et al. 1995). Since
these devices have small time constants, they can provide
high frequency excitation. One drawback of such devices
is that the output displacement is generally too small for
use in an actuator or mechanical transducer. However,
combining these devices with flexible structures can over-
come this problem. That is, the mechanical structure can
amplify the device displacement using flexibility. Typi-
cal applications are the design of the ultrasonic motor
and the ultrasonic travelling wave linear motor (Seemann
1996; Zhang and Zhu 1997). While several methods have
been presented for analysis of this type of high frequency
actuator using FEM (see e.g. Kagawa et al. 1996), a de-
sign method of a flexible structure for high frequency ac-
tuators has not been established.

Viewed as resonators, flexible structures under pe-
riodic loads have been of great interest in the field of
micro-electro-mechanical systems (MEMS) where electri-
cal circuitry and mechanical structures are integrated in
micrometer scale by using IC fabrication processes. Micro
mechanical resonators, typically implemented as micro
cantilever or fixed-supported beams, are central compo-
nents of many MEMS devices including sensors, filters
and oscillators, and actuators, which realize significant
size reduction while achieving narrow bandwidth (i.e.
high Q factor) and improved frequency stability (Howe
1994). Micro mechanical resonators have been success-
fully applied to sensors for linear acceleration (Allen et
al. 1989), angular rotation rate (Greiff et al. 1991) and
pressure (Thornton et al. 1988). Micro mechanical res-
onators have also been used as an alternative to off chip
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quartz crystal and SAW resonators for wireless commu-
nication (Nguyen 1996). Other application areas include
torsional scanning mirrors (Petersen 1980), ultrasound
sources (Huang and Kuratli 1996), and microvibromo-
tors that translate mechanical vibration to rotary (Lee
and Pisano 1992) or linear motion (Daneman et al. 1996;
Saitou and Wou 1998). Despite such wide application
areas, all of these works use essentially the same resonator
design and do not discuss general methods for synthesiz-
ing the optimal resonator structures.

The homogenization design method has been widely
used for structural topology design since Bendsøe and
Kikuchi (1988) proposed it. The key ideas of the method
are (1) the extension of a design domain to a fixed domain
using the characteristic function which Murat and Tartar
(1985) proposed, and (2) utilization of the homogeniza-
tion method to deal with wild discontinuity of the ex-
tended design domain. Thus, the structural optimization
problem is replaced with a problem of distributing the
porous media in the fixed domain. This method has been
extended to a variety of structural optimization prob-
lems such as the minimum compliance problem (Suzuki
and Kikuchi 1991) and the eigenfrequency problem
(Ma et al. 1995).

In this paper, we shall develop a methodology in which
the homogenization design method is used to obtain the
optimal structure design considering flexibility for cases
in which the boundary is under a periodic load in time.
In Section 2, the homogenization design method is briefly
discussed. In Section 3, the flexibility and stiffness under
periodic loads in time are formulated using the mutual
energy concept. Their sensitivities with respect to a de-
sign variable are also derived. In Section 4, the multi-
optimization problem is formulated in order to design
a flexible structure under a periodic load in time. A new
multi-objective function is also formulated in order to ob-
tain appropriate optimal solutions in the Pareto optima.
In Section 5, the optimization algorithm is constructed
using the homogenization method and sequential linear
programming (SLP). Finally, in Section 6, some design
examples are presented in order to examine the optimal
configurations. These examples confirm that the method-
ology presented here can provide flexible structures for
application to the design of high frequency actuators and
resonators.

2
Homogenization design method

The homogenization design method, first constructed
by Bendsøe and Kikuchi (1988), is briefly discussed in
this section. Consider the design problem determining
the boundary of the design domain Ωd by minimizing
or maximizing objective functions. The key idea of this
method is the introduction of a fixed and extended de-
sign domain D including the original design domainΩd,
a priori, and the utilization of the following character-

istic function introduced by Murat and Tartar (1985)
to describe any boundaries of the original design do-
main Ωd:

χΩ(x) =

{
1 if x ∈Ωd ,

0 if x ∈D \Ωd .
(1)

Using this function, the original structural design prob-
lem is replaced with the material distribution problem of
the new elasticity tensor, χΩE, and the new mass dens-
ity, χΩ%, in the extended design domain D, where E is
the elasticity tensor and % is the mass density in the ori-
ginal design Ωd. However, this characteristic function is
very discontinuous everywhere. This nature makes nu-
merical treatment impossible. To overcome this problem,
the homogenization method was employed (Bendsøe and
Kikuchi 1988; Kohn and Strang 1986; Murat and Tar-
tar 1985). In this method, wildly discontinuous properties
are replaced with continuous and equivalent ones in the
global sense.

Next, the procedure for the homogenization method
is briefly explained. Figure 1 shows a microstructure used
for the relaxation of the design domain in the two-dimen-
sional problem. The microstructure is formed inside an
empty rectangle in a unit cell, where α, β, and θ are
regarded as the design variables. In order to develop
a complete void, both α and β must be 1, whereas for
solid material, α and β must be 0. The variable θ rep-
resents the rotation of the unit cell. Note that the opti-
mal solutions obtained by the rectangle type microstruc-
ture are sub-optimal. We must use the rank-n type mi-
crostructure (e.g. see Bendsøe 1995, pp. 9–19) to obtain
the true optimal solutions. However, the rank-n type mi-
crostructure provides many gray scale regions implying
a composite status in the optimal configurations. Sev-
eral methods, such as the perimeter method (Haber et al.
1996) are proposed to eliminate gray scale regions from
the optimal configurations. However, these methods do
not work well for all design problems (Fujii and Kikuchi
1998). On the other hand, the rectangle type microstruc-
ture provides a clear and appropriate optimal configu-
ration which does not have many gray regions in the
engineering sense. This is because the rectangle type
microstructure has a penalty characteristic between the
elasticity tensor and the density of the microstructure.
Thus, we employ the rectangle type microstructure in
this research.

The elasticity tensor χΩE and the mass density χΩ%
are rewritten as Eε and %ε, respectively. Suppose that
elasticity tensor Eε has the Y -periodic characteristic in
order to occupy some portions in the extended design do-
main D with the infinite microstructures shown in Fig. 1.
Using parameter ε, which represents the periodicity and
is assumed to be very small, the local coordinate y in the
microstructure is defined by

y = x/ε . (2)
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Fig. 1 A microstructure for the relaxation of the design do-
main

Using this local coordinate, elasticity tensor Eε and mass
density %ε are described as

Eε(x) = E(x,y) , %ε(x) = %(x,y) . (3)

First, homogenized elasticity tensor EH and homoge-
nized mass density %H in the case where the angle θ is set
to 0 are calculated. To obtain this homogenized elasticity
tensor, characteristic deformations χχχ(x,y) are calculated
using the following equation:

∫
Y

εεεy(v)TE(x,y)εεεy [χχχ(x,y)] dy =

∫
Y

vεεεy(v)TE(x,y) dY , for ∀v ∈ Vy , (4)

where εεεy( )T =
{
∂
∂y1

∂
∂y2

1
2

(
∂
∂y2

+ ∂
∂y1

)}
, and Vy is the ad-

missible space defined in the unit cell Y such that Vy =
{v = viei : vi ∈H1(Y)|v is Y -periodic in the unit cell Y }.
After obtaining characteristic deformationsχχχ(x,y), hom-
ogenized elasticity tensor EH and homogenized mass
density %H are computed by

EH =
1

|Y |

∫
Y

E(x,y) [I−εεεy(χχχ)] dY , (5)

%H =
1

|Y |

∫
Y

%(x,y) dY , (6)

where |Y | stands for the area of the unit cell.
Next, when the unit cell is rotated by angle θ, hom-

ogenized elasticity tensor EG is computed by

EG = R(θ)TEHR(θ) , (7)

where R is the rotation matrix. Thus, the homogenized
properties are determined by the microscopic design vari-
ables α, β, and θ.

3
Formulation of flexibility and stiffness under periodic
loads

In this section, we formulate the flexibility and stiffness in
the case where the periodic loads in time are applied using
the mutual energy concept introduced by Shield and
Prager (1970) and Huang (1971). Suppose that an elas-
tic body occupying a two-dimensional domain, Ω, is fixed
at boundary Γd. Now we consider the two equilibrium
cases with a different traction in a different boundary:
Case (a) and Case (b), as shown in Fig. 2. That is, in
Case (a), the elastic body is subjected to boundary trac-
tion t1 at boundary Γt1 , and in Case (b), it is subjected
to boundary traction t2 at boundary Γt2 . Body forces
applied to the elastic body and the damping effect are as-
sumed to be ignored for simplicity in the formulation. The
displacement fields are u1 = {u1

1, u
1
2}
T in Case (a), and

u2 = {u2
1, u

2
2}
T in Case (b).

Fig. 2 An elastic body subjected to two tractions

We suppose that tractions t1 and t2 are harmonic ex-
citations to the elastic body, and displacement fields u1

and u2 are also harmonic in the steady state. That is,
tractions t1 and t2 and displacement fields u1 and u2

are assumed to be described as t1 = T1ejωt, t2 = T2ejωt,
u1 = U1ejωt, and u2 = U2ejωt, where ω stands for an ex-
citation frequency, t stands for time, and T1, T2, U1, and
U2 stand for amplitudes of t1, t2, u1, and u2, respec-
tively.

Here, we introduce the linear form implying the mu-
tual mean compliance in the dynamic problem defined
by

L2(U1) =

∫
Γ
t2

T2 •U1 dΓ =

∫
Γ
t2

T 2
i U

1
i dΓ , U1 ∈ V ,

(8)

where V is the admissible linear space such that V =
{v = viei: vi ∈H1(Ω) with v = 0 on Γd, i = 1, 2}. We
assume that boundary traction t1 in Case (a) is an ap-
plied force, and the amplitude of boundary traction T2
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in Case (b) is a unit dummy vector. Then, mutual mean
compliance L2(U1) represents the measure of deforma-
tion at boundary Γt2 when we apply boundary traction
t1 at boundary Γt1 . That is, mutual mean compliance
L2(U1) is interpreted as how flexible or stiff boundary Γt2
is when boundary traction t1 is applied at boundary Γt1
in the dynamic case. Therefore, by maximizing or increas-
ing the absolute value of L2(U1), we can obtain sufficient
flexibility along a direction specified by T2 with respect
to t1. Note that both the maximization of L2(U1) and
minimization of L2(U1) provide sufficient flexibility, be-
cause under harmonic excitation, the deformation in the
direction of−T2, where the phase angle is ωt, is identical
to the deformation in the direction of T2, where the phase
angle is ωt+π.

We also introduce the following bilinear forms to de-
scribe the equilibrium equations in the weak form:

a(u,v) =

∫
Ω

εεε(v)TEεεε(u) dΩ =

∫
Ω

Eijk`εk`(u)εij(v) dΩ , (9)

with linearized strains

εεε(u) = εij(u) =
1

2

(
∂ui

∂xj
+
∂uj

∂xi

)
, (10)

and

b(u,v) =

∫
Ω

%u•v dΩ =

∫
Ω

%uTv dΩ , (11)

where Eijk` is the elasticity tensor and % is the mass
density.

Since the displacement fields satisfy, respectively, the
following equilibrium equations:

a(U1,v1)−ω2b(U1,v1) = L1(v1) ,

for U1 ∈ V , ∀v1 ∈ V , (12)

a(U2,v2)−ω2b(U2,v2) = L2(v2) ,

for U2 ∈ V , ∀v2 ∈ V , (13)

the displacement fields also satisfy, respectively,

a(U1,v2)−ω2b(U1,v2) = L1(v2) ,

for U1 ∈ V , ∀v2 ∈ V , (14)

a(U2,v1)−ω2b(U2,v1) = L2(v1) ,

for U2 ∈ V , ∀v1 ∈ V . (15)

Next, we derive the sensitivity of mutual mean com-
pliance L2(U1) with respect to a design variable A. This
sensitivity is employed in the optimization procedure.
Substituting U2 into v2 in (14) and U1 into v1 in (15), we
obtain the following relation at equilibrium:

L1(U2) = a(U1,U2)−ω2b(U1,U2) = L2(U1) . (16)

Taking the first variation of L2(U1) with respect to U1,
U2 and A, using (16) yields

δL2(U1) =−
[
δa(U1,U2)−ω2δb(U1,U2)− δL1(U2)−

δL2(U1)
]

=−

[
a

(
U2,

∂U1

∂A
δA+ δU1

)
−

ω2b

(
U2,

∂U1

∂A
δA+ δU1

)
−L2

(
∂U1

∂A
δA+ δU1

)]
−

[
a

(
U1,

∂U2

∂A
δA+ δU2

)
−ω2b

(
U1,

∂U2

∂A
δA+ δU2

)
−

L1

(
∂U2

∂A
δA+ δU2

)]
−

∫
Ω

εεε(U2)T
∂E

∂A
εεε(U1) dΩδA+

ω2

∫
Ω

∂%

∂A
U1 •U2 dΩδA . (17)

Since the following relations are obtained using (14) and
(15):

a

(
U1,

∂U2

∂A
δA+ δU2

)
−ω2b

(
U1,

∂U2

∂A
δA+ δU2

)
−

L1

(
∂U2

∂A
δA+ δU2

)
= 0 , (18)

a

(
U2,

∂U1

∂A
δA+ δU1

)
−ω2b

(
U2,

∂U1

∂A
δA+ δU1

)
−

L2

(
∂U1

∂A
δA+ δU1

)
= 0 , (19)

we obtain the sensitivity of L2(U1) with respect to A as
follows:

∂L2(U1)

∂A
=−

∫
Ω

εεε(U2)T
∂E

∂A
εεε(U1) dΩ+

ω2

∫
Ω

∂%

∂A
U1 •U2 dΩ . (20)
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Next, we only consider Case (a). The linear form im-
plying the mean compliance in the dynamic problem is
defined by

L1(U1) =

∫
Γ
t1

T1 •U1 dΓ =

∫
Γ
t1

T 1
i U

1
i dΓ , U1 ∈ V .

(21)

This mean compliance was first introduced by Ma et al.
(1995). Mean compliance L1(U1) is interpreted as the
measure of stiffness at boundary Γt1 , when we apply
boundary traction t1 at boundary Γt1 . By minimizing or
decreasing the absolute value of L1(U1), we can obtain
sufficient stiffness along a direction specified by T1. Fur-
thermore, following the derivation of the sensitivity of
mutual mean compliance L2(U1) for this case, we obtain
the sensitivity of mean compliance L1(U1) with respect
to a design variable A as follows:

∂L1(U1)

∂A
=−

∫
Ω

εεε(U1)T
∂E

∂A
εεε(U1) dΩ+

ω2

∫
Ω

∂%

∂A
U1 •U1 dΩ . (22)

4
Formulation of the multi-optimization problem

In this section, we formulate the multi-optimization prob-
lem in order to design a flexible structure under a periodic
load in time. Suppose that the original design domain,
Ωd, of a flexible structure is fixed at boundary Γd and is
subjected to the periodically oscillating boundary trac-
tion t1 = T1ejωt, where ω is an excitation frequency and
t is time, as shown in Fig. 3. We also consider an extended
design domain D including Ωd.

Now, we design a flexible structure which starts to de-
form along a direction specified by unit dummy vector
T2, where t2 = T2ejωt as shown in Fig. 3a. To imple-
ment this function in the flexible structure, we must take
into account two requirements: the kinematic require-
ment and the structural requirement, as Frecker et al.
(1997) explained. The kinematic requirement is identical
to our design specification mentioned above. To satisfy
the kinematic requirement, the flexible structure must
have sufficient flexibility, which provides sufficient defor-
mation along a direction specified by unit dummy vector
T2 when periodically oscillating boundary traction t1 is
applied. The kinematic requirement is obtained by max-
imizing the absolute value of mutual mean compliance
L2(U1) defined by (8). On the other hand, for the struc-
tural requirement, we impose sufficient stiffness at bound-
aries Γt1 and Γt2 as shown in Figs. 3b and c. This suffi-
cient stiffness works to maintain the shape of the flexible
structure when traction t1 is applied in Case (b), and the
reaction force imposed by an object such as a workpiece is

applied as shown in Case (c). For Case (b), sufficient stiff-
ness is obtained by minimizing the absolute value of the
mean compliance at boundary Γt1 , posed by traction t1

while boundary Γt2 is fixed, since the flexible structure is
supposed to be imposed by the reaction force of the ob-
ject. For Case (c), sufficient stiffness is obtained by min-
imizing the mean compliance at boundary Γt2 posed by
the reaction force while boundary Γt1 is fixed because the
flexible structure must be imposed by applied traction t1.
The direction of the reaction force is assumed to be op-
posite to that of dummy load vector T2. However, the
excitation frequency of the reaction force is not uniquely
determined, a priori, and is usually unknown in the de-
sign phase of some flexible structures, since this depends
on the contact condition between the flexible structure
and the object. In this case, we assume that the excitation
frequency of the reaction force is zero in the engineer-
ing sense. That is, the reaction force is considered to be
statically applied. This is because the implementation of
the sufficient stiffness in the static case can provide ap-
proximately the same stiffness in the dynamic case in the
average sense if the excitation frequency is not specified
due to the contact condition. However, we specify the ex-
citation frequency if this is known in the design phase.
A typical flexible structure design in which we know the
excitation frequency is the resonator design. In this case,
the excitation frequency of the reaction force is the same
as that of the applied traction.

Thus, the optimization problem for flexible structure
design under a periodic load is formulated as follows:

max
α,β,θ

∣∣L2(U1)
∣∣=

∣∣∣∣∣∣∣
∫
Γ
t2

T2 •U1 dΓ

∣∣∣∣∣∣∣ ,

min
α,β,θ

∣∣L3(U3)
∣∣=

∣∣∣∣∣∣∣
∫
Γ
t1

T3 •U3 dΓ

∣∣∣∣∣∣∣ ,

min
α,β,θ

∣∣L4(U4)
∣∣=

∣∣∣∣∣∣∣
∫
Γ
t2

T4 •U4 dΓ

∣∣∣∣∣∣∣ , (23)

subject to

0≤ α≤ 1 , (24)

0≤ β ≤ 1 , (25)

T3 = T1 , (26)

T4 =−T2 , (27)

a(U1,v1)−ω2b(U1,v1) = L1(v1) ,

for U1 ∈ V (a) , ∀v1 ∈ V (a) , (28)



9

Fig. 3 Specifications for a flexible structure design

a(U2,v2)−ω2b(U2,v2) = L2(v2) ,

for U2 ∈ V (a) , ∀v2 ∈ V (a) , (29)

a(U3,v3)−ω2b(U3,v3) = L3(v3) ,

for U3 ∈ V (b) , ∀v3 ∈ V (b) , (30)

a(U4,v4)−ω2
Rb(U

4,v4) = L4(v4) ,

for U4 ∈ V (c) , ∀v4 ∈ V (c) , (31)

g(α, β) =

∫
Ωd

(1−αβ) dΩ−Ωs ≤ 0 , (32)

where V (a) = {v = viei: vi ∈H1(D) with v = 0 on Γd},
V (b) = {v = viei: vi ∈H1(D) with v = 0 on Γd and Γt2},
and V (c) = {v = viei: vi ∈ H1(D) with v = 0 on Γd
and Γt1}. Ωs is the total volume constraint of the solid
material forming the porous structure, and ωR is the ex-
citation frequency of the reaction force imposed by the
object.

Several methods have been developed to deal with
multi-objective problems such as the optimization prob-
lem defined by (23) through (32) (see e.g. Stadler 1988;
Koski 1993). Among them, the weighting method has
been employed most commonly because of its conve-
nience of formulation. In this method, the multi-objective
function is formulated as the summation of objective
functions with the weighting coefficients. Using this
multi-objective function, we can obtain all the Pareto op-
tima by changing the weighting coefficients in the case
where the Pareto optima are convex with respect to de-
sign variables, as Koski (1985) explained. However, from
the physical point of view, all optimal solutions on the
Pareto curve are not appropriate in the specific optimiza-
tion problem formulated by (23) through (32). This is
because mutual mean compliance L2(U1) can be close to
infinite with certain weighting coefficients. In this case,
the optimal configuration can have full voids, discon-

nected structure, or ambiguous structure in the design
domain with higher flexibility. Therefore, we must employ
a different multi-objective function in order to seek the
appropriate optimal configuration in the Pareto optima.
In this study, the following objective function is proposed:

max
α,β,θ

f1 =W log
∣∣L2(U1)

∣∣−
1

2
(1−W ) log

[
wsL

3(U3)2 + (1−ws)L4(U4)2
]
, (33)

where W and ws are the weighting coefficients such that
0≤W ≤ 1 and 0≤ ws ≤ 1. W represents the relative im-
portance of flexibility and stiffness. ws represents the
relative importance of two stiffnesses defined in Case (b)
and Case (c) shown in Fig. 3. We take squares of two mean
compliances L3(U3) and L4(U4) in (33) since the abso-
lute values of them must be minimized to obtain sufficient
stiffness in the dynamics case.

Taking a first variation of f1 yields

δf1 =W
δL2(U1)

L2(U1)
− (1−W )×

wsL
3(U3)δL3(U3) + (1−ws)L4(U4)δL4(U4)

wsL3(U3)2 + (1−ws)L4(U4)2
. (34)

This implies that since the equivalent weighting coeffi-
cient of the small perturbation, δL2(U1), is W/L2(U1),
it is proportional to the inverse of L2(U1). Therefore,
as L2(U1) increases toward infinity, the multi-objective
function defined by (33) providesL2(U1) with the smaller
value as the weighting coefficient, and as an effect we can
obtain an appropriate configuration by setting W to an
appropriate value. Note that since weighting coefficient
W depends on excitation frequency ω, we must adjust
this weighting coefficient for a different frequency prob-
lem. This is because the mutual mean compliance has the
relation with inertia part ωb(U1,U2) as shown by (16),
and the effect caused by this inertia part depends on the
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excitation frequency ω. It is also noted that since the
multi-objective function defined by (33) is composed of
the logarithm functions, the optimal solution obtained by
(33) is one of the Pareto optima (see details by Nishiwaki
et al. 1998).

5
Numerical implementation

Figure 4 shows a flowchart of the optimization procedure.
There are five steps in the per-iteration loop of the opti-
mization.

Fig. 4 Flowchart of optimization procedure

In the first step, homogenized elasticity tensor EH is
computed using the finite element method (see details
by Guedes and Kikuchi 1988). Using the finite element
method, the numerical values of homogenized elasticity
tensor EH are calculated at six discretized points be-
tween 0 and 1 of microscopic design variables α and β.
Next, EH is interpolated using Bezier curves. Note that
homogenized mass density %H is analytically obtained
by (6).

In the second step, the mutual mean compliance, the
two mean compliances, the total volume, and the objec-
tive function are computed using FEM. Extended design
domain D is discretized by the finite elements. We ap-
proximate that the configuration of the microstructure
is uniform in each element. That is, the configuration of
the microstructure in the i-th element can be represented
by three design variables, αi, βi, and θi for i = 1, . . . , n,
where n is the number of elements. Therefore, the total
number of design variables is 3n in the entire design do-
main D. Microscopic design variables αi and βi in each

element are bounded as follows in order to avoid singular-
ity in the FE analysis although these design variables are
theoretically bounded by (24) and (25):

0≤ αi ≤ αupp < 1 , (35)

0≤ βi ≤ βupp < 1 , (36)

where αupp and βupp are the upper bounds of variables
αi and βi, respectively. These are specified as sufficiently
large numbers, but less than one. In the FE analysis, four
node isoparametric full integration elements with bilinear
shape functions are used.

In the third step, sensitivities of mutual compliance,
the two mean compliances, and total volume, and the ob-
jective function with respect to design variables are com-
puted if the objective function is not converged. Note that
sensitivities of mutual compliance and two mean compli-
ances are obtained by (20) and (22).

In the fourth step, the optimization problem with αi
and βi is solved by sequential linear programming (SLP).
The optimality criteria method is used in topology opti-
mization (e.g. Suzuki and Kikuchi 1991; Ma et al. 1995)
because this method can deal with a large number of
design variables and has relatively fast convergence. How-
ever, in this method, the heuristics determining the up-
date rule must be adequately adjusted for different ob-
jective optimization problems. On the other hand, SLP
can deal with a variety of objective functions and can
handle numerous design variables although fast conver-
gence cannot be expected. Thus, SLP is employed as an
optimizer in the research. In SLP, the linearized prob-
lem in the small area specified by move limits is solved
using linear programming. Move limit ∆A for a design
variable A is set as follows to avoid the locking of a de-
sign variable close to zero (see details by Nishiwaki et al.
1998):

∆A= max(ξξξA,∆Amin) , (37)

where ξξξ is a constant ratio set to 0.1, and ∆Amin is
a minimum move limit set to 1.0% of the maximum
value of the design variable. In the linearized optimiza-
tion problem, a package of the simplex method, DSPLP
from the SLATEC library (Hanson and Hibert 1981), is
used.

In the fifth step, angle θi is updated. In this study, this
angle is practically updated to minimize the two mean
compliances for simplicity of computation. To minimize
the two mean compliances, the direction of angle θi is up-
dated to the principal direction of stress (see details by
Pedersen 1989) using the multi-loading criterion which
was proposed by Suzuki and Kikuchi (1991). That is, the
angle is updated by the following equation:

min
θ

max
[
L3(U3), L4(U4)

]
. (38)
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6
Numerical examples

In this section, two examples in the two-dimensional case
are presented to examine the optimal configurations. The
properties of the isotropic material correspond to Young’s
modulus= 100, Poisson’s ratio= 0.3, and mass density=
7.85×10−6. The magnitude of amplitude of an applied
force is assumed to be a unit load.

6.1
Example 1

Figure 5 shows the design domain where boundary con-
ditions and specifications are as indicated. The left-hand
side boundary is fixed to support the flexible structure.
The deformation along a direction specified by dummy
load F2 at point P2 is to be maximized when the period-
ically oscillating force along a direction specified by F1 is
applied at point P1, while the stiffnesses at both points
P1 and P2 are to be maximized. That is, the absolute
value of the mutual mean compliance, L2(U1), defined by
two loads, is to be maximized for the kinematic require-
ment, while the absolute values of the mean compliance,
L3(U3), at point P1 and the mean compliance, L4(U4),
at point P2 are to be minimized for the structural require-
ment. Loads F1 and F2 correspond to tractions T1 and
T2, respectively.

Fig. 5 Design domain for a simple flexible structure

The design domain is discretized using 1250 finite
elements. The total volume constraint of the material Ωs
is considered to be 22.5, which is 20% of the volume of the
whole design domain. The weighting coefficient, ws, in
(33) is set to 0.4. The excitation frequency of the reaction
force, ωR, is assumed to be zero. The optimal configura-
tions for 10 different excitation frequency cases are com-
puted: excitation frequency ω = 0 (rad/s) (0 Hz), 502.65

(rad/s) (80 Hz), 753.98 (rad/s) (120 Hz), 1005.31 (rad/s)
(160 Hz), 1256.64 (rad/s) (200 Hz), 1507.96 (rad/s) (240
Hz), 1759.29 (rad/s) (280 Hz), 2010.62 (rad/s) (320 Hz),
2261.95 (rad/s) (360 Hz), and 2513.27 (rad/s) (400 Hz).

There exist many local optima in this dynamic prob-
lem since we can achieve the same eigenfrequency with
different material distributions in the fixed design do-
main in order to obtain sufficient flexibility. We must
choose appropriate initial configurations in order to ob-
tain the appropriate optimal configurations which have
physical meaning among local optima. Therefore, we ba-
sically use the optimal configuration in the static case
as an initial configuration in the dynamic case. That
is, first the optimal configuration in the case of exci-
tation frequency ω = 0 (rad/s) (0 Hz) is obtained using
the uniform initial configuration where values of micro-
scopic design variables αi and βi are set to 0.90, and
the value of θi is set to 0.0 for i = 1, . . . , the number
of elements (in all elements). Next, the optimal config-
urations in the case of ω = 502.65 (rad/s) (80 Hz) and
753.98 (rad/s) (120 Hz) are obtained using the optimal
configuration in the case of ω = 0 (rad/s) (0 Hz) as an
initial configuration. The optimal configurations in the
case of ω = 1005.31 (rad/s) (160 Hz) ∼ 1507.96 (rad/s)
(240 Hz) are obtained using the optimal configuration
in the case of ω = 753.98 (rad/s) (120 Hz) as an ini-
tial configuration. The optimal configurations in the
case of ω = 1759.29 (rad/s) (280 Hz) and 2010.62 (rad/s)
(320 Hz) are obtained using the optimal configuration
in the case of ω = 1507.96 (rad/s) (240 Hz) as an ini-
tial configuration. The optimal configurations in the
case of ω = 2261.95 (rad/s) (360 Hz) and 2513.27 (rad/s)
(400 Hz) are obtained using the optimal configuration in
the case of ω = 2010.62 (rad/s) (320 Hz) as an initial con-
figuration. Table 1 shows the weighting coefficient, W in
(33), set in the optimization and the lowest eigenfrequen-
cies of the optimal configurations.

From Table 1, we can see that each optimal configu-
ration has the lowest eigenfrequency which is almost the
same as the excitation frequency of the applied force. It

Table 1 Weighting coefficient W in (33) and the lowest
eigenfrequencies of the optimal configurations [Ωs = 22.5
(20%), ws = 0.4]

ω/2π (Hz) Initial W Lowest eigen-
configuration frequency (Hz)

0 uniform 0.5 29.39
80 0 Hz 0.05 80.40
120 0 Hz 0.05 119.28
160 120 Hz 0.1 159.91
200 120 Hz 0.2 200.32
240 120 Hz 0.3 239.78
280 240 Hz 0.4 280.80
320 240 Hz 0.3 321.26
360 320 Hz 0.3 359.62
400 320 Hz 0.3 400.07
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Fig. 6 Optimal configurations of the simple flexible structure [Ωs = 22.5 (20%), ws = 0.4]
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is reasonable that the resonance situation can provide
the highest flexibility if we do not take into account the
structural requirement. However, due to the structural re-
quirement which prevents the objective function defined
by (33) from going toward infinity, the lowest eigenfre-
quency is not exactly the same as the excitation frequency
of the applied force. Figure 6 shows the optimal configura-
tions for 10 different excitation frequency cases. It is clear
that the optimal configuration depends on the excitation
frequency. That is, the dynamic effect affects the topology
configuration, especially in the high excitation frequency
case. Therefore, the dynamic effect must be considered in
the design phase if the excitation frequency of the applied
force is high.

6.2
Example 2

We can design the resonator using the method presented
here since the flexible structure obtained by maximizing
the mutual mean compliance with the specified excita-
tion frequency of the applied force is equivalent to the
flexible structure with the same lowest eigenfrequency as
the specified excitation frequency. Next, we shall show
the design of a simple resonator by maximizing the
mutual mean compliance with the specified excitation
frequency.

Figure 7 shows a half view of the design domain where
boundary conditions and specifications are as indicated.
As shown in this figure, the right-hand side boundary of
the design domain is fixed to support the resonator, and
the symmetry boundary condition is posed at the left-
hand side boundary.

Here, we consider the resonance condition which has
to occur along a direction specified by a dummy load F2

at point P2, when the periodically oscillating force along
a direction specified by F1 is applied at point P1, while
the resonator has sufficient stiffness at both points P1

and P2. In order to achieve this performance, the absolute
value of the mutual mean compliance, L2(U1) defined by
two loads, is to be maximized for the kinematic require-
ment, while the absolute values of the mean compliance,
L3(U3) at point P1, and the mean compliance, L4(U4)
at point P2, are to be minimized for the structural re-
quirement. Loads F1 and F2 correspond to tractions T1

and T2, respectively.
The design domain is discretized using 800 finite elem-

ents. The total volume constraint of the material Ωs is
considered to be 240, which is 30% of the volume of the
whole design domain. The weighting coefficient, ws in
(33), is set to 0.4. The excitation frequency of the reaction
force, ωR, is assumed to be the same as that of the applied
force, ω.

We must also choose appropriate initial configurations
in order to have appropriate optimal configurations in
this example. This is because there can exist many local
optima in this problem and some of them do not have

Fig. 7 Design domain for a simple resonators

Fig. 8 Optimal configuration in the static case obtained by
(39)

physical meaning or are rather trivial solutions which
only have a rigid-body mode to achieve the performance
described above. In this example, we first obtain the op-
timal configuration by minimizing the mean compliance
where F1 is applied at point P1, and point P2 is not fixed,
in addition to implementing the same specifications in the
static case as that in the dynamic case in order to avoid
a trivial solution. This configuration is used as the ini-
tial configuration for the resonator design. To achieve this
performance, we use the following objective function in-
stead of (33) where the excitation frequency ω is set to
zero:

max
α,β,θ

f2 =W log
∣∣L2(U1)

∣∣− 1

2
(1−W )× (39)

log
[
wsL

3(U3)2 + (1−ws)L
4(U4)2 +wa L

5(U5)2
]
,

where

t5 = T1 , (40)

a(u5,v5) = L5(u5) , for u5 ∈ V (a) ,∀v5 ∈ V (a) , (41)
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Fig. 9 Optimal configurations of the resonator [Ωs = 240 (30%), ws = 0.4)

and weighting coefficient wa is set to 0.09 in this example.
Using the uniform initial configuration where values of
microscopic design variables αi and βi are set to 0.90 and
the value of θi is set to 0.0 for i= 1, . . . , the number of
elements (in all elements), we obtain the optimal config-
uration in the static case as shown in Fig. 8. The optimal
configurations for 5 different excitation frequency cases
are computed by (33) using the optimal configuration
in the static case as the initial configuration: excitation
frequency ω = 753.98 (rad/s) (120 Hz), 1005.31 (rad/s)
(160 Hz), 1256.64 (rad/s) (200 Hz), 1507.96 (rad/s)
(240 Hz), and 1759.29 (rad/s) (280 Hz). Table 2 shows
the weighting coefficient, W in (33), and the lowest
eigenfrequencies of the optimal configurations in the res-
onator design.

From Table 2, we can see that each optimal config-
uration also has the lowest eigenfrequency which is al-
most the same as the excitation frequency of the applied
force in this example. This means that we can change the
resonance frequency by specifying a different excitation
frequency. Note that the lowest eigenfrequency is not ex-
actly the same as the excitation frequency of the applied
force due to the structural requirement. However, this

Table 2 Weighting coefficient W in (33) and the lowest
eigenfrequencies of the optimal configurations [Ωs = 22.5
(20%), ws = 0.4]

ω/2π (Hz) W Lowest eigenfrequency (Hz)

0 0.49 52.00
120 0.01 121.32
160 0.001 160.11
200 0.13 200.17
240 0.43 239.90
280 0.5 280.41

difference is negligible in the engineering sense. Figure 9
shows the optimal configurations for 5 different excitation
frequency cases. It is clear that the optimal configura-
tion changes as the excitation frequency is changed. This
means that the dynamic effect must be taken into account
appropriately in the resonator design.

Figure 10 shows the eigenmode of the lowest eigenfre-
quency of the optimal configuration in the case of 200 Hz.
We can see that the eigenmode matches the specified res-
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Fig. 10 The eigenmode of the lowest eigenfrequency (200 Hz)

onance condition. Therefore, the resonance occurs along
a direction specified by a dummy load F2 at point P2.
Thus, we confirm that we can also design the resonator
using the method presented here.

7
Conclusions

In this research, we developed a topology optimization
method implementing flexibility for cases in which the
boundary is under a periodic load in time. First, the
mutual mean compliance was formulated using the mu-
tual energy concept in order to define the measure of
flexibility in the dynamic case. The sensitivity of the mu-
tual mean compliance with respect to a design variable
was derived. Second, the multi-objective optimization
problem was formulated in order to design a flexible
structure under a periodic load in time. A new multi-
objective function was also formulated in order to ob-
tain appropriate optimal solutions which have physical
meaning. Next, the optimization algorithm was con-
structed based on the homogenization design method.
Finally, two design examples were presented to exam-
ine the characteristics of the optimal configurations.
These examples confirm that the flexible structure under
a periodic load can be designed using the method pre-
sented here.
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