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Improvement of numerical instabilities in topology optimization
using the SLP method

D. Fujii and N. Kikuchi

Abstract In this paper, we present a method for pre-
venting numerical instabilities such as checkerboards,
mesh-dependencies and local minima occurring in the
topology optimization which is formulated by the hom-
ogenization design method and in which the SLP method
is used as optimizer. In the present method, a function
based on the concept of gravity (which we named “the
gravity control function”) is added to the objective func-
tion. The density distribution of the topology is con-
centrated by maximizing this function, and as a result,
checkerboards and intermediate densities are eliminated.
Some techniques are introduced in the optimization pro-
cedure for preventing the local minima. The validity of
the present method is demonstrated by numerical ex-
amples of both the short cantilever beam and the MBB
beam.

Key words Homogenization method, topology opti-
mization, numerical instabilities, sequential linear pro-
gramming method, two-dimensional structure, finite
element method

1
Introduction

The topology optimization method for continuum struc-
tures has made remarkable progress since the pioneering
paper by Bendsøe and Kikuchi (1988), and this method
has been applied to various practical problems in the
engineering field. Particularly, for the static problem of
maximizing the stiffness of structures, it is applied to not
only two-dimensional structures (Bendsøe 1995) but also
three-dimensional structures (Diaz and Lipton 1997; Ol-
hoff et al. 1998). Recently, it has also been applied to
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elasto-plastic problems (Yuge and Kikuchi 1995; Maute
et al. 1998). However, it is still not easy to obtain ac-
curate and stable solutions in topology optimization,
because a number of problems concerning convergence,
checkerboards and mesh-dependencies exist. For the pur-
pose of preventing such numerical instabilities, several
methods have been proposed by Haber et al. (1996);
Duysinx (1997); Beckers (1997); Petersson and Sigmund
(1998), and the current knowledge about these problems
summarized by Sigmund and Petersson (1998).

On the other hand, in the topology optimization for
continuum structures, the optimality criteria method has
been mainly used as an optimizer (Bendsøe and Kikuchi
1988; Suzuki and Kikuchi 1991; Zhou and Rozvany 1991).
Particularly, Suzuki and Kikuchi (1991) succeeded in
obtaining accurate optimal topology which has a very
small mesh-dependence using this method. Recently, as
more complicated problems have begun to be dealt with,
a mathematical programming method (SLP, SQP) has
been used to solve topology optimization problems (Yang
and Chuang 1994; Duysinx 1997; Nishiwaki et al. 1998).
This is because the mathematical programming method
is flexible enough to set any optimization problem. That
is, it can theoretically deal with any objective function as
compared with the optimality criteria method (Nishiwaki
1998). However, it is not easy to reproduce the optimal
topology, which is obtained using the optimality crite-
ria method (e.g. Suzuki and Kikuchi 1991), by using the
mathematical programming method. This problem is due
to the flatness of the objective function and the numerical
optimization procedures of the mathematical program-
ming method.

In this paper, we propose a new method for preventing
numerical instabilities occurring when the SLP method
is used as the optimizer in the homogenization design
method. The proposed method is that a function based
on the concept of gravity (which we named the “gravity
control function”) is added to the objective function. The
density distribution of the topology is concentrated by
maximizing this function, and as a result, checkerboards
and intermediate densities are eliminated. Further, some
techniques are introduced in the optimization proced-
ure of the SLP method for preventing local minima. The
short cantilever beam is solved as a numerical example
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to demonstrate that the solutions shown by Suzuki and
Kikuchi (1991) are nearly reproduced using the present
method. The so-called MBB beam (Zhou and Rozvany
1991), which is often adopted to verify the effectiveness
of such kinds of methods (Sigmund and Petersson 1998;
Haber et al. 1996; Duysinx 1997; Beckers 1997), is also
solved as another numerical example to demonstrate the
validity of the present method.

The paper is organized as follows. In Sect. 2 we de-
scribe the formulation and discretization of the homogen-
ization design method for two-dimensional problems. The
topology optimization procedure using the SLP method
and the gravity control method is described in Sect. 3.
In Sect. 4 the performance of the gravity control method
and some techniques as shown in Sect. 3 are demon-
strated using the numerical examples of the short can-
tilever beam and the MBB beam.

2
The homogenization design method

2.1
Formulation

In this section, we give an outline of the homogenization
design method proposed by Bendsøe and Kikuchi (1988).

Suppose the periodic microstructures are composed of
unit cells with a hole, as shown in Fig. 1. Assume that the
displacement field u can be approximated by an asymp-
totic expansion

u(x) ≈ uH(x) + εu(1)(x,y) , y =
x

ε
, (1)

where x is the global macro coordinate, y is the local
micro coordinate, ε is the representative length of the mi-
crostructure, and uH , u(1) are expressed for the in-plane
problem as follows:

uH(x) =

{
uH1

uH2

}
, u(1)(x,y) =

{
u
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2

}
. (2)

The strain and stress also can be approximated by

ε(x) ≈ εH(x) +ε(1)(x,y) ≈ bxuH(x) +byu(1)(x,y) ,
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Fig. 1 Two-dimensional structure with periodic microstruc-
tures

The total potential energy is expanded as

F (u)≈
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where f is the body force vector and t is the traction force
vector. In the last step in (5), we have used the relation

lim
ε→0

∫
S

g(x) dx =

∫
S

1

|Y |

∫
Y

g(x,y) dy dx , (6)

where g is a periodic function in y.
The following equilibrium equations are obtained

using the principle of minimum potential energy:
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If u(1) is assumed to be decomposed into

u(1)(x,y) =−χ(y) ·bxuH(x) , (9)

and if χ satisfies∫
Y

(
byδu

(1)
)T

(D−D ·byχ) dy = 0 , (10)

then (8) is automatically satisfied. Substituting (9) into
(7) yields the following homogenized equation:∫
S

(
bxδu

H
)T

DH
(
bxuH

)
dx =

∫
S

(
δuH

)T
fH dx+

∫
Γ

(
δuH

)T
t dΓ , (11)

where

DH =
1

|Y |

∫
Y

(D−D ·byχ) dy ,

fH =
1

|Y |

∫
Y

f(x,y) dy . (12)

2.2
Discretization

Equation (11) is discretized using the finite element
method. In this paper, the nonconforming four-node
quadrilateral element proposed by Wilson et al. (1973)
and Taylor et al. (1976) is used for the discretization.
On the other hand, for microscopic problems the matrix
χ in (12) is obtained by solving (10) under the periodic
condition. Equation (10) is also discretized using the four-
node isoparametric quadrilateral element (see Fig. 2).
The same discretization is applied to the DH in (12).

Fig. 2 Discretization of a unit cell

The elasticity matrix DH for each element of the
macrostructure is transformed to the direction of the

principal axis of stress by the following equation (Suzuki
and Kikuchi 1991):

DG =
(
TP
)T

DHTP , (13)

where

TP =

 cos2 θ sin2 θ cos θ sin θ
sin2 θ cos2 θ − cos θ sin θ
− sin 2θ sin 2θ cos 2θ

 . (14)

3
Optimization procedure using the SLP method

3.1
Optimization procedure

The topology optimization problem using the homogen-
ization design method is formulated as follows. Suppose
the sizes of a hole of a unit cell are given by α and β
as shown in Fig. 1, and these sizes are different for each
finite element of the macrostructure. The topology op-
timization consists of finding the optimal sizes α and β
that minimize the mean compliance of the macrostruc-
ture subject to volume constraint of the material. This
problem can be formulated as follows:

find X = {α1, α2, . . . , αN , β1, β2, . . . , βN} ,

which minimize

C(X) =

∫
S

(
bxuH

)T
DH

(
bxuH

)
dx , (15)

subject to

V (X) =
N∑
i=1

Aiti(1−αiβi)≤ V0 ,

0≤ αi ≤ 1 , 0≤ βi ≤ 1 (i= 1, . . . , N) , (16)

where N denotes the total number of finite elements
of the macrostructure, C is the mean compliance, V ,
V0 are the total volume of material and the constraint
value of V , respectively, and Ai, ti are the area and the
thickness, respectively, of the element i.

We use the SLP method to solve the optimization
problem defined by (15) and (16). Figure 3 shows the
flowchart of the optimization procedure using the SLP
method.

The characteristic of this algorithm is that the angles
of the principal axis of stress are calculated at the first in
each step. This setting is important when the move limits
of the design variables are set to large values.
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Fig. 3 Flowchart of the optimization procedure

The sensitivities of the mean compliance can be calcu-
lated as follows (Suzuki and Kikuchi 1991):
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where di is the nodal displacement vector of element i,
and Bi the strain-displacement matrix of element i. The
sensitivities of DH

i are calculated approximately from
the data base of DH . In this paper, we made the data
base consist of DH computed at 51×51 sampling points
of α and β (the finite element mesh is 20× 20). The
intermediate values and sensitivities of DH are calcu-
lated by the Lagrange interpolation with 9 points. On the
other hand, the sensitivities of V are calculated from (16)
analytically.

The design variables are transformed by

∆α̃i =
∆αi

αi
+ ε̃ , 0≤∆α̃i ≤ 2ε̃ ,

∆β̃i =
∆βi

βi
+ ε̃ , 0≤∆β̃i ≤ 2ε̃ , (18)

where ε̃ usually should be defined ε̃ = ε/αi etc., but we
deal with ε̃ as an independent value of αi and βi. This
means the move limit ε is made proportional to the mag-
nitude of αi and βi, that is to say, ε changes in propor-
tion to the magnitude of αi and βi. In this paper, the
initial value of ε̃ is set to 0.5, and we change this magni-
tude by ε̃/1.05n (n: the iteration number) for n≤ 30, and
ε̃/1.05n−30 for n > 30. The tolerance εc in Fig. 3 is set to
1/400. In this case, the total number of iterations is less
than 72.

Furthermore, the constraint value V0 is changed step
by step in the following manner when V0 is relatively
small:

Ṽ0 = V0(1 +λµn) , (19)

where λ= VT /V0−2, µn = 1− (n−1)/ns, but if λ < 0 or
µn < 0, then λ = 0, µn = 0, and VT denotes the total vol-
ume when all α, β are equal to zero, and ns is a given
number. In this paper, ns is set to 20. These techniques
are effective in preventing the local minima.

3.2
Improvement of numerical instabilities

At present the two major methods, i.e. the perimeter
control approach (Haber et al. 1996; Duysinx 1997; Beck-
ers 1997) and the mesh-independent filtering approach
(Petersson and Sigmund 1998), have been proposed in
order to avoid numerical instabilities in topology opti-
mization (Sigmund and Petersson 1998). However, these
approaches are not effective for the homogenization de-
sign method as shown in Sect. 4, because they cannot
impose a penalty on the gray scale of the densities.

Therefore, we propose a new method based on the con-
cept of gravity. In this method, the gravity control func-
tion is defined as follows:

g =
N∑
i=1

mi∑
j=1

(
%pi ·%

p
j +%pi ·%

p
j

)
,

%i = 1−αiβi , %i = 1−%i , (20)

where N denotes the total number of the finite elements,
mi is the number of elements which have a common side
with the element i (mi = 4 for interia elements, mi = 3
or 2 for edge or corner elements), and p is the penaliza-
tion factor for the grey scales. In this paper, p is set to 2.
“The gravity control function” is named as such due to
the fact that the gravity between two elements is defined
by %i%j/r

2
ij (rij : the distance between two elements).

Figure 4 shows the values of the gravity control func-
tion of the element i for the fundamental combinations of
elements whose densities are 0, 0.5, and 1. Figure 5 shows
the values of the perimeter control function of the elem-
ent i in order to compare them with the values in Fig. 4,
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Fig. 4 The values of the gravity control function for the fundamental combinations of elements with densities of 0, 0.5, and 1

Fig. 5 The values of the perimeter control function for the fundamental combinations of elements with densities of 0, 0.5, and 1
(`ij = 1)

where the perimeter control function is defined by

P =
N∑
i=1

mi∑
j=1

`ij |%i−%j| , (21)

and `ij is the length of the common side between the i and
j elements (Beckers 1997, pp. 108–135). It can be found
that the evaluation of both functions is similar when the
densities are only 0 or 1, but in the other case (which
density=0.5 is included), the values of the gravity con-
trol function for gray scales are sufficiently penalized (e.g.
4 for all black and 0.5 for all grey), as compared with the
perimeter control function (e.g. 0 for all black and 0 for all
grey).

It is clear that as the value of the gravity control func-
tion increases, the density of the macrostructure is con-
centrated and the grey scales are eliminated. Therefore,
in this paper, the multiobjective function, in which the
mean compliance is minimized and the gravity control
function is maximized, is defined as follows:

f(X) =

√
C(X)2−

[
wgCg̃(X)

]2
,

g̃(X) =
g(X)
N∑
i=1

mi

, (22)

where wg is the weighting ratio between the mean com-
pliance and the gravity control function, C and C are the
mean compliance (C = C in each step), but C is indepen-
dent of the design variables (i.e. ∂C/∂X = 0), and g̃ is
scaled so that it is always less than 1.

4
Numerical examples

4.1
Analysis of the short cantilever beam

First, the short cantilever beam as shown in Fig. 6
(Suzuki and Kikuchi 1991) is analysed to demonstrate
the effectiveness of the gravity control method and the
present techniques in the optimization procedure. A half-
domain is used for the analysis considering the symmetric
condition. The initial values of α and β are set to be
the same for all finite elements. The thickness of the
plate is 1, and finite element mesh is 64×20 in the half-
domain.

Figures 8–10 show the solutions obtained using the
present algorithm for the variation from 0 to 0.5 of
wg in the case of V0 = 40, 60, 80. In these figures,
the magnitude of density for each finite element is ex-
pressed by the colour scale as shown in Fig. 7. It can
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Fig. 6 Design domain of the short cantilever beam

Fig. 7 Colour scale for density variation

be seen that the topologies become clearer as the value
of wg increases, and the topologies in the case of wg =
0.3 are similar to the results of Suzuki and Kikuchi
(1991).

Figure 11 shows the solutions when the perimeter con-
trol function defined by (21) is used instead of the gravity
control function. In this case, the multiobjective function
is defined by

Fig. 8 Optimal topologies for the variation from 0 to 0.5 of
wg in the case of V0 = 40

Fig. 9 Optimal topologies for the variation from 0 to 0.5 of
wg in the case of V0 = 60

f(X) =

√
C(X)2−

[
wpCP̃ (X)

]2
,

P̃ (X) =
P (X)

L
, (23)

where we set wp = 0.01 and L = 16. It can be seen from
these figures that grey scales are not eliminated in this
case, and the topology is not clear, especially in the case
of V0 = 80. These results suggest that it is necessary to
impose a penalty on the grey scales using another method
when we use the perimeter control method. The same
things can be said for the mesh-independent filtering
method, because this method has an effectiveness similar
to the perimeter control method.

Figure 12 shows the comparison between the solutions
for the different meshes of 48×30 and 64×40 in the full
domain in order to demonstrate the effectiveness in the
mesh dependencies, where wg = 0.3. It can be seen from
these figures that similar topologies can be obtained for
the different meshes.

4.2
Analysis of the MBB beam

The so-called MBB beam (Zhou and Rozvany 1991) as
shown in Fig. 13 is analysed as the next numerical ex-
ample. A half-domain is used for the analysis considering
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Fig. 10 Optimal topologies for the variation from 0 to 0.5 of
wg in the case of V0 = 80

Fig. 11 Optimal topologies when the perimeter control func-
tion is used instead of the gravity control function

the symmetry. The finite element mesh is 75×25 in the
half-domain. Young’s modulus, Poison’s ratio, and the
thickness of the plate are the same as in the previous ex-
ample shown in Fig. 6. V0 is set to 50% of the full density
volume VT .

Figure 14 shows the solutions obtained using the
present algorithm for the variation from 0 to 0.5 of wg.
It can be found from these figures that like the previous
example, the clearest topology is obtained in the case of
wg = 0.3. The topology in the case ofwg = 0.3 is similar to

Fig. 12 The comparison between the optimal topologies for
the different meshes

the solutions shown by Zhou and Rozvany (1991) which
are obtained using the SIMP-DCOC approach. When wg
is more than 0.4, internal lines disappear instead of being
concentrated. The final volume is actually 46.5% in the
case of wg = 0.5. This fact shows that no simpler shape
topology solutions exists in this example.

5
Conclusions

In this paper, a method is established in order to im-
prove the numerical instabilities occuring when the top-
ology optimization problem is formulated by the hom-
ogenization design method and it is solved using the SLP
method. The gravity control method, in which the grav-
ity control function is added to the objective function and
is then maximized, was presented to eliminate checker-
boards and grey scales. A technique, in which the initial
value of the move limit of design variables is set to a rela-
tively large value (0.5) and the move limit is made pro-
portional to the magnitude of the design variables, was
presented to avoid the local minima. In addition, a tech-
nique to relax the volume constraint in the first part of
the iteration was presented to avoid the local minima in
the case of a relatively small volume constraint (less than
50%).

A short cantilever beam was analysed to demonstrate
the effectiveness of the present methods, and the results
were compared with the solutions presented by Suzuki
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Fig. 13 Design domain of the MBB beam

Fig. 14 Optimal topologies of the MBB beam for the varia-
tion from 0 to 0.5 of wg

and Kikuchi (1991). It could be found from this com-
parison that the results in which the weighting ratio of
the gravity function is set to 0.3 were similar to the so-
lutions obtained by using the optimality criteria method
(Suzuki and Kikuchi 1991). The gravity control method
was compared with the perimeter control method to
demonstrate the characteristics of the present method. It
could also be found from this comparison that the grey
scales are not penalized by the perimeter control method
when compared to the gravity control method. There-
fore, the perimeter control method should be combined
with a method such as the SIMP approach which has the
penalization factor for the grey scales. The solutions for

the different finite element meshes were shown to demon-
strate the effectiveness in the mesh dependencies. It could
be seen from these results that similar topologies can be
obtained for the different meshes.

The MBB beam was analysed as the second numeri-
cal example. It could be seen from the solutions that the
optimal topology in the case of wg = 0.3 is similar to the
solutions shown by Zhou and Rozvany (1991).

It is concluded that if the SLP method is used as the
optimizer instead of the optimality criteria method, ac-
curate solutions can be obtained using the method and
techniques presented in this paper.
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