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An energy model for the optimal design of linear continuum

structures

J.E. Taylor

Abstract The original paper of the above title presents
an analytical model for problems in the optimal design of
linearly elastic continuum structures, where the material
modulus tensor has the role of design variable. Both in-
ternal (strain) energy and the expression of generalized
cost are represented conveniently there, in a form where
the modulus tensor is transformed into vector coordi-
nates. The general design of linear continuum structures
is stated as a max-min problem. Optimality conditions for
the transformed design problem have particularly simple
form.

Both local properties, represented by the relative
values of components of the modulus tensor, and the
global distribution of structural resource (material) are
variable in the design.With some modification to the ori-
ginal formulation, these separate aspects of design can
be represented explicitly in the model. This modified
form, which directly facilitates study of the role of local
properties in the prediction of optimal design, and which
ultimately serves as the basis for schemes to perform com-
putational solution, is described and substantiated here.

Key words continuum structures, energy model, ma-
terial design, variational formulation, minimum compli-
ance

1
Introduction

While it may be appreciated in general terms that the
form of problem statement for optimization problems is
not unique, it is not usual to examine different mathe-
matical formulations as a part of the approach to studies
in design optimization. At the same time, generally one

Received February 7, 2000
J.E. Taylor

Department of Aerospace Engineering, University of Michi-
gan, Ann Arbor, MI 48109, USA

e-mail: janos@umich.edu

or another among valid formulations for a given problem
may be more convenient, more revealing, or more broadly
applicable than others. Thus one may choose according to
convenience for the purpose at hand between the recip-
rocal formulations “minimum compliance design within
an upper bound on the amount of available material”
and “minimum amount of material design within an up-
per bound on compliance”, as an example. Both of these
equivalent (reciprocal) forms appear often in the struc-
tural optimization literature. To consider another aspect
of formulation, the isoperimetric problem statement used
in the “Energy Model” to represent the minimum po-
tential energy form for equilibrium analysis offers some
convenience compared to its conventional form, insofar as
it provides directly for specification of the goal value of
compliance. Quite distinct from these examples, for the
issue of interest in this note the concern has to do with
how well the formulation provides for the detailed descrip-
tion of the design variables, here the material modulus
tensor. The ability to deal effectively with the prediction
of material properties as a part of design optimization
depends, more or less, on how those properties are rep-
resented in the problem formulation. Also, with respect
to the task of producing computational solutions, the
variational formulation is of interest both for the role it
may play in providing mathematical support for compu-
tational approximation, and as well for the insight that
may be gained about the structure of the scheme for com-
putation through examination of different variational for-
mulations.

The purpose of this brief note is to present a formu-
lation for the continuum design problem elaborated from
the one of the original “energy formulation” paper. The
modification is obtained via the partitioning of the ori-
ginal design variable, i.e. the material modulus tensor,
into two parts. Thus the design variables in the elabo-
rated formulation are identified respectively with “local
properties”, which may be evaluated in terms of the rela-
tive values (at each point) of the components of the ma-
terial modulus tensor, and the global distribution of ma-
terial or structural resource. An additional field design
variable is introduced in order to express the new for-
mulation, and the relation between the now variationally
separate measures of material property design and the
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global distribution of material is governed there by an ad-
ditional constraint.

2
The elaborated formulation

The focus here is on that part of the formulation that ap-
plies to design optimization, i.e. the characterization of
elastostatics given originally (Taylor 1998) remains unaf-
fected. The design part of the problem statement, labeled
[D2] in the original paper, is restated here as the starting
point for this exposition,

[D2] max / > eyBydV §
o 7

subject to

/(ZM%) dV-R<0, 0<B,<B,<B,,
0 Y

The argument of “max” measures total strain energy
(for minimum compliance design), and B, symbolizes the
design variable. Coefficient e, in [D2] is a function of
the strain tensor (evaluated for equilibrium), and unit
cost by, local bounds B, ny, and the measure of total
available resource R are data. The optimality condition
for this problem was given as (R, £, and K symbolize,
respectively, the multipliers on the local upper and lower
bounds, and the global resource constraint),

—ev—l-Efy—ﬁW—l-bny:O} ze2, veG,. (1)

Thus in regions of the structure where neither upper or
lower bounds are active, the unit energies e, are propor-
tional to component unit costs b,.

For the expression of the elaborated formulation, the
additional field variable B(z) is introduced, along with
a constraint that prescribes the relation between it and
the measure B, (x) of local constitution. The problem for-
mulation that reflects independent variation of local prop-
erties and distribution of resource over the structure is
represented now, in terms of their separate measures, as

[M] e / > eyBydV §
o 7
subject to

0<B,<B,<B,, 0<B<B<B,
/(bB)dV—RgO.

> bryBy—B<0,
v 7]

Here by, represent componentwise unit costs of material,
and their relative values control the local structure of the
optimal material, i.e. the user may force the optimal ma-
terial to be orthotropic, isotropic, etc. according to the
values prescribed for these unit cost coefficients. (Note
that by differs from the original b, in that the latter has
unit cost of local properties and global distribution repre-
sented all in the one set of parameters.) At the same time,
pointwise unit cost b is identified with distribution over
the structure of material resource. Presence in the model
of this unit cost coefficient may be useful to predict opti-
mal topology (Guedes and Taylor 1997), as an example of
its application. Relative values of components B, meas-
ure local constitution still, as was the case in [D2]. (Note
that care must be taken with the prescription of values for
the local bounds B.,, EW, and B, in order to avoid contra-
diction.)

Stationarity conditions with respect to field design
variable B and local constitution variables B, are, respec-
tively,

~Kp+bKg—k+FE=0, ()

—ey+Kpbry —Ep,+Fry =0, (3)

where K (x) and K¢ symbolize multipliers on the third
and fourth constraints in [M]. Elimination of K, between
(2) and (3) leads to

ey =brybKg— (EL»Y +bryK) + (RLy +b14F) - (4)

The relationship between the original and modified
formulations is observed by comparison of (1) and (4);
thus the problems represented in them are equivalent for
the corresponding values,

b»yK = bL'beG ’ ﬁry = ﬁL'y + bL'Yﬁ7

Ry =FLy+bryF. (5)

The first equation (5) may be interpreted as the re-
quirement that in the case where local constraints are
not active, the component unit energies e, of the opti-
mal design will have identical values. The relation can be
reduced further by comparison of the global resource con-
straints between the two formulations. In order that total
“cost” represented in these constraints for the two prob-
lems is the same, unit cost coefficients must be related
according to

by =brb. (6)

It follows from (6) and the first of (5) that multipli-
ers K and K¢, measuring unit energy per unit cost, have
equal value. Of course (6) in turn implies a further restric-
tion on the multipliers for the local bound constraints in
the second and third equations (5). Finally, the next to



last constraint in [M] is active at the solution, and this
dictates the relation: between the optimal design results
B and B, namely,

> bryBy—B=0. (7)

~

With these observations, the relation between the modi-
fied formulation and the original one is fully established.

To motivate one additional step in the modelling, re-
call that the form of material is established from the
relative values of the design components B,.

Thus the characterization of local properties can be
expressed in terms of the normalized set, say Bw normed
e.g. according to

1L
N;szl. (8)

All materials of similar constitution are identified via
a scale factor, say r, per

B, = rBAY . 9)

This expression is substituted into the relation be-
tween design variables B and B, to find

B=> bryBy=rY brB,. (10)
vy v

Thus the value determined for r by

r=B/ (wa&) (11)

provides for the scaling of a structure of given local con-
stitution B, to a known distribution of resource B. Such
scaling may be required as part of a stepwise procedure
for the computational solution of problem [M], for ex-
ample.

3

Discussion

The relation between local structural characteristics and
overall design appears as an essential aspect of mod-
elling in the two historically significant areas of Michell
truss design (Michell 1904; Prager 1974; Prager and Roz-
vany 1977) and the design of grillages (Rozvany 1976).
The same feature shows up in one or another specific de-
sign setting in the developments reported by Olhoff et
al. (1997), Pedersen (1993), Rozvany et al. (1982), and
Foldager (1999), as examples. The formulation of the
present note may be viewed simply as a generalization of
the ideas from these earlier studies, as it applies in gen-
eral to design of the linearly elastic continuum structure
having unrestricted local properties.
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Some insight may be gained about the relationship be-
tween the present energy model and earlier treatments
of continuum design where the modulus tensor appears
as the design variable, by consideration of the following
two points. First, in the presentation of Bendsge et al.
(1994) for optimal design of the unrestricted modulus ten-
sor, the unit cost of material is presumed to be of specific
form, namely proportional to the trace or the Frobenius
norm of the modulus tensor, and to be uniform over the
structure. Neither limitation applies in the energy model
for continuum design, i.e. the unit cost is expressed in
general form and both local structure and the distribu-
tion of resource are treated as variable over the region
of the structure. Somewhat surprisingly, it proves to be
possible still with the generalized model to predict opti-
mal local structure analytically, as it was in the earlier
special case (where the optimal material proved to be uni-
formly orthotropic). On a quite different aspect of the
modelling, in the cited earlier paper an interpretation is
given where the operation mazx with respect to design is
expressed in the form of a maxz maxz sequence of oper-
ations, applying respectively to local properties and to
distribution of resource (this simply reflects the property
that the global “max” relies on pointwise maximization
of the argument of the integral objective). In contrast,
the identification with local properties and global distri-
bution in [M] is accomplished through a reinterpretation
of the prior design variable into the set of two variation-
ally separate design variables. An interpretation to max-
imizate separately with respect to the two aspects of de-
sign, as was indicated by Bendsge et al. (1994), is still pos-
sible within [M]. Such considerations arise often in con-
nection with implementation of analytical modelling into
means for carrying out computational solutions. These
and other issues related to computational treatment of
the generalized design problem are to be described else-
where.
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