RDS-TR-10-82

AN ADAPTIVE CONTROL STRATEGY
FOR COMPUTER-BASED MANIPULATORS?

.':‘C:_hung
. G. Lee

3
(I)'g o

August 1982

CENTER FOR ROBOTICS AND INTEGRATEDVMANUFACTURING
Robot Systems Division
COLLEGE OF ENGINEERING

THE UNIVERSITY OF MICHIGAN

ANN ARBOR, MICHIGAN 481709

aalain] ] il b b e e T L T e R e e e L]

1 This work was supported In part by the National Sclence Foundation Grant ECS-8106954 and the
Robot Systems Divislon of the Center for Robotics and Integrated Manufacturing (CRIM) at The University
of Michigan, Ann Arbor, MI. Any opinions, findings, and conclusions or recommendations expressed In this
publication are those of the authors and do not necessarlly reflect the views of the funding agencles.



TABLE OF CONTENTS

1. Introduction .......cienccns Ceeersbrerasenseraansessbetrbresse tstantaissbbssnneserssntneseessssastisessres
2. Adaptive Control Formulation ... .
2.1. Dynamic Models of Manipulators ........c.cceivimiecconienniecsoconnnnenessncncoss
2.2. Perturbation Equations of Motion .......ccccivrmnnecniniiiinnennnnnccenscecninsens .
2.3. Parameter ldentification of The Perturbation Equations ................... .
2.4. Controller Design for The Perturbation Equations of Motion ..........
3. Computer Simulation: A Three-jointed PUMA Robot Arm .......cooceuvevenenccs .
4, CONCIHISION ...cueeciiicrcniinneninnssiosionsscsssnessssssssarscsssontasarssssssssesssssstansssssssasssscsansesssstsas

5. References ......cccvcveerenene vesserennennesnnane eoeseseessesestnnnrasesseesarasesaretsanntostoaressassaesasesas .

10

12

21

37



RSD-TR10-82 1

Abstract

This report focuses on the study of an adaptive control method based on the
perturbation equations In the vicinity of a desired trajectory. The highly coupled non-
linear dynamic equations of a manipulator are expanded in the vicinity of a pre-
planned joint trajectory to obtain the perturb‘atioh equations. These perturbation
equations are then used to design a feedback control law about the desired trajec-
tory. The torques for the joint actuators consist of nominal torques computed from
the Newton-Euler equations of motion and the variational torques computed from the
perturbation equations. Since the parameters in the perturbation equations are unk-
nown and also slowly time-varying, a recursive least square identification scheme is
used to perform on-line parameter identification. The parameters of the perturbation .
equations and the .feedback gains of the controller are updated and adjusted in each
sampling period successively to obtain the necessary control effort. This adaptfve
control strategy reduces the manipulator control problem from a nonlinear control to
controlling a linear control system about a désired trajectory. Furthermore, a clear
advantage of such formulation is that the nominal and variational torques can be com-
puted separately and simultaneously. Computer simulation studies of a three-jointed
PUMA robot arm are performed on a VAX—11/780 computer to illustrate the perfor- -

mance of this adaptive control strategy.
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1. Introduction

Most automated manufacturing tasks are done by special purpose machines
which are designed to perform their prespecified functions in a manufacturing pro-
cess. The inflexibility of these machines makes the computer-controlled manipula-
tors more attractive and cost effective In various manufacturing and assembly
tasks. With the advancement of computer technology, a new generation of
computer-based robots is emerging. This report deals with the control problem of

these computer-based manipulators.

Given the equations of motion of a manipulator, the control problem Is to find
appropriate torques/forces to servo all the joints of the manipulator in real-time to
track a desired trajectory as closely as possible. Several control methods are
available in accomplishing this task. Most notable of these are in [1-15]. Current
industrial practice employs conventional servomechanism to control present day
manipulators. An n-jointed manipulator is being modeled as "n" separate joint mani-
pulators. Each joint subsystem Is controlled independently by simple servomechan-
Ism technique. However, the motion dynamics of an "n" degree-of-freedom manipu-
lator is inherently nonlinear and can only be described by a set of ""n" highly coupled
nonlinear second order ordinary differential equations. Furthermore, the relationship
between the workspace coo-rdinétes and the joint coordinates is given by corﬁplex
trigonometric transformations. Hence the servomechanism approach models the
varying dynamics of a manipulator inadequately and neglects the coupling effects of

the joints. As a result, these manipulators move at slow speeds with unnecessary

vibrations.

To maintain good performance over a wide range of motions and payloads,
adaptive control methods may prove suitable. Among various adaptive methods,
Model Referenced Adaptive Control (MRAC) is the most widely used and relatively

easy to implement. In the MRAC method proposed by [10], a linear second-order time

Robot Systems Division Introduction
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Invariant differential equation was used as the reference model for each degree of
freedom. The manipulator is controlled by adjusting position and velocity feedback
gains to follow the reference model. To adjust position and velocity gains, the
steepest descent method was used as the adaptive algorithm. In this case it is not
easy to design a stable adaptive control law. Consequently stability analysis Is
critical. Unfortunately this stability analysis is very difficult because of the non-

linearities and complexity of the dynamic equations of a manipulator.

In order to extend the capabilities of manipulators and improve their overall
dynamic performance, there is a need to investigate and develop better adaptive
control strategies that provide better control solutions to current control methods.
The main goal of this repbrt is to present the design and development of an adaptive
control strategy which yields high performance over wide range of manipulator

motions and payloads.

In the following sections, vectors are in boldface lower case alphabets while

matrices are in boldface upper case alphabets.

| 2, Adaptive Control Formulation

In this section, we discuss the dynamic models of a manipulator that are useful
_ for the purpose of control and briefly present the proposed adaptive control methdd.

Major issues of the approach are discussed.

2.1. Dynamic Models of Manipulators

A priori information needed for control is a set of differential equations
describing the dynamic behavior of a manipulator. Two main approaches are used
by most researchers to systematically derive the dynamic model of a ménipulator -
the Lagrange-Euler (L-E) and the Newton-Euler (N-E) formulations. Bejczy [4]
based on the Lagrangian formulation has shown that the dynamic equations of

motion for a six-jointed manipulator (Stanford arm) are highly nonlinear and con-

Robot Systems Division Adaptive Control Formulation
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sists of inertia loading, coupling reaction forces between joints and gravity loading
effects. However, the dynamic equations of motion as formulated by the
Lagrange-Euler method have been shown to be computationally inefficient, and
real-time control based on the "complete" dynamic model has been found difficult
to achieve if not impossible [3,4,156]. In general, the Lagrange-Euler equations of

motion for an n-jointed manipulator can be expressed in matrix vector notation as:

D(¥) B + H(B,D) +G (¥) = T (1)

where 7 Is an nx1 external applied torques for joint actuators, ¥ is the joint
angles, 3 is the joint velocities, Jis an ax1 joint acceleration vector, G(1) is an
nx1 gravitational force vector, H(19,1.9) Is an nx1 Coriolis and Centrifugal force vec-

tor and D(¥) is an nxn acceleration-related matrix.

The joint torques as computed from Eq. 1 are of order 0(n®). For a six-jointed
PUMA manipulator, it involves about 102,740 multiplications and 78,479 additions

to compute the joint torques per trajectory set point [15].

To improve the speed of computation, simplified sets of equations have been
used by other investigators. In general, these models simplify the underlying phy-
sics by neglecting the Coriolis and Centrifugal force terms. The resulting controlled
manipulator has suboptimal dynamic performance restric;:lng arm movement to slow
speeds. At high speeds, the neglected terms become significant, making the accu-
rate position control of the arm more difficult. For this reason, in most cases the

performance specifications of computer-controlled manipulators have been rela-

tively low so that relatively simple control methods are adequate.

An approach which has the advantage of both speed and accuracy was
based on the N-E formulation [16]. This formulation yields a set of forward and
backward recursive equations which can be applied to the robot links sequentially.

The forward recursive equations compute the kinematics information (angular velo-

Robot Systems Division Adaptive Control Formulation
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city, angular acceleration, linear acceleration, total force and moment) of each link
from the base coordinate system to the end-effector while the backward recursive
equations compute the necessary torque to be applied at each joint actuator from

the end-effector to the base coordinate system.

Because of the nature of the N-E formulation and its method of systematically
computing the joint torques, the computations are of order O(n). These equations
Involve about 690 multiplications and 621 additions for a six-jointed PUMA manipu-
lator pe‘r trajectory set point. The formulation takes about 3 ms to compute the
feedback joint torques using a PDP 11/45 computer [15]. This may be fast

enough for real-time control (depending on the arm's natural frequency) if one does

not need to process other external sensor feedback signals.

Due to its recursive in nature, it is very difficult to obtain a set of closed form
differential equations -from the N-E formulation. Consequently it is difficult to

design an optimum control system using the N-E equations of motion.

We shall use the N-E equations of motion to compute the nominal torques along
a preplanned trajectory and the L-E equations of motion to derive the perturbation

equations of motion in the next section.

2.2, Perturbation Equations of Motion

As mentioned earlier, most feedback control laws are based on simplified
dynamic equations. However the approach works well only at slow speeds of
movement. At high speeds of movement the Coriolis and Centrifugal forceé are
major components of the dynamic equations. The error in the computed torques can
not be corrected with feedback because of excessive requirements on the
required correction torques. If one uses the complete Lagrange-Euler equations of
motion to obtain a nonlinear feedback control law, the computation of the control

law may become increasingly plagued by the large quantity of "number crunching"'.

A better control solution is to use the perturbation feedback control to control the

Robot Systems Division Adaptive Control Formulation
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manipulator in the vicinity of a desired trajectory.

In general the dynamic model of a manipulator can be described as in Eq. 1.
Define x = [13,1'9]7 and u = 7. Then the dynamic equations of a manipulator can be

rewritten as:

x (1) = f(x(t),u(?),t) : (2)

where x(t) € 82", u(t) € R", t € R*, f:R?" x B" x R* » R?" and continuously dif-

ferentiable, and n Is the number of degree of freedom of the manipulator.

With this formulation, the objective is to find a feedback control law
u(t) = g(x(t)) such that the closed loop control system x(t) = f(x(t),a(x(),0) is
asymptotically stable and tracks the desired trajectory as closely as possible with

wide range of payloads.

Since the- above equations of motion describe the complete robot arm dynam'-
ics, the desired torques for each trajectory set polnt can be computed (in open-
loop fashion) "quite accurately” from the N-E equations of motion. These computed
torques can be treated as the nominal torque values. Because of the existence of
modeling errors and the disturbances in the system, an appropriate variable feed-

back gains adjustment algorithm must be devised.

If the dynamic model is relatively accurate, then the joint errors will be small
and the dynamic equations of a manipulator can be expanded in the vicinity of a
known nominal trajectory set points to obtain the associated perturbation .equa-
tions.

Suppose that given a nominal trajectory from a trajectory planning system, the
nominal torques u,(t) can be computed rapidly from the N-E equations of motion
using the nominal states x,(t) from a planned trajectory, then u,(t) and x,(t)

satisfy Eq. 2 or:

Robot Systems Division Adaptive Control Formulation
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X () = £0x(2),un(t),0) (3)

Using the Taylor serles expansion on Eq. 2 about the "nominal” trajectory and

subtracting Eq. 3 from it, we obtain:

6x (1) = Vif|n 6x(1) + V| 16u(t) | (4)

where V,f|, and V,f|, are the gradients of f(x,u,t) evaluating at x, and u, respec-
tively, 6x(t) = x(8) — x,(t), and Su(t) = u(t) —u,(t). Let V,f],=A(t) .and
V.f| . = B(t), then we have the assoclated perturbation equations for this control

system:

6x(t) = A(2) 6x(t) + B(t) Su(t) (5)

As a result of this formulation, the control problem of a -manipulator is reduced
to determining du(t) which drives 6x(t) to zero. The torques for the joint actuators
consist of nominal torques u,(t) computed from the N-E equations of motion and the
variational torques du(t) computea from the feedback control law associated with
the perturbation equations. The main advantage of this formulation is the reduction
of a nonlinear control system problem to a linear control system problem about a
nominal trajectory and du(t) is only responsible for providing control efforts which
compensate the necessary correction torques for small deviation from the nominal

trajectory. The proposed control block diagram is shown in Figure 1.

2.3. Parameter Identification of The Perturbation Equations

The design of a feedback control law, du(t) = h(5x(t)) = K(t)6x(t), about the
nominal trajectory Is still quite difficult because the unknown parameters in the
perturbation equations are slowly time-varying. Thus parameter identification tech-
niques and adaptive mechanism must be used to identify the unknown parameters

A(t) and B(t) in Eq. 5.

Robot Systems Division Adaptive Control Formulation
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The problem of Identification can be formulated as an evaluation of a system
model representing the essential aspects of an existing system and presenting
knowledge of that system in a usable form. So it is not expected that an exact
mathematical.description of the physical system need to be obtained but a model

"fitted" so that an adaptive control may be obtained.

The mathematical approaches used in the identification scheme are either of
the deterministic or stochastic types. Most commercial robots use incremental
encoder to measure the angular positions and velocities. This greatly reduces the
measurement noise. Because of this reason we choose the deterministic approach
to make the problem simpler. In this case the noise present in the manipulator is
assumed to be negligible and the uncertain parameters of the perturbation equa-

tions can be identified using simple methods.

The choice of model structure is one of the most important steps in the formu-
lation of the Identification problem. The choice will influence the identification
characteristics such as the computational effort, the way In which the results of
the identification can be used in subsequent operation. Due to the assumed digital
computer application for identification and subsequent control, a linear discrete-

time model must be obtained from 6x (t) =A()6x(t) +B(t)du(t).

Let 6x(t) = x(t) and du(t) = u(d). Using Euler transformation to discretize Eq.

5, we obtain the following discrete-time linear equations:

x(k+1)=A(k) x(k) + B(k) u(k) + (8)
y(K)=x(k) v (7)
ag1(k) + - agp(k) by1(K) © = byn(k)
. .. . . - . (8)
A(K) = e ; B(k) = .
ap1 (k) .t app(k) bp‘l(k) .t bpn(k)

Robot Systems Division Adaptive Control Formulation
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»

where p = 2n, x(k) and y(k) are 2nx1 perturbed state and output vectors respec-
tively, u(k) is an nx1 control input vector, A(k) and B(k) are 2nx2n and 2nxn
matrices respectively, and n Is the number of Joint of the manipulator. With this

model, 6n? parameters need to be identified.

Among various identification methods applicable to the above model, we
choose the recursive least square parameter identification method (RLS) because
this method Is conceptually simpler and relatively easy to implement with high

speed of adaptation.
In this identification mechanism, we make the following assumptions:

(1) The parameters of the system is slowly time-varying but its variation speed is

‘much slower than the adaptation speed.
(2) All the state variables x = (19,1'9)7 of Eq. 6 are measurable.
(8) Measurement noise is negligible.

By expanding Eq. 6 term by term, we obtain the following scalar equations:

x1(k+1) = a11(K)x1(K) + as2(K)x2(k) +** + a1 p(K)x (k)

+ b11(Ku1(K) + b12(K)uz(k) + ** + byy(K)us(k)

xp(k+1) = ap1 (K)x1(K) + ap2(k)x2(k) + * * + app(K)x (k) (9)

+ b1 (K1 (K) + bpa(K)uz(K) + * + + bpa(K)un(k)

Define:
Yk = [a1(K), a;2(K), = - -, ap(K), bj1(K), * * =, bya(K)T (10)
¢k = [x‘l (k)) XZ(k)) Y Xp(k)) U1(k), Yy un(k)]r (1 1)

Robot Systems Division Adaptive Control Formulation
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x(k) = [x1(k), x2(k), = = =, x (K]

(12)
= Y1k, Yokt oo Yol
Eq. 9 can be rewritfen as follow:
Yike1 = 9k%k  where 1=1,2,-pand p = 2n (13)

Based on the above Input/output relationship, the recursive least square

parameter identification algorithm is found to be:

Bike1 = Bik — Prow [odPupi + 1171 [pdBik = Yike1] (14)

Pur1 = [Pk — Pupk [@lPupi + 1171 lPi] r? (15)

where 3,,“.1 is the estimated values of ¥, and ris a weighting factor between O
and 1. The use of r Is common when tracking slowly time-varying system parame-

ters.

In this RLS parameter identification method, both the model and the dynamic
system have the same input u(k) and the estimated model parameters ¥, are
adjusted as a function of the error between the output y,x4+1 from the actual sys-

tem as in Eq. 13 and the output ;q[@;k from the reference model.

2.4, Controller Design for The Perturbation Equations of Motion

The parameters of the perturbation equations of motion obtained from the
identification scheme can sometimes yield unstable system when appiied to
optimum control system design. The reason is that numerical solutions could be
sensitive to deviations of the model parameter values from their true values. If the
system parameter identification and the control design are performed in each sam-
pling period successively, then the control system obtained will be stable asymp-
totically. Since the identification and control approaches for multi-input multi-

output (MIMO) system require considerable amounts of computational time, we

Robot Systems Division Adaptive Control Formulation
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would like to keep all algorithms to moderate complexity.

For designing the controller for the perturbation equations, many suitable con-
trol schemes can be applied. Simple position-integral-derivative (PID) controller or
pole-assignment can be used. Another method is the use of linear quadratic (LQ)

method to generate control laws.

Consider the discrete time-varying linear system with the following well known

performance criterion:
1 1 N-1 .
Ji = ZX(NSx(N) + = )y [x’(k)ox(k) + u’(K)Ru(k) (16)
k=0

The optimal control input u(k) which minimizes the above criterion is given by:

u(k) = —K(K)x(K) | - (17)
where

KK = [ R+ BTCOPG+1)B(K) | BCOPCK+1)AK) (18)

P(k) = Ar(k)P(k+1 JAKK) + Q — Br(k)P(k+1)A(k)K(k) (19)
and

P(N) =8 . L (20)

The optimal control law can be obtained only by solving the discrete Riccati equa-
tions in backward and in this particular situation (i.e., simultaneous identification
and control), it is very difficult to use the above criterion because of computation

time limitation.

To overcome this problem, we consider another performance criterion, namely

one step control, subject to the above discrete time-varying system,
_ 1. T (21)
Jo(K) = > x"(k+1)Qx(k+1) + u’'(k)Ru(k)

Then the optimal control input u(k) based on the above criterion is given by:

Robot Systems Division Adaptive Control Formulation
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u(k) = —K(k)x(k) (22)
where
-1
K(k) = |R + BT(k)QB(k) | BT(K)QA(k) (23)

In this case, we minimize the performance criterion J,(k) by finding the input u(k)

which minimizes the immediate loss.

The optimal control is obtained under the assumptions that the system param-
eters have been identified quite accurately. The parameters used in Egs. 22-23
are from the RLS identification scheme. It is known that this adaptive controller

tunes the parameters of the system for an optimal control input.

3. Computer Simulation: A Three-jointed PUMA Robot Arm

In this section, a cémputer simulation study of a three-jointed PUMA manipulator
was carried out on a VAX 11-780 computer to evaluate the validity of the use of
the perturbation equations and the performance of the proposed adaptive control
strategy.

In general, a Lagrange-Euler formulation for a manipulator can be written as
D(4) 19 + H({i,ﬁ) +G(¥) = 7. If the Lagrange-Euler formulatidn of a three-jointed '
PUMA manipulator based on the 4x4 homogeneous transformation matrices

[PauB1][Lee82] is expanded in general terms, the following equations are obtained:

D118 + D1282 + D133 + H1119% + 2H1128192 + 2H11391 03
+ H12205 + 2H1230203 + H1330% + Gy = Ty

D2181 + D228z + D3B3 + Ha118% + 2Hz129102 + 2Hp139193

+ Hp2203 + 2H23%03 + Ha3308 + Gy = 72

Robot Systems Division Computer Simulation
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D3191 + D3p92 + D33¥3 + Hay18% + 2H312019; + 2H3130193
+ H3229% + 2H3530,93 + Ha339% + G = 73

The dynamic coefficients of the above equations (i.e. D's,H's,G's ) can be

rewritten as follow: . , .

(1) The coefficients of D(1) are:

D11 =d111 + J13a + J211C3 + 2J21482CF + Jp2552 + Jpss + 2J2340>
+ J244(aZCE + ) + J311(S£S% - 2533525 + CECE) + Jaza
+ J333(S$CF + 253C35,C5 + C283) + J3g4(a2C3 + d3)
+ 2J334(a83C% + a,C3S,C,)

D22 = Ja11 + Ja22 + 2J31485 + J2g48% + J31q + Ja33 + J3g4a2
+ 2J33482S3

D33 = Jaz1 + Ja33

D12 = D21 = J21382 + J21402S; + J234@,8; + J2443202S2 + J3443202S2
+ J33402(S3S2 — C3C3)

D13 = D31 = J33402(535, —C3C2)

D23 = D32 = J311 + J333 + J3343:S3
(2) The coefficients of H('l.S,'zB) are:

Hi11 =0

H122 = J213C2 + J21402C2 + J23482C2 + J2443202C2
+ J3443202C; + J33405(S3C, + C38,)

Hq33 = J33402(S3C; + C3Sy)

Robot Systems Division Computer Simulation
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Hz11 = J21182C2 — J22282C2 + 2J2148252C2 + J244a8S,C;
+ (J333—J311)(S882C; + S3C38% — 83C3C% — C§5,C5)
¥ J34483S,C2 + J334(28,835,C, + 8,355 — a,C3C3)
Hz22 =0

Hz33 = J33482C3

Ha11 = (Jaz3—J311)(S£S2C2 + S3C38% — S3C3C% — C£S,C2)
+ J334(a28352C; — 3C3C3)

Hzz22 = —J33432C3
H333 =0
Hi12 = —Hz214

Hy13 = —Hz1q

Hi23 = Hy33
H212 =0

Hz213=0

Hz23 = —H322

Hz12 =0
Hz13 =0
H323 =0

(8) The coefficients of G(4) are:

Robot Systems Division Computer Simulation
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m;x,z,
my,z;

lex + ’Iyy - Ilzz

2
mz;

; we assume the products of inertia are negligible.

RSD-TR10-82
Gy=0
Gz = —(32934C2 + 3,924C2 + S3933C, + C3933S2 + C2921)
Gz = —933(S3C; + C3S,)
where
S' = sin(ﬂ/)
C; = cos(9;)
[911 gi2 93T = [mig% mgy, migz] and g = 9.8062m/ sec?
i1 dnz Jis e
J Jnz Jizz Jizz Jiza
' =1 Jns 2z Jizz Jiaa
Jita Jiza Jiga Jisg
~lise + liyy + 1
e 2’” L mx? miX,;y;
lixx = liyy + 1
mlyl)—'l Ixx Izyy l1zz
mx;z; my;z,
m;X) my
lixyx O O
L=l o 1, o
0 0 lizz

16

+ m,i,z

§; = (%, ), Z)) is the position vector of the center of mass of link 7 with respect

to the i coordinate system.

The state equations of a three-jointed PUMA manipulator can be obtained by

simple manipulations of Eq. 1. Define the inverse matrix of the acceleration-related

Robot Systems Division
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mz;

m
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matrix as follow:

-1

D1y D12 D43 X171 042 Q43

-1 _ _
D(¥)™' = [D12 D2 D23 = a2 a2 az3
D13 D3 D33 Q13 Q23 A33

then the dynamic equations of a PUMA manipulator become:‘

{91 Q11 12 Q13
| = [d12 222 Q23| X
% Q13 023 033

(

H12203 +H1 3308 +2H1 1 2% 3, + 2H, 13’151’:93"'2”123‘1'921.’3

- Ha110f +H233%8 +2H,53%% +G,

H3119f +H3229 +Gs
y .
Al &1 K12 %13 B1+T1
=la12 @22 023 | |B2+T2

Ba+T3

Q43 Q23 Q33

If the state variables and the inputs are defined as:

X1 = B4 Xs =% Uy = T4
X2 = %2 x5 =% Uz = T2
X3 = V3 Xg =% uz = T3

RSD-TR10-82

then the following state equations for a three-jointed PUMA manipulator are

obtained:
X = 11(x) = xq

X = f2(x) = x5

X = f3(x) = xg

X = f4(x) = a11(Bq +uq) + a12(B2+u2) + ay3(B3+u3)

Robot Systems Division
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X = f5(X) = ay2(B1+U1) + a22(B2+U2) + az3(Ba+us)

% = fg(x) = aq3(81 +uq) + az3(B2+up) + az3(Ba+us)

Applying the Taylor series expansion to the above equations in the vicinity of a

nominal (or desired) trajectory and neglecting the higher order terms, the perturba-

tion equations 6x(t) = A()6x(t) + B(t)6u(t) are obtained. For convenience, let

6x=x and Ju=u, then the following equations are obtained:

x(t) = A()x(t) +B(t)u(t)

where

xX(t) = Xactua(t) = Xnomina(t)

u(t) = uaepuaft) — ‘fnomlnd(t)

A(t) =

B(t) =

o O O0OO0o

Robot Systems Division

0 0 1 0 o
0 0 0 1 0
0 0 (o] 0 1
8fa(x) B8fa(x) 8fg(x) 8fg(x) 8fa(x)
0x2 O0x3 0xa O0xs Oxg
o Bfg(x) 8fg(x) ofs(x) dfs(x) 8fs(x)
0x2 0x3 x4 oxs oxg
Bfg(x) ofg(x) ofg(x) odfg(x) dfg(x)
0x2 Ox3 O0xa Oxs Oxg
0 0 0
0 0 0
0 0 0
0fa(x) 8f4(x) 8fy(x) | Xn» Un
ou4 ouz Ous
6f5(x) 6f5(x) af5(x)
duq ou, Ous
dfs(x) 0Ofg(x) 0afg(x)
ou4 ouy Oug

at x, , u,

Computer Simulation
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We simulated the proposed adaptive control strategy and compared it with the
PD control method based on the computed torque technique [16] for various loading

conditions for the given trajectory.

The numerical values used in this simulation are:

diag @ =[ 0.1, 0.1,0.1,0.1, 0.1, 0.1]

diag R = [ 0.000001, 0.000001, 0.000001]

and the initial values-of the unknown parameters in the perturbation equations are

chosen to be:

diag A(0) = [ 0.5, 0.5, 0.5, 0.5, 0.5, 0.5]

ooot1o00]
B(O)={0 00010
000001

diag P(0) = [ 1500, 1500, -, -, *, 1500]g x g

The off-diagonal terms of the above matrices are set to be zero and the weighting
factor, r, in Eqs. 14-15 is set to 0.95. Also the control gains K, and K, of the PD

controller are set to 20 and 100 respectively.

With reference to the robot arm dynamic equation, the physical geometric

parameters used in this simulation are:

dq = .664 meter
a = .432 meter
d, =.1495 meter

m=[2.27, 15.91, 11.36] Kg

Robot Systems Division Computer Simulation



RSD-TR10-82 19
daig 1; = [ 0.0071, 0.0267, 0.0267] Kg —meter?
daig I, = [ 0.1000, 0.7300, 0.8025] Kg —meter?
daig I3 = [ 0.0222, 0.2160, 0.2245] Kg —meter?
p; =[0., -0.664, 0.] meter
p2 = [ 0.432, 0., 0.1495] meter
pg =[0,0, 0.]7 meter
§; =[ 0., 0, 0.073] meter
s, = [ -0.432, 0., 0.] meter
s3=[0,0.,0.1] meter
where p', Is the position vector of the origin of the i-1" frame with respect to

the i coordinate system and §; is the position vector of the center of mass of link i

with respect to the it" coordinate system.

In the N-.E formulation, there are several geometric parameter values need to be
measured from the arm's structural configuration. Among these values are the loca-
tion of the center of mass and the inertia tensor matrix of each link. It is relatively
difficult to get the exact values of the inertia tensor matrices because of the asym-
metry of the links of a PUMA robot arm and the non-uniform distribution of its masses
(mainly from the DC mators). In this simulation, we assume that the dynamic equa-
tions of a PUMA manipulator are known exactly except inertia tensor matrices. We
also assume that the robot arm does not know the weight of the loads when it picks

them up.

Robot Systems Division Computer Simulation
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In the simulation, the three-jointed manipulator moves from an Initial joint angles
Y mua = ( 0%, 45° 45°) to a final joint angles 7,y = (90° —46° 135°). The
required time for this motion is 1 second. In this trajectory, the PUMA robot arm Is
fully stretched at 0.5 seconds. At this position, (91,92,93) = ( 45°, 0°, 80°), the
torques due to the gravity have the maximum values and the absolute values of
joint velocify of the arm also becomes the maximum. The accelerations are sharply

changed from the maximum values to the minimum values or vice versa.

To show the validity of the use of the perturbation equations, the nominal joint
position values, velocity values and'torques are perturbed with small error., When
| the manipulator picks up the maximum load (&2.3Kg), the position and velocity errors
-from the proposed adaptive controller are less than one degree for all trajectory set
points. For this reason, the perturbed error is set to be one degree for a.ll joints. As
shown in Figures 2-4, the contributions of the higher order terms resulted from the
linearization are negligible for all the motion trajectories. Hence the perturbed equa-

tion of motion derived are valid for all trajectory.

Figure 6 shows the computer simulation program implementation flow chart. The
simulation results are shown in Figures 6-11 and tabulated in Table 1. In Table 1,
the performance of both controllers are compared for three different load condition;s:
(a) No-load and‘ 1 0‘;/, error in inertia tensor matrix, (b) Haff of maximum load and 10%
error in inertia tensor matrix and (c) Maximum load and 10% error in inertia tensor
matrix. In each case 10% error in inertia matrices means +10 % error about its
measured inertial values. For all the above cases, the adaptive controller .shows
better performance than the PD controller with constant feedback gains. The max-
imum error of each joint was calculated by assuming that link 2 and link 3 are each

0.5 meter long. Let the maximum absolute errors of joint one, joint two and joint

three be e,, e,, and e3 respectively, then the resulting maximum error for the worst

case can be found to be \/e1z + (ez + e3)7. When the PUMA robot arm picks up

maximum load, the magnitude of the applied torques are increased considerably,

Robot Systems Division ' Computer Simulation
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especially in joint two (see Figures 12-14 ). So we can expect relatively larger
error in joint two as compared with other two joints (see Table 1). The comparison of
the final position errors from these two controllers for the same trajectory s tabu-

lated in Table 1.

Given A(0) and B(0), the performance of the adaptive controller is quite sensi-
tive to the @, R and P(0) values in Egs. 14-156 and 21-283. In general, it is not easy
to determine the properv values to achieve better performance. It is also difficult to
figure out the correlations of these values with the overall performance of the con-
troller especially in MIMO system because of the complexity of the dynamic equa-

tions of the PUMA robot arm.

4, Conclusion

An adaptive controt based on the perturbation theory has been presented with
computer simulation of a three-jointed PUMA robot arm. The pro;aosed adaptive con-
trol was found to perform better for various loading conditions than the simple PD
controller based on the computed torque technique. The torques for the joint actua-
tors consist of nominal torques computed from the N-E equations of motion and the
variational torques computed from the feedback control law associated with the
perturbatién equations.. A clear advanfage of such formulation is that the nominal

torques and the variational torques can be computed separately and simultaneously.

Robot Systems Division Computer Simulation
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(1) Set k = O where k is the k" sampling period.

(2) Determine ¥q[k], ¥[k] and 94[k] from a preplanned trajectory. Also determine

above values for the next sampling period.
(3) Compute the nominal torques U,(k) using the Newton-Euler equations of motion.
(4) Determine the applied torques U (k) = U,(k) + SU(K).

(56) Compute the coefficients of the dynamic equations of a PUMA manipulator using

the Lagrange-Euler equations of motion as in Eq. 1.

(6) Integrate the dynamic equations of a PUMA manipulator derived from the
Lagrange-Euler equations of motion using the 4" order Runge-Kutta method. The

outputs are 9,[k+1] and 1.9,,[k+1 ]

(7) Compute position and velocity errors.

6X[k+1] = [ Sa[k+1] — Salk+1], S[K+1] - Sa[k+1] T
(8) Using 6X[k+1] and SU[k] and the identification algorithm as in Egs. 14-15,

update the parameters of the system as in Eq. &,

(9) Using the updated parameters, compute the control gains as In Eq. 23 and the

perturbed inputs dU(k+1).
(10)Setk =k + 1. '

(11)1Is k = N ? ( Total of N sampling periods ). If yes, Stop. Else go to step 2.

Figure 2 Flow-Chart of Computer Simulation for the Proposed Controller

Robot Systems Division Computer Simulation
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Figure 3 Contributions of the First Order Term and the Higher Order Terms
in the Linearization of the Dynamic Model ( Joint 1)
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in the Linearization of the Dynamic Model ( Joint 3 )
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