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ABSTRACT

We show that the ellipsoid algorithm of N. F. Shor and L. G. Khachiyan,
can be applied to solve convex quadratic programming problems with integer

data in polynomially bounded time.
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1. Introduction

The ellipsoid algorithm of N. Z. Shor and L. G. Khachiyan[9,11,26] processes
systems of linear inequalities and linear programming problems with computa-
tional requirements that are bounded above by a polynomial in the size of the
problem. Here we show that the ellipsoid algorithm can be extended to solve
convex quadratic programs with integer data in polynomial time. It is well
known that every convex quadratic programming problem can be posed as a linear
complementarity problem (abbreviated here as LCP, see references [5,16,21]),
associated with a positive semi-definite (abbreviated in the paper as PSD)
matrix, and vice versa; and hence the methods described here provide polyno-
mially bounded algorithms for processing this special class of LCPs. This
clearly establishes that convex quadratic programs and LCPs associated with
PSD matrices belong to the class P of problems, which is the class of problems
solvable by polynomially bounded algorithms. Algorithms described in this
paper can only process LCPs associated with PSD matrices, and in fact
S. J. Chung [ 3] has shown that the LCP associated with a general matrix is
strongly NP-Complete. Even the LCP associated with a negative definite matrix
(abbreviated in the sequel as ND matrix) is NP-Complete, and in Section 5,
we briefly explore the fundamental difference between LCPs associated with
PSD matrices and ND matrices, that accounts for the difference in their
computational complexity.

Most of the work in this paper was carried out soon after the technical
report of P. Gacs and L. Lovasz on Khachiyan's algorithm [ 9] became avail-
able in August 1979, and the version of the ellipsoid algorithm for solving
nearest point problems appeared in the technical report [4]. Similar work

has been carried out independently by several groups of researchers, among



which we became aware of those of P. C. Jones and E. S. Marwil [12],
I. Adler, R. P. McLean and J. S. Provan [1], and M. K. Kozlov, S. P. Tarasov
and L. G. Khachivan [14],

The organization of the paper is as follows: In Section 2 we present
the nearest point problem which is a special convex quadratic programming
problem that leads to an LCP with positive definite (abbreviated in the sequel
as PD) symmetric matrix, describe the ellipsoid algorithm for solving it, and
prove that it obtains the solution of the problem in polynomial time. OQur
estimates of the running time of this algorithm are generous in the sense that
emphasis is placed on proving that the algorithm is polynomially bounded, but
not so much in obtaining the exact worst case bound on the running time. This
algorithm has been coded by Y. Fathi, and comparative computational experience
of this algorithm, and other algorithms for solving the nearest point problem
described in  [7 ] is summarized at the end of Section 2. In Section 3 we
discuss the application of the ellipsoid algorithm to solve LCPs associated
with PN matrices and prove that it is polynomially bounded. In Section 4 we
develop the application of the ellipsoid algorithm to solve LCPs associated
with PSD matrices and prove that it is polynomially bounded.

We use regular style superscripts to distinguish between vectors, as in
x], x2. e also need exponents, and in order to distinguish between exponents
and superscripts, we use only bold letters to indicate exponents, for example

o indicates o to the power of r.

n
For x e R", || x|| = 1J X x§ denotes the usual Euclidean norm of x.
j=1

If D is a matrix; we denote by Di the ith row vector of D; and by D 3

the jth column vector of D.



A vector a = (a],...,an) is nonnegative (denoted a > 0) if a; 2 0
for all j. It is positive (denoted a > 0) if 3y is strictly positive for
all j. It is semi-positive (denoted a > 0) if a > 0, but a # O.

For apnlications of the LCP see [13, 17, 23].

2. THE NEAREST POINT PROBLEM

Let B be a given integer square nonsingular matrix of order n. Pos (B) =
x: x = Bz, z = (z7,...,2,) 2 0}. For x € Pos(B), z = B™'x is known as the
(nonnegative) combination vector corresponding to x. We consider the problem
of findirg the nearest point (in terms of the usual Euclidean distance) in
the simplicial cone Pos(B) to a given integer point b € R". This problem will
be denoted by the symbol [B;b] and is called a nearest point problem of order
n. For n =1 the problem is trivial, so in the sequel we assume n > 2,

[B;b] is equivalent to the quadratic program: Find z to

Minimize -b'Bz + % 21(8"8)z
(1)
Subject to z = (21""’Zn) >0

The solution of (1) can be obtained by solving the LCP (see [5,16,21])

w-(B18)z= -Bb

=
v

>0,z
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~
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where w = (w],...,wn)T is a column vector of variables in R". Let M= BTB,

q=- BTb. Then (2) is the LCP denoted by (q, M) and can be written in the

familiar form
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Since M is a P-matrix (2) or (3) has a unique solution (w, z) (see [20,22,25])
and then Zz is the optimum solution of (1) (see [ 8, 22 ]). If b e Pos(B)

then b is itself the solution of [Bsb] and (W = 0, 7 = B”'b) is the unique
solution of (2). So we assume that b ¢ Pos(B), and in this case, the solu-
tion of [B;b] is a point on the boundary of Pos(B). Since we are assuming
that b ¢ Pos(B), b # 0.

In the LCP (3), the pair of variables (wj, Zj) form the jth complementary
pair of variables and each variable in this pair is the complement of the
other. In any solution of (3), at least one variable inexh of the complemen-
tary pairs must be zero. The vector (y1,...,yn) is called a complementary
vector of variables in (3) if yj e‘{wj, zj} for each j =1 to n. A complemen-
tary vector of variables for (3) is called a complementary basic vector if
the set of column vectors corresponding to these variables in the system of
equality constraints in (3) is linearly independent. A complementary basic
vector for (3) is said to be a complementary feasible basic vector for (3)
if the solution obtained by setting all the nonbasic variables to zero and then
solving the remaining system of equality constraints in (3) for the values of
the basic variables, satisfies the nonnegativity restrictions on all the vari-
ables; and in this case that solution obtained is known as the complementary
BFS (basic feasible solution) of (3) corresponding to that complementary feasi-

ble basic vector,



SOME PRELIMINARY RESULTS:

THEOREM 1: The set of feasible solution of

B']x >0
(4)
BT(x-b) >0
has a nonempty interior.
PROOF: We want to show that
B']x >0
(5)
BT(x-b) >0

has a feasible solution x. Clearly (5) has a feasible solution iff

B "x >0
BTx-8Tb x_ .. >0 (6)
n+l
X >0

X
has a feasible solution X =,<. .. ) . By Gordan's theorem of the alter-

X
n+l
native (see [187) (6) has a feasible solution X iff there exists no 7 ¢ R",

U € Rn, Y € R] which together satisfy

w8+ 8T = 0

n
o

- wB'b +y (7)

(my w, ¥) >0,



From the first n constraints in (7), we have uBTB =-m <0, Since BTB is
PN, we know that the system

uB'B < 0

(8)
w20

has the unique solution p = 0 (or otherwise there would exist a u # 0 such
that uBTB uT < 0, a contradiction to the positive definiteness of BTB). So

in any feasible solution to (7), u will have to be zero, which implies in turn
that m and v will have to be zero too, a contradiction. So (7) cannot have

a feasible solution. Hence the set of feasible solutions of (4) has a non-

empty interior. Q.E.D.

THEOREM 2: Let K be the set of feasible solutions of (4). Let S be the

sphere determined by
T W
(x - b/2)" (x - b/2) = b b/4 (9)

K NS consists of a single point, and this point is the nearest point in
Pos(B) to b. Also, let E be the ball with S as boundary. Then KN E is

the set containing this single point.

PROOF: We want to prove that the system

B "x 2 0
87 (x-b) > 0 (10)
(x-b/2)7 (x-b/2) = b'b/4

has the nearest point in Pos(B) to b as the unique solution.



Let X be the nearest point in Pos(B) to b. Let Zz = B']i, W=gq+ Mz,
By earlier discussion (also[8,22]), (w, z) is then the solution of the LCP

1 T Tp o1z

(2) or (3). S0 Z=B"'Xx>0,0<w=q+M=-Bb+BBBX=8(%b),

from the definition of M and q. And (X - b/2) (% - b/2) - (b'b/4) =

iTY x-b) = 7

- in = X (x-b) = ETQ =0 from (2). So X is a solution of

(10).

Conversely, suppose x is a solution of (10). Define z = g”] X,

W= BT(i-b). From the last equation in (10) we have 0 = (X - b/2)T (x - b/2) -

T(>'(-b) = 3'w. Also from the definition of M, q, we have w = BT(R-b) =

1

(b'b/4) = &

B'b + 8!

BB x =q+ MZ. These facts imply that (w, Z) defined here is a solu-
tion of the LCP (2) or (3), which by earlier discussion implies that X is the

nearest point in Pos(B) to b. Also
_ T T
E = {x: (x - b/2)" (x - b/2) <b b/4}
For all x € K we have

(x = b/2)7 (x = b/2) = x(x=h) + b'b/4

14T

(871x)7 BY(x-b) + b'b/4

]

> bTb/4.
Therefore KNE =K NS Q.E.D.
THEOREM 3: The unique solution of (10) is an extreme point of K.

PROOF: From known results about LCPs [5,16,21,22], the unique solution

of the LCP (q, M), (w, Z), is an extreme point of (3). So z is an extreme

point of

- Mz <gq

N
v
o



Since M = BTB, q=- BTb, we notice that if z is a solution of (11), then

x = Bz solves (4); and conversely if x solves (4), then z = B']x solves
(11). Hence there is a 1-1 correspondence between solutions of (4) and
(11). So, since z is an extreme point of (11); X = B']E, which is the

unique solution of (10) by Theorem 2, must be an extreme point of (4). Q.E.D.

Let L] be the total number of digits required for specifying the
data in B = (bij)’ b = bi in binary form. So we have approximately
n
Ly = [0+ Togyn + P (1 + 1092(]b1jl +1)) + R (1 +Tog,([bs] +1))7 (12)
i=1 ton i=1
j=1 to n
Since M = (mij) = BTB and q = (qi) = - BTb, each m].j or q; is a sum of n terms,

each term being a product of two entries from (B: b} , or the square of an
entry in (B . b . So each mij or.q, 1s of the form Y1Yy * Y3V L
Yon.1 Yo Where the y's are entries from (F : b) . . So we have

Togy (my5) = Togy {vyvp +ooet vpp g Ypp)

HA

Tog, (I |+ 20Uy, | +2) +oout vy, 1| + 2) vy, | +2))

WA

Togy (([vq] + 2)(Jvpl + 2)Clyal +2) oo ([yy] +2)) (13)

since each y is an integer, (|y| + 2) is an integer greater than or equal
to 2, and hence, the sum of terms 1ike this is less than the product of
these terms. Also log, (y] +2) 21+ log, (]y] +1). So from (13) and

(12) we see that

1092(m1j) < L.



Let

L, = n(n+1)(L] +1)
So, by the above, the total number of digits needed to specify the data in

the system (3) is at most Lé.

THEOREM 4: If (w, Z) is an extreme point of (3), then any Wi or ii is either
-L
Oor>2 2.

PROOF: Remembering that L, is the size of the system (3), this theorem follows
from the results of [9,111]. Q.E.D.

From the results of [9,11], the absolute value of the determinant of
L

B is at most 2 ]/n. The same bound also holds for the determinant of any

L
submatrix of B. So there exists a positive integer B <2 ]/n such that all

the data in the system
-1

BB x >0 (14)
B(x-b) 0
] Ly 2
are integers. The absolute value of each entry in BB is < [(2 ")/n]

(since it is less than or equal to a subdeterminant of B times B). Hence
the size of (14), the total number of digits in the data in (14), is at

most L3 where

L, = (n(2n +1) +1) L

3 1
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-L
THEOREM 5: The Tength of any edge of K is > 2 3.

PROOF: If the edge is unbounded, the theorem is trivially true. Each bounded
edge of K is the Tine segment joining two distinct adjacent extreme points of
K. Let x], x2 be any two distinct extreme points of K. From the results of

[9,11] and the fact that (4) is the same as (14), we have

X = (u]]/v],..., un]/v])

(u]2/v2,..., un2/v2)

where Vis Vo and all the uij's are integers; and Vis Vv, are both nonzero;
L
and v, [, [v,| and all luijl are <2 3/n. Since x| 4 x2, either there exists

a j such that ]uj] - ujzl >1, or Usp = sy for a1l j and [v, - Vol 2 ].—L
These facts together imply that there exists a j such that |x1 - x§| > 2 3.

This clearly implies that ||x] - x2]| > 2 3, Q.E.D.

2
THEOREM 6: Let € be a positive number < 52(n+]) Ly and Tet E; be the ball

(x - b/2)T (x - b/2) < (e + Y b'b/a)? (16)
Then the n-dimensional volume of KN E.| is greater than or equal to
-(n+1)L
en2 3 .

PROOF: K, the set of feasible solutions of (4) or (14), is the intersection
of the pointed cone {x: B']x > 0} with the translate of a pointed cone

{x: BT(x-b) > 0}, with a nonempty interior by Theorem 1. The intersection

S N K consists of a single point, say VO;'and E](\ K contains all the points
in K in an ¢ - neighborhood of VO’ and hence has a nonempty interior and a

positive n-dimensional volume.



N

of By n K is greater than O equal to

haded simplex.

The volume
the volume of the S

Figure 1:
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If one takes a sphere of radius o, a concentric sphere of radius o +te¢,
and a hyperplane tangent to the smaller sphere at a boundary point x on it,
then a tight upper bound on the distance from x of any point in the larger
sphere on the side of the hyperplane opposite the smaller sphere is
JZOL s:+e2 . Also the radius of E is {—th;ﬁ < 2(L1-1). From Theorem 3,
V0 is an extreme point of K, and every edge of K through V0 has a length

-L
> 2 3 by Theorem 5. These facts and the choice of ¢ here, together imply

that every edge of K through V0 intersects the boundary of E]. Let V],...,Vn
be points along the edges of K through V0 that intersect the boundary of E],
at a distance of at most 1 but greater than € from VO’ such that {VO, V]...Vn}
is affinely independent. The portion of the edge between V0 and Vi lies
inside E, for at least a length of €. See Figure 1. If Vi(e) is the point

on the edge joining VQ and Vi at a distance of ¢ from VO’ the volume of

E]f) K is greater than or equal to the volume of the simplex whose vertices
are Vo, Vi(e) for i=1 to n. From the choice of V., Vi(e) -V, = y(Vi - VO)

where y > €. So in this case the volume of E1f7 K is greater than or equal

to

=1

, |(determinant of (e(Vq - Vy) I...0elV - Vo))l

n
= & |(determinant of ((V; - Vo) :..: (v, - Vo)l

n

1.: e
- | (determinant of { *;" -'1' beee b |
nt VgV 1Y

-(n+1)L
> € 2 3

from the results in [9,11]. Q.E.D.
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In the sequel, we will denote the unique point in SN K by x (this
was called Yy in the proof of Theorem 6). Llet z = B"]i, W= BT(R-b). By
earlier discussion (w, z) is the solution of the LCP (2) or (3), and it

is an extreme point.

THEOREM 7: For any X € £, K, define 2 = 8™ and w = B' (%-b). Then

the following hold, for all j =1 to n.

N - ]
|xj - le < 2 \fe

A

2L
< n2 ]\’e

N
1

N1
t A

Mj'wj' < n2 ]\le

PROOF: Using the results in [9,11] we see that the value of any entry in

B-] L

has an absolute value less than or equal to 271, and the same fact
obviously holds for BT. As mentioned in the proof of Theorem 6, if one
takes a sphere of radius o, a concentric sphere of radius o +e, and a hyper-
plane tangent to the smaller sphere at a boundary point x on it, then a
tight upper bound on the distance from x of any point in the larger sphere
on the side of the hyperplane opposite the small sphere is 'J 20e * 82 .

As the radius of E is \[;TEIZ < ZL‘-]stheresults in the theorem follow

from this fact and the definitions of E, S, E], Q, z. Q.E.D.
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THEOREM 8: Let X be an arbitrary point in Ey N K, and Tet Z, 7 be as

defined above. .If

. 2
< 2-2\n+1) (L]+1) (17)
then
'LZ
A 1 -
25 < g 2 if j is such that Z; = 0 (18)
3,, “L2 -
> (5)2 = §, if j is such that 2 > 0.
PROOF: This follows from the results proved in Theorems 7 and 4. Q.E.D.

THEOREM 9: Let X be the nearest point in Pos(B) to b, and z = B']i. Let

J={j: z. > 0}.
{JJ}

Define the vector of variables y = (yj) by

<
]

2 if d
3 ifjeld

W if 34

Then y is a feasible basic vector for (2) or (3) and the complementary BFS

corresponding to the basic vector y is the solution of this LCP.

PROOF: By the discussion earlier, if w = Mz + q, then (w, z) is the
solution of the LCP (2) or (3). This result that the basic vector y
defined as above is a complementary feasible basic vector is well known
about LCPs associated with positive definite matrices or even P-matrices

[8,22]. q.E.D.
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THE ALGORITHM

-2(n#1) (L, 41)
Fix e = 2 . Consider the following system of constraints
AL <0
(19)
- BT(x-b) <0

which is the same as (14) or (4); and the quadratic constraint (16). Define

x' = (b/2), Ay = Ie + JbTb/4)2 (20)

where I is the identity matrix of order n.

Given any point xk e R" and a symmetric positive definite matrix A, of

k
order n, define E(xk, Ak) to be the ellipsoid

k

k T a0 exf) 1) (21)

E(x", Ak) = {x: (x-x"

E] = E(x], A]) is the ball defined by (16). Here we describe a modification

of Shor-Khachiyan's ellipsoid algorithm [9,11] to find a point in E
4
(

N K,

that is, a point satisfying (19) and (16). Let N = 8(n+1) L]+1). With

x], A], E] go to Step 2.

GENERAL STEP r + 1

Let x", Ar’ Er = E(x", Ar); be respectively the center, positive

definite symmetric matrix, and the ellipsoid at the beginning of this step.
If x" is feasible to both (19) and (16) it is the point we are seeking.

In this case, terminate the ellipsoid algorithm. Call x" as X and go to

the final step described below.

1f x" violates at least one of the constraints in (19) or (16), select

an inequality constraint
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ax <d (22)
violated by xr, as described in one of the two cases below.

r
CASE 1: x 4K

So, in this case, x" violates one or more constraints in (19). 1In
this case select (22) to be the constraint in (19) that x" violates most.

Break ties arbitrarily.

CASE 2: x" e K BUT x" 4 E,
So, in this case, x" satisfies all the constraints in (19), but violates
(16). Find the point of intersection Er, of the line segment joining x1 and

x" with the boundary of E],

(x - x)T (x = %) = (e + f bTb/a)? (23)

Actually £ = ax' + (1-0)x", where A = 1 - ((¢ + \/bTb/4 K - XD,
In this case, choose (22) to be the half-space not containing xr, determined
by the tangent plane of E] at its boundary point Er. Thus in this case "ax = d"

is the tangent plane of E] at g”, and x" violates (22). See Figure 2.



Figure 2:

17

Half-space
ax < d.

Construction of "ax < d" when x"
satisfies (19) but violates (16).
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Now define (see [10,15] among others)

d - ax"

r" ———ee—e
3Ja A aT
r

T
1-vn A a
L ( r ) ( r ) (24)
1 +n 1JaAraT
(1420’ o A1\ [ (a2

A =\ ——7— A '<n+1 1 —

r n°-1 r e aha
With xr+1, Ar+1’ Er+1 = E(xr+1, Ar+1) move to the next step in the algorithm,

After at most N steps, this ellipsoid algorithm will terminate with the
point x" in the terminal step Tying in E]f\ K. Then go to the final step

discussed below.

FINAL STEP:

Let the center of the ellipsoid in the terminal step be x (this is the
point x" in the last step r of the ellipsoid algorithm). Let Z = B"]Q.

Define J to be

)= G g such that 3,2 (1) 2 ° = o)

Define y = (yj) by

<
1]

z. ifjed
j '"miE

g s
Wy TF ] ¢ J
Then y is a complementary feasible basic vector for (2) or (3)}and the BFS

corresponding to it is the solution of the LCP (2) or (3). If (W, z) is the

solution, X = BZ is the nearest point in Pos(B) to b.
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PROOF OF THE ALGORITHM

Let xr, Ar’ Er = E(xr, Ar)’ be the center, positive definite symmetric

matrix, and the ellipsoid at the_beginning of step r + 1. The inequality
(22) is choosen in this step r + 1 in such a way that x' violates it. In
the hyperplane "ax = d" decrease d until a value d] is reached such that
the translate "ax = d1" is a tangent plane to the ellipsoid Er’ and suppose
the boundary point of Er where this is a tangent plane is Npe Then

r+l

= E(x , Ar+1) is the minimum volume ellipsoid that contains

r+l

E. N {x: ax < d}, (the shaded region in Figure 3), has n, as a boundary point

and has the same tangent plane at N, as Er'
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Half-space
ax < d

ax = d

Figure 3: Construction of the new ellipsoid Er+1 in the modifi-
cation of Shor-Khachiyan's algorithm.

From the manner in which the inequality (22) is selected, it is cleoar that if
Er:) E]r\ K, then Er+1'D E1 N K. Arguing inductively on r, we conclude that

every ellipsoid Er constructed during the algorithm satisfies

E.D E;N K (25)
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2
From Theorem 6, the volume of E, N K is > 2-4n(n+1) (L1+]). From [9,11],

1
the volume of Er gets multiplied by a factor of e-(1/2(n+l)) or less, after

each step in Shor-Khachiyan's algorithm. E] is a ball whose radius is -
2L

(e i—\J bTb/4) and we know that bTb < 2
22nL

1. So the volume of E] is at most
I.  The algorithm terminates in step r, if the center x" satisfies (19)
and (16), that is, it is a point in E1 NK. If termination does not occur

4 2L1n -(N/2(n+1)) <
upto step N = 8(n+l) (L]+1), the volume of EN is at most 2 e
“an(n+1)2(L,4+1) “an(n41)2(Ly+1)

1 From the fact that the volume of E, N K > 2

1
this is a contradiction to (25). So for some r < N, we will have x €E

2

p 0K
and in that step the algorithm terminates. The validity of the remaining
portion of the algorithm follows from Theorems 7, 8, 9.

Since the algorithm terminates after at most N = 8(n+1)4(L]+1) steps,
the algorithm is obviously polynomially bounded.

In practice, it is impossible to run the algorithm using exact arithmetic.

To run the algorithm with finite-precision (for example, if all the computa-

4
tionns are performed to approximation within 2" L

1) requires that the
ellipsoids be expanded by a small amount in each iteration. This has been
completely analyzed in [LT], and those results can be applied to this algorithm
directly.

Eventhough the algorithm developed here is a polynomially bounded
algorithm for the nearest point problem, it is not clear that it will be

efficient to solve practical problems. In particular, this algorithm is not

likely to beat those discussed in [8] for practical efficiency.
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COMPUTATIONAL COMPARISON

Y. Fathi [ 7] did a comparative study in which this ellipsoid algorithm

has been compared with two other algorithms for the nearest point problem.
We provide a summary of his results here. In the table below,algorithm I
refers to an algorithm discussed by P. Wolfe in [27 ], algorithm II refers
to an algorithm developed by Y. Fathi and K. G. Murty in [ 8], and algorithm III
refers to the ellipsoid algorithm discussed in this section. In the study the
matrix B was generated randomly, with its entries to be integers between -5
and + 5. The b-vector was also generated randomly with its entries to be
integers between -20 and + 20, Instead of using computer times for the com-
parison, he counted the number of iterations of various types and from it
estimated the total number of multiplication, division operations required before
termination on each problem. Problems with n = 10, 20, 30, 40, 50 were tried
and each entry in the table is an average for several problems (between 10

(for n = 50) to 50 (for smaller n) problems). Double precision was used.
It was not possible to take the values of € and § as small as those recommended
in the algorithm. Mostly he tried € ,8 = 0.1 (the computational effort before
termination ip algorithm III reported in the table below refers to € ,6 = 0.1),
and with this, sometimes the complementary basic vector obtained at termina-
tion of the algorithm turned out to be infeasible (this result is called an
unsuccessful run). He noticed that if the values of these tolerances were
decreased, the probability of an unsuccessful run decreases; but the computa-
tional effort required before termination increases, both happening very

rapidly.
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Average Number of Multiplication, Division Operations Required
Before Termination in

" Algorithm I A]gorithm.II Algorithm III (E11ipsoid Algorithm)
10 Too small Too small 33,303
20 39,096 16,266 381,060
30 123,644 42,592 1,764,092
40 514,822 170,643 5,207,180
50 896,919 324,126 11,286,717

These empirical results suggest that the ellipsoid algorithm cannot compete

with other existing algorithms for the nearest point problem, in practical

efficiency.

discussed next in Sections 3, 4.

The same comment seems to hold for the other ellipsoid algorithms
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3. LCPs ASSOCIATED WITH PD MATRICES

In this section M denotes a given PD matrix of order n (symmetric

or not) with integer entries, and q denotes a given integer column vector

in R". We consider the LCP (q, M), which is to find we R", z ¢ R"
satisfying
Iw-Mz=gq
w>0, z20 (26)
sz =0

In this section we let K denote the set of feasible solutions of

\4
o

Mz +q >
(27)
z>0

We let E denote the ellipsoid which is the set of all z ¢ R
satisfying
T
z(Mz+q) <0 (28)

and let Bd(E) be the boundary of E, that is, it is the set of all z

satisfying

T -

2 (Mz +q) =0 (29)
THEOREM 11: K, the set of feasible solutions of (27), has a nonempty
interior.

PROOF: Remembering that M is PD, the proof of this theorem is similar

to that of Theorem 1 in Section 2. Q.E.D.
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THEOREM 12: EN K = Bd(E) N K, and this contains a single point Z

where (W = Mz + q,2) is the unique solution of the LCP (26).

PROOF: Since M is PD, the LCP (q, M) has a unique solution 20,22, 25]; and

if this solution is (w, Z), then Z is the unique point satisfying (27)

and (29). So Bd(E)N K = {z}. (27), (28) together imply (29), so

ENK=Bd(E)N K. Q.E.D.
Define

L=+ log,n + % (1 + 1092([m1jl +1))+ (1 + 1092({q.| + 1)1
1,J i !

E_={z: 2'(Mz +q) < €} for € >0

E, = {z: 213 < 22L}.

THEOREM 13: If (w, z) is the unique solution of (26), then (w, z) is a

BFS of (26), and z is an extreme point of K. Also every extreme point
2L

z of K other than z satisfies zT(Mz +q) >2

PROOF: The fact that (w, z) is BFS of (26) is a well known result in
linear complimentarity. [5, 16, 21]. This implies that Z is an

extreme point of K.

By the results in [9, 11 ] at every BFS (w, z) of (26), for each i,

either W, is 0 or > 2'L, and similarly either z, is 0 or > Z'L. This

implies that at any extreme point z of K, for each i either Z is 0 or

> 2L and similarly éither~Mi. z +q, is 0 or > Z'L. Since (w, z) is the

unique solution of the LCP- 26), at every extreme point z of K other than z,

I M3 -~

we must have zT(Mz +q) = Zi(Mi-Z + qi) > 0, so we must have at least

i=
one i ihere hoth z. > 0 and M, Z +q; > 0. Combining these results we
conclude that every extreme point z of K other than z satisfies

zT(Mz +q) > 2'2L. Q.E.N.
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THEOREM 14: For € positive and < 2'2L, the n-dimensional volume of

EOfW E€ NK is > e 2'(3"*')L .

PROOF: Obviously z ¢ E€ NK, and by Tgiorem 13, no other extreme point
z of K lies in EE N K for 0 e < 2 . So for every value of ¢ in

the specified range, every edge of K through z intersects Ee' Also,
since K has a nonempty interior by Theorem 11, EE M K has a positive n-
dimensional volume, K might be unbounded, but by the results in [ 9, 11],
at every extreme point of K, both Z and Miz tq; are < 2L/n for each 1.
To the constraints in (27), augment the additional bound constraints

that both Z; and Miz tq; are < 2L/n for each i, and let K denote the
set of feasible solution of (27) together with these bound constraints.
By the above facts, every edge of K through z is either an edge of K

(if it is a bounded edge of K), or a portion of an edge of K (if it is

an unbounded edge of K). Let z],...,zn be adjacent extreme points of

% in K such that {z, z],...,zn} is affinely independent. The above

t

facts imply that all these points z, z°, t = 1 to n are in Ey- Define

f(z) = zT(Mz +q). Since M is PD, f(z) is convex. Let A = ¢ 2'2L. So

for each t =1 ton

£z + A28 - 2) < (1-0) F (2) +Af(2Y)

= A f(zt)
n t

= A% oz;,(M z +gq,)
. 1° 1
i=]
n oL L

< AL (-2L~ X —Z-—-)

) i=1 f n

WA
™
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This implies that the line segment [z, z + A(zt - 2)] completely lies

inside EOIW E€ N K. So the volume of E0 n EE(\ K is

> the volume of the simplex whose vertices are z, Z + A (zt -2),
t =1 ton,
= l'ldeterminant of (A(z1 - 2) : .. : x(zt - 2))|
n!
> AN 2-(n+1)L’ by the results in [9]
z 8n 2-(3“"’])[. Q.E.D.
THEOREM 15: Let €g = 2'(6L+1). For any point z e Ej N E_ N K, we
0
have
. a — -3L
either z, < \,go < 2
or M, Z+gq, < ,,e < 23
je i = 0
PROOF: For any i, if both 2. and Mi} +q; are > y[eg, then

Z(MZ+q)> € contradiction to the fact that z e E.N E€ N K. Q.E.D.

0 g
THEOREM 16: Let z be any point in EgNE_ N K. Define

| 0
-3L

- A
=W, if 7. < 2
Yj i i

_ . A -3L
= Zi if Zi > 2

Then (y],...,yn) is a complementary feasible basis for (26), and the

BFS of (26) corresponding to the basic vector (y1,...,yn) is (w, z),

the solution of the LCP (q, M).
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-3L

v

PROOF: Let J; = {i: z. }. So

;
J1r\ Jp = ¢ and Jy U J2 = {1, 2,...,n}. By Theorem 15, Mi_z +q, < 2"

"3L - s, A
2°°"} and J2 = {i: Z; < 2
3L
for each i ¢ J].
In [9] P. Gdcs and L. Lovdsz proved the following lemma: Consider

the system of constraints

Aj,x < by i=Tltom (30)

with integer data, and Tet & be the size of this system. Suppose X is a

solution of

A, x < bi + 2'2, i=1t¢tom

such that A, X > b;, =1 tok, and Tet r <k be such that'{A].,...,Ar.}
span'LA].,...,Am' } Tinearly. Let X be any solution of the system of

equations

Ai- X = bi’ i=1t%or.

Then x is a solution of (30).
We will use this lemma in proving this theorem. Consider the

. R I -
systen . wovwy € o EER - all 1h e R )

J
- Mz < q+ 23l ¢
(31)
-z < 0+ 2'3L e
-3L .
Mi.z < -q1+ 2 7, forice J]
2. 042 foricu,
1 -
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We know that E solves (31) and in addition z also satisfies

=
N>
v

2 =G; for i ¢ J]

z, > 0 fori e J2.

Also, since M is PD, the set {Mi-: ice J1} \J{Ii.: ie J2} Tinearly spans
all the row vectors in the system (31). By using the theorem of
P. Gdcs and L. Lovdsz mentioned above on this system, we conclude that

if Z is a solution of the system of equations,

M.z =-q; foriel,
(32)
zi= 0 for i ¢ J2
then Z would be a solution of
-Mz < q
-z < 0 (33)
Mi.z = =q; for i € J]
zi = 0 for i ¢ J2.

~

From (33) we know that MZ + q 0, Z>0 and since Ei= 0 for all i ¢ J2

nv

and M, Z +q, =0 for all i e J; we conclude that iT(Mi +q) = 0 (since

J, N Jy = ¢and 3 U, = {1,...,n}). So % is a solution of the LCP

1
(q, M). From (32) we notice that (W = MZ + q, 2) is the solution of the
system of remaining equality constraints in (26) after setting W, =0
for ¢ J and Z; = 0 for i€ Jos that is, it is the basic solution of
(26) corresponding to the complementary basic vector y = (y],...,yn)
defined in the theorem. So y is a complementary feasible basic vector

for (26) and the BFS of (26) corresponding to it is the unique solution of

the LCP (q, M). Q.E.D.
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THE ALGORITHM

Fix e = gy = 2'(6L+]). For any point Z € R" and a PD symmetric

matrix A, et E(Z,A) denote the ellipsoid {z: (z - 2)TA'](Z -7) <1}

So £, = £(0, 2°1)
2
z0 = 0, Ay = 2 LL E(zo, AO) go to Step 1.

. In this section define N = 2(n+1)2(11L+1). Mith

GENERAL STEP r+1

Let 2", Ar’ Er = (2", Ar); be respectively the center, PD symmetric
matrix, and the ellipsoid at the beginning of this step. If 2" is feasible

to (34), (35)

- Mz -q

A
(an)
—~

w

e
S——

-Z

un
o

2'(Mz + q) < € (35)

terminate the ellipsoid algorithm, call 2" as 2 and go to the final step
described below.
If z" violates at least one of the constraints in (34), (35) select

an inequality constraint
az < d (36)

violated by z by the following: If 2" violates (34), take (36) to be
the constraint in (34) that 2" violates most. Break ties arbitrarily.
If 2" satisfies (34) but violates (35), choose (36) to be the half-space
not containing zr, determined by the tangent plane of E€0 at its

boundary point gr, where gr is the point of intersection of the line

segment joining the center of E€ and z" with the boundary of EF .
0 0



i ; H )-] g , and Er = az' + (1-1)z" where

The center of E_ is z' = - (
€0

X is the positive root of the quadratic equation

Ozt + (10202 + (12027 + q) = <.
Now define A Ar+1 as in (24) and
T
S 1=y, Aa (37)
1 +n T
\JaAra

r+1’ A +]), move to the next step in the

E = E(z

r+l
’ Ar+1’ r+l

With z
ellipsoid algorithm,
After at most N steps, this ellipsoid algorithm will terminate with

the point z" in the terminal step lying in E N E N K. Then go to the
0 €0

final step described below.

FINAL STEP
Let the center of the ellipsoid in the terminal step be z. Using

2, find the complementary BFS of (26) as outlined in Theorem 16,

PROOF OF THE ALGORITHM
The updating formulas used in this ellipsoid algorithm are the same

Hence using the same argu-

N K for all r.

as those used in the algorithm of Section 2.
ments as in Section 2, we can verify that Er:) Eor\ EE

0
2Ln. After each step in the ellipsoid algorithm,

The volume of EO is < 2
the volume of the current ellipsoid Er gets multiplied by a factor of

So if the ellipsoid algorithm does not terminate
2 -L! V-
LLn) < 9 L{9n+1)-n

e-(1/2(n+1) or less,
(e-(n+'l)(ﬂL+1))(2

even after N steps, the volume of EN <

contradiction to the fact that EN;3 Ey N EE N K and Theorem 14, So for
0

some r <N, we will have A E0 r\E€ N K, and in that step the ellipsoid

0
Hence the algorithm is obviously polynomially bounded.

algorithm terminates.
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Comments made in Section 2 about the precision of computation

required, remain valid here also.

4. LCPs ASSOCIATED WITH PSD MATRICES

In this section we consider the LCP (26) where M denotes a given PSD
matrix of order n (symmetric or not) with integer entries, and q denotes
a given integer column vector in R'. Let K denote the set of feasible
solutions of (27). Since M is only PSD here, K may have an empty interior,
and in fact K may even be empty. Let E be defined by (28) and let Bd(E)
be defined by (29) as in Section 3. Also let L, E_. be as defined in
Section 3. Here E, E8 may not he ellipsoids because M is only PSD., We let

T

e = (1,...,1) denote the column vector in R" all of whose entries are 1.

THEOREM 17: In this case the LCP (26) has a solution iff K # ¢. If

K # ¢, there exists a solution, (w, Z), to the LCP (26), which is a BFS
of (26), and in this case Z is an extreme point of K. When K # ¢, the

LCP (26) may have many solutions, but the set of all solutions of (26)

is a convex set which is EN K = Bd(E) N K.

PROOF: Since M is PSD, the fact that (26) has a solution iff K # ¢ is
a standard result in linear complementarity [5, 16, 21]. When K % ¢,
Lemke's complementary pivot algorithm produces a solution, (w, z), to
(26), which is a BFS of (26) [5, 16, 21], and obviously if (w, z) is a
BFS of (26), z is an extreme point of K. The set of all solutions of
(26) is obviously Bd(E) N K, and from the definition of K (from (27))
and E(from (28)) it is clear that in this case Bd(E)N K = E N K, and
since both E and K are convex sets (E is convex because M is PSD), this

set is convex. Q.E.D.



33

In this section we define E0 to be

T 2(L+1)

z < 2

Eq = {z: z } (38)

THEOREM 18: When K % ¢, Ey NE_ NK contains all the extreme points z

of K such that (w = Mz + q, z) is a solution of (26).

PROOF: By the results in [9, 11] if (w, Z) is a solution of (26) which

is a BFS, then z ¢ EO. The rest follows from Theorem 17. Q.E.D.
In this case EO n Ee N K may not contain all the z which Tead to

solutions of (26), Theorem 18 only guarantees that Eor\ Ee N K contains

all the z which are extreme points of K that lead to solutions of (26).

Since M is PSD, the LCP (q, M) may have solutions which are ray solutions,

and if so, the set of solutions of (26) may in fact be unbounded and hence

all of it may not lie in EO.

THEOREM 19: If z; is positive in some solution of (26), then its comple-
ment w, is zero in all solutions of (26). Similarly if w; is positive

in some solutions of (26), then Z, is zero in all solutions of (26).

PROOF: By Theorem 17, the set of all solutions of (26) is a convex set.

So if (w], z]), (wz, 22) are two solutions of (26) satisfying the proper-
1

ties that z; > 0 and w? > 0, then other points on the line segment joining
(w], z]), (w2, 22) cannot be solutions of (26) (because they violate the
complementarity constraint W.z, =0 in (26)) contradicting the fact that

the set of solutions of (26) is a convex set. 0.E.D.

THEOREM 20: If z is an extreme point of K that leads to a solution of

(26), then for each i either Ei =0 or 2L < z

Mi.i +q; is zero or 2t < Mi.i +; < 2L/n. Also at every extreme

i 5 2L/n. Also either

point of z of K that does not lead to a solution of (26), we will have

zT(Mz +q) > 2-2L,
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PROOF: Similar to the proof of Theorem 13 in Section 3. Q.E.D.

THEOREM 21: K # ¢ iff the set of solutions of

-10L
e

Mz + q -2

nv

oL

N
nv

has a nonempty interior.

PROOF: By the results in [9], (39) is feasible if and only if K # ¢.
Also any point in K is an interior point of the set of feasible solutions
of (39). Q.E.D.

Let K1 denote the set of feasible solutions of (39).

THEOREM 22: Let ¢ = 2~ (BL1)  bor any point % e E,N E, N Ky, ve
‘ 0
have for each i =1 to n,
either Ei < 2'3L
n 231
or Mz +q; < 2
A -3L A -3L . 3
PROOF: Suppose that Z; 2 2 and Mi_z tQ; 2 2 7", Since z ¢ E€ s
- B 0
ET(ME +q) < p-(6L+1) . Then we have
o A -(6L+41) ,-6L
 z,(M, z+q,) < 2 -2
Taot L. t’ =
g
i
< _2-(6L+1)
But from (39) and the definition of EO’
AN A S10L 204 L
Iz, (Mt Z+ qt) > - (n-1) 2 (2 +25)
t=1 B
i
5 _ o~(6L+1)

a contradiction. Q.E.D.
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THEOREM 23: Let ¢, = 2'(6L+]). If K $# ¢, the n-dimensional volume of

. -11nL
n
E0 E€0r1 K.I is > 2 .

PROOF: Assume K $ ¢. So by earlier results (26) has a solution. Let
(w, z) be a complementary BFS of (26). So by Theorem 17, z ¢ Bd(E) N K.
Define the hypercube C, (for A > 0)

C, = {z:ze R", |zj - Ej[ <N2 forall j=1 ton}.

Then, clearly, the n-dimensional volume of Ck is kn.

-11L

We will now prove

that C,C K, NE, NE_ for A <2 Since the radius of E, is 2L+],
A 1 0 €0 = 0

C,C E, by the definition C, and the fact that 1z]] < 2" from Theorem 20.

Let Z be any point in C,. Since 21 20, M, Z+ q; 2 0 for all i =1 ton,

we have

_ 21 > ii - M2 2 -\/2 ;-2']0L

)

n
X [m.

Mi.z +a; 2 Mi.z ta; - (x/2)( i

j=1

>_2-(11L+1) L -10L

X 2 -2

nv

So C,C K. Also, since z T(Mi +q) = 0 (since (w =Mz + g, z) solves

(26)), we have

T

5T (Matq) = (3-2)7 (Mz+qtM'Z) + (2-2) M(2-3)

(/2) n(2he2t 24y + (2)% 3 mg |

1,]

A

2-(11L+1) n 2L+2 + n2 2L-2(11L+1)

HA

2

HA

€0
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This implies that C)\C Ee . Hence C, C

A
0
= 2']1L, the volume of C -1inL

A
theorem.

Let Z be any point in EO(W E NK
€0

J] = {i: M, , Z+q, <0}

+ : A -
o= lis 0 < M z+q <2
J, = i: 2, <0}

Jy = {i: 0 < z; < 2 77}
Then by Theorem 22,

- + - +

J] UJ] UJZ UJZ - {],...,n}.

Furthermore, 2 is a solution of

-Mz < g+ 2-3e
-z 273k
M2 5 -q + 2'3L, for i ¢ JT

Z. < 2'3L, for i ¢ J;

K]rﬁ E

1°

0

A is 2 , and these facts imply the

Define

nNE .
€

Now letting

Q.E.D.
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THEOREM 24: Let z be any point in Eon Ee n K]. Let I be the unit

0
matrix of order n. In [9] P. Gdcs and L. Lovdsz describe a constructive
procedure for obtaining a new solution, which we will denote by the

+

same symbol E, such that if J, , J1 , Jz' J2+ are the index sets
H

corresponding to this new 2,'then the new z also satisfies (41), and

there exists a linearly independent subset D of row vectors.

Ll - + Ll U +
DC{M_i..'IEJ] UJ]}U{Ii_.1€J2 Jo}
such that D spans 11near1y'{Mi.: i=1ton}u {Ii-: i =1 to n}.

Furthermore, if Z is a solution of

-Mi.z =055 for i such that Mi- e D

Zi = 0 for i such that Ii- eD
then (w = Mz + q, z) is a solution of (26).

PROOF: This theorem follows from the results of P. Gdcs and L. Lovdsz

in [9], applied on (41). We know that Z satisfies

- Mi- 2 95 for i € J]
M, z > for i e J7
£ 270 M1 E g

]
N
nv

0, foriced

(S

2,20, forieJ,

By the results in [9], z is a solution of

-Mz < q

-Z <

A
o
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Furthermore, Z satisfies

= _ . -t
Mi.z = -0 for i ¢ J.l U J]
- ) - +
z, = 0, forice J2 UJ2

by the spanning property of D and the results in [9]. By (40), this
implies that at least one of Gi or E} is zero for each i =1 to n. All
these facts together clearly imply that (w, z) is a solution of the

LCP (26). Q.E.D.

THE ALGORITHM

Apply the ellipsoid algorithm discussed in Section 3, to get a point

z Z\L+
2 inEgNE_ A K, initiating the algorithm with 2° = 0, A, = L2(LH1) |

0 (L)

E0 = E(z? AO). The volume of E0 here is < 2 , and if K ¥ ¢, the

volume of E.ME N K, is > 2-11nL
0 € 1

0
this ellipsoid algorithm will terminate in at most 2(n+1)

by Theorem 23. Hence if K # ¢,
2 (13L+1) steps
with a point z ¢ EOﬁ EEJW Ky« So, if the ellipsoid algorithm did not
0(\ Egof\ K] even after 2(n+1)2(13L+1), we can conclude
that K = ¢, that is, that the LCP (26) has no solution. On the other

find a point in E

hand, if a point z in EOfW EEfW K1 is obtained in the ellipsoid algorithm,
0
then using it, obtain a solution (W, Z) of the LCP (26) as discussed in

Theorem 24,
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5. OTHER LCPs

The ellipsoid algorithms discussed in Sections 2, 3, 4 can only process

LCPs associated with PSD matrices (the class of these LCPs is equivalent
to the class of convex quadratic programs). There are other polynomially
bounded algorithms for other special classes of LCPs, One prime example
of this is the very efficient 0(n3)‘a1gorithm of R. Chandrasekharan and
R. Saigal [2, 24] for processing LCPs associated with z-matrices. Also
in [6, 19] it was shown that LCPs satisfying certain properties can be
solved as Tinear programs, and these LCPs are therefore polynomially solv-
able using Shor-Khachiyan's ellipsoid algorithm [9, 11] on the resulting
linear program,

For the general LCP, the prospects of finding a polynomially bounded
algorithm are not very promising, in view of the result in [3] where it
is shown that this problem'is NP-complete. Let A1seeesdps b be positive

integers and let Mn+2 and q(n+2) be the following matrices

- In . 0 0 a]‘\\

Mn+2 = . -T- . .- . . e e o . q(n+2) - E
en : -n 0 an \
T |

- en 0 -n -b

b

where In denotes the unit matrix of order n, and e, is the column vector in
R" all of whose entries are 1. Also consider the 0-1 equality constraint

Knapsack feasibility problem

X; = Oor1 foralli=1ton.
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In [3], the following result was proved: If (W, z) is a solution of the

~ Y . A~ .- . ¥ = (¥ o 7
LCP (q(n+2), Mn+2)’ define X; = zi/ai, for i =1 to n; then X = (Xl""’xn)
is a solution of (42). Conversely if X = (§1,...;§n)T is a solution of

( 42); define Woal = Zo41 = Wn+2 =7 ,,=0,and 2, =a; R, W, = ai(1 - X,

i=1ton; then (W= (W],...,Wn+2), 2 =(21,...,2n+2)) is a solution of
the LCP (q(n+2), ﬁn+2 ). Since (42) is a well known NP-complete problem,
this shows that the LCP (an+2’ ﬁn+2) is NP-complete. One can clearly verify
that the matrix ﬁn+2 is ND.  This shows that even the LCPs associated with
ND matrices are NP-complete.

Let M be a given ND matrix with integer entries, and let q ¢ R" be a
given integer column vector. In this case the LCP (g, M) may not have a
solution; and even if it does, the solution may not be unique. From the

results in [20] we do know that the number of distinct solutions of the

LCP (g, M) in this case is finite. Let K be the set of feasible solutions

of
z > 0
(43)
Mz+q20
and let E be the ellipsoid
T
z (Mz+gq) > 0. (44)

Since M is ND, the inequality (44) defines an ellipsoid in R", Let
Bd(E) be the boundary of E.

Clearly any point z € Bd(E) N K satisfies the property that
(w=Mz +q, z) is a solution of the LCP (q, M) and vice versa. So

solving the LCP (q, M) is equivalent to the problem of finding a point



4

When M is ND, E and K may be as in one of the figures
given here. Points of K on the boundary of E, if
any, lead to solutions of the LCP(q, M).

Figure 4:
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in Bd(E) N K. However, in this case, from (43), (44) we notice that
KcE, and in general, Bd(E) N K E; E NK. See Figure 4. So the

nice property that EN K = Bd(E) N K which held for LCPs associated with
PSD matrices does not hold here anymore, which makes the LCP associated
with an ND matrix much harder. In this case (i.e., with M being ND),

it is possible to find a point in E NK using an ellipsoid algorithm
(actually since KC E here, a point in K can be found by the Shor-
Khachiyan algorithm of [9, 11], and that point will also lie in E), but
the point in E N K obtained by the algorithm may not be on the boundary
of E, and hence may not lead to a solution of the LCP (q, M). In fact,
finding a point in Bd(E)M K is a concave minimization problem, and that's
why it is NP-complete.

The status of the LCPs (q, M) where M is a P but not a PSD matrix, is
unresolved. In this case the LCP(q, M) is known to have a unique solution
[20, 25], but the sets {z: zT(Mz +q) < 0} or {z: zT(Mz +q) > 0} are not
ellinsoids. The interesting question is whether a polvnomially hounded

algorithm exists for solving this special class of LCPs. This still remains

an open question, It is also not known whether these LCPs are NP-complete.
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