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0. Introduction

In one complex variable dynamics, Sullivan’s theorem ([6]) gives a complete
classification of the Fatou components that can appear for a rationaf map

Consequently we can have only periodic componéhendU can be
one of the following: 1.U attracting basin; 2U parabolic domain; 3U
Siegel disk; 4UU Herman ring.

Cases 3. and 4. are callemtation domainsin these cases, the rational
map f is conjugated o/ to an irrational rotation, hence by taking all the
iterates off and their limits we obtain af'-action onl/ which has at most
one fixed (periodic) point id/.

The goal of this paper is to give conditions when the generalization of
the one variable situation is true. In particular we consider actions of tori on
Stein manifolds and study their periodic (fixed) points.

Outline of the paper:

The main results of the paper are contained in Theorems 2.1, 3.3, 3.10
and Proposition 3.7.

In Sect. 1 we introduce notation and basic definitions; also some exam-
ples of Siegel domains are reviewed.

In Sect. 2 we will prove that the number of periodic points (of all periods)
for a large class of actions of tori on Stein manifolds is finite.
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Then, Sect. 3 will give topological conditions on the manifold guarantee-
ing the existence of at most one fixed point. In particular, this will become
true when the second cohomology group with integer coefficients vanishes.

Finally, Sect. 4 introduces an example of sth-action on a connected
and Kobayashi hyperbolic Stein manifold having exaetlyfixed points,

m > 2.

The author would like to thank John-Erik Fornaess for many useful dis-
cussions. | am also grateful to the referee for many careful comments about
this paper.

1. Basic facts and examples

In the following we will consider? a Stein manifold, which is also supposed
to be Kobayashi hyperbolic. If2 is hyperbolic, a theorem of Kobayashi
([14]) states that its group of holomorphic automorphisatst(f2), is a

Lie group. The following lemma follows from the structure theorem of
commutative Lie groups ( for example Onishchik [ 16 ]); for the convenience
of the reader, a proof of the lemma may be found in Ueda [ 18].

Lemma 1.1 Let G be a Lie group and assume there exists an eleryiémt

G such that the subgroup generated pis infinite cyclic and there exists a
subsequencgfin),, converging to the identity element. Then the closure of
(f™), is compact and it contains a tords’, for somes > 0.

Hence by takingG = Aut(£2) with the compact-open topology, and
f € Aut(£2) so that the hypothesis of the lemma is satisfied, we will obtain
aT's-action on(?.

For future reference, let us write down that in the notation of Ueda,
H is the closure of f7); in G and Hy is the connected component &f
containing the identity element.

If s =dim¢{2, then the action is described by a theorem of Barrett-
Bedford-Dadok [3]:

Theorem 1.2 ([3]) In the above assumptions (86 = Aut(f?2)), if s =
dimc {2, there exist®d : 2 — U, a biholomorphism of? to a Reinhardt
domainU, and an integet > 0 so thatdo f! = Ro®, with R(z1, ..., z) =
(€2, ..., €M% zy).

Consequently we may have at most one fixed poirftiof{?2 in this case.
However there is no classification as the one above for general actions of
tori on Stein manifolds.

A natural example of a Stein manifold with a torus action is provided by
a Siegel domain for a holomorphic map on a projective space.
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Inthe following definition the notion of degree of a holomorphic mapping
f : P — P™ will be in the sense of Fornaess—Sibony ([9, 11]), i.e as degree
of a homogeneous polynomial lifting fgi,/ : C**1\ 0 — C**1\ 0.

Definition: Let f : P — P™ a holomorphic map of degree>d 2.

F ={z € P", z has a neighbourhodd s.t(f7); forms a normal family
in V} is its Fatou set.

For properties of Fatou sets, [9-10-11] are good references. A connected
component/ of F is called a Siegel domain if there exists a subsequence
(f7»), converging uniformly on compacts ta;. This notion has been
introduced by Fornaess and Sibony ([8, 9 ]) as a generalization of the Siegel
disks and Herman rings from one variable.

Directly from the definition it is clear that any Siegel domain is periodic,
i.e there ism > 0 s.t f(U) = U. By a theorem of Ueda ([19]), any
such Siegel domain is Stein and Kobayashi hyperbolic. It follows easily that
f : U — U is a biholomorphism (we may assume WLOG that= 1,
hence thaf (U) = U) and, from degree considerations, also that there is no
q>0s.tfl/y =idy.

We notice also that, sindé is Kobayashi hyperbolidi; = Aut(£2) is a
Lie group and we are in the conditions of Lemma 1.1.

RemarkExamples of Siegel domainsli? can be constructed by the method
of Ueda ([20]), starting from rational functions &4 that have Siegel disks
or Herman rings.

The mainideais to double covt with P! x P! by means of a projection
7 such that the diagonal @' x P! is the branch locus and([¢ : 7], [¢
n1)) = w([&: 1, [€ : n]). Then, if f : P — P! is rational, there will exist
a holomorphic mapping’ : P2 — P2s.tF o = mo f, wheref = (f, f).
Hence ifU is a Siegel disk foif, then sincef has no periodic points of
period two inU (other than the fixed point), the associated niapas only
one fixed point int (U x U). Similarly, if U is a Herman ring forf, we
obtain thatr (U x U) is a Siegel domain foF with no fixed points.
Taking the iterates of onU and their limits inAut(£2) will provide us
with an example of an action on a Siegel domain which has no fixed points.

2. Periodic points

Theorem 2.1 Let §2 be a Stein manifold of dimension n and assume that
12 is Kobayashi hyperbolic. Assume also that we are in the conditions from
the hypothesis of Lemma 1.1 with= Awt({2) and that the holomorphic
automorphisny satisfies the following condition:

(%)

forall m > 0, m integer, there exist only at most a finite number of solutions
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of the equatiorf™(z) = z (we call these solutions periodic points of period
Then the number of periodic points ffof all periods, belonging ta?
is finite.

Proof Asinthe proof of Lemma 1.1 (see Ueda [18])Hf is the connected
component of f7); in Aut(§2) containing the identity, thefip € Z such
that Hy is the closure of f77); and there is a Lie group isomorphisin:
Hy — T, for somes > 0.

Thend(fP) = (e 2y, ..., "% zy).

Assume that one of they, ..., o is rational, for instancer; = %11

Then®(frm) = (e¥mimar e2mimas) and obviouslye?™*1 takes
only a finite number of values. Thereforg?"™),,, would not be dense in
Hy, contradiction. So alty;’s are irrational.

Suppose now that we can find an infinite number of periodic points in
(2. Because of the conditiof), we should have a sequence of integers
mj — oo and pointg; s.tp; is a periodic point of period., for all .

Letj > 0 be fixed and considen arbitrary s.tf™ € Hy. Since alloy's
are irrational, it is clear that the closed subgroup generateBy is still
dense inHy, for all j. Consequently there is a sequehgs.t fPmika — fm
in Hy, wheng — oo.

So fPmika(p;) = f™io...o fM(p;) = p; — f™(p,), hencep; is a
—_——

pk
periodic point of period m. Bf;;t was chosen arbitrarily, so all points are
periodic of period m, which would contradict)( o

RemarkLet f : P — P™ a holomorphic mapping of degree> 2 and
{2 a Siegel domain of. Now {2 is Stein and Kobayashi hyperbolic arfid
satisfies conditiorix), (Fornaess—Sibony [9]).

Hence we get that there exists at most a finite number of periodic points
of f (of all periods) belonging té..

3. Fixed points for holomorphic S!-actions in Stein manifolds

Inthis paragraph we shall specialize our results to the case of Stein manifolds
of dimension 2. We considgr € Aut(2), a holomorphic automorphism of
(2, s.tthe closure of f™),, in Aut({2) (with the compact-open topology) is
isomorphic as a Lie group t8'.

Assume that O is a fixed point gfin 2 and also thaf satisfieqx)..

2 is not supposed for the moment to be Kobayashi hyperbolic. First let
us state a well-known local linearization result (see@ls]and [ 14 ]).
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Lemma 3.1 If 2 is a complex manifold of dimension 2 afid: Aut((2) is
generating anS!-action as above, then there will exist a local biholomor-
phism¢ from a neighbourhood’ of 0 in {2 to a neighbourhood W of 0 in
C?, so that

pof=A-¢ponU,

whereA := D f(0).

Note: we denote by 0 both the pointfihand the point inC?; which one is
meant will become clear from the context.

Knowing thatf generates af' action we can say more about the matrix
A from the previous Lemma.

Lemma 3.2 In the same setting as in Lemma 3.1, there will exisi, € Z

and\ with |A| = 1 and\ is not a root of unity, such that = <>‘gl )22 )

The proof of this lemma s relatively easy and we will not give it here (see
also [7] ). Among matrices that have the above form, we can differentiate
between those for whicty, g5 have the same sign and the ones withg,
of opposite signs. This classification does not depend on whiekchoose
above and it will prove to be essential in the studyséf-actions.

Casel

Let us consider first the case when ¢> have the same sign.WLOG
we may suppose thaj, ¢» are both positive, otherwise we just take!
instead off and clearlyf ~! would have the same fixed pointsfaflthough
versions of the next theorem are more or less known ( [7] ), we will give
nevertheless a brief proof for future reference and notation.

Theorem 3.3 Let (2 be a Stein manifold of dimension 2 with a holomorphic
S1 -action generated by an automorphighas above.

If the eigenvalues of the derivativeo&t 0 look likeh; = A7, Ay = \92,
q1,q2 € Z and X not a root of unity, and if;;, g2 have the same sign, then
the action will have exactly one fixed pointfih

Proof Assume as above that 0 is a fixed point forFirst there is a neigh-
bourhoodU of 0 s.t we can continue the orbits of pointslinto analytic
disks inU going through 0.

Suppose now there exists another fixed ppirt (2. Sinces? is Stein,
we find g holomorphic onf2 s.tg(0) = 0, ¢g(p) = 1.

Defineg(z) = [q g(0 - z)du(f), whered - = denotes the action df
on z andy is the normalized Haar measure 6f; g is well defined and
holomorphic onf2 and this is independent of the relative signsgofgs.
Also, g must be constant on orbits and since both 0 mage fixed points,

9(0) =0,9(p) = 1.
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Near 0 the orbits of the action are boundaries of analytic disks passing
through 0, therefore taking the restrictiongao one of these analytic disks,
we get thafj is constant in the interior. But singg0) = 0, it follows that
g = 0 near 0, hence in the entit@. On the other hang(p) = 1, which
leads to a contradiction. o

Case 2

The case whed , g2 have different signs is more complicated, mainly be-
cause we do not have analytic disks passing through 0 and whose boundaries
are orbits of the action. In this situation the orbits can only be “complexified”
up to analytic annuli in’2. In what follows we will also need the condition
{2 Kobayashi hyperbolic.

In the sequel we will obtain a foliation ¢? with 1-dimensional complex
varieties. Let us summarize how to obtain this foliation.

As in the proof of Theorem 3.3, we can consider the average over orbits
of a fixed arbitrary non-constant holomorphic functipa O({2) (assuming
such a functiory exists s.j is not constant).

Notation: If f € Aut(£2) generates arb'-action and ifg € O({2), then
define its averaged functioj(z) = [q: 9(0 - z)du(6), wherey. is the nor-
malized Haar measure ofi' andé - z denotes the action é¢fon z through
the S'-action generated by.

Like in the proof of Theorem 3.3, one can easily check ¢hi holo-
morphic onf?2 and it is constant on the orbits of ti$e-action.

If we take the level sets(g) of this averaged function, we will obtain
complex 1-dimensional varieties i Sinceg is constant on orbits one can
see that the action preserves the dgt$g).

Also, if zg € 2 andO(zp) denotes its orbitiC' complex number, s.t
O(z9) C L¢(g). Then, we will consider the global irreducible component
of Ly(g) containing the local “z-axis” near 0.

One can show that this global irreducible component is an analytic sub-
manifold of dimension 1, invariant to the action §f playing the role of
a “global z-axis” in{2. This will be used in the end for the topological
condition from Theorem 3.9

Let us make this submanifold construction more precise in the next lem-
mas and in Proposition 3.7.

Firstly one has to make sure there is a non-constant averaged fuiiction
as above.

Lemma 3.4 In the notation from 3.4, if2 is a Stein manifold, there exists
a holomorphic functioy € O({2) such thaty(0) = 0, butg # 0.

Proof First we will recall briefly the definition of an Oka—Weil domain

([12])
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Definition: An Oka—Weil domai®/ in aholomorphic variety” isanopen
subset ol with the property that there are finitely many global holomorphic
functionsfi, ..., fy € O(V) s.t the restrictions of these functionslioare
the coordinate functions of a biholomorphic mapping betwEeand a
holomorphic subvariety of an open polydiskGH" . o

Hence, since? is a Stein manifold, we can find a neighbourhood of 0,
denoted by, which is an Oka—Weil domain.

We can also assume tHats invariant to the action and thats lineariz-
able in U. Suppose now that for glle O(£2) with g(0) = 0, we havej = 0.
Consider the function € O(U) which in the local linearizing coordinates
(z,w) has the formuldz, w) — 21| . w% | if ¢; > 0,¢2 < 0. Then, since
U is an Oka—Weil domain one can approximateniformly on compacts
of U by global holomorphic functiong, (Gunning [12]).

By taking g, — ¢»(0), we can suppose tha} (0) = 0.

Theng,(z,w) = [g1 gn(A?" - ﬁ ~w)du(N), for (z,w) € U, and
clearly we gety,, — Bo[l U. Butifg, = 0,n, then alsdv = 0. On the other
hand by the formula fok, i (z,w) = [ A®le2l. 2lel. L e (n) =

Mazl-a1
Zlel . wn £ 0, contradiction. Hence we proved that there is a function

g€ 0(£),9(0)=0s.tg #0. o

In the following we will only consider functiong of the type referred
in Lemma 3.5

Lemma 3.5 In the above setting, the analytic gat(g) has only two local
irreducible components near O.

Proof Sinceg(0) = 0, butg # 0, we can decompode,(g) near 0 as aunion
of a finite number of irreducible analytic sefs;(g) N U = S1 U...U S;.
Also,Vk, f¥(S1) € Sy U...US;. But f¥(S;) is an irreducible analytic
set, sof¥(S1) c {Si,..,5}, hence sincef is a biholomorphism of U,
there will existk; s.t f*1(S;) = S;. Similarly we can prove thafk s.t
E(S;) = S;, Vi = 1..1.
Because the problem is locgl, can be assumed to be equalAo=

0 22

Sincef* has the same form g5 we may assume WLOG thdt S;) =
Si,i = 1..1. The question is reduced now to studying for which germs of
analytic sets;, at 0, we getinvariance by f. An easy exercise in one complex
variable will prove that the only analytic germs at 0, which are invariated by
the above matrix are the coordinate axes. This impliesitha®, soLy(g)
as only two irreducible local components near 0.

q1
(A 0 >,q1,q2 of different signs, for examplg, > 0, g2 < 0.

&
In the sequel let us fix a holomorphic functign on 2 s.t go(0) = 0
andgp # 0in £2. Denote bysS the global irreducible component & (go)



46 E. Mihailescu

which contains the local “z-axis” near 0. Here and in the sequel, by local
z-axis near 0 in2 we mean the preimage of the z-axis néag C? by the
local biholomorphismy of Lemma 3.1.

Remarkln fact, since any two irreducible analytic subset$Xaf dimension

1 coinciding in an open set are actually identical globally (this follows from
the identity principle), one can see that the Sedoes not depend on the
defining functiongp.

We will show that this sef plays the role of a “global z-axis” passing
through 0 inf2.

Proposition 3.6 Let gg be one of the functions whose existence is proved
in Lemma 3.5, i.e so that € O(£2), go(0) = 0, but the averaged function

do # 0. If S'is the global irreducible component g§~*(0) containing the
preimage of the local z-axis ne@rc C? by the biholomorphism of Lemma
3.1, thenSing(S) = 0, soS is a complex submanifold of dimension 1(in

Proof Sing(S) is an analytic set of dimension O, so it is a discrete subset in
2, without accumulation points in the interior. We will show first that 0 is
not a singular point of; the proof in general will follow then easily from
this.

Lemma 3.7 In the above notation, the point O (fixed by the action) is not a
singular point forsS.

Proof Assume 0 is a singular point ¢f; this will be shown to give a con-
tradiction.3 a small neighbourhood in whichiis the union of the two local
coordinate axes(one can actually identify the z- and w-axes neaf8 in
with their preimages iff2). We can also assume that in this neighbourhood,
0is the only singular point of. Let nowS = S\ Sing(S) ; S is a Riemann
surface and it is hyperbolic (since it is containedrwhich was supposed
to be Kobayashi hyperbolic). TherefoféS : S — S is a biholomorphism.

According to Milnor’s classification theorem ([15]), any holomorphic
map f of a hyperbolic Riemann surface falls into one of the following
four mutually disjoint cases:

1. f has a unique attracting fixed pointh or

2. every orbit diverges to infinity w.r.t the Kobayashi distardgeor

3. fis an automorphism of finite order, or

4. S is isomorphic to the unit disk\, the punctured unit disk\* or an
annulus, and corresponds to an irrational rotation.

In our case, sincg has a sequence of iterates converging to identity, we
cannot have 1. or 2. Also case 3. cannot appear because of the local form of
f.Here andinthe rest of the paper we are still in the case when the exponents
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q1, g2 Of the derivative off at 0 have different signs. Thehis isomorphic
to A, A* or an annulus by means of a m@pand f is conjugated to an
irrational rotation.

SoB : S — A, A* or an annulush, is a biholomorphism and let
an invariant neighbourhootl of 0 in which f can be linearized and s.t
according to the previous lemma 3% U is the union of the two local
coordinate axes, minus the point 0. Denote the two connected components
of SN U by Sy, Se; obviously f(S1) = S1, f(S2) = S2. Consider now
(B(S1) and3(S2) open connected subsets in onehfA* or an annulus, in
which f corresponds to an irrational rotation.

If we take for examples(.S;)N segment on the positive axis belonging
to A, A* or an annulus centered at 0, we will obtain an open subset of
this segment. By rotating this open subset, the origina3$8t) will be
reobtained; hence this open subset of the interval must be connected. But
the only connected open subsets of a real interval are real open subintervals.
Hence3(.S1) must be actually a set of the forfid < |z| < r}, or of the
form {0 < |z| < r, for somer < 1. The same can be said ab@i{tSs).

SinceS; NSy = 0 = B(S1) N B(S2) = 0.

According to the previous discussigh(S;) and3(S2) are both annuli
or disks or punctured disks centered at @inHence if they are disjoint,
they cannot be both punctured disks.

Onthe other hand, S, were defined as the local coordinate axes minus
0, hence they should be both biholomorphic to punctured disks.

But a disk, a punctured disk and an annulus cannot be biholomorphic to
each other, therefore a contradiction. This shows that our assumption was
wrong, so 0 is a regular point ¢f. o

Returning to the proof of Proposition 3.7, it is clear tifébing(S)) =
Sing(S) ; let now zp € Sing(S) and consider its orbiD(zy). Since
O(z0) = (f™(20))n is compact andf"(zy) € Sing(S),Vn, it follows
thatO(zp) is a finite set of points. WLOG one can assume thas a fixed
point for f.

If D f(20) has eigenvalues of the typég!, \%2, with ¢, g2 of opposite
signs, thenf|S is conjugated to an irrational rotation and we get a contra-
diction as above. Hencging(S) = 0. o

RemarkThe above proposition has an interest in itself. Indeed, conSider
the global irreducible component @f(gp) containing the local “w-axis”
near 0. SinceS cannot contain both the “z-axis” and the “w-axis” near
O(Lemma 3.6), it follows thaf; # S. Also f(S1) = 5.

In fact the following result is true:

Corollary 3.8 SN S; = {0}.
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This can be proved in a similar way, by looking at the orbit of a point
from S N .S; and at the action of on S.

Remark(continued)S andS; are complex submanifolds of dimension 1 in
{2, they are invariated by the action and they extend the local “coordinate
axes” near 0. One can interpret them as “global axes of coordinatés” in
Next we want to prove that the action, under certain topological restrictions,
has only one fixed point ifY. First we need to introduce some notions and
facts from multidimensional residue theory. Assume for the momenffhat

is a complex manifold of dimension n artlis an analytic submanifold of
codimension 1 inX.

Definition ([2]) Letw a closed regular form oX \ S.

w is said to have a polar singularity of first ordenif, € S, if {s = 0} is
a minimal defining equation fa¥, s - w can be locally extended as a regular
form acrosss. o

Suppose now that is a form like in the definition. Then by a theorem of
Leray ([2]), ifa € S, there exisU, a neighbourhood af, and regular forms
1 andd defined inU,, s.t

_ds

(1) w—?

ANY+6,
whereS NU, = {s = 0}, grads # 0.
Moreover the form)|sny, can be extended globally to the entfeand
it is closed. This restricted global form ¢his called theresidue form ob.
Also if w is holomorphic inX \ S, then the formy|s is holomorphic
on S. The holomorphic forms otX \ .S which have polar singularities of
first order play a special role in the case whEm y = 2 and X is Stein.
Denote by2” (X, S) the sheaf of germs of p-formgthat are holomorphic
in X \ S and s.ty anddyx have polar singularities of first order ¢h
In 1986, G.Raby ([17]) proved the following theorem relating the forms
in2P(X,S)to HY(X \ S,C):

Theorem: IfX is a Stein manifold of dimension 2 arftlis a submanifold
of X of dimension 1, then

HY X\ S,C)=HY(I'(X,2°(X,5)))
<&

So each cohomology class from' (X \ S, C) contains a closed holo-
morphic form onX \ S with polar singularities of first order ofi.

Theorem 3.9 Let (2 be a Stein and Kobayashi hyperbolic manifold of com-
plex dimension 2 with af*-action as above (i.e generated by an automor-
phism f satisfying &), f(0) = 0 and with exponents;, ¢ with opposite
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signs). Assume the restriction morphigm H'(2) — H!(£2\ S) is not
surjective, wheres' is the global analytic set of Proposition 3.7. Then the
Sl-action has exactly one fixed point§? namely 0.

Proof By hypothesis, there exists a regular 1- foznon 2 \ S which is
not cohomologous to the restriction of a regular formf@nFrom Raby'’s
Theorem, we can fing holomorphic form o2\ S, with polar singularities
of firstorder onS, s.tw ~ w. Thenthe Leray expression (1) gives that locally

d
o="ANB+ 9,
S

wheres is chosen to be irreducible.

Also, @|s is a holomomorphic function o which, as a differential
form is closed, sa@b is holomorphic nealS and it is a constant” when
restricted toS. Let a point Q =(zp, wp), wy # 0 close to 0. We can also
assume that in the neighbourho@ds(z, w) = w. Itis easily seen that the
orbit of @, denoted now by (@), is homologous i/ \ S to a circle of the
form (2o, A - wp), A € S*.

Then by Leray’s Residue Theorem ([2]),

1 1
— &4):7 @:@(20,0)207
2mi (@) 270 J{ (20, Mw0) . A€51}

since® was constant of.

Now, assume we would have another fixed point for the action, denoted
by P. From the description & given in the proof of Proposition 3.7, ¢ S.
SinceS is an analytic set iri2, {2\ S is connected,; joird) to P by a simple
pathn|[0, 1] contained inf2 \ S.

“Rotating” n will give us thaty(Q) and P are homologous it \ S.

Let us make this more precise. Indeed if we take the orbits of all points
of n by theS*-action (we identify the parametrization gfwith its image),
we will get a homology between the orbitgf0) and that ofi(1)

But the orbit of Q isy(Q) and the orbit of P is P itself since this point
was assumed to be fixed for thé-action. Also, becausg(2\ S) = 2\ S
and f is the biholomorphism of? generating ouiS!- action, none of the
orbits of points fromy ([0, 1]) will intersectsS.

This proves that/(Q)) and P are homologous as pathgn, S.

Neverthelessy is a closed form o2 \ S and~(Q) is homologous to
Pin 2\ 5.

Thus, 55 [0y @ = 95 Jypy@ = 0= C =0.

Therefore® is holomorphic on a neighbourhood §fand vanishes on
S.

So, if s is a local irreducible defining function fd¥, s will divide &.
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Henced = % . & + ¥ has no singularities o, which means that it
can be extended acro§s Sow is the restriction ta? \ S of a differential
form on 2, hence contradiction. In conclusion 0 is the only fixed point of
the action. o

Corollary 3.10 Any holomorphicS*-action with a discrete set of fixed
points, on a 2-dimensional Stein manifalgl which is Kobayashi hyper-
bolic and hasH?(2,Z) = 0, has in fact at most one fixed point.

Proof We will use the fact that, if? is Stein andH?(£2,Z) = 0, then the
second Cousin problem can always be solved. By taking the local minimal
defining functions for the “global z-axis¥, and constants equal to 1 outside
S, we obtain a multiplicative Cousin data. Solving it will provide us with a
global defining functiong for S.

Now we can take the 1-form = d%, which is closed oif? \ S and has
polar singularities of the first order an

Hence the hypothesis of Theorem 3.10 is fulfilled and there is at most
one fixed point of the action if. o

There seems to exist also a more general relationship between the second
cohomology groupgi?(£2,7Z) and the maximum number of fixed points in
2. This question will be investigated in a future article.

4. Some examples

Let 2 a 2-dimensional Stein and Kobayashi hyperbolic manifold as be-
fore.We also have afi'-action onf2 by holomorphic automorphisms which
have discrete sets of fixed points. A natural question would be to generalize
the existence of only at most one fixed point to the case when the eigen-
values of the derivative A are of the forii?, \92, with ¢;, ¢ of opposite
signs. The following example shows this is not possible unless suplementary
conditions are imposed.

Example: Let X = connected component of the gét, w, t) € C3, 2™ —
1+wt=0,]|2| < 3,|w| <3,|t| <3} containing the point ( 1,0,0 ), where
m > 2 is a positive integer.

The S!-action on X is given by - (z,w, t) — (2, Mw, 1), A € S™.

First we notice that X is a manifold of dimension 2, i.e it has no sin-
gular points as a subvariety i@. Indeedd(z™ — 1 + wt)(z,w,t) =
(mzm=1 ¢, w) = (0,0,0) iff (2,w,t) = (0,0,0). But(0,0,0) ¢ X; also it
is easy to see that the action is well -defined in the sense that it preserves the
analytic set, the respective connected component|snfi= |w|, |{t| =
t|, YA € S'. Next X is Stein and, since it is bounded, it is also Kobayashi
hyperbolic.



Periodic points for actions of tori in Stein manifolds 51

We have thate,,, 0,0) € X,wheree,, is an m-root of unity ; indeed we
canjoin(ey,, 0,0) to (e, 0,1) in X by a pathu — (€,,,0,u),u € [0, 1],and
then(e,,,0,1) to (0,1,1) by a pate — ((1 —u)ep, 1 — (1 —u)™, 1),u €
[0, 1], which is contained in X as well.

We can do the same thing for a path going from ( 1,0,0) to ( 1,0,1) and
then on to(0, 1, 1). In fact the m points of the forn(e,,, 0,0) are the only
fixed points of this action on X. Indeed, ¥- (z,w,t) = (z,w,t),V\ €
Sl = w =t = 0 = zis an m-root of unity, if(z, w, ) € X.

In conclusion we obtained a Stein, Kobayashi hyperbolic manifold of
dimension 2 with ars-action having exactly m fixed points. o

By a suitable modification of the above we can give an example showing
that Corollary 3.11 does not cover all cases of Theorem 3.10.

Let X = connected component §fz,w,t) € C3, 2z + 22 — 1 + wt =
0,]2] < 1,]w| < 1,t| < 1} containing the point =Y, 0,0), with the
action\ - (z,w,t) — (z, \w, %t)

As before, X is Stein, Kobayashi hyperbolic manifold and it can be
checked that the action has only one fixed point.

We will show that the “global z-axis” is defined as the set of zeros of
a global holomorphic function, buf?(X, Z) # 0. So there are cases when
p: HY(X)— HY(X\ S)is not surjective andi?(X, Z) # 0.

ThesetSisgivenaq(z,w,t) € X,t = 0},s0% € H'(X\S),and% ¢
p(H(X)). We will prove first that the homology groufiz(X \ {P},Z)

has a nonzero free part, whePe= (‘1;‘/5, 0,0).
Then, since the real dimension of X is 4HL (X \ { P}, Z) has nonzero

free part, the same is true féf2 (X, Z).
Now, if (z, w, t) € X\{P},therw # 0, # 0, so canwrit¢ = 1=2=2",

w

This means thaX \ {P} = D := respective connected component of
{(z,w) € C2, |2| < 1, |w| < 1,z # =45 |lmz=2?) 1},

Denote byD; the first projection of D as a subset df x A. Now
“1V5 ¢ Py, butaV = V(=4Y5) c Astvz e V\ {=55) 1 — 2 —
22| < |w| if |w| > &g, for someey > 0. So D, is open, connected, and
containsV’ \ {=1£v5},

From the definition of the set D, the second projection of D on the unit
disk, Do, is contained imA*. Also, sincg\ - w| = |w|, VA € S!,we get that
D, is invariant to rotations. S0s is open, connected, invariant to rotations
and contained il\* = D, is an annulus or a punctured disk.

Take next the product of a small closed loop aroaéqﬁ in Dy with
a larger circle around 0 iD5; we can choose the loops so that to obtain a
2-simplex in D. By using Kunneth formula (Bredon [5]) it is easy to see that
this 2-simplex will span a non-zero free subgrougs( D, Z).
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Hence Hy(X,Z) will have a non-zero free part. From the Universal

Coefficient Theorem ( [5] ), there exists an epimorphigd?(X,Z) —
Hom(H(X,Z),Z) — 0.

SinceH»(X,Z) has a non-zero free subgrougpom (Hz(X,7Z),7) #

0 = H%(X,Z) #0.
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