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0. Introduction

In one complex variable dynamics, Sullivan’s theorem ([6]) gives a complete
classification of the Fatou components that can appear for a rational mapf .

Consequently we can have only periodic componentsU andU can be
one of the following: 1.U attracting basin; 2.U parabolic domain; 3.U
Siegel disk; 4.U Herman ring.

Cases 3. and 4. are calledrotation domains. In these cases, the rational
mapf is conjugated onU to an irrational rotation, hence by taking all the
iterates off and their limits we obtain anS1-action onU which has at most
one fixed (periodic) point inU .

The goal of this paper is to give conditions when the generalization of
the one variable situation is true. In particular we consider actions of tori on
Stein manifolds and study their periodic (fixed) points.

Outline of the paper:
The main results of the paper are contained in Theorems 2.1, 3.3, 3.10

and Proposition 3.7.
In Sect. 1 we introduce notation and basic definitions; also some exam-

ples of Siegel domains are reviewed.
In Sect. 2 we will prove that the number of periodic points (of all periods)

for a large class of actions of tori on Stein manifolds is finite.
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Then, Sect. 3 will give topological conditions on the manifold guarantee-
ing the existence of at most one fixed point. In particular, this will become
true when the second cohomology group with integer coefficients vanishes.

Finally, Sect. 4 introduces an example of anS1-action on a connected
and Kobayashi hyperbolic Stein manifold having exactlym fixed points,
m ≥ 2.

The author would like to thank John-Erik Fornæss for many useful dis-
cussions. I am also grateful to the referee for many careful comments about
this paper.

1. Basic facts and examples

In the following we will considerΩ a Stein manifold, which is also supposed
to be Kobayashi hyperbolic. IfΩ is hyperbolic, a theorem of Kobayashi
([14]) states that its group of holomorphic automorphisms,Aut(Ω), is a
Lie group. The following lemma follows from the structure theorem of
commutative Lie groups ( for example Onishchik [ 16 ] ); for the convenience
of the reader, a proof of the lemma may be found in Ueda [ 18 ].

Lemma 1.1 LetG be a Lie group and assume there exists an elementf in
G such that the subgroup generated byf is infinite cyclic and there exists a
subsequence(f jn)n converging to the identity element. Then the closure of
(fn)n is compact and it contains a torusT s, for somes > 0.

Hence by takingG = Aut(Ω) with the compact-open topology, and
f ∈ Aut(Ω) so that the hypothesis of the lemma is satisfied, we will obtain
aT s-action onΩ.

For future reference, let us write down that in the notation of Ueda,
H is the closure of(f j)j in G andH0 is the connected component ofH
containing the identity element.

If s =dimCΩ, then the action is described by a theorem of Barrett-
Bedford-Dadok [3]:

Theorem 1.2 ([3]) In the above assumptions (soG = Aut(Ω)), if s =
dimCΩ, there exists̃Φ : Ω → U , a biholomorphism ofΩ to a Reinhardt
domainU , and an integerl > 0 so thatΦ̃◦f l = R◦ Φ̃, withR(z1, ..., zs) =
(eiα1z1, ..., e

iαszs).

Consequently we may have at most one fixed point off inΩ in this case.
However there is no classification as the one above for general actions of
tori on Stein manifolds.

A natural example of a Stein manifold with a torus action is provided by
a Siegel domain for a holomorphic map on a projective space.
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In the following definition the notion of degree of a holomorphic mapping
f : P

n → P
n will be in the sense of Fornaess–Sibony ( [9, 11] ), i.e as degree

of a homogeneous polynomial lifting forf ,F : C
n+1 \ 0 → C

n+1 \ 0.

Definition: Let f : P
n → P

n a holomorphic map of degree d≥ 2.

F = {z ∈ P
n, z has a neighbourhoodV s.t(f j)j forms a normal family

in V} is its Fatou set.
For properties of Fatou sets, [9-10-11] are good references. A connected

componentU of F is called a Siegel domain if there exists a subsequence
(f jν )ν converging uniformly on compacts toidU . This notion has been
introduced by Fornæss and Sibony ([8, 9 ]) as a generalization of the Siegel
disks and Herman rings from one variable.

Directly from the definition it is clear that any Siegel domain is periodic,
i.e there ism > 0 s.t fm(U) = U . By a theorem of Ueda ([19]), any
such Siegel domain is Stein and Kobayashi hyperbolic. It follows easily that
f : U → U is a biholomorphism (we may assume WLOG thatm = 1,
hence thatf(U) = U ) and, from degree considerations, also that there is no
q > 0 s.tf q/U = idU .

We notice also that, sinceU is Kobayashi hyperbolic,G = Aut(Ω) is a
Lie group and we are in the conditions of Lemma 1.1.

Remark:Examples of Siegel domains inP2 can be constructed by the method
of Ueda ([20]), starting from rational functions onP

1 that have Siegel disks
or Herman rings.

The main idea is to double coverP
2 with P

1×P
1 by means of a projection

π such that the diagonal ofP1 × P
1 is the branch locus andπ([ξ : η], [ξ′ :

η′]) = π([ξ′ : η′], [ξ : η]). Then, iff : P
1 → P

1 is rational, there will exist
a holomorphic mappingF : P

2 → P
2 s.tF ◦ π = π ◦ f̂ , wheref̂ = (f, f).

Hence ifU is a Siegel disk forf , then sincef has no periodic points of
period two inU (other than the fixed point), the associated mapF has only
one fixed point inπ (U × U ). Similarly, if U is a Herman ring forf , we
obtain thatπ(U × U) is a Siegel domain forF with no fixed points.

Taking the iterates ofF onU and their limits inAut(Ω) will provide us
with an example of an action on a Siegel domain which has no fixed points.

2. Periodic points

Theorem 2.1 LetΩ be a Stein manifold of dimension n and assume that
Ω is Kobayashi hyperbolic. Assume also that we are in the conditions from
the hypothesis of Lemma 1.1 withG = Aut(Ω) and that the holomorphic
automorphismf satisfies the following condition:

(?)
for all m > 0,m integer, there exist only at most a finite number of solutions
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of the equationfm(x) = x (we call these solutions periodic points of period
m).

Then the number of periodic points off of all periods, belonging toΩ
is finite.

Proof As in the proof of Lemma 1.1 (see Ueda [18]), ifH0 is the connected
component of(f j)j in Aut(Ω) containing the identity, then∃p ∈ Z such
thatH0 is the closure of(fpj)j and there is a Lie group isomorphismΦ :
H0 → T s, for somes > 0.

ThenΦ(fp) = (eiα1z1, ..., e
iαszs).

Assume that one of theα1, ..., αs is rational, for instanceα1 = m1
n1

.
ThenΦ(fpm) = (e2πimα1 , ..., e2πimαs) and obviouslye2πimα1 takes

only a finite number of values. Therefore,(fpm)m would not be dense in
H0, contradiction. So allαj ’s are irrational.

Suppose now that we can find an infinite number of periodic points in
Ω. Because of the condition(?), we should have a sequence of integers
mj → ∞ and pointspj s.tpj is a periodic point of periodmj , for all j.

Let j > 0 be fixed and considerm arbitrary s.tfm ∈ H0. Since allαk’s
are irrational, it is clear that the closed subgroup generated byfpmj is still
dense inH0, for all j. Consequently there is a sequencekq s.tfpmjkq → fm

in H0, whenq → ∞.
So fpmjkq(pj) = fmj ◦ ... ◦ fmj︸ ︷︷ ︸

p·kq

(pj) = pj → fm(pj), hencepj is a

periodic point of period m. Butj was chosen arbitrarily, so all pointspj are
periodic of period m, which would contradict (?). �

RemarkLet f : P
n → P

n a holomorphic mapping of degreed ≥ 2 and
Ω a Siegel domain off . NowΩ is Stein and Kobayashi hyperbolic andf
satisfies condition(?), (Fornæss–Sibony [9]).

Hence we get that there exists at most a finite number of periodic points
of f (of all periods) belonging toΩ.

3. Fixed points for holomorphic S1-actions in Stein manifolds

In this paragraph we shall specialize our results to the case of Stein manifolds
of dimension 2. We considerf ∈ Aut(Ω), a holomorphic automorphism of
Ω, s.t the closure of(fn)n in Aut(Ω) (with the compact-open topology) is
isomorphic as a Lie group toS1.

Assume that 0 is a fixed point off in Ω and also thatf satisfies(?)..
Ω is not supposed for the moment to be Kobayashi hyperbolic. First let

us state a well-known local linearization result ( see also [ 1 ] and [ 14 ] ).
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Lemma 3.1 If Ω is a complex manifold of dimension 2 andf ∈ Aut(Ω) is
generating anS1-action as above, then there will exist a local biholomor-
phismφ from a neighbourhoodU of 0 inΩ to a neighbourhood W of 0 in
C

2, so that
φ ◦ f = A · φ onU ,

whereA := Df(0).
Note: we denote by 0 both the point inΩ and the point inC2; which one is
meant will become clear from the context.

Knowing thatf generates anS1 action we can say more about the matrix
A from the previous Lemma.

Lemma 3.2 In the same setting as in Lemma 3.1, there will existq1, q2 ∈ Z

andλwith |λ| = 1 andλ is not a root of unity, such thatA =
(
λq1 0
0 λq2

)
.

The proof of this lemma is relatively easy and we will not give it here (see
also [7] ). Among matrices that have the above form, we can differentiate
between those for whichq1, q2 have the same sign and the ones withq1, q2
of opposite signs. This classification does not depend on whichλwe choose
above and it will prove to be essential in the study ofS1 -actions.

Case 1
Let us consider first the case whenq1, q2 have the same sign.WLOG

we may suppose thatq1, q2 are both positive, otherwise we just takef−1

instead off and clearlyf−1 would have the same fixed points asf . Although
versions of the next theorem are more or less known ( [7] ), we will give
nevertheless a brief proof for future reference and notation.

Theorem 3.3 LetΩ be a Stein manifold of dimension 2 with a holomorphic
S1 -action generated by an automorphismf as above.

If the eigenvalues of the derivative off at 0 look likeλ1 = λq1 , λ2 = λq2 ,
q1, q2 ∈ Z andλ not a root of unity, and ifq1, q2 have the same sign, then
the action will have exactly one fixed point inΩ.

Proof Assume as above that 0 is a fixed point forf . First there is a neigh-
bourhoodU of 0 s.t we can continue the orbits of points inU to analytic
disks inU going through 0.

Suppose now there exists another fixed pointp ∈ Ω. SinceΩ is Stein,
we findg holomorphic onΩ s.tg(0) = 0, g(p) = 1.

Define g̃(z) =
∫
S1 g(θ · z)dµ(θ), whereθ · z denotes the action ofθ

on z andµ is the normalized Haar measure onS1; g̃ is well defined and
holomorphic onΩ and this is independent of the relative signs ofq1, q2.
Also, g̃ must be constant on orbits and since both 0 andp are fixed points,
g̃(0) = 0, g̃(p) = 1.
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Near 0 the orbits of the action are boundaries of analytic disks passing
through 0, therefore taking the restriction ofg̃ to one of these analytic disks,
we get that̃g is constant in the interior. But sincẽg(0) = 0, it follows that
g̃ ≡ 0 near 0, hence in the entireΩ. On the other hand̃g(p) = 1, which
leads to a contradiction. �
Case 2

The case whenq1, q2 have different signs is more complicated, mainly be-
cause we do not have analytic disks passing through 0 and whose boundaries
are orbits of the action. In this situation the orbits can only be “complexified”
up to analytic annuli inΩ. In what follows we will also need the condition
Ω Kobayashi hyperbolic.

In the sequel we will obtain a foliation ofΩ with 1-dimensional complex
varieties. Let us summarize how to obtain this foliation.

As in the proof of Theorem 3.3, we can consider the average over orbits
of a fixed arbitrary non-constant holomorphic functiong ∈ O(Ω) (assuming
such a functiong exists s.t̃g is not constant).

Notation: If f ∈ Aut(Ω) generates anS1-action and ifg ∈ O(Ω), then
define its averaged functioñg(z) =

∫
S1 g(θ · z)dµ(θ), whereµ is the nor-

malized Haar measure onS1 andθ · z denotes the action ofθ on z through
theS1-action generated byf .

Like in the proof of Theorem 3.3, one can easily check thatg̃ is holo-
morphic onΩ and it is constant on the orbits of theS1-action.

If we take the level setsLC(g̃) of this averaged function, we will obtain
complex 1-dimensional varieties inΩ. Sinceg̃ is constant on orbits one can
see that the action preserves the setsLC(g̃).

Also, if z0 ∈ Ω andO(z0) denotes its orbit,∃C complex number, s.t
O(z0) ⊂ LC(g̃). Then, we will consider the global irreducible component
of L0(g̃) containing the local “z-axis” near 0.

One can show that this global irreducible component is an analytic sub-
manifold of dimension 1, invariant to the action off , playing the role of
a “global z-axis” inΩ. This will be used in the end for the topological
condition from Theorem 3.9

Let us make this submanifold construction more precise in the next lem-
mas and in Proposition 3.7.

Firstly one has to make sure there is a non-constant averaged functiong̃
as above.

Lemma 3.4 In the notation from 3.4, ifΩ is a Stein manifold, there exists
a holomorphic functiong ∈ O(Ω) such thatg(0) = 0, but g̃ 6≡ 0.

Proof First we will recall briefly the definition of an Oka–Weil domain
([12])
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Definition: An Oka–Weil domainU in a holomorphic varietyV is an open
subset ofV with the property that there are finitely many global holomorphic
functionsf1, ..., fN ∈ O(V ) s.t the restrictions of these functions toU are
the coordinate functions of a biholomorphic mapping betweenU and a
holomorphic subvariety of an open polydisk inC

N . �
Hence, sinceΩ is a Stein manifold, we can find a neighbourhood of 0,

denoted byU , which is an Oka–Weil domain.
We can also assume thatU is invariant to the action and thatf is lineariz-

able in U. Suppose now that for allg ∈ O(Ω) with g(0) = 0, we havẽg ≡ 0.
Consider the functionh ∈ O(U) which in the local linearizing coordinates
(z, w) has the formula(z, w) → z|q2| · wq1 , if q1 > 0, q2 < 0. Then, since
U is an Oka–Weil domain one can approximateh uniformly on compacts
of U by global holomorphic functionsgn (Gunning [12]).

By takinggn − gn(0), we can suppose thatgn(0) = 0.
Then g̃n(z, w) =

∫
S1 gn(λq1 · z, 1

λ|q2| · w)dµ(λ), for (z, w) ∈ U , and

clearly we getg̃n → h̃ on U. But if g̃n ≡ 0,∀n, then alsõh ≡ 0. On the other
hand by the formula for̃h, h̃(z, w) =

∫
S1 λ

q1|q2| ·z|q2| · 1
λ|q2|·q1 ·wq1dµ(λ) =

z|q2| · wq1 6≡ 0, contradiction. Hence we proved that there is a function
g ∈ O(Ω), g(0) = 0 s.t g̃ 6≡ 0. �

In the following we will only consider functionsg of the type referred
in Lemma 3.5

Lemma 3.5 In the above setting, the analytic setL0(g̃) has only two local
irreducible components near 0.

Proof Sinceg̃(0) = 0, butg̃ 6≡ 0, we can decomposeL0(g̃) near 0 as a union
of a finite number of irreducible analytic sets:L0(g̃) ∩ U = S1 ∪ ... ∪ Sl.

Also, ∀k, fk(S1) ⊂ S1 ∪ . . .∪ Sl. But fk(S1) is an irreducible analytic
set, sofk(S1) ⊂ {S1, .., Sl}, hence sincef is a biholomorphism of U,
there will existk1 s.t fk1(S1) = S1. Similarly we can prove that∃k s.t
fk(Si) = Si,∀i = 1..l.

Because the problem is local,f can be assumed to be equal toA =(
λq1 0
0 λq2

)
, q1, q2 of different signs, for exampleq1 > 0, q2 < 0.

Sincefk has the same form asf , we may assume WLOG thatf(Si) =
Si, i = 1..l. The question is reduced now to studying for which germs of
analytic setsSi, at 0, we get invariance by f. An easy exercise in one complex
variable will prove that the only analytic germs at 0, which are invariated by
the above matrix are the coordinate axes. This implies thatl = 2, soL0(g̃)
as only two irreducible local components near 0. �

In the sequel let us fix a holomorphic functiong0 onΩ s.t g0(0) = 0
andg̃0 6≡ 0 in Ω. Denote byS the global irreducible component ofL0(g̃0)
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which contains the local “z-axis” near 0. Here and in the sequel, by local
z-axis near 0 inΩ we mean the preimage of the z-axis near0 ∈ C

2 by the
local biholomorphismφ of Lemma 3.1.

RemarkIn fact, since any two irreducible analytic subsets ofΩ of dimension
1 coinciding in an open set are actually identical globally (this follows from
the identity principle), one can see that the setS does not depend on the
defining functiong̃0.

We will show that this setS plays the role of a “global z-axis” passing
through 0 inΩ.

Proposition 3.6 Let g0 be one of the functions whose existence is proved
in Lemma 3.5, i.e so thatg0 ∈ O(Ω), g0(0) = 0, but the averaged function
g̃0 6≡ 0. If S is the global irreducible component of̃g0−1(0) containing the
preimage of the local z-axis near0 ∈ C

2 by the biholomorphismφ of Lemma
3.1, thenSing(S) = ∅, soS is a complex submanifold of dimension 1 inΩ.

Proof Sing(S) is an analytic set of dimension 0, so it is a discrete subset in
Ω, without accumulation points in the interior. We will show first that 0 is
not a singular point ofS; the proof in general will follow then easily from
this.

Lemma 3.7 In the above notation, the point 0 (fixed by the action) is not a
singular point forS.

Proof Assume 0 is a singular point ofS; this will be shown to give a con-
tradiction.∃ a small neighbourhood in whichS is the union of the two local
coordinate axes(one can actually identify the z- and w-axes near 0 inC

2

with their preimages inΩ). We can also assume that in this neighbourhood,
0 is the only singular point ofS. Let nowS̃ = S \Sing(S) ; S̃ is a Riemann
surface and it is hyperbolic (since it is contained inΩ which was supposed
to be Kobayashi hyperbolic). Thereforef |S̃ : S̃ → S̃ is a biholomorphism.

According to Milnor’s classification theorem ([15]), any holomorphic
mapf of a hyperbolic Riemann surfacẽS falls into one of the following
four mutually disjoint cases:

1. f has a unique attracting fixed point iñS, or
2. every orbit diverges to infinity w.r.t the Kobayashi distancedS̃ , or
3. f is an automorphism of finite order, or
4. S̃ is isomorphic to the unit disk∆, the punctured unit disk∆? or an

annulus, andf corresponds to an irrational rotation.

In our case, sincef has a sequence of iterates converging to identity, we
cannot have 1. or 2. Also case 3. cannot appear because of the local form of
f . Here and in the rest of the paper we are still in the case when the exponents
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q1, q2 of the derivative off at 0 have different signs. Thenf is isomorphic
to ∆,∆? or an annulus by means of a mapβ, andf is conjugated to an
irrational rotation.

So β : S̃ → ∆,∆?, or an annulusA, is a biholomorphism and let
an invariant neighbourhoodU of 0 in which f can be linearized and s.t
according to the previous lemma 3.6,S̃ ∩ U is the union of the two local
coordinate axes, minus the point 0. Denote the two connected components
of S̃ ∩ U by S1, S2; obviouslyf(S1) = S1, f(S2) = S2. Consider now
β(S1) andβ(S2) open connected subsets in one of∆,∆? or an annulus, in
whichf corresponds to an irrational rotation.

If we take for exampleβ(S1)∩ segment on the positive axis belonging
to ∆,∆? or an annulus centered at 0, we will obtain an open subset of
this segment. By rotating this open subset, the original setβ(S1) will be
reobtained; hence this open subset of the interval must be connected. But
the only connected open subsets of a real interval are real open subintervals.
Henceβ(S1) must be actually a set of the form{0 ≤ |z| < r}, or of the
form {0 < |z| < r, for somer < 1. The same can be said aboutβ(S2).

SinceS1 ∩ S2 = ∅ =⇒ β(S1) ∩ β(S2) = ∅.
According to the previous discussion,β(S1) andβ(S2) are both annuli

or disks or punctured disks centered at 0 inC. Hence if they are disjoint,
they cannot be both punctured disks.

On the other handS1, S2 were defined as the local coordinate axes minus
0, hence they should be both biholomorphic to punctured disks.

But a disk, a punctured disk and an annulus cannot be biholomorphic to
each other, therefore a contradiction. This shows that our assumption was
wrong, so 0 is a regular point ofS. �

Returning to the proof of Proposition 3.7, it is clear thatf(Sing(S)) =
Sing(S) ; let now z0 ∈ Sing(S) and consider its orbitO(z0). Since
O(z0) = (fn(z0))n is compact andfn(z0) ∈ Sing(S),∀n, it follows
thatO(z0) is a finite set of points. WLOG one can assume thatz0 is a fixed
point forf .

If Df(z0) has eigenvalues of the typeλq1 , λq2 , with q1, q2 of opposite
signs, thenf |S is conjugated to an irrational rotation and we get a contra-
diction as above. HenceSing(S) = ∅. �
RemarkThe above proposition has an interest in itself. Indeed, considerS1
the global irreducible component ofL0(g̃0) containing the local “w-axis”
near 0. SinceS cannot contain both the “z-axis” and the “w-axis” near
0(Lemma 3.6), it follows thatS1 6= S. Also f(S1) = S1.

In fact the following result is true:

Corollary 3.8 S ∩ S1 = {0}.
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This can be proved in a similar way, by looking at the orbit of a point
from S ∩ S1 and at the action off onS.

Remark(continued)S andS1 are complex submanifolds of dimension 1 in
Ω, they are invariated by the action and they extend the local “coordinate
axes” near 0. One can interpret them as “global axes of coordinates” inΩ.
Next we want to prove that the action, under certain topological restrictions,
has only one fixed point inΩ. First we need to introduce some notions and
facts from multidimensional residue theory. Assume for the moment thatX
is a complex manifold of dimension n andS is an analytic submanifold of
codimension 1 inX.

Definition ([2]) Let ω a closed regular form onX \ S.
ω is said to have a polar singularity of first order if,∀a ∈ S, if {s = 0} is

a minimal defining equation forS, s ·ω can be locally extended as a regular
form acrossS. �
Suppose now thatω is a form like in the definition. Then by a theorem of
Leray ([2]), ifa ∈ S, there existUa a neighbourhood ofa, and regular forms
ψ andθ defined inUa, s.t

(1) ω =
ds

s
∧ ψ + θ ,

whereS ∩ Ua = {s = 0}, grads 6= 0.
Moreover the formψ|S∩Ua can be extended globally to the entireS and

it is closed. This restricted global form onS is called theresidue form ofω.
Also if ω is holomorphic inX \ S, then the formψ|S is holomorphic

on S. The holomorphic forms onX \ S which have polar singularities of
first order play a special role in the case whendimX = 2 andX is Stein.
Denote byΩp(X,S) the sheaf of germs of p-formsχ that are holomorphic
in X \ S and s.tχ anddχ have polar singularities of first order onS.

In 1986, G.Raby ([17]) proved the following theorem relating the forms
in Ωp(X,S) toH1(X \ S,C):

Theorem: IfX is a Stein manifold of dimension 2 andS is a submanifold
of X of dimension 1, then

H1(X \ S,C) = H1(Γ (X,Ω•(X,S)))

�
So each cohomology class fromH1(X \ S,C) contains a closed holo-

morphic form onX \ S with polar singularities of first order onS.

Theorem 3.9 LetΩ be a Stein and Kobayashi hyperbolic manifold of com-
plex dimension 2 with anS1-action as above (i.e generated by an automor-
phismf satisfying (?), f(0) = 0 and with exponentsq1, q2 with opposite
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signs). Assume the restriction morphismρ : H1(Ω) → H1(Ω \ S) is not
surjective, whereS is the global analytic set of Proposition 3.7. Then the
S1-action has exactly one fixed point inΩ, namely 0.

Proof By hypothesis, there exists a regular 1- formω onΩ \ S which is
not cohomologous to the restriction of a regular form onΩ. From Raby’s
Theorem, we can find̃ω holomorphic form onΩ\S, with polar singularities
of first order onS, s.tω̃ ∼ ω. Then the Leray expression (1) gives that locally

ω̃ =
ds

s
∧ Φ+ ψ ,

wheres is chosen to be irreducible.
Also, Φ|S is a holomomorphic function onS which, as a differential

form is closed, soΦ is holomorphic nearS and it is a constantC when
restricted toS. Let a point Q =(z0, w0), w0 6= 0 close to 0. We can also
assume that in the neighbourhoodU , s(z, w) = w. It is easily seen that the
orbit ofQ, denoted now byγ(Q), is homologous inU \ S to a circle of the
form (z0, λ · w0), λ ∈ S1.

Then by Leray’s Residue Theorem ([2]),

1
2πi

∫
γ(Q)

ω̃ =
1

2πi

∫
{(z0,λw0),λ∈S1}

ω̃ = Φ(z0, 0) = C ,

sinceΦ was constant onS.
Now, assume we would have another fixed point for the action, denoted

byP . From the description ofS given in the proof of Proposition 3.7,P /∈ S.
SinceS is an analytic set inΩ,Ω \S is connected; joinQ toP by a simple
pathη|[0, 1] contained inΩ \ S.

“Rotating” η will give us thatγ(Q) andP are homologous inΩ \ S.
Let us make this more precise. Indeed if we take the orbits of all points

of η by theS1-action (we identify the parametrization ofη with its image),
we will get a homology between the orbit ofη(0) and that ofη(1)

But the orbit of Q isγ(Q) and the orbit of P is P itself since this point
was assumed to be fixed for theS1-action. Also, becausef(Ω \S) = Ω \S
andf is the biholomorphism ofΩ generating ourS1- action, none of the
orbits of points fromη([0, 1]) will intersectS.

This proves thatγ(Q) and P are homologous as paths inΩ \ S.
Nevertheless,̃ω is a closed form onΩ \ S andγ(Q) is homologous to

P in Ω \ S.
Thus, 1

2πi

∫
γ(Q) ω̃ = 1

2πi

∫
γ(P ) ω̃ = 0 =⇒ C = 0.

ThereforeΦ is holomorphic on a neighbourhood ofS and vanishes on
S.

So, if s is a local irreducible defining function forS, s will divide Φ.
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Henceω̃ = ds
s · Φ + Ψ has no singularities onS, which means that it

can be extended acrossS. Soω̃ is the restriction toΩ \ S of a differential
form onΩ, hence contradiction. In conclusion 0 is the only fixed point of
the action. �
Corollary 3.10 Any holomorphicS1-action with a discrete set of fixed
points, on a 2-dimensional Stein manifoldΩ which is Kobayashi hyper-
bolic and hasH2(Ω,Z) = 0, has in fact at most one fixed point.

Proof We will use the fact that, ifΩ is Stein andH2(Ω,Z) = 0, then the
second Cousin problem can always be solved. By taking the local minimal
defining functions for the “global z-axis”S, and constants equal to 1 outside
S, we obtain a multiplicative Cousin data. Solving it will provide us with a
global defining function,g0 for S.

Now we can take the 1-formω = dg0
g0

, which is closed onΩ \S and has
polar singularities of the first order onS.

Hence the hypothesis of Theorem 3.10 is fulfilled and there is at most
one fixed point of the action inΩ. �

There seems to exist also a more general relationship between the second
cohomology groupH2(Ω,Z) and the maximum number of fixed points in
Ω. This question will be investigated in a future article.

4. Some examples

Let Ω a 2-dimensional Stein and Kobayashi hyperbolic manifold as be-
fore.We also have anS1-action onΩ by holomorphic automorphisms which
have discrete sets of fixed points. A natural question would be to generalize
the existence of only at most one fixed point to the case when the eigen-
values of the derivative A are of the formλq1 , λq2 , with q1, q2 of opposite
signs. The following example shows this is not possible unless suplementary
conditions are imposed.

Example: Let X = connected component of the set{(z, w, t) ∈ C
3, zm −

1 + wt = 0, |z| < 3, |w| < 3, |t| < 3} containing the point ( 1,0,0 ), where
m ≥ 2 is a positive integer.

TheS1-action on X is given byλ · (z, w, t) → (z, λw, 1
λ t), λ ∈ S1.

First we notice that X is a manifold of dimension 2, i.e it has no sin-
gular points as a subvariety inC3. Indeedd(zm − 1 + wt)(z, w, t) =
(mzm−1, t, w) = (0, 0, 0) iff (z, w, t) = (0, 0, 0). But (0, 0, 0) /∈ X; also it
is easy to see that the action is well -defined in the sense that it preserves the
analytic set, the respective connected component, and|λw| = |w|, | 1

λ t| =
|t|,∀λ ∈ S1. Next X is Stein and, since it is bounded, it is also Kobayashi
hyperbolic.
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We have that(εm, 0, 0) ∈ X,whereεm is an m-root of unity ; indeed we
can join(εm, 0, 0) to (εm, 0, 1) in X by a pathu → (εm, 0, u), u ∈ [0, 1],and
then(εm, 0, 1) to ( 0,1,1 ) by a pathu → ((1 − u)εm, 1 − (1 − u)m, 1), u ∈
[0, 1], which is contained in X as well.

We can do the same thing for a path going from ( 1,0,0 ) to ( 1,0,1 ) and
then on to(0, 1, 1). In fact the m points of the form(εm, 0, 0) are the only
fixed points of this action on X. Indeed, ifλ · (z, w, t) = (z, w, t),∀λ ∈
S1 =⇒ w = t = 0 =⇒ z is an m-root of unity, if(z, w, t) ∈ X.

In conclusion we obtained a Stein, Kobayashi hyperbolic manifold of
dimension 2 with anS1-action having exactly m fixed points. �

By a suitable modification of the above we can give an example showing
that Corollary 3.11 does not cover all cases of Theorem 3.10.

Let X = connected component of{(z, w, t) ∈ C
3, z + z2 − 1 + wt =

0, |z| < 1, |w| < 1, |t| < 1} containing the point(−1+
√

5
2 , 0, 0), with the

actionλ · (z, w, t) → (z, λw, 1
λ t).

As before, X is Stein, Kobayashi hyperbolic manifold and it can be
checked that the action has only one fixed point.

We will show that the “global z-axisS” is defined as the set of zeros of
a global holomorphic function, butH2(X,Z) 6= 0. So there are cases when
ρ : H1(X) → H1(X \ S) is not surjective andH2(X,Z) 6= 0.

The setS is given as{(z, w, t) ∈ X, t = 0}, sodt
t ∈ H1(X\S), anddt

t /∈
ρ(H1(X)). We will prove first that the homology groupH2(X \ {P},Z)
has a nonzero free part, whereP = (−1+

√
5

2 , 0, 0).
Then, since the real dimension of X is 4, ifH2(X \{P},Z) has nonzero

free part, the same is true forH2(X,Z).
Now, if (z, w, t) ∈ X\{P}, thenw 6= 0, t 6= 0, so can writet = 1−z−z2

w .
This means thatX \ {P} ∼= D := respective connected component of

{(z, w) ∈ C
2, |z| < 1, |w| < 1, z 6= −1+

√
5

2 , |1−z−z2

w | < 1}.
Denote byD1 the first projection of D as a subset of∆ × ∆. Now

−1+
√

5
2 /∈ D1, but∃V = V (−1+

√
5

2 ) ⊂ ∆ s.t∀z ∈ V \ {−1+
√

5
2 }, |1 − z −

z2| < |w| if |w| > ε0, for someε0 > 0. SoD1 is open, connected, and

containsV \ {−1+
√

5
2 }.

From the definition of the set D, the second projection of D on the unit
disk,D2, is contained in∆?. Also, since|λ ·w| = |w|,∀λ ∈ S1,we get that
D2 is invariant to rotations. SoD2 is open, connected, invariant to rotations
and contained in∆? =⇒ D2 is an annulus or a punctured disk.

Take next the product of a small closed loop around−1+
√

5
2 in D1 with

a larger circle around 0 inD2; we can choose the loops so that to obtain a
2-simplex in D. By using Kunneth formula (Bredon [5]) it is easy to see that
this 2-simplex will span a non-zero free subgroup inH2(D,Z).
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HenceH2(X,Z) will have a non-zero free part. From the Universal
Coefficient Theorem ( [5] ), there exists an epimorphism:H2(X,Z) →
Hom(H2(X,Z),Z) → 0.

SinceH2(X,Z) has a non-zero free subgroup,Hom(H2(X,Z),Z) 6=
0 =⇒ H2(X,Z) 6= 0.
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