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1 Introduction

The well known Bochner’s Extension Theorem states that holomorphic func-
tions defined in a connected neighborhood of the boundary of any bounded
domain inCn, n > 1, extend holomorphically to the interior of the domain.

There are three classical methods for proving such a result:

1: Using the Bochner-Martinelli kernel to extend functions to the inside.

2. To use solutions of̄∂ with compact support.

3. Pushing discs.
The first two methods are well established. The third method is folklore.

The purpose of this paper is to show that contrary to folklore this method
does not work. The above extension theorem cannot be proved by pushing
discs step by step towards the interior. However, we are interested in proving
the extension theorem in complex manifolds and, hence, would like to avoid
pushing discs to the outside.

2 Notation

LetΩ be a bounded domain with connectedC∞ boundary inC2. Fix a small
δ > 0, and consider the ring̃Ωδ := {z ∈ Ω; dist(z, ∂Ω) < δ} where “dist”
refers to Euclidean distance.

Theε Hartogs skeleton,Hε, is the domain

Hε := {(z1, z2); |z1| < 1, |z2| < ε}
∪ {1 − ε < |z1| < 1, |z2| < 1}.
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Fig. 1. Filling in of discs

The filled in Hartogs figure,̂Hε, is the convex hull ofHε.

Definition 1 (See Figure 1.) We say thatΩ can be filled in by pushing discs
if there exists for anyδ > 0 a finite sequence of connected domains withC∞
boundary,Ω̃δ = Ω1 ⊂ Ω2 ⊂ · · · ⊂ Ωk = Ω and for eachj = 1, · · · , k − 1
there exists anεj > 0 and a univalent holomorphic mapΦj defined on a

neighborhood of̂Hεj such that

(1) Ωj+1 ⊂ Ωj ∪ Φj(Ĥεj ) ⊂ Ω,
(2) Φj(Hεj ) ⊂ Ωj

(3) Ωj ∩ Φj(Ĥεj ) is connected.

(4) Ωj+1 ∩ Φj(Ĥεj ) is connected.

It is not too hard to prove that ifΩ is pseudoconvex,Ω can be filled
in by pushing discs. One can use a strictly plurisubharmonic exhaustion
function which is also a Morse function and extend over sub-level sets
via a bumping argument, taking particular care of the critical points of the
exhaustion function.

3 Construction of the example

In this section we describe our example of a smoothly bounded domainΩ
in C2 which cannot be filled in by pushing discs.



The disc method 707

Let U1 := ∆2, the unit bidisc inC2. Consider four arcs inU1 :

(1) γ1 := {(x1, 0, 0, 0);−1 ≤ x1 ≤ 0}
(2) γ2 := {(0, iy1, 0, 0); 0 ≤ y1 ≤ 1/2}
(3) γ3 := {(x1, i/2, 0, 0);−3/4 ≤ x1 ≤ 0}
(4) γ4 := {(−3/4, iy1, 0, 0); 1/8 ≤ y1 ≤ 1/2}

Let γ be a smooth curve obtained fromγ1 ∪ γ2 ∪ γ3 ∪ γ4 by smoothing
in a small neighborhood of each of the three corners.

Furthermore, we will attach a perturbation of a ball, with a hole drilled
through, to the tip ofγ4. More precisely, let firstH ′ be a pseudoconvex
Hartogs domain of the formH := {(z1, z2) ∈ C2; |z1+3/4| < 1/8, |z2| <
R(z1)} whereR is a radially symmetric function,R > 1/100 and moreover,
R(z1) =

√
1/64 − |z1 + 3/4|2 when|z1 + 3/4| < 1/100. In other words,

on the top of the Hartogs figure, it is shaped like a ball, while at the edge it is
shaped like a bidisc. Finally we remove, for some number0 < ρ < 1/1000,
the tube{(x1, iy1, x2, iy2); y2

1 + x2
2 + y2

2 < ρ2} from H and round off the
corners in a very small neighborhood of the edges, where|x1 + 3/4| >
1/8 − 1/1000 to create a (non-complete) smooth Hartogs domainsHρ. For
later, ifS is a set, letSδ denote the tubular neigborhood aboutS of radiusδ.

We attachγ to H and find a small tubular neighborhood ofγ with ra-
dius 0 < η < ρ which is rounded off in a small neighborhood of the
point (−3/4, i/8, 0, 0) to make a strongly pseudoconvex domain. Finally
this neighborhood is rounded off in a small neighborhood of where it ex-
its the bidiscU1, which is also rounded off very near the distuinghuished
boundary, in order to finish the construction ofΩ = Ωρ,η (See Figure 2).
In other words, the inside of this tube andHρ belongs to the exterior ofΩ.
The domainΩ is obtained by drilling a hole into the rounded off bidisc. We
can makeρ andη arbitrary if they are small enough.

For our construction we will also need the existence of a smooth function
σρ,η = η ≤ σ(x1) ≤ ρ defined for−7/8 + 1/1000 < x1 < −5/8 −
1/1000 such thatσ(x1) ≡ ρ, x1 ∈ (−7/8 + 1/1000,−7/8 + 2/1000)
while σ(x1) ≡ η, x1 ∈ (−5/8 − 2/1000,−5/8 − 1/1000). Moreover, we
need that the tubeT = {(x1, iy1, x2, iy2);x1 ∈ (−7/8 + 1/1000,−5/8 −
1/1000), y2

1 + x2
2 + y2

2 < σ2(x1) is strongly pseudoconvex. This is surely
possible as long asη andρ are close enough together. Observe furthermore,
that if η andρ are close enough andδ > 0 is any sufficiently small number,
η + δ < ρ − δ, thenσρ−δ,η+δ exists also.
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Fig. 2. The example which cannot be filled in by discs

4 Proof that the example works

We construct first a barrier domain for pushing discs. This barrier domain is
a double sheeted Riemann domain,Rδ, overC2. To describe this Riemann
domain, we will describe three open sets and explain how points in them
are identified to make a Riemann domain. Pick any smallδ > 0. One piece,
U1, of our Riemann domain will consist of the open sheet between∂Ω and
∂Ω̃δ and which lies next toHρ as well asγ except for the part ofγ1 where
x1 < −5/8 − 1/1000. Over the piece ofγ1, where−7/8 + 1.5/1000 <
x1 < −5/8 − 1/1000, the sheet is given by those points inΩ for which
y2
1 + x2

2 + y2
2 < σ2

ρ−δ,η+δ.
The next piece of the Riemann domain,U2, consists of the points in

Ω of distance at mostδ from H. ThenU1 ∩ U2 contains two connected
componentsV1, V2. The setV1 is the component containing the narrow
hollow tube about thex1− axis. We identifyU1 andU2 overV2 only. SoU1
andU2 together defines a two-sheeted Riemann domain.

The third piece,U3, consists of all points inΩ after taking outU1 ∪ U2

and adding in again those points inHδ\Hδ
ρ for whichx1 < −7/8+2/1000.

Then the points inU1 andU3 are identified alongU1 ∩ U3. In factU1 ∪ U3
is a schlicht piece ofRδ. Observe that̃Ωδ ⊂ U1 ∪ U3.

Suppose thatΩ can be filled in by pushing discs. LetΩ1, · · · , Ωk be as
in Definition 2.1. We will show inductively that eachΩj can be lifted toRδ.
This will finish the proof because many points ofΩ are not in the projection
of Rδ.

At first we observe thatΩ1 = Ω̃δ and hence can be lifted toRδ. Suppose
next thatj < k and thatΩj can be lifted toRδ. Suppose thatΩj+1 cannot
be lifted toRδ. Consider the Hartogs figureΦj(Ĥεj ). There must then be
a smallest|z2|, |z0

2 |, so that the imageD of the disc{z1, z
0
2); |z1| < 1}
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intersects the boundary ofRδ. The boundary of this discD is inRδ. However
the interior of the disc hits the boundary ofRδ. We will show that this
is impossible by considering the different boundary points ofRδ. First,
consider the boundary points ofRδ which are also boundary points ofU1.
Those points which are on the boundary ofΩ are excluded. The remaining
points are all strongly pseudoconvex however, so they are ruled out. Next
consider the boundary points ofRδ which are boundary points ofU2. But
these are either points of∂Ω, which are excluded, or they belong to the flat
part of the boundary ofHδ over the boundary of the disc|z1+3/4| = 1/8+δ.
Again we get a contradiction from pseudoconvexity.

Finally consider the boundary points ofRδ which are boundary points of
U3. The boundary points ofΩ are again excluded. The other boundary points
are either boundary points ofU1, which are excluded because all points on
the other side are already inΩj , contradicting condition (3) of Definition
2.1, or the points are in the flat part of the boundary ofHδ over the disc
|z1 + 3/4| = 1/8, but these cannot be reached either by pseudoconvexity
considerations.


