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1 Introduction

The well known Bochner’s Extension Theorem states that holomorphic func-

tions defined in a connected neighborhood of the boundary of any bounded

domaininC™, n > 1, extend holomorphically to the interior of the domain.
There are three classical methods for proving such a result:

1: Using the Bochner-Martinelli kernel to extend functions to the inside.
2. To use solutions af with compact support.

3. Pushing discs.

The first two methods are well established. The third method is folklore.
The purpose of this paper is to show that contrary to folklore this method
does not work. The above extension theorem cannot be proved by pushing
discs step by step towards the interior. However, we are interested in proving
the extension theorem in complex manifolds and, hence, would like to avoid
pushing discs to the outside.

2 Notation

Let (2 be a bounded domain with connect&d boundary inC2. Fix a small
d > 0, and consider the rin@s := {z € 2;dist(z, 012) < 6} where “dist”
refers to Euclidean distance.

The e Hartogs skeleton., is the domain

H. :={(z1,22); |z1] < 1,|22] < €}
U {l—€e<|z|<1,|z| <1}
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Fig. 1.Filling in of discs

The filled in Hartogs figure., is the convex hull of..

Definition 1 (See Figure 1.) We say th&tcan be filled in by pushing discs
if there exists for any > 0 a finite sequence of connected domains @ith
boundary,2s = 2, C 2, C --- C 2, = Randforeachj = 1,---, k—1
there exists ar; > 0 and a univalent holomorphic map; defined on a

neighborhood off,; such that

(1) ;41 C 2; UD;(H,,) C 12,
() ;(H,) C 2;
(3) £2; N ®;(H,,) is connected.

(4) 2;11 N P;(H,;) is connected.

It is not too hard to prove that if? is pseudoconvexs? can be filled
in by pushing discs. One can use a strictly plurisubharmonic exhaustion
function which is also a Morse function and extend over sub-level sets
via a bumping argument, taking particular care of the critical points of the
exhaustion function.

3 Construction of the example

In this section we describe our example of a smoothly bounded dafhain
in C2 which cannot be filled in by pushing discs.
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Let U; := A2, the unit bidisc inC2. Consider four arcs ifV; :

()7 = {(21,0,0,0); =1 <z <0}

(2) 72 :== {(0,1y1,0,0);0 < y1 < 1/2}

(3) 73 = {(21,/2,0,0);—3/4 < 21 < 0}
(4) va :={(—3/4,iy1,0,0);1/8 < y; < 1/2}

Let~ be a smooth curve obtained fromU ~2 U 3 U 4 by smoothing
in a small neighborhood of each of the three corners.

Furthermore, we will attach a perturbation of a ball, with a hole drilled
through, to the tip ofy,. More precisely, let firstd’ be a pseudoconvex
Hartogs domain of the forl := {(z1, 22) € C?; |21 +3/4| < 1/8, || <
R(z1)} whereR is aradially symmetric functiorf > 1/100 and moreover,
R(z1) = \/1/64 — |21 + 3/4]%2 when|z; + 3/4| < 1/100. In other words,
on the top of the Hartogs figure, it is shaped like a ball, while at the edge itis
shaped like a bidisc. Finally we remove, for some nuntberp < 1/1000,
the tube{ (w1, iy1, z2,iy2); ¥ + 3 + y3 < p*} from H and round off the
corners in a very small neighborhood of the edges, wheret- 3/4| >
1/8 —1/1000 to create a (non-complete) smooth Hartogs domaipsFor
later, if S is a set, letS® denote the tubular neigborhood abéuf radiusé.

We attachy to H and find a small tubular neighborhood pfwith ra-
dius0 < n < p which is rounded off in a small neighborhood of the
point (—3/4,i/8,0,0) to make a strongly pseudoconvex domain. Finally
this neighborhood is rounded off in a small neighborhood of where it ex-
its the bidisclU7, which is also rounded off very near the distuinghuished
boundary, in order to finish the construction@f= 2, , (See Figure 2).

In other words, the inside of this tube aft} belongs to the exterior ab.
The domain(? is obtained by drilling a hole into the rounded off bidisc. We
can makep andn arbitrary if they are small enough.

For our construction we will also need the existence of a smooth function
opn = 1 < o(x1) < p defined for—7/8 + 1/1000 < z; < —5/8 —
1/1000 such thatr (z1) = p, =1 € (—7/8 + 1/1000, —7/8 + 2/1000)
whileo(z1) =, 21 € (—=5/8 —2/1000, —5/8 — 1/1000). Moreover, we
need that the tub® = {(z1, iy1, x2, iy2); 21 € (—7/8 + 1/1000, —5/8 —
1/1000), y? + 22 + y2 < o%(x1) is strongly pseudoconvex. This is surely
possible as long agandp are close enough together. Observe furthermore,
that if n andp are close enough ard> 0 is any sufficiently small number,
n+0 < p—d,theno,_s, s exists also.
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Fig. 2. The example which cannot be filled in by discs

4 Proof that the example works

We construct first a barrier domain for pushing discs. This barrier domain is
a double sheeted Riemann domdi, overC2. To describe this Riemann
domain, we will describe three open sets and explain how points in them
are identified to make a Riemann domain. Pick any small0. One piece,

Uy, of our Riemann domain will consist of the open sheet betvwierand

2125 and which lies next tdd, as well asy except for the part of; where

x1 < —5/8 — 1/1000. Over the piece ofy;, where—7/8 + 1.5/1000 <

x1 < —5/8 — 1/1000, the sheet is given by those pointsfihfor which

v+ r3+y3 < 0'3_5717_,'_5.

The next piece of the Riemann domal;, consists of the points in
{2 of distance at mosi from H. ThenU; N Us contains two connected
componentsd/’, V,. The setV; is the component containing the narrow
hollow tube about the; — axis. We identifyl/; andU, overV5 only. SoU;
andU, together defines a two-sheeted Riemann domain.

The third piecel[/s, consists of all points iif2 after taking out/; U Us
and adding in again those pointsfiff \ H3 for whichz; < —7/8+2/1000.
Then the points ii/; andU; are identified alon@/; N Us. In factU; U Us
is a schlicht piece oRs. Observe that2s C Uy U Us.

Suppose thaf? can be filled in by pushing discs. L&, - - -, 2, be as
in Definition 2.1. We will show inductively that eadh; can be lifted tdRs.
This will finish the proof because many pointsf@fare not in the projection
of Rs.

At first we observe tha®, = 25 and hence can be lifted ®s. Suppose
next thatj < k and that?; can be lifted toRs. Suppose thaf?; ; cannot

be lifted toRs. Consider the Hartogs figue; (H.,). There must then be
a smallesiz|, |29], so that the imageD of the disc{z1, 28);|z1| < 1}
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intersects the boundary®&fs. The boundary of this disP isin R 5. However
the interior of the disc hits the boundary &f;. We will show that this
is impossible by considering the different boundary pointsRgf First,
consider the boundary points &; which are also boundary points bf .
Those points which are on the boundarydfre excluded. The remaining
points are all strongly pseudoconvex however, so they are ruled out. Next
consider the boundary points &; which are boundary points @f,. But
these are either points 612, which are excluded, or they belong to the flat
part of the boundary off ° over the boundary of the digg; +3/4| = 1/8+6.
Again we get a contradiction from pseudoconvexity.

Finally consider the boundary points&f; which are boundary points of
Us. The boundary points d? are again excluded. The other boundary points
are either boundary points 6f;, which are excluded because all points on
the other side are already i@;, contradicting condition (3) of Definition
2.1, or the points are in the flat part of the boundary#f over the disc
|z1 + 3/4| = 1/8, but these cannot be reached either by pseudoconvexity
considerations.
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