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1 Introduction

In a 1983 paper [M1], I. G. Macdonald introduced his well-known “con-
stant term conjectures.” These conjectures concern a certain polynomial
A = A(G, k) that is indexed by a semisimple Lie algelé¥and a positive
integerk. The polynomialA lives inZ[®, ¢, the group ring of the root lat-
tice @ of G overZ[q|. A basis for this ring, oveZq], is the set of formal
exponentialse?, for v € & that satisfy the relations’ - e = eV*%. The
conjecture asserts that the constant termd pfneaning the part that is inde-
pendent of the formal exponentials, has a nice factorization as a polynomial
in gq.

Later, Macdonald [M2] generalized this work in the following way. He
showed that there is a unique collection of polynomialéndexed by dom-
inant weights, satisfying the following properties:

1) The P, form a basis foZ [®, ¢|"V, the W -invariants inZ [®, q], wherelV’
is the Weyl group of5. Moreover, the basig, is triangular with respect to
the basis:,, of orbit sum polynomials.

2) Forv # u, the constant term of
A- PV : I:);L

is zero, wheref?” is obtained fromP, by replacing each” by e ™.
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3) The coefficient ok, in P, is 1.

Macdonald went on to conjecture a formula for the constant term of
A-P,-P,

for everyv. SinceP, is the constant 1, this conjecture extended his 1983
conjecture that gave a formula for the constant terr of

Oneinteresting feature of the Macdonald conjectures is that the statement
ofthe conjecturesis not by itself of great interest. The constant tedinf-

15“ has no particular significance outside of the context of these conjectures.
The real motivation behind any study of the Macdonald conjectures is to
discover some deep mathematical phenomenon that has the constant term
conjectures as a consequence.

Macdonald’s constant term conjectures have been proved by Chered-
nik [C] using the idea of shift operators pioneered by Opdam [O] together
with Cherednik’s powerful affine Hecke algebra machinery. This approach
does indeed give an interesting interpretation to the constant term conjec-
tures. But there have been a number of other efforts to give mathematical
interpretations to the constant termAf- P, - PH. These other approaches
have succeeded inidentifying interesting mathematical phenomenathat have
Macdonald’s constant term conjectures as consequences. But in many of
these cases, the deeper mathematical facts that underlie the Macdonald con-
jectures have not yet been proved.

Collectively these attempts to settle the Macdonald conjectures involve a
remarkable range of mathematical subjects and ideas. Different approaches
lead to interesting conjectures about the homology of nilpotent Lie algebras
([F] and [H]), the harmonics of a diagonal action of the symmetric groups
(IGHY]), and the generalized traces of Lie algebras ([K]). In addition there is
the above-mentioned work of Cherednik, Opdam and Heckman that involves
shift operators, operators on polynomials that are built from elements in
affine Hecke algebras. This leads one naturally to speculate that there is
some deep theory that will simultaneously explain these diverse attacks on
the Macdonald conjectures. At the very least one would like to understand
how to relate these approaches pairwise.

One motivation for this work is an effort to connect the affine Hecke alge-
bra approach of Cherednik with the diagonal harmonic approach of Garsia
and Haiman. Garsia and Haiman study the module generated by partial
derivative operators on an element in a polynomial ring in two sets of vari-
ables (this is explained more fully in Sect. 3). They use the structure of the
resulting bigraded module to generate something equivalent to Macdonald’s
polynomialsP, . In this work, we replace the partial differentiation operators
by Dunkl operators. Dunkl operator3; (k) are operators on a polynomial
ring that involve a parametér Moreover,D; (k) is a deformation 0 /9dzx;
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in the sense thab;(0) = 0/dx;. The Dunkl operators are also related to
the fundamental operators that define a faithful representation of the affine
Hecke algebras. We hope that this work will be a starting point towards
understanding the connection between the shift operator proofs of the Mac-
donald conjectures and the Garsia-Haiman conjectures both of which give
interesting interpretations of the Macdonald polynomials.

Our main conjecture gives an explicit characterization of the singular
points of this deformation. An important ingredient in this conjecture is a
theorem givenin Sect. 2 that gives the norms of certain special polynomialsin
Clz1,...,z,] withrespectto aninner product based on the Dunkl operators.
This theorem gives a significant extension of the Mehta integral.

The paper is organized as follows. The main theorem (Theorem 2.6) is
provedin Sect. 2. The computational component ofthe proofis quite intricate
and accounts for most of the section. In Sect. 3 we discuss the relevance of
this result to the Garsia-Haiman conjecture. Section 3 contains our main
conjecture , which characterizes the singular points in our deformation of
the Garsia-Haiman module. In Sect. 4 we describe some further conjectures
that are based on computer evidence.

The authors are grateful to Eric Opdam for help and advice with this
work.

2 An extension of Mehta'’s integral

Fix a positive integer. and letR denote the rind[x1, . . ., z,], where the
x;'s are commuting indeterminates. For edcft j let (x;, ;) denote the
endomorphism of? that interchanges; andzx;.

Letp(x) be an element ifk. Note that

(id — (zi,25)) - p(z)

vanishes when; = z;, hence is divisible by; — ;. So the operator

id — (.ri, J}j)
Xy — .%'j
mapsRk to R.
Definition 2.1 Let k£ be an element of°. For eachi = 1,2,...,n define

X; = X;(k) to be the map fronk to R given by
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It is clear thatX; decreases degree by 1 (“degree” means total degree in
the variableg, .. ., z,,). A less obvious fact (see [D]) is that the operators
X1,...,X, commute pairwise. So the map frofito C[X1,...,X,] C
End(R) given by

p(x1, ..., xn) — p(X1,..., Xn)
is a well-defineds,,-equivariant isomorphism.

Definition 2.2 Define the inner produdt ) = (, ), on R by

p(X1,..., Xn) - q(z1,...,zy) if deg(p) = deg(q).

This inner product is studied in [DDO] in connection to a certain complex.

(prq) = {0 if deg(p) # deg(q) 2.1)

Example 2.3Letn = 4 and let/] € R be defined by

I =: (:L'l — 172)(1’3 — $4)

= XT3 — T1T4 — T2XL3 + T2X4.
We will compute(II, IT).

First note that the inner produg¢} is invariant with respect to the action
of Sy onR. So

<H, H> =4 (X1X3 . (:clxg — X3 — T1T4 + .7321’4))
=4X1 ((r1 — z2) + k (221 — 229 + (1 + m4) — (22 + 24)))
- 4(1 + 3k> X1($1 — $2)
=4(1+ 3k)(1 + 4k).
The main result in this section will give the values of the inner products

(I1,, I1,) for certain elementsl, in R. We begin by defining thél,. In
what follows, A(uy, . .., un) denoteq [, (u; — u;).

Definition 2.4 Let A = (A1,...,\;) be a partition of n. Definell, =
IIy\(z1,...,zy,) by

IIy = Az, ... xx) A(Za 415 - -5 Tag+rs)
s A('r)\1+"‘+>\£—1+17 e ,.%'n).

Note that(1y, I7,) is a polynomial ik of degree>", () := Dy. We will
identify the D) roots (as a polynomial i) of (11, IT,) in terms of a certain
sequence of numbe(sy, ..., a)).

r'n
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Definition 2.5 Define the sequendes, . . . , a;\) according to the following
rule:
n Vi Aj—1
Za?‘xi = Z < Z (Aj — u)m”‘““).
1=2 j=1 u=1
As an example, lex = 431"~7. Then(ay, ..., a;) is determined by

Z ajat = (2" 2 + 22" 4 32") + (2" + 227)

— xn—Q + 3:1;71—1 + 5"

So

3>’ 3>4
»—A

a

)
3
1
0

—2
a) for2<i<n-—3.

Note thatyp e} = Y20, (3202 (A —w)) = 0y (). Our main
theorem in this section will be the following:

Theorem 2.6 Let A = (A4, ..., \y) be a partition ofn and let H, denote
[T, (\!). Then

(I, IT,) = { 11 H (ik + u)}

u=1j=(n41)— an+1 “
where the inside product overis empty ifa} = 0.

The proof of Theorem 2.6 is very complicated, and so before starting
we preview the various steps it involves. First it should be noted that we
will reduce the computation to the case wharis a hook. This reduction
is essentially done in Theorem 2.30. Lemmas 2.28 and 2.29 are used in the
proof of Theorem 2.30.

Before doing the reduction we prove Theorem 2.6 Xax hook shape
A = (N + 1) 1»~(N+1)_ Our strategy is to reduce the computation to the
same computation for = N1~ and use induction. To do this reduction,
it is necessary to comput§;{¥ - I7)(z), which we argue is a multiple of
IT)(z). We need to determine what multiple. To do so, it becomes neces-
sary to determineX; I7,(z) for all s and most of our effort goes into this
computation.
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The first step is to realize that;y - II)(x) is a polynomial in the
differencese; — z;,7 = 2,3, ..., n. These differences play distinct roles in
the computation depending on whetRex i < N +10orN +2 <i <n.

We give them different name$ = x1 — z;11 for 1 < i < N anda; =

1 — xni1ag forl < i < n— N — 1. We rewrite X; as an operator on
Cla, ] and compute it in terms of these new variables. These preliminary
computations are done in Lemmas 2.7 and 2.8.

Lemma 2.7 Letuq, ..., uq be commuting indeterminates. Then

d .
s Uj . 1 ifs=0
Z“’Huj—ui {0 ifl<s<d-— 1.

i=1  j#i

Proof. Multiply the sum on the left-hand side b¥(u1, ..., ug4). The result
is a skew-symmetric polynomial im, . . . , u; of degrees + (g)
If s = 0 this polynomial must be a constant multipleffu,, .. ., ug),
i.e., the sum on the left-hand side in the statement of Lemma 2.7 must be a
constantk’. To see thaf{ = 1 setu; =7 — 1.
If 1 <s <d-—1the polynomial

d .
A(ul,...,ud)<2ufnujli]Ui) =Q

i=1  j#i

is clearly divisible by(Hz . u) —. P. Dividing Q by P yields a skew-

symmetric polynomial, . . ., u, of degreg() — (d — s), which must be 0.
So@ = 0 and this proves Lemma 2.7. a
For the next lemma we will assume tha{, ..., o, G1,..., 0N are
commuting indeterminates. We will let.(z1, ..., z;) denote the-th ele-
mentary symmetric function iny, ..., z,, we will let 9 be the differential
operator onlR = Clay, . .., am, b1, - .., On] given by
=1 ]:]_

and we will let4;, B; be the algebra homomorphisms Brthat satisfy

—y ifZ:ai
Ai(z) = {Z—Oéi ifze{a,...,am, b1,....08 }\{ }

—Bi it z=p
B; = .
(z) {Z—/Bz |fZ€{al;---;aﬂ’wﬂla"'aﬁ]\f}\{/B’i}'
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Definevy; and~y, by

i=1

S

J#Z

l

Lemma 2.8 Letp(a) be a polynomial ifay, ..., a,,) of degree less than
or equal tol. Then

N

Y2 (p( )61\/ I (Zaal Z Z@) (p(g) eN—I(@)

+p(a) en—1-1 (@-

Proof. Foreachj =1,2,..., N

Bj(p(a)) = pla = B;) = plaq — B, aa = B, ..., om — B;)

I
=p(@)+ ) ¢a)p
s=1
whereg;s(a) is a polynomial ina, . . ., ayy,. Note that the sum on the right

has upper limits = I by our degree assumption pn

Expanden_;(8) = >_ 4 B4, where the sum is over allV — I')-subsetsA
of {1,...,N } and where3, denote] [, . 4 ;.

Fix A and writeys (p(«) 54) as a sum of two term&; + G2 (see (2.2))
where

Glzzgj<<)m ple —ﬂjﬂﬁﬁfﬁj ij))

]

N4 Be 4
GQ_Z@((WA pla ﬂjg@ 7 JwA)).

(2.3)
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We can write(G; as

- B ))
= pla) + s(oz)ﬁS)

l£]
1
:m@(zﬁ(l 5 %))

jgA "l oA 0T

l#]
- 8
—Ba)_ (Zﬁj_l 11 5 fﬂ ) gs()

s=1 \ j¢A 0¢A J

t#]
We will apply Lemma 2.7 to the second summation wWithy, ..., ug } =

{Bj:j ¢ A}. Note thatd = I in this case whereas the highest exponent
appearing in thgg; is I — 1. Lemma 2.7 gives

= Bap(a <Z J( Hﬁgﬁﬁ ))ﬁAm(a)-

£¢A

Next conside} ;¢ 4 6%— (1 - H%&A Bﬁ@-) := G3 and keep the notation
J
ui,...,uq as above. Observe that
A(ul, v ,ud)G3 =

<H£¢A(ﬁ£ )) <H£¢A ﬁz)
@Hﬁ;@(ﬁz B5) ’

( Il wr—m) >

r<s ¢ A
r,s¢A i¢

which is a polynomial. The crucial point is thdf divides the numerator of
the jth summand of the right-hand factor.

But this implies thatA(uy, . .., u4)G3 is 0 since it is a skew-symmetric
polynomial of degred?) — 1in uy, ..., uq. So we have shown that

= —Baqi(a) = —fa Z da,
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Nextwe consider the summaad from (2.3). Expanding3; (8.4) according
to the definition ofB; we obtain

-y [ ) 64 — @(Hﬂf‘ﬁj)

JGA ]
X <(—ﬁj) 11 - ﬁj))]
reA
r#j
= > Bayjy|ple) +pla—p; ] (2.4)
J; A ’ ggm B

Let Bbeasubsetof s, ..., Sy } of sizeN — I — 1. We collect together alll
terms iny2(p(a) en—7(3)) that contribute to (2.4) with leading factgg;.
There is a contribution for every superseof B of size N — I (for suchA
we have{ j } = A\ B). The coefficient ofiz when we sum all such terms
is

Be
> <p< )+ pla— ) H 5 5J> (2.5)

j¢B

As above writep(a — 35) = p(a) + ZS 1 4s() ;. Applying Lemma 2.7
with {uy,...,uq} = {B¢: £ ¢ B} we find that the collection of terms
involving ags(a) sum to 0. As a result, (2.5) is equal to

(I+1)p( (ZH

¢5 (e

m—%) (I +2) pla).

Summing overB we find that the total contribution tg(p(a) en—7(3))
from theGsy is

N
(I +2)p(a) en—r-1(8) = p(a) ((Z 6%) €N1(5)>

=1
+p(a) en—1-1(8)-

Collecting together all terms of typ€s, andG, we have the result stated
in Lemma 2.8. O

We are constructing a proof of Theorem 2.6 that will proceed by induc-
tion. One crucial step in this proof will be the evaluation of

Xty
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where\ is written in weakly descending ordgy > - -- > \,. Animportant
ingredient in our computation dfflfl - ITy will be an explicit formula for

(a+k’>/1 +k72)s'€N(ﬁla"'aﬁN)

for all values ofs. Lemma 2.8 is pertinent to the computation of these
guantities.

Let V be the vector subspace &f spanned by alb(«) ex—;(5) such
that the degree qf is less than or equal th. Lemma 2.8 implies that each
of the polynomials in (2.5) lie iV. Lety := k/(k + 1) andayg := ;.

Definition 2.9 The linear operatofl’ on V' is defined by
0
T(p(a)e;(B)) == 50, Pl@) e ()
i=0 '

+ (N = j+1+7)pla) ej1 +v21‘ ()

with deg(p) + 7 < N.
Proposition 2.10 The operato® + kv; + k2 equalsk/(k + 1)T onV.

Proof. Combine the result of Lemma 2.8 with the fact

)
Z aB; eN—I(@ =+ 1)6N—I—1(@
i=1 v

O
Proposition 2.11 The set of polynomialsps(a): s = 0,1,2,... } defined
by

m

H(p, @)= (1—px1)” H p(z1— )7 = pula)p
s=0

satisfies
T(ps()eo) = ((m + 1)y + s)ps—1() o
for all s (usingeg = 1 to show this is in/).

Proof. Apply T to the generating functioi . We will show that

TH:p<paap+((m+1)’y+1)> H.
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Indeed

TH(p,a) = H(p,) <M>

1 —px;

1
+
Yo {em - ea)

X (1 — px1)™? H(l —pr1— ;)7
j=1

=H(p,a)p( - 2 m—%))

while

0
(0t (m 1074 D)) Hip.o)
N 1P+ | axn (11—
—H(p,a){l +7p El_pxl_al)

+((m+ 1)y + l)p}

=TH(p,a). O
Proposition 2.12 Forany! = 0, 1,2, ... the set of polynomial§gr s ()
s=0,1,2,...} defined by

G(rya, I) == (1 + ray)~(m+Dr=1-1 H(l +raj)? = ZQI,s(g) r

satisfiesAle =1jforl <l <mandTy; =0,forj =0,...,N;where
Vi =21 an—j,i(@) ej—i(B).
Proof. Fix j, letl = N — j, then

App = ZAlq“ a) ej—i(B — o)

J Jj—i .
Z Agri)(a Z (S+£+Z> (—u)’ej—i—s(B))

=0 s=0

! : I+t .
Zej t( Z Aiqri—s) s (—ap)

t=0 s=0



548 C.F. Dunkl, P. Hanlon

where we change the variable of summatien i+ s and we writee;_; (5 —
oy ) forthe elementary symmetric functioninthe variabes- oy, . . ., By —
oy, which is expanded in terms ef_;_,(3) using the generating function
SN ei(B)r = [T, (1 + ;). On the other hand, the coefficientidfin
the expansion of

(177

s Ala I> (1 + ’I”al) =1
e .
Z Aqri) (@) r (1 + rog) =

o0
1 I
(Argri)(a)r' E +H— (—ag)®r®
s=0

DTS (Ij’f) (—a)

s=0

‘Dllﬂg Ik

@
Il
o

M

t

Il
o

is the coefficient ok;_;(3) in A;zp;. But

A —1-1I
G <1+rozl 1 I) (1—|—roq)

_ 1 xl o Oll 7(m+1)’}/7171 ﬁ Oé] o Oél) ¥
1+rog ” 1+ro

Jj=1,7

—rog —I-1
x [ 1 1
( + 1+Tal> ( —f—?“al)
+

_ (1 Txl)—(m—i-l)'y—l—l(l + Tal)(m—l—l)'y—i—l—i—l—my—l—l
m
< [ @+ray)
J=1, j#l
=G(r,a,l)

and this shows that;y; = v;.
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To show thatT; = 0 it suffices (because of thd,-invariance) to
evaluate

ZJ:{ [8(3:1 qu,i(Oé)] ej—i(3)

=0

+(N—j+i+1+9)qnv_ji(a) eg‘u(ﬁ)}

—Z{ 015(0) 4 (1414 7)15-1(0) | 4(6)

where againl = N — j. We need to show this is zero for< i < j; when
i = 0 this follows fromgq; o = 1. Fori > 1 the expression if{} is the
coefficient ofr* in

0 3}
(‘T’ch(r o I)+T<I+7+1+rar> G(r,a, 1)

(r+r2z)((m+ 1Dy +1+1)
1+rx

= G(T,Q,I) {_

+vz J+r1+7+1)}
ZG(T,Q,I) {—-(m+1)y—T—-14+my+I+y+1}=0. O

Corollary 2.13 For0 < j < N and for any polynomiaP(«) with deg(P)
S N - j’

T(P(a)p;) = T(P(a))y;.

Proof. The operatofl’ has differentiation and difference components. The
standard product rule applies to the differentiation, while the difference
action factors through multiplication by, because); is invariant under
eachA;. O

This Corollary together with the polynomials constructed in Proposi-
tion 2.11 are essentially a diagonalization of the operatand lead to the
desired formula fofTNeN(ﬁ). The reader will suspect that these construc-
tions did not spontaneously jump into the authors’ minds. They are the result
of a series of various approaches to the problem that eventually led to the
generating function method. The functiGharose from trying to set up a
correspondence betweehin G ande;_;(3) that exhibits the action of the
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reflectionA;. ThusA;r* should correspond to

S S+I+Z s,.14+s OO(1+I+7’)S s, .1+s
S (P et = 3 B D e

s=0 5=0
= ri(14ra)”

%
r
— 1 —1-1
<1+T‘Oé1> ( +Tal)

(formally summing tax results in terms like; (3) with negativet; these are
taken to be 0) and this explains the technique used in the proof of Proposition
2.12. To finish this computation we find the expansion,df3) in terms of

{ps(a) } and{yy }.

Theorem 2.14 ey (8) = S0 pv—j(2)¥;.
Proof. Start with the right side of the formula:

ZPN —j ZZPN J a)gn— JZ( )‘3] 1(5)

7=0 =0

N t
=> en(B)Y ps(@)ges—s(),
t=0 s=0

(changing summation variablés=t — s, j = N — s). The coefficient of
en—¢(f) in this sum equals the coefficient dfin the sum

Zps(g)rszqs,j ! —Zps rSG(r, a, s)

—Zps r*(1+rxy)” (m+1)y—s— 1H (14 ray)”
7j=1

m
T
- H 1 —(m+1)y-1 1 Y
(l—i-msl’a) (1+ray) j|:|1( + raj)

1 rT1 ! ﬁ 1 T(xl - aj) - (1 + )—(m—‘rl)’y—l
= - - rT
14+ ra; . 14+ raz; !

1-1—3

= (1 + rap ) HFmy=(nt =1 —

and this establishes the desired formulal
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Corollary 2.15 For 0 < j < N the following formula holds:

N—j

Tien(B) = > ((m+1)y+N —i—j+1);pn_j_i(a);
1=0

and in particularTNey (3) = ((m + 1)y + 1)n

Proof. This is a consequence of Theorem 2.14 and Proposition 2.11 and
Corollary 2.13. O

Now we come to one of our main results.

Theorem 2.16 Letm, N be as above. Then

N

0+ ky1 + ky2)Ven(8) = [[(om + i + 1)k +4).
=1

Proof. Proposition 2.10 shows that the result of evaluating the left hand side
is (k/(k + 1)) times the value specified in Corollary 2.15.

We are now ready to proceed with the proof of Theorem 2.6. We begin
with the case wherg is a hook.

Theorem 2.17 (HOOK CASE)Let\ = (N + 1,1"~ (V+1) Then

N N+1—i

(I, I1,)) = DT IT (n+1 =)k +w)

i=1 u=1

Proof. First note that
(I, Ty) = (N + D)XV XNV 0 Xy - A2y, 2ng1).

So it is enough to show that

N=1N+1—
XNXNY Xy - Az, ang) = H H (n+1—14)k+u).
o (2.6)

We will prove (2.6) by induction orlV. The base cas® = 1 is easy so
assume thadV is greater than 1 and that (2.6) is known fér— 1

Foreachs, Xi - A(z1,...,xN+1) IS antisymmetric ince, ..., zn+1,
hencedivisible byA(zs, . .., zn41). Foreachs, definec, = cs(z1, ..., xy)
by

Xig : A($1, s >$N+1)'
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Observe also thaX{Y A(1, ..., xn41) is of degreg( ), hencery must be
independent of+, ..., x,. SO
XNXNT Xy =en XY XNA(x, . N 1)

N—2N—i—1
:CN<H H ((n+1—i)k:+u)>
=1 wu=1

the last equality following from our induction hypothesis.
We have reduced our problem to showing that

N
ev=[J((n+1-ik+(N+1-1) (2.7)
=1

We are going to examine the functions

Letm=n—(N+1).Foreach =1,2,...,mleta; = 1 — xnt+1+i
and foreacly = 1,2,..., N let 3; = z1 — z;41. Note thatcy in terms of
this new notation ign (51, ..., On)-

Claim. Written in terms ofvy, . . ., ap, 81, . . ., By We have

Cs = (8 + k'yl + k’m)s . GN(Q).

Proof of Claim.By induction ons. The cases = 0 was handled above. To
complete the induction step we must show that

X1(esA(zay...;xn+1)) = (O 4 ky1 + kvya2)es)A(xa, ..., 2N+1)

SupposeU(@ is a polynomial inzq,...,xn41 that can be written as a
polynomial in the sef{ a1, ..., am, (1,...,0n }. It is straightforward to
check thatX; - U is also a polynomial if a1, . .., aum, 51, - .., On } given
by

O+ ky1 + kp) - U

where

Also

A($2,...,$N+1) :A(ﬁlaaﬁN)
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and

ABr, ..., By) = < 11 (ﬂu—m)

u<v
u,’l)?/£27j

>A(517~-75N)'

N
&

~

VR

LS.
Sl

Il
I/
.EZ
S
D@

Yl

J
5

.S
S

Hence,

Xl(CSA((L‘Q, e ,.I‘n+1)) = X1(05A<ﬁl, Ceey ﬁN))
= (04 k1 + k72)(cs AP, - - -, Bn))
= ((0 + k’yl)cS) (ﬁla . aﬁN)

ZZd B 617 aﬁN))

N
Bj
= 0 Cs 7 i |Cs
(« ) >+k;@(d 5% ) )

J#i
A(ﬁ?a"'a/@N)
= ((0+ k1 + ky2)es) A(Bas - -, BN),

which proves the Claim. 0

To complete the proof of (2.7) we have by the Claim above:

ey = (0+kyn + ]f’YQ)N@N(@

—.

(n—(N+1)+j+1)k+4) byTheorem2.16

.
Il
-

(n+1—i)k+(N+1—1)).

L

-
Il
—

This completes the proof of Theorem 2.6 in the case Xhata hook. O

We will now use a different argument to reduce to the hook case. Let
A= AAa... 1™ where2 < \; < Ay < --- < ). As above, note that

A1— A A
(I, ITy) = Hy (XM 1...X,\1X/\12+11X/\22+12 DI,
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We must show that

A—1yA1—2 0 Ao—1 yA2—2
(XX 2L XS X X)L

n—1 n

= 11 (ik + u). (2.8)

u=1 i:(n"'l)_a?wrl—u

We prove (2.8) by induction odeg(I1)). Let\ = (A1 — D)Ag... A 1™t
Since

~

deg(x ) = 3 ()

and sinceX ;' ! IT, is antisymmetric in the sets

{.CCQ,...,x,\l}
{:E)\H—l? s T4 }
{ PSR D VERE S PR EL) S e Y, }

we have thaﬂ(l*“1HA is a constant multiple off,. Let that multiple be
denoted byC'. Our first step is to write down what we expect this multiple
to be. Foru = 1 ... e @ partition ofn, let R, (k) be the product on the
right-hand side of Theorem 2.6 (divided I,). More precisely, let

1 n
R, (k) = 11 (ik + ).

u=1 i:(n+1)—af‘1+17u

3
|

Lemma 2.28 Let \ and )\ be as above. Then

A1—1

Ry(k)/Rs (k) = [] (Ge+ D)k +1).

i=1
Proof. By the definition of the:} (Definition 2.5) we have that

A1—1

Ra(k)/Rs (k) = [T (vik +1)

i=1
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where
vi=((n+1)—M—-1)—Aa—1) = =N\ =1)) =L+ 1+m,
ve=(n+1)— M —=2)—A2—2)—-—(A\—2)) =20+ 1+m,

vyn-1=((n+1) =M —(A—-1) = (A= (M —1)) -
- (A= (M —1))
= ()\1—1)€+1+m,

which proves the lemma. O
In view of Lemma 2.28, Theorem 2.6 will follow from a proof of
A—1
X, = ( 11 ((i€+m+1)k—|—i)> 1I;. (2.9)
=1
To prove (2.9) we will need one more computation.

Lemma 2.29 Supposd < a < band supposé < s < (b —a). Then

b
d _ .
(Z MW) T A(2g, ..., 1) = 825 A(2g, .. 1) (2.10)
i—a Tl — T4
Proof. (Using Lemma 2.7) Evaluate

b .
:L'l T,
Z id = (21, 2) i A(zq, ..., xp)

i—a Tl — Ty
1 o R T — Xy
= Z Ty — $J H A(fL’a, 7$b)
— :cl—q:j - ﬂfj—Ig
j=a )
a<t<b
Now letu; = 1 — Ta-14ir 1 <i<b—a+1.
It is required to find
b—a+1 1 u
¢
Dl C R GO | ey
j=1 bt
1<0<b=a+1
The coefficient ofc; is
b—a+1 1 u
¢
> L)
j=1 7 £ ¢ J
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asymmetric rational function, with no singularity at any it has degree-1

and beco_mes an alternating polynomial when multipliecﬂbyi(ui — u_j). _

But then it must be zero (by a degree argument, see a similar device in the
proof of formula (2.3) in Lemma 2.8). Next, the coefficientagf ™ (for
1<m<s)is

() S I

Jj=1

which equals form = 1, and equals O fot <m —1 < b—a (by Lemma
2.7)thatis2 < m < b— a+ 1, and the largest possible value faris
s<b—a+1. O

An immediate corollary of Lemma 2.29 is the following result.

Theorem 2.30 Suppose(z;) is any polynomial inz; of degree less than
or equal to)s. Then

Mt A ,
< > MW)'q(x1)4($xl+1u-~-v“ﬁh)"'

Jj=A+1 Ty
A($A1+-..+)\Z,1+1, B I>\1+'"+>\z)
0
= (0= 5 a0 Alwaonseoon o)
T
.. A(a:)\1+...+,\471+1, c. ,.’IZ’)\1+...+)\[).

We are now ready to prove (2.9), which will complete the proof of Theorem
2.6. We will apply Theorem 2.30 repeatedly to

gs(r1) = O A(x1, ..., zy,)
whereQy, is the operator

n

id — (x1,x; id — (z1, z;)
k = (@125) +k ——=d
O = 8.%’1 + g T — Z Tl — T

J=CXi)+1
(note that g(x;) involves the variablesz,...,xzy, as well as
JT()\1+...+>\£)+1,...,$n). Let z denote A(J:)\1+1,...,$)\1+)\2)...
AT, £t Xp_y+15- - s Tx 442, )- By Theorem 2.30 together with the ob-

servation that

A1t +/\z
3717“’])

=0 k
D
j=A1+1
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we have
8 S
XfH)\ = ({Ok + k(f - 1)} A(ml, . ,l‘)\l)> z
81‘1

=(1+k(-1))° <(’)}2/(1+k(£_1))A(x1, cee 9%)) z

Note thatthe hook case of Theorem 2.6 (which we've already proved) applies
to the computation of

Ok /nane—1) A1, - mx,)
to give
A1—1

XMTUT, = (14 k(6 - 1))A11{ IT (i +m)+1-3)
j=1

<(rat) * o

A1—1
= { I ((m+i+D)k) +i((¢ = 1)k + 1)}17;
i=1
A—1
= { IT (Ge+m+ 1)k+z‘)}ﬂ5\ :
=1
which proves (2.9) and completes the proof of Theorem 2.6. O

It is interesting to note that the inner product computed by Theorem 2.6
can be rewritten as an integral. Theorem 3.8 from Dunkl [D2] implies that

(IT\, IT)) = ¢, | I\(2)?|A(ay, ..., 20)[2Fe 1#17/2 gy (2.11)
Rn

-1
cp = (/ | Az, ... ,xn)]%efmz/z dm)

andk > 0 (or Re(k) > 0) becausdT,(z) is k-harmonic, that is, annihilated

by >, X2. It is the polynomial of minimum degree with its alternating
properties. The latter integral is known as the Macdonald-Mehta-Selberg
integral. A method of evaluation that applies to all Weyl groups was found by
Opdam [O]. The results of the present paper give an independent approach.

Indeed
—n/2 ]k+1
(2m) H( I'(k+1)

where



558 C.F. Dunkl, P. Hanlon

We prove thisfolk = 1,2, 3, ... ; the extension to complex valuesfovith
Re(k) > 0 is a standard argument based on Carlson’s theorem. Applying
the formula (2.11) with the choice = (n), Theorem 2.6 shows that

n i—1
c,;il =c; " (n! H H(zk + u))

=2 u=1

:c,j(g (i[l(z’/wu))/(wrl)).

Clearlycy ' = (27)~"/2 and fork = 0,1,2,3, ... this formula shows

c;?lzc_li:f[Q<(ikk!)!>.

O
3 The Garsia-Haiman Conjecture
In this section{ z1,...,z,y1,...,y, } Will be two sets of commuting
indeterminates an® will be Clz1, ..., 2n, Y1, .., Yn]-
Definition 3.1 Letk, andk, be complex numbers. Foreach-1,2,...,n

defineX; = X;(k,) andY; = Y;(k,) by

0 id — (zi,x;)
X; = kp Y ——22
+he ) —

6:@- e i — Xy

B id — (yi, j
K:7+kyzz (yzay])

yi = YT

The Garsia-Haiman conjecture concerns fhemodule structure of the
subspace oR spanned by all partial derivatives of all orders applied to a
certain starting vectar (z, ).

Definition 3.2 Let) be apartition of. Lett) be the Young tableau obtained
by filling the Ferrer's diagram of\ with the numberd, 2, ... n starting
along the first row from left to right, then the second row from left to right,
etc. For eachi, let r; and ¢; be the row and column of the squaretin
containings.

Definem), = my(z, y) to be the monomial

i—1 r;i—1
ma = T
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Lastly defineuy = uy(z, y) by

uy = Z sgn(o)o - my

UGSTL

whereo - m, is the monomial obtained from, by replacing eachr; with
z,-1; and eachy; with y,-1;.

Example 3.3Let A = 31 son = 4. Thent, is given by

123
t>\:4

A chart ofr;, ¢; appears below:

11234
71112
1231

So
0,0.1,0.2 0 0 1 2
my = T1Y1X3YaX3Y324Y4 = T2X3Y4.-
The polynomialvy is a sum of 24 distinct terms:
_ 2 2 2
U) = X2X3Y4 — T1T3Y4 — T3TQYqg — = -+ .

By constructiong - uy = sgn(o)uy for o € S,,. So the one-dimensional
subspace spanned by is S,,-invariant.

Definition 3.4 Let\ be a partition ofn and letk, andk, be complex num-
bers. Define/y (k;, k) to be the subspace & spanned by allX;, X;, ...
XYY, ... Y, - vy for r, s non-negative andi,...,i.,j1,...,Js
€{1,2,...,n}.

Note thatV, (k,, k, ) is invariant under the diagonal action §f on R.
HenceV, (k;, k,) has the structure of afi,,-module. We begin with the
following conjecture due to Garsia and Haiman (see [G], [GH1]-[GH5] for
a complete development of their work):

Conjecture 3.5(see [GH1]) For every partition of n, V5(0,0) is isomor-
phic to the regular representationsf.

In this section we are going to discuss the deformati¢yié,, k, ) of the
Sp-moduleV, (0, 0). Straightforward arguments from linear algebra imply
that the.S,,-module structure oV (k, k,) is the same outside a singular
set (2, of pairs (k,, k,) that has measure 0. We will call a pait,, k)
singular for X if (k;, ky) is in §2,. Otherwise we will say thatk,, k,) is
generic for\.
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Example 3.6Let A = 21. In this case we have

U\ = T2Ys — T1Y3 — T3Y2 — T2Y1 + T3Y1 + T1Y2.

It is straightforward to check that

o= {(3a)ec) (1) o)

An interesting problem is to determine the exact set of gaifsk, ) in the
singular set2,. The following conjecture, if true, gives a solution to this
problem.

Forp(z,v),q(z,y) € R, we let(p, q) denote

0 if the total degrees gf andq are different
<p’q> = p(Xllw"?XnaYlv"' 7Yn) : q(xlv-"7mn7y1a' . ayn)
if deg(p) = deg(q).

This pairing(, ) is the two-variable analogue of the inner product introduced
in Sect. 2.

Conjecture 3.7Let X be a partition ofv. Then(k,, k) is singular for\ if
and only if

(a(z, y),vr(z, y)) = 0.

We have a significant amount of computational evidence in favor of
this conjecture. We will discuss this data in the next section along with
refinements of Conjecture 3.7. Note the similarity in statement between
Conjecture 3.7 and the results in Sect. 4 of [DDO].

Return now to Example 3.6. Compultitigy (z, v), va(z, y)) we have

(X, Y) - oa(z,y) = 6(X2Y3 - vr(z,9)).

Using the fact that

1+(n—1k, ifi=j

Xi(zj) = ( ) e

—ky if i #j

(and similarly forY;(y;)) we have
(X, Y) oz, ) = 6((1+ 2ka) (1 + 2ky) + k(1 + 2k,)
— koky + (1 + 2k, )ky + kioky + koky)
= 6(1 + 3kz)(1 + 3ky).

So (vA(z, y),va(z,y)) = 0 if and only if one ofk, or k, is equal to—3.
This is exactly the se?, computed in Example 3.6.

In the example above) (z, y), va(z, y)) factored as a polynomial ik,
times a polynomial ink,. The next theorem gives a factorization of

(ua(z, y), vA(z,y)) forall .
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Theorem 3.8 Let \ be a partition of n and let\’ denote the conjugate
partition. Then

(oa(z,y), valz, y)) = AUIN(z), X () (I (y), Ix(y))

where/ is the constant

A= <H,\HX f[@mj’x) /n! ﬁ(n —1)!(¢; — 1.

i=2 i=1
and where the; are as defined in Definition 2.5.

Before proceeding with the proof it should be pointed out that
(I1\(z), II\(x)) is a polynomial ink, whose factorization was determined
explicitly in Theorem 2.6 andiIy (y), Iy (y)) is a corresponding polyno-
mial in k,.

Proof. We begin with some general remarks. lelbe a partition of, and
let M, be the linear span i€[z1, . . ., z,] of theset{ o - IT,(z1, ..., 2,):
o € S, }. By constructionV/,, is anS,-module. A theorem of Peel (see [P])
asserts thafl/,, is isomorphic to the irreducible representatignof S,
indexed by.

Let f, denote the degree of,, which is known to be the number of
standard Young tableaux (SYT's) of shapeFor each standard Young
tableaut let o, denote the permutation i}, satisfying

O't(t'u) =t

(t,, was defined in Definition 3.2). It is known that a basis idy, is given
by the set of

{ow(11,): tisan SYT of shapg } .

Let this basis be denoted t{yp’l, .. ,p’fH }

Suppose nowthdp, ¢) istheS,,-invariantinner product o€z, . . ., z,]
given by<pa Q> = p(217 SRR Zn) : Q(Zla R Zn) where

With respect to this inner produéty;, p5, . . . } is not generally orthogonal.

By use of the Gram-Schmidt method this basis can be replaced by an orthog-
onal basi{ p1,p2, p3, . . . } such thap] = p;, and the matrix representation

of the groups,, is orthogonal. This of course simultaneously implies that
thep,’s all have the same norm.
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Lemma 3.9 If i # j then(p;, p;) = 0. The value ofp;, p;) is independent
of 7.

Proof. Foro € S,,we haver(p;) = > (7,(0))s,ips andwe havep;, p;) =
(opi, op;). Combining these yields,

1

’ O'ESn

= Z <;| Z (TN(U))TJ(TM(U))S,]') <p7“7p8>‘

" oeSy

It is a well-known fact from the representation theory of finite groups
(see [F]) that

(here we use that, is real). Thus

i
(i ps) = 72> (DesDs). (3.1)
fu &
Let M be the subspace @f[x1,...,z,] described above that affords the
representation, and letV/’ be the corresponding subspac€dfy, . . . , y,]

that affords the representatioy. Letpi(z), ..., py,(z) be the basis de-
scribed above fod/ and letq: (y), .. ., qy,(y) be the corresponding basis
for M’ that satisfies

o(ai(y) = Y (72(0))s.i580(0 )5 (y)-
S

We are going to considér ® M’ asasubspace @z, ..., Zn, Y1, ..., Yn]-
TheS,, action onClz1, ..., Zn, Y1, - - -, Yn] Will be by simultaneous permu-
tation of thex;'s andy;’s so that\/ ® M’, as anS,,-module, is isomorphic
to the internal tensor product ef andr,.. It follows from standard facts
about the representation theory $f that M ® M’ contains exactly one
copy of the sign representation. The next lemma identifies that element and
computes its norm squared.

Lemma 3.10 In the tensor produch/ @ M’ there is a unique polynomial
(up to scalar multiple) that is skew-symmetric. This polynomial is given by

1B
v= Zpi@) ai(y)- (3.2)
i=1

Moreover{v,v) = f\(p1,p1){(q1,q1)-
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Proof. Leto € S,,. Then

v = (o) 3 (o) (Zm(a))mm(a))m)
= sgn(o Zpr qs(y) Ors

here using the orthogonality relation

(Z(TA(U))r,z‘(U(U))s,z‘) = Ops

(see [F]). So
o-v=sgn(o)v,

which shows that the linear span®fs the unique copy of the sign repre-
sentation inM @ M’. Note that

= < Zpi(g) 4 (y), ij(@ Qj(y)>
= Z(pi(z), pi(@){ai(y); 4;(y))

= Z (pi(z (0i(y), 4:(y))
= f/\<p1 (z), p1(z)){a1(y), a1(y))

(the last two equalities following from Lemma 3.9). This proves Lemma
3.10. -

To prove Theorem 3.8 we are going to apply this set-up\ta, ). We
need one last ingredient.

Lemma 3.11 Let notation be as above. Thef(z,y) € M @ M'.
Proof. Let D, andD,. be defined by

()

7

DX:Z@').

J

<~
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Let A be the subspace @]z, ...,xz,] consisting of polynomials of de-
greeD, and letB be the subspace @[y, ..., y,] consisting of polyno-
mials of degreeD,..

Consider the coefficient iny (z, y) of the monomial ], y{i‘l (this co-
efficient is a polynomial incq,...,z,). It is easy to see that this coeffi-
cientisil,(x). It follows that the coefficient imy (z, y) of every monomial
yit ... yy~ is an element of\/. This shows that B

ur(z,y) € M ® B.
A similar argument shows that
oa(z,y) € A® M.
We can writeA = M & N andB = M’ @ N'. It follows that
(M@B)N(A@ M) =M e M,
which proves Lemma 3.11. O

To continue with the proof of Theorem 3.8 we note thatz, y) is in the
Sp-isotypic component af/ ® M’ corresponding to the sign representation.
Sowy(z,y) is some multiple ob = Zif:l pi(z) ¢:(y). By Lemma 3.10,

(oa(z, y), va(z, y)) = Alp1.p1){q1, q1)
= A(Ix\(2), I\ (z)) (Ix (y), 1T (y))
where/ is a constant (independent of, &,).
Both sides of the equation above are polynomials,iandk,. We will
evaluated by computing the constant term of both sides. The constant term

is obtained by applying only the partial derivative operators of e&ch
andY;. Doing so we see

r;—1 ci—1
ety e =nI](5) (o) W
= n! H(Tz — e — 1)!

On the other hand,
CT({IT\(z), Tx(z))) = Hy ][ o
1=2

Theorem 3.9 follows immediately. O
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Table 1.

a\b[3]2[1]0
0

a\b| 1 0

0 |-1/3|—-1/3

0

—1/2
—2/3 —1/2
“1/3 —2/3 —1/2

S]
O | N W —
o

A simple corollary of Theorem 3.8 is the following:

Corollary 3.12 (a) Let2 =set{ —i/(j +1): j =1,2,...,n =1, 1 <
< j }. Then({vx(z,y),va(z,y)) is nonzero if bottk,, k, are fromC \ (2.

(b) (Assuming CONJECTURE 3.7): The péit 0) is generic for allX.

4 Refinements of Conjecture 3.7

The S,,-moduleV, (k,, k,) is bigraded by homogeneous degree in:lis

andy;’s. For non-negative integets b let V;“’b)(kx, k,) denote thea, b)
piece ofV, (k. k,) that is homogeneous of degre@ thez;’s andb in the

y;'s. We have computed th@/\(“’b)(kz, ky,) asS,-modules for alla, b, k.,

k, and all\ with |A| < 6. For the sake of brevity we will not include all this
data but will include certain tables that are derived from it.

The following tables are indexed by partitioRsThe Ath table has rows
indexed bya for 0 < a < D, and columns indexed biyfor 0 < b < Dy.
Thea, b entry in this table is a list of ak, such that thé¢a, b)-graded piece

of Vf“’b)(kx, ky) is O for k, generic. (See Table 1)
Note thatwheﬂ/A(a’b)(kx, ky) = Ofork, generictheﬂ/f“’”(kx, ky) =0
for all 5. This observation is consistent with all the data we have. This says

that there is a cut-off value affor eachk, below whichVA(“’i) (kz, ky)isO
(for k, generic).
The following value ofa seems to work.
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Conjecture 4.1Supposek, = —¥ for u < a} (so in particular(vy(z,y),
ux(z,y)) = 0). Then

VI (ke k) = 0
for all b, all k, and alla < u+ ("75"?) — 1.

Note that the bound on is independent oh. The significance of the
independence from in the previous tables is that Wheneveg}‘ is singu-

lar for \, VA(“’b) (—3.k,) was nonzero untik = 0. Similarly whenever

(=1, k,) is singular forx, V{*? (=1 k) is zeroiffa < 1.

A weaker form of Conjecture 4.1 is the following:

Conjecture 4.2The pair (k;, k,) is singular for A if and only if
VO (ky, k) = 0.

We strongly believe Conjecture 4.2 is true but we cannot as yet prove it.
The following theorem implies that Conjecture 4.2 is stronger than Conjec-
ture 3.7.

Theorem 4.3 For all A, k, andk,, the following two statements are equiv-
alent:

VO (ky, k) #0, (@)
(ua(z,y),vr(z,y)) # 0. (b)

Proof. Itis immediate from the definition of, ) that (b) implies (a).
To prove that (a) implies (b) assume thaf (z, y), va(z,y)) = 0. We

want to show thaVA(O’O)(km, ky) is 0.

As in the proof of Lemma 3.11 we I€tD,, D,/) be the bigrading of
va(z,y), let A be the subspace of polynomials of degiegin Clzx1, . . ., x,]
and letB be the subspace of polynomials of degieg in C[y1, . . ., yy].
Let M and M’ be theS,,-modules inA and B generated by, (z) and
I/ (y) respectively. We will need the following classical result.

Lemma 4.4 The multiplicity of the irreducible representatiogin A is one
(and so the multiplicity of the irreducible representatign in B is one).

Let 0x0y be a differential operator i€[X;,..., X,,Y1,...,Y,] of
bi-degree(D,, Dy/) and assume thaty comes from the,-isotypic com-
ponent of the differential operators of degrPg whereas)y comes from
the 7,,-isotypic component of the differential operators of degtee.

By considering the5,, x S, action onA ® B we have that

Ox Oy | memr =0
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unlessy = A andn = \. By Lemma 4.49x 0y v)(z, y)- must come from
the copy ofM @ M’ in C[X1,..., X, Y1,..., Y],

Consider the diagonal action 6f, on A ® B and on the copy o/ ® B
in C[Xy,...,X,,Y1,...,Y,]. In order forox dy - vy(z,y) to be nonzero,
Jx 0y must come from the sign-isotypic component of this diagonal action
(sincewy(z,y) does). So by Lemma 3.1@x 0y must be a multiple of
vy (X,Y). But by assumption

UA(K; X) : /U)\(£7 g) = 07

which shows thaxdy - va(z,y) = 0 for all operatorsdxdy. Thus
VO (ky, k) = 0. 0
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