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Abstract. We examine a class of conformal metrics arising in thé =

2 supersymmetric Yang-Mills theory” of Seiberg and Witten. We provide
several alternate characterizations of this class of metrics and proceed to
examine issues of existence and boundary behavior and to parameterize the
collection of Seiberg-Witten metrics with isolated non-essential singularities
on a fixed compact Riemann surface. In consequence of these results, the
Riemann spher@ does not admit a Seiberg-Witten metric, but foreatt 0

there is a conformal metric 6 of regularityC2~¢ which is Seiberg-Witten

off of a finite set.

1. Results

Theorem 1. Letw be the area form of a conformal metric on a Riemann
surfaceX. Then the following conditions are equivalent:

(1) w is locally of the formm; A 75 — 2 A 7y, Wheren; and n, are
holomorphic (1,0)-forms.

(2) Forallp € X there exists a holomorphic coordinat@n a neighbor-
hood ofp together with a harmonic functidnso thatw = $h dzAdz.

(3) On the domain of definition of an arbitrary holomorphic coordinate
z, w takes the fornge?* dz A dz with u either a harmonic function
or a smooth superharmonic function satisfying

100 log |i00u| + 4i00u = 27v

in the sense of distributions,a locally finite sum of delta masses.
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(4) There is a rank 2 vector bundlE — X equipped with a holo-
morphically flat Hermitian (1,1)-form-valued Lorentz metgiand a
time-like holomorphic section: X — E satisfyingw = g(n, 7).
(5) Eitherw comes from a flat metric, or else there are
(a) a non-negative (1,1)-form on X inducing a conformal metric
of curvature—1 with isolated conical singularities having total
angles of the forl@nm,n > 2

and

(b) anon-negative (1,1)-forghon X inducing a flat conformal metric
with isolated conical singularities

satisfyingw = £3/2p=1/2 on{z € X : p(z) # 0}.

(6) There exist

(a) arank 1 affine bundlel — X associated to a line bundle which
is the tensor product of the square of the holomorphic tangent
bundle ofX with a flat Hermitian line bundle.

and

(b) a Levi-flat real hypersurfacg C A with circular fibers overX

so that the induced radius functiotiz) satisfiesv = 1/r(z).

Remarks on the conditions of Theorem 1.

(3) Here the absolute value of a 2-form is regarded as a positive 2-form.
Also, the operatofdo log mapping 2-forms to 2-forms is defined in
local coordinates by

i001og (Y(z) dz A dZ) = i00 log Y,

This operator maps log-integrable non-negative real 2-forms to dis-
tribution-theoretic real 2-forms.

Working near the origin of a local coordinatgthe second alternative

is equivalent to saying that there is a non-negative intégerthat

log |Au| + 4u — 2k log | 2|
is harmonic in a neighborhood of the origin.
Clearing denominators we find thatmust solve the degenerate el-
liptic equation
Uzz (uzzﬁ + 4“32) = UzzzUzzz,
but the latter equation admits solutions that do not satisfy condition

(3).

(5) To explain the terminology here we introduce the following.
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Definition 2. Let = be a local coordinate vanishingat X and let
¢“(?)|dz| be a conformal metric on a deleted neighborhoogl @hen
the order of the metric ap is defined to be

This quantity is easily seen to be independent of the choice of coor-
dinate.

If the metrice*(*)|dz| above has constant curvature apg > —1
then the metric is said to havecanical singularity with total angle
27(xp + 1). (Compare [HuTr, 2.1] and see Lemmata 11, 12 and 13
below.)
The flat metric may be viewed as being obtained from the other two
metrics by “interpolation of normst = w?/3p!/3. Equivalently, we
may say that is obtained fronp and¢ by extrapolation.

(6) The condition (a) means that the affine bundle can be described by
transition functions of the form

(2 w) = (0(2), ¢ (¢'(2)) w0+ 0(2))

The radius functiom(z) is to be computed with respect to the natural
(—1, —1)-differential-valued metric given locally by((z, w1), (=,
we)) = |wy —wsl. (See [Leh, IV.1.4] for definitions.) The reciprocal
of r(z) is thus a1, 1)-differential or(1, 1)-form.

The condition that be Levi-flat means that the Levi-form Sfvan-
ishes identically, or alternatively thatis foliated by Riemann sur-
faces.

The condition 1 appears in thé" = 2 supersymmetric Yang-Mills the-
ory” of Seiberg and Witten [SW] as the correct local form of the metric
giving the kinetic terms on the moduli space of vacua. We will call a met-
ric satisfying the equivalent conditions of Thewnrd a (one-dimensional)
Seiberg-Witten metrigSee [SW, 3.1] for a generalization t@Kler metrics
of higher dimension.)

Definition 3. A conformal metrice(?) |dz| on the unit diskA will be said
to bebounded belowf inf A u > —oc.

Theorem 4. If (%) |dz| is a Seiberg-Witten metric bounded below.4n
then the function: has non-tangential boundary limits almost everywhere
onT = bA.

The function onT arising in Theorem 4 will be called theoundary
functionof the metric.
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Theorem 5. Let¢ € L*°(T) be real-valued. Then the set of Seiberg-Witten
metricse*(*) |dz| bounded below om with boundary functiom is param-
eterized by

Bre (H3*(4)) /8" x M, (T),

sing

where H3°(A) is the Banach space of bounded holomorphic functions on
A vanishing at the originB (H§°(4)) is the closed unit ball off§°(A),

Bye (H°(A)) is the set of non-extreme points®f H°(A)), the quotient
Bre (H*(A)) /St is taken with respect to multiplication by unimodular
scalars, and’\/[;gng( ) is the space of non-negative singular Borel measures
onT.

We return to the examination of Seiberg-Witten metrics on general Rie-
mann surfaces.

Theorem 6. All complete Seiberg-Witten metrics are flat.

Theorem 7. The surfaceX admits a Seiberg-Witten metric if and only if
X is non-compact

or
X is compact angenus(X) = 1.

Moreover, X admits a non-flat Seiberg-Witten metric if and onlyXifis
non-compact and is not covered By

Theorem 8. Let X = X \{z1,...,2p} whereX is a compact Riemann
surface and, . . ., zp are distinct pomts o with P > 1. (IfgenusX =0
then we requiraD >3.)

Then any Seiberg-Witten metric an with x,,..., x:, > —oo must
satisfy

P
2(genus X — 1) < Z 3(genus X — 1) +

and there are no other restrictions on the, .
The flat metrics correspond precisely to the case

P
szj = 2(genus)? - 1),
j=1

and in this case thg.; determine the metric up to a multiplicative constant.
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For

P

~ N P

(1.2) 2(genus X — 1) < E Xz < 3(genus X — 1) + o
J=1

the associated metrics correspond up to a multiplicative constant to a choice
of the following:

— a set of “branch points"ws, ..., wp € X with
P

(1.2) 0<D<6(genusX — 1)+ P -2 x,
k=1

(multiple listings allowed);

— non-negative real numbess,, ..., s,, satisfying
P P
(1.3) ZSZJ‘ :6(genusX—1)+P—D—2ZXZj.
j=1 k=1
Theorem 9. Forall N > 7 and any collection, . . ., zy of distinct points

in C there is a conformal metric of regularity clagg®~12/N onC which is
Seiberg-Witten of© \ {z1,...,2n}.

2. Lemmata

Lemma 10. If 5y, 72,71, and 75 are holomorphic (1,0)-forms on a con-
nected open séf C X satisfying

M ATy = ATy =T Ally — T2 ATjp £ 0

onU then there are a matrid/ € SL(2,R) and a unimodular constart’

satisfying
?jl —efpr (™
72 n2) "

If 1 /72 is non-constant then the mat@¥ M is uniquely determined. If
11 /M2 IS constantthen we may take= 0, and with this additional constraint
M is uniquely determined.
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Proof of Lemma 10The hypothesis implies in particular that = 0; thus
we may write

m = fne
N1 = g1m2
772 = 9272

with f, g1, go meromorphic. Our basic equation now reads
(2.1) =T =092 — 9291 Z0.
If go is nonconstant then applyirip to (2.1) and rearranging we have
dg1/dgs = dg1/dgs.

Thusdg; = A dg» for some real constark, yielding g, = Ags + C. Sub-
stituting back into (2.1) we find that

f—f=0g,-Cg #0
so that
C+0
and
Cop=—f+p
for some real constapt. Consequently we must take

A A

- e
p=wgc, ar=| TG
leimie

The case whereg, is nonconstant is similar.
If g1 andgs are both constant then so &e f andf. In this case we can
take

90— Of—o9f
=0 M = f - ? f - 7 _
’ 92— 9o Gof —92f
f-T -7
and theR-linear independence of; andn, implies that this is the only
choice satisfying = 0. ad




Conformal metrics in the work of Seiberg and Witten 155

Lemma 11. Letp be the area form of a conformal metric of curvaturé
defined on a deleted neighborhoodpo& X. Then there exist a uniquely-
determined non-negativg € R and a local coordinate vanishing ap so
that

2is§\z|2(51’*1) dz N\ dz
- (1 — |2[?r)?
P idz AJE
2|z[*(log |2)?

Moreover, the fornp is integrable nearp, and the distribution-theoretic
Gauss-Bonnet form

if s, >0,

if s, =0.

kp = —i00log p
is equal to
—2m(sp — 1) — p.

If s, € {1,2,3,...} then the metric is obtained by pulling back the
Poincaré metric via a holomorphic map from a neighborhooa dfito the
unit diskA. The map is determined up to composition with an automorphism
of A, and the multiplicity of the map atis equal tos,,.

Proof of Lemma 11Choose a coordinatevanishing ap so thatp is defined
for 0 < |Z| < 1. Thenexp* p comes from a metric of curvaturel on the
left half-planeL. Any such metric is the pullback of the Poinéanetric on
the upper half-planéf for some holomorphic map : L — H. The metric
on L determineg up to composition with an automorphism#f, since the
metric onL is invariant under the translatidh : w — w + 274, there is an
automorphisn® of H satisfyingf oT = ® o f.

If & is hyperbolic then the quotient df by the group generated k%
is biholomorphic to an annulu4 with inner radius-; > 0 and outer radius

ro < oo; let¥ : H — A denote the corresponding quotient map. Then

¥ o f olog is a well-defined holomorphic map from* %A \ {0} to A

which induces an isomorphism of the corresponding fundamental groups.
But Riemann’s removable singularity theorem implies thaf olog extends
to a holomorphic map ofd into A U bA; the maximum principle implies
that the extended map in fact magds$nto A, so thaw o f olog is homotopic
to a constant map. The contradiction shows thagnnot be hyperbolic.
If @ is parabolic then the quotient df by the group generated k¥
is biholomorphic toA*. The corresponding map o f o log : A* — A*
again induces an isomorphism of fundamental groups and thus extends to a

mapA — A which is unbranched at the origin. We may thus replace the

coordinatez by z def (¥ o f olog) (2); with respect to the new coordinate
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our metric is just the Poincametric onA*. This yields the desired formula
for pin the cases, = 0. -
If @ is elliptic thend may be conjugated to the map— A, 7+ e2™5ir

with 0 < § < 1. Thus we may replacg by a mapf : L — A satisfying

F(w + 2mi) = 275 f(w). It follows thatg(2) &' (f o log)(2) /7 is single-

valued. The boundednessfimplies thaly has a removable singularityat
Writing g(2) = 2¥h(2) with h(0) # 0 and setting, = §+k, z = Z /h(3)
we have(f o log)(Z) = z°». Using z as the coordinate now, we find that
our metric is defined by pulling back the Poinganetric of A via the map
z — z°, yielding the desired formula fgr whens, > 0.

The remaining claims follow by inspection and direct computation along
with the standard formulédd log |z| = 7. O

Lemma 12. If S is a discrete subset of a simply-connected Riemann sur-
face X and p is the area form of a conformal metric of curvaturd on
X \ S satisfyings,, € {1,2,3,...} for p € S then there is a non-constant
holomorphic mapf : X — A so that

2idf Ndf
(2.2) P= T Fma

(L—=1f1?)?

the pull-back of the Poincérarea form forA.

Proof. Lemma 11 shows that the sheaf of germs of mapatisfying (2.2)
forms a covering space fdf; thus Lemma 12 follows from the monodromy
theorem. O

Lemma 13. The ordery, of a metric satisfying condition 5 of Theorem 1
with an isolated singularity ap must be< oo. If x, > —oo then (with
notation as in Definition 2) precisely one of the limits

lim | 2|~ Xp (%)
z—0

lim \z|*Xpe“(Z)/ | log |||

z—0

exists and is finite and non-zero.

Proof. In the non-flat case we hage= %e% dz A dz with v harmonic. Let

1
t, = — xdv.
b 27 |z|=€

Thene®(*) = |z |e9(3)| , g holomorphic in a deleted neighborhoodyof
If ¢ has a non-removable singularityzathen¢ and (in view of Lemma
11)w have orderco atp.
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If g has a removable singularity athen using Lemma 11 we have

1
Xp = 5(3tp —sp+1)

2
with
24(0)
1 —Xppu(2) — e
zl—I>I%) ‘Z| ¢ \/E
if s, >0and
liy |20 /| 1og |2 = 2
z—0
if s, =0.
The argument for the flat case is similar. 0

3. Proofs of the theorems

Proof of Theorem 1For possible future convenience, some redundancy is
incorporated into the following chain of implications.

(1)=(2): Locally we may writeny = dz,nm1 = fdz, f holomorphic,
yielding (2) withh = 4Im f.

(2)=(1): Locally we may choosg holomorphic withIm f = %. Then
taken, = dz,m = fdz.

(1)=(4): From Lemma 10 we find that that the germs;pfr- satisfy-
ingw = m A7y — m2 AT form a flatS! - SL(2,R) bundle overX. (If
n2/m1 is constant then the structure group is j9€t(2,R).) Let F' be the
corresponding rank 2 vector bundle. Continuation of a germs, yields a

holomorphic sectiom = <Zl> of F ® T* X so thatw = g(n,7), whereg
2

is the flat Hermitian (1,1)-form-valued Lorentz metric e ®T*X
defined by

(3.1) g <<Z;> , <g;>> =mAC—mAC.

(4)=(2): This follows from the observation that the metgics locally
equivalent to the metric ofh™* X & T X defined by (3.1).

(4)=(6): The proof of the equivalence of (4) and (1) shows in particular
that we may assume that = F @ T*X, whereF is a flat bundle with
monodromy inS* - SL(2,R), and thaty is given by (3.1).
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We construct the affine bundlé by removing the graphs of multiples
of » from E and projectivizing. In local coordinates éh C X we may
accomplish this by the map

(E |,;) \ (graphs of multiples of)) — TU @ TU

(3.2) <Z, <g>) = (2, @m2(2) T @ (G @) - Gem(z) ).

Continuing along a loop with associated monodromy mad?“i’x(j ?) ,
ad — By =1, we find that

T € G em) T ® (G @n(z) = Gem(z)!

transforms to

e‘ﬂe <7‘ + S S ) .
n2(ym + 0n2)

This shows that the line bundle associated ie indeedl’ X ® T' X tensored
with a flat Hermitian line bundle.
We letS be the image of the light cone gfunder the quotient map

E\ (graphs of multiples ofy) — A.

Since the light cone is given by /(2 € R U {co} and the map (3.2)
is linear fractional in(; /(s, the fibers ofS are indeed circles. The sets
(1/¢ = X € RU {0} project to Riemann surfaces foliatirf§y so S is
indeed Levi-flat.

To find the radius function fo$ we note that sincé, /(o = 77 ¢ ®7752 +
11 /n2 it follows that

(z,7) € Sifandonly if 7t @0y % +n1/m =71 @0y 2 +m /n2.
This last condition may be rewritten as

1
m®ne — 1L

1

T+ = — —
m ANy —n2 AN

so that the radius is indeedz) =1/ (m A7)y — 2 A7) = 1/w.
(6)=(3): In local coordinate$ has a center function(z) and radius
e~2u(2)_ The Levi-flatness condition [Ber, Prop. 2.3] reads

(3.3) U,z = —|c;\2@4“, (cze%)z =0.

(Here subscripts denote differentiation.)
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If the holomorphic functiort,e** vanishes identically then of course
is harmonic. Otherwise we can write

Qs = — (C§€4u) (5Z€4u) e—4u

and it follows easily that is superharmonic and thad log |i00u|+4id0u
is 27, wherev is the sum of delta masses corresponding to the zeros of
¢.e~ " (counted with multiplicity).

(3)=(5): If w is harmonic therw comes from a flat metric.

If u is superharmonic and log |i00u| 4 4i00u = 2wv, v a locally
finite sum of delta masses, then we may;set —4i00u. We have

—i00d1log p = —idd log |i0u|
= 4i00u — 2mv
= —p — 27y,

which implies that the conformal metric induced pyn X \ supp v has
curvature—1. Lemma 11 shows that this metric has conical singularities at
points ofsupp v and that the total angles at these singularities are of the
form 2nm,n > 2. We now set

5 — w2/3p1/3‘
We then have
—i00log € = —%i@gu + %i@gu — gmj
2

= — =TV

3
which shows that the metric induced bys flat off of supp v. Moreover,
for p € supp v we find thatlog £ — %y ({p}) log |z| extends harmonically
acrosy, showing that the flat metric has a conical singularity.at

(5)=(1): If w comes from a flat metric then we may choose a local
coordinatez so thatw = 5 dz A dz. Then we may set

)
nlzid'z7
1
= —dz.
2 5 z

If the metric is not flat then by the end of Lemma 11 wiihreplacing
A we may representlocally as

2df Ndf

i(f = F)?
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for somef mapping holomorphically intd. Since the orders of at the
singularities are of the fornr /3, £ admits a local representation of the
form

v
2
& holomorphic. Then we may set

(3.4) 1£(2)|?3 dz A dz,

£(2)

m= 5 mf(z) dz,
1] E(2)
"= o\ arjdz

(1)=(5): Lemma 10 and the positivity @f A7, —n2 AT, imply thatn; /79
maps into the upper half-platd€ and is well-defined up to composition with
automorphisms off.

If m1/n2 is constant thems A 77; — 11 A 7, induces a flat metric.

If n1/n2 is not constant we may sptto be the pullback

2d(n1/m2) A d(m/n2)
2
i ((m/nz) - (m/m))

of the Poinca& metric vian; /n2. If we now set

¢ =23 1d(n1 /m2) @ 10 @ mo*/?
we find that
53/2[)—1/2 =M ATy — AT = w.

O

Proof of Theorem 4We will use condition 6 of Theorem 1 as our definition
of a Seiberg-Witten metric. Since we are working ox¥erwe may viewsS
as a Levi-flat hypersurface it x C with circular fibers and radius function
r(z) = e~2“*) [For, 26.1 & 30.5].

SinceA is simply-connecteds is the disjoint union of graphs of holo-
morphic functions. Choosing one such functiprand transforming' via
the map(z, w) — (z,w — f(2)), we may assume that x {0} C S.

The fibers ofS are now seen to be circles passing throtiglith bounded
radii. It follows that the centers are also bounded and thus that the functions
whose graphs lie it are in H>*(A). Let fi1, fa, f3 be three such func-
tions. (We can takes = 0.) Since fi(z), fa(z), f3(z) determiner(z), r
has a well-defined non-negative non-tangential limit at each boundary point
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where f1, f2, f3 have distinct non-tangential limits. (The boundedness of
r(z) implies that the limits cannot be distinct and collinear.) The theorem
now follows from Fatou’s theorem and the fact thatrat function is deter-
mined by its boundary values on any set of positive measure [Rud, 15.19].
0

Proof of Theorem 5Let ¢“(*) |dz| be a Seiberg-Witten metric an.

If ¢(2) |dz|is non-flat then by condition 5 of Theorem 1, Lemma 12 and
a similar globalization of (3.4) there exist a non-constant holomorphic map
f:+A— Awith f(0) = 0 and a holomorphic functiof(z) so that

2u(z) _ 1 - ‘f(Z)P 2
bk

f and¢ are determined up to multiplication by a unimodular scalar.
Since the right-hand side has no zeros or paés) = 2f(z)e?"?),
whereh is determined up to a purely imaginary additive constant. Thus

e

u(z) = %log(l —£(2)*) + Reh.

Allowing f = 0 we have included the flat metrics as well.

Assume now that; is bounded below with boundary functign Since
log(1—|f(2)|?) is negativeRe h is also bounded below. Thus the boundary
function ofRe h is integrable [Rud, 11.30]; but this boundary function is just
¢ minus the boundary function of % log(1—|f(2)[?). Thusy is integrable,
which says precisely thatis non-extreme iB (H§°(A)) [dLR, Thm. 12].
Moreover, there is a non-negative singular Borel meaguoa T so that
Re h is the Poisson integral ¢f — ) df + p [Rud, 11.30].

Conversely, giverf € By, (H3°(A)) andu € Mjmg(ﬂl“) the argument
above can be reversed to construct a Seiberg-Witten metric bounded below
on A with boundary functionp. O
Proof of Theorem 6Suppose that the Riemann surfa¢admits a complete
non-flat Seiberg-Witten metric. The pullback of this metric to the universal
coverX will also be Seiberg-Witten and complete [Cha, Prop. 4.1].

Lemma 12 shows that the forpon X induced by the metric by way of
condition 5 of Theorem 1 comes from a non-constant map fKotn A. By
Liouville’s theorem and the uniformization theorem for Riemann surfaces
[FK, IV.5.6], X is biholomorphic to the unit disk. As in the beginning
of the proof of Theorem 5, the induced complete non-flat Seiberg-Witten
metric onA may be written in the forna™(*) |dz| with

u(z) = 3 log(1 ~ f(2)|") + Reh,
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f andh holomorphic. The flat metrig:"(*)| |dz| majorizese*(*) |dz| and is
thus also complete. The corresponding exponential GapToA — Ais
thus entire and non-constant; but this contradicts Liouville’s theorem.

Thus no complete non-flat Seiberg-Witten exists. O
Proof of Theorem 7 We use condition 5 of Theorem 1 as the definition of
a Seiberg-Witten metric.

If X is non-compact and hyperbolic théhis covered by the disk\; the
Poincaé metric onA induces the Poincametric onX . We may construct a
non-flat Seiberg-Witten metric by takipgo be the corresponding area form
and taking¢ to be the absolute value of any nowhere-vanishing quadratic
differential onX [For, Thm. 30.3].

If X is covered byC (that is, X is biholomorphic to the plane or to the
punctured plane, or els&¥ is compact of genus 1) thel inherits a flat
metric fromC. But the proof of Theorem 6 shows th&tdoes not admit a
non-flat Seiberg-Witten metric.

If X is a compact of genug 1 then the Gauss-Bonnet theorem shows
that X does not admit a flat metric, and Theorem 6 shows lhaloes not
admit a non-flat Seiberg-Witten metric. O
Proof of Theorem 8We begin by accounting for the flat metrics. Letting
be a non-singular reference metric Sna flat metrice¥ ¢ on X with orders
Xz1s- - Xzp > —00 Must satisfy

P
(3.5) 00 = —00log g — im Z Xz;0z;-
j=1

Applying the (distribution-theoretic) Gauss-Bonnet theoreatipwe have
R P
4m(1 — genus X)) = —2¢ /A d0log(eVg) = —2m Z Xz;
X ;
7j=1

so that
P

(3.6) szj = 2(genus)A( —1).
j=1

On the other hand, if (3.6) holds then the right-hand side of (3.5) has mean
value zero and thus Hodge theory allows us to solve/for

Turning now to the non-flat case and using the notation of condition 5
of Theorem 1, leb, denote the order atof the metric induced by so that

1
Xp = 5(3517 —sp+1).

In particular,3b, = s, — 1 forp € X.
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Applying the Gauss-Bonnet theorem to the metrics indyceaddp we
have, respectively,

Z by, = 2(genus X — 1)

peX
and
p—&—z -1) —2genusX—1)
pGX
Thus

P
Zij = Z Xp
j=1

peX

Z 3bp — Z(Sp - 1)
pG)A( pei

S 1
=2(genus X — 1) + /

4dr )?p

> 2(genus X — 1),

yielding the left-hand side of (1.1) Also, lettinG = > (s, — 1) we
have

P
ZXZJ = Z Xp
j=1

peX

> 3= (sp—1)
pG)A( pe)?
] R P
=5 6(genus X — 1) +P—D—Z:132j
]:

so that (1.3) must hold. Since thg are non-negative, (1.2) follows, as does
the right half of (1.1).
Conversely, given

— X, Satisfying (1.1);
— wi,...,wp € X with D satisfying (1.2) (multiple listings allowed);
— non-negatives,; satisfying (1.3)
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the results of [HuTr, Thm. B] assert that there is a unique curvature
metric on X with a conical singularity with total anglrs.; at eachz;
and a conical singularity with total ang?er(1 + multiplicity) at eachwy.
Settingb., = 1 (2x., + s:, — 1) we find that (1.3) guarantees that

D < -
Z by, = 3 +szj = 2(genus X — 1)
peX 3=1

as required; the methods of the first paragraph of the current proof then allow
us to construct the flat factgtr uniquely up to scalar multiplication. 0O

Remark 14.The metric appearing i\ {1} featured in [SW] hag_1 =
X1 =0, X0 = —3, N =0,ands_; = s1 = so = 0. (See [Bar].)

Proof of Theorem 9We apply Theorem 8 witl® = N, D = 0, x., = 0,
ands,, = 1— % Using Lemma 11, for eacty we can pick a coordinate
vanishing at;; so that the metric admits the local representation

1 — 2>~ 12/N|h(z)||dz|

with A holomorphic neaf andh(0) #+ 0; thus the metric belongs belongs
to the regularity clas€?—12/V, 0
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