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Abstract. We examine a class of conformal metrics arising in the “N =
2 supersymmetric Yang-Mills theory” of Seiberg and Witten. We provide
several alternate characterizations of this class of metrics and proceed to
examine issues of existence and boundary behavior and to parameterize the
collection of Seiberg-Witten metrics with isolated non-essential singularities
on a fixed compact Riemann surface. In consequence of these results, the
Riemann spherêC does not admit a Seiberg-Witten metric, but for allε > 0
there is a conformal metric on̂C of regularityC2−ε which is Seiberg-Witten
off of a finite set.

1. Results

Theorem 1. Let ω be the area form of a conformal metric on a Riemann
surfaceX. Then the following conditions are equivalent:

(1) ω is locally of the formη1 ∧ η2 − η2 ∧ η1, whereη1 and η2 are
holomorphic (1,0)-forms.

(2) For all p ∈ X there exists a holomorphic coordinatez on a neighbor-
hood ofp together with a harmonic functionh so thatω = i

2h dz∧dz.
(3) On the domain of definition of an arbitrary holomorphic coordinate

z, ω takes the formi2e
2u dz ∧ dz with u either a harmonic function

or a smooth superharmonic function satisfying

i∂∂ log |i∂∂u| + 4i∂∂u = 2πν

in the sense of distributions,ν a locally finite sum of delta masses.
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(4) There is a rank 2 vector bundleE → X equipped with a holo-
morphically flat Hermitian (1,1)-form-valued Lorentz metricg and a
time-like holomorphic sectionη : X → E satisfyingω = g(η, η).

(5) Eitherω comes from a flat metric, or else there are
(a) a non-negative (1,1)-formρ onX inducing a conformal metric

of curvature−1 with isolated conical singularities having total
angles of the form2nπ, n ≥ 2

and
(b) a non-negative (1,1)-formξ onX inducing a flat conformal metric

with isolated conical singularities
satisfyingω = ξ3/2ρ−1/2 on{z ∈ X : ρ(z) /= 0}.

(6) There exist
(a) a rank 1 affine bundleA → X associated to a line bundle which

is the tensor product of the square of the holomorphic tangent
bundle ofX with a flat Hermitian line bundle.

and
(b) a Levi-flat real hypersurfaceS ⊂ A with circular fibers overX
so that the induced radius functionr(z) satisfiesω = 1/r(z).

Remarks on the conditions of Theorem 1.

(3) Here the absolute value of a 2-form is regarded as a positive 2-form.
Also, the operatori∂∂ log mapping 2-forms to 2-forms is defined in
local coordinates by

i∂∂ log (ψ(z) dz ∧ dz) = i∂∂ logψ,

This operator maps log-integrable non-negative real 2-forms to dis-
tribution-theoretic real 2-forms.
Working near the origin of a local coordinatez, the second alternative
is equivalent to saying that there is a non-negative integerk so that

log |∆u| + 4u− 2k log |z|

is harmonic in a neighborhood of the origin.
Clearing denominators we find thatu must solve the degenerate el-
liptic equation

uzz
(
uzzzz + 4u2

zz

)
= uzzzuzzz,

but the latter equation admits solutions that do not satisfy condition
(3).

(5) To explain the terminology here we introduce the following.
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Definition 2. Let z be a local coordinate vanishing atp ∈ X and let
eu(z)|dz| be a conformal metric on a deleted neighborhood ofp. Then
theorder of the metric atp is defined to be

χp
def= lim inf

z→0

u(z)
log |z| .

This quantity is easily seen to be independent of the choice of coor-
dinate.

If the metriceu(z)|dz| above has constant curvature andχp > −1
then the metric is said to have aconical singularity with total angle
2π(χp + 1). (Compare [HuTr, 2.1] and see Lemmata 11, 12 and 13
below.)
The flat metric may be viewed as being obtained from the other two
metrics by “interpolation of norms”:ξ = ω2/3ρ1/3. Equivalently, we
may say thatω is obtained fromρ andξ by extrapolation.

(6) The condition (a) means that the affine bundle can be described by
transition functions of the form

(z, w) 7→
(
ϕ(z), eiθ

(
ϕ′(z)

)2
w + υ(z)

)
.

The radius functionr(z) is to be computed with respect to the natural
(−1,−1)-differential-valued metric given locally byd((z, w1), (z,
w2)) = |w1 −w2|. (See [Leh, IV.1.4] for definitions.) The reciprocal
of r(z) is thus a(1, 1)-differential or(1, 1)-form.
The condition thatS be Levi-flat means that the Levi-form ofS van-
ishes identically, or alternatively thatS is foliated by Riemann sur-
faces.

The condition 1 appears in the “N = 2 supersymmetric Yang-Mills the-
ory” of Seiberg and Witten [SW] as the correct local form of the metric
giving the kinetic terms on the moduli space of vacua. We will call a met-
ric satisfying the equivalent conditions of Theorem 1 a (one-dimensional)
Seiberg-Witten metric. (See [SW, 3.1] for a generalization to Kähler metrics
of higher dimension.)

Definition 3. A conformal metriceu(z) |dz| on the unit disk∆ will be said
to bebounded belowif inf∆ u > −∞.

Theorem 4. If eu(z) |dz| is a Seiberg-Witten metric bounded below on∆
then the functionu has non-tangential boundary limits almost everywhere
on T = b∆.

The function onT arising in Theorem 4 will be called theboundary
functionof the metric.
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Theorem 5. Letφ ∈ L∞(T) be real-valued. Then the set of Seiberg-Witten
metricseu(z) |dz| bounded below on∆ with boundary functionφ is param-
eterized by

Bne (H∞
0 (∆)) /S1 ×M+

sing(T),

whereH∞
0 (∆) is the Banach space of bounded holomorphic functions on

∆ vanishing at the origin,B (H∞
0 (∆)) is the closed unit ball ofH∞

0 (∆),
Bne (H∞

0 (∆)) is the set of non-extreme points ofB (H∞
0 (∆)), the quotient

Bne (H∞
0 (∆)) /S1 is taken with respect to multiplication by unimodular

scalars, andM+
sing(T) is the space of non-negative singular Borel measures

on T.

We return to the examination of Seiberg-Witten metrics on general Rie-
mann surfaces.

Theorem 6. All complete Seiberg-Witten metrics are flat.

Theorem 7. The surfaceX admits a Seiberg-Witten metric if and only if

X is non-compact

or

X is compact andgenus(X) = 1.

Moreover,X admits a non-flat Seiberg-Witten metric if and only ifX is
non-compact and is not covered byC.

Theorem 8. LetX = X̂ \ {z1, . . . , zP } whereX̂ is a compact Riemann
surface andz1, . . . , zP are distinct points of̂X withP ≥ 1. (If genus X̂ = 0
then we requireP ≥ 3.)

Then any Seiberg-Witten metric onX with χz1 , . . . , χzP > −∞ must
satisfy

2(genus X̂ − 1) ≤
P∑
j=1

χzj ≤ 3(genus X̂ − 1) +
P

2
,

and there are no other restrictions on theχzj .
The flat metrics correspond precisely to the case

P∑
j=1

χzj = 2(genus X̂ − 1),

and in this case theχzj determine the metric up to a multiplicative constant.
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For

2(genus X̂ − 1) <
P∑
j=1

χzj ≤ 3(genus X̂ − 1) +
P

2
,(1.1)

the associated metrics correspond up to a multiplicative constant to a choice
of the following:

– a set of “branch points”w1, . . . , wD ∈ X with

0 ≤ D ≤ 6(genus X̂ − 1) + P − 2
P∑
k=1

χzj(1.2)

(multiple listings allowed);

– non-negative real numberssz1 , . . . , szP satisfying

P∑
j=1

szj = 6(genus X̂ − 1) + P −D − 2
P∑
k=1

χzj .(1.3)

Theorem 9. For all N ≥ 7 and any collectionz1, . . . , zN of distinct points
in Ĉ there is a conformal metric of regularity classC2−12/N on Ĉ which is
Seiberg-Witten on̂C \ {z1, . . . , zN}.

2. Lemmata

Lemma 10. If η1, η2, η̃1, and η̃2 are holomorphic (1,0)-forms on a con-
nected open setU ⊂ X satisfying

η1 ∧ η2 − η2 ∧ η1 = η̃1 ∧ η̃2 − η̃2 ∧ η̃1 6≡ 0

onU then there are a matrixM ∈ SL(2,R) and a unimodular constanteiθ

satisfying (
η̃1
η̃2

)
= eiθM

(
η1
η2

)
.

If η1/η2 is non-constant then the matrixeiθM is uniquely determined. If
η1/η2 is constant then we may takeθ = 0, and with this additional constraint
M is uniquely determined.
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Proof of Lemma 10.The hypothesis implies in particular thatη2 6≡ 0; thus
we may write

η1 = fη2

η̃1 = g1η2

η̃2 = g2η2

with f, g1, g2 meromorphic. Our basic equation now reads

f − f = g1g2 − g2g1 6≡ 0.(2.1)

If g2 is nonconstant then applying∂∂ to (2.1) and rearranging we have

dg1/dg2 = dg1/dg2.

Thusdg1 = λ dg2 for some real constantλ, yieldingg1 = λg2 + C. Sub-
stituting back into (2.1) we find that

f − f = Cg2 − Cg2 6≡ 0

so that

C /= 0

and

Cg2 = −f + µ

for some real constantµ. Consequently we must take

θ = argC, M =

− λ

|C|
λµ

|C| + |C|

− 1
|C|

µ

|C|

 .

The case whereg1 is nonconstant is similar.
If g1 andg2 are both constant then so areRe f andf . In this case we can

take

θ = 0, M =


g1 − g1

f − f

g1f − g1f

f − f
g2 − g2

f − f

g2f − g2f

f − f

 ,

and theR-linear independence ofη1 andη2 implies that this is the only
choice satisfyingθ = 0. ut
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Lemma 11. Letρ be the area form of a conformal metric of curvature−1
defined on a deleted neighborhood ofp ∈ X. Then there exist a uniquely-
determined non-negativesp ∈ R and a local coordinatez vanishing atp so
that

ρ =


2is2p|z|2(sp−1) dz ∧ dz

(1 − |z|2sp)2
if sp > 0,

i dz ∧ dz
2|z|2(log |z|)2 if sp = 0.

Moreover, the formρ is integrable nearp, and the distribution-theoretic
Gauss-Bonnet form

κρ = −i∂∂ log ρ

is equal to

−2π(sp − 1)δp − ρ.

If sp ∈ {1, 2, 3, . . . } then the metric is obtained by pulling back the
Poincaŕe metric via a holomorphic map from a neighborhood ofp into the
unit disk∆. The map is determined up to composition with an automorphism
of∆, and the multiplicity of the map atp is equal tosp.

Proof of Lemma 11.Choose a coordinatẽz vanishing atp so thatρ is defined
for 0 < |z̃| < 1. Thenexp∗ ρ comes from a metric of curvature−1 on the
left half-planeL. Any such metric is the pullback of the Poincaré metric on
the upper half-planeH for some holomorphic mapf : L → H. The metric
onL determinesf up to composition with an automorphism ofH; since the
metric onL is invariant under the translationT : w 7→ w+ 2πi, there is an
automorphismΦ of H satisfyingf ◦ T = Φ ◦ f .

If Φ is hyperbolic then the quotient ofH by the group generated byΦ
is biholomorphic to an annulusA with inner radiusr1 > 0 and outer radius
r2 < ∞; let Ψ : H → A denote the corresponding quotient map. Then

Ψ ◦ f ◦ log is a well-defined holomorphic map from∆∗ def= ∆ \ {0} to A
which induces an isomorphism of the corresponding fundamental groups.
But Riemann’s removable singularity theorem implies thatΨ◦f◦log extends
to a holomorphic map of∆ into A ∪ bA; the maximum principle implies
that the extended map in fact maps∆ intoA, so thatΨ ◦f ◦ log is homotopic
to a constant map. The contradiction shows thatΨ cannot be hyperbolic.

If Φ is parabolic then the quotient ofH by the group generated byΦ
is biholomorphic to∆∗. The corresponding mapΨ ◦ f ◦ log : ∆∗ → ∆∗
again induces an isomorphism of fundamental groups and thus extends to a
map∆ → ∆ which is unbranched at the origin. We may thus replace the

coordinatẽz by z
def= (Ψ ◦ f ◦ log) (z̃); with respect to the new coordinate
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our metric is just the Poincaré metric on∆∗. This yields the desired formula
for ρ in the casesp = 0.

If Φ is elliptic thenΦmay be conjugated to the map∆ → ∆, τ 7→ e2πs̃iτ
with 0 ≤ s̃ < 1. Thus we may replacef by a mapf : L → ∆ satisfying

f(w+ 2πi) = e2πs̃if(w). It follows thatg(z̃) def= (f ◦ log)(z̃)/z̃s̃ is single-
valued. The boundedness off implies thatg has a removable singularity atp.
Writing g(z̃) = z̃kh(z̃) withh(0) /= 0 and settingsp = s̃+k, z = z̃ sp

√
h(z̃)

we have(f ◦ log)(z̃) = zsp . Usingz as the coordinate now, we find that
our metric is defined by pulling back the Poincaré metric of∆ via the map
z 7→ zsp , yielding the desired formula forρ whensp > 0.

The remaining claims follow by inspection and direct computation along
with the standard formulai∂∂ log |z| = πδ0. ut
Lemma 12. If S is a discrete subset of a simply-connected Riemann sur-
faceX andρ is the area form of a conformal metric of curvature−1 on
X \ S satisfyingsp ∈ {1, 2, 3, . . . } for p ∈ S then there is a non-constant
holomorphic mapf : X → ∆ so that

ρ =
2i df ∧ df
(1 − |f |2)2 ,(2.2)

the pull-back of the Poincaré area form for∆.

Proof. Lemma 11 shows that the sheaf of germs of mapsf satisfying (2.2)
forms a covering space forX; thus Lemma 12 follows from the monodromy
theorem. ut
Lemma 13. The orderχp of a metric satisfying condition 5 of Theorem 1
with an isolated singularity atp must be< ∞. If χp > −∞ then (with
notation as in Definition 2) precisely one of the limits

lim
z→0

|z|−χpeu(z)

lim
z→0

|z|−χpeu(z)
/√∣∣ log |z|∣∣

exists and is finite and non-zero.

Proof. In the non-flat case we haveξ = i
2e

2v dz ∧ dz with v harmonic. Let

tp =
1
2π

∫
|z|=ε

∗dv.

Thenev(z) = |z|tp ∣∣eg(z)∣∣ , g holomorphic in a deleted neighborhood ofp.
If g has a non-removable singularity atp thenξ and (in view of Lemma

11)ω have order−∞ atp.
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If g has a removable singularity atp then using Lemma 11 we have

χp =
1
2
(3tp − sp + 1)

with

lim
z→0

|z|−χpeu(z) =
e

3
2g(0)√
2sp

if sp > 0 and

lim
z→0

|z|−χpeu(z)
/√∣∣ log |z|∣∣ = e

3
2g(0)

if sp = 0.
The argument for the flat case is similar. ut

3. Proofs of the theorems

Proof of Theorem 1.For possible future convenience, some redundancy is
incorporated into the following chain of implications.

(1)⇒(2): Locally we may writeη2 = dz, η1 = f dz, f holomorphic,
yielding (2) withh = 4 Im f .

(2)⇒(1): Locally we may choosef holomorphic withIm f = h
4 . Then

takeη2 = dz, η1 = f dz.
(1)⇒(4): From Lemma 10 we find that that the germs ofη1, η2 satisfy-

ing ω = η1 ∧ η2 − η2 ∧ η1 form a flatS1 · SL(2,R) bundle overX. (If
η2/η1 is constant then the structure group is justSL(2,R).) Let F be the
corresponding rank 2 vector bundle. Continuation of a germη1, η2 yields a

holomorphic sectionη =
(
η1
η2

)
of F ⊗ T ∗X so thatω = g(η, η), whereg

is the flat Hermitian (1,1)-form-valued Lorentz metric onE
def= F ⊗ T ∗X

defined by

g

((
η1
η2

)
,

(
ζ1
ζ2

))
= η1 ∧ ζ2 − η2 ∧ ζ1.(3.1)

(4)⇒(1): This follows from the observation that the metricg is locally
equivalent to the metric onT ∗X ⊕ T ∗X defined by (3.1).

(4)⇒(6): The proof of the equivalence of (4) and (1) shows in particular
that we may assume thatE = F ⊗ T ∗X, whereF is a flat bundle with
monodromy inS1 · SL(2,R), and thatg is given by (3.1).
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We construct the affine bundleA by removing the graphs of multiples
of η from E and projectivizing. In local coordinates onU ⊂ X we may
accomplish this by the map(

E
∣∣
U

) \ (graphs of multiples ofη) → TU ⊗ TU(
z,

(
ζ1
ζ2

))
7→ (

z, ζ2 ⊗ η2(z)−1 ⊗ (ζ1 ⊗ η2(z) − ζ2 ⊗ η1(z))−1).(3.2)

Continuing along a loop with associated monodromy matrixeiθ
(
α β
γ δ

)
,

αδ − βγ = 1, we find that

τ
def= ζ2 ⊗ η2(z)−1 ⊗ (ζ1 ⊗ η2(z) − ζ2 ⊗ η1(z))−1

transforms to

e−i2θ
(
τ +

γ

η2(γη1 + δη2)

)
.

This shows that the line bundle associated toA is indeedTX⊗TX tensored
with a flat Hermitian line bundle.

We letS be the image of the light cone ofg under the quotient map

E \ (graphs of multiples ofη) → A.

Since the light cone is given byζ1/ζ2 ∈ R ∪ {∞} and the map (3.2)
is linear fractional inζ1/ζ2, the fibers ofS are indeed circles. The sets
ζ1/ζ2 ≡ λ ∈ R ∪ {∞} project to Riemann surfaces foliatingS, soS is
indeed Levi-flat.

To find the radius function forS we note that sinceζ1/ζ2 = τ−1⊗η−2
2 +

η1/η2 it follows that

(z, τ) ∈ S if and only if τ−1 ⊗ η−2
2 + η1/η2 = τ−1 ⊗ η−2

2 + η1/η2.

This last condition may be rewritten as∣∣∣∣∣τ +
1

η1 ⊗ η2 − η1
η2
η2
2

∣∣∣∣∣ =
1

η1 ∧ η2 − η2 ∧ η1

so that the radius is indeedr(z) = 1/ (η1 ∧ η2 − η2 ∧ η1) = 1/ω.
(6)⇒(3): In local coordinatesS has a center functionc(z) and radius

e−2u(z). The Levi-flatness condition [Ber, Prop. 2.3] reads

2uzz = −|cz|2e4u,
(
cze

4u)
z

= 0.(3.3)

(Here subscripts denote differentiation.)
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If the holomorphic functioncze4u vanishes identically then of courseu
is harmonic. Otherwise we can write

2uzz = − (
cze

4u) (
cze

4u) e−4u

and it follows easily thatu is superharmonic and thati∂∂ log |i∂∂u|+4i∂∂u
is 2πν, whereν is the sum of delta masses corresponding to the zeros of
cze

−4u (counted with multiplicity).
(3)⇒(5): If u is harmonic thenω comes from a flat metric.
If u is superharmonic andi∂∂ log |i∂∂u| + 4i∂∂u = 2πν, ν a locally

finite sum of delta masses, then we may setρ = −4i∂∂u. We have

−i∂∂ log ρ = −i∂∂ log |i∂∂u|
= 4i∂∂u− 2πν
= −ρ− 2πν,

which implies that the conformal metric induced byρ onX \ supp ν has
curvature−1. Lemma 11 shows that this metric has conical singularities at
points ofsupp ν and that the total angles at these singularities are of the
form 2nπ, n ≥ 2. We now set

ξ = ω2/3ρ1/3.

We then have

−i∂∂ log ξ = −4
3
i∂∂u+

4
3
i∂∂u− 2

3
πν

= −2
3
πν

which shows that the metric induced byξ is flat off of supp ν. Moreover,
for p ∈ supp ν we find thatlog ξ − 2

3ν ({p}) log |z| extends harmonically
acrossp, showing that the flat metric has a conical singularity atp.

(5)⇒(1): If ω comes from a flat metric then we may choose a local
coordinatez so thatω = i

2 dz ∧ dz. Then we may set

η1 =
i

2
dz,

η2 =
1
2
dz.

If the metric is not flat then by the end of Lemma 11 withH replacing
∆ we may representρ locally as

2 df ∧ df
i(f − f)2
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for somef mapping holomorphically intoH. Since the orders ofξ at the
singularities are of the form2nπ/3, ξ admits a local representation of the
form

i

2
|ξ(z)|2/3 dz ∧ dz,(3.4)

ξ holomorphic. Then we may set

η1 =
1
2

√
ξ(z)
df/dz

f(z) dz,

η2 =
1
2

√
ξ(z)
df/dz

dz.

(1)⇒(5): Lemma 10 and the positivity ofη1∧η2−η2∧η1 imply thatη1/η2
maps into the upper half-planeH and is well-defined up to composition with
automorphisms ofH.

If η1/η2 is constant thenη2 ∧ η1 − η1 ∧ η2 induces a flat metric.
If η1/η2 is not constant we may setρ to be the pullback

2 d(η1/η2) ∧ d(η1/η2)

i
(
(η1/η2) − (η1/η2)

)2

of the Poincaŕe metric viaη1/η2. If we now set

ξ = 21/3 |d(η1/η2) ⊗ η2 ⊗ η2|2/3

we find that

ξ3/2ρ−1/2 = η1 ∧ η2 − η2 ∧ η1 = ω.

ut
Proof of Theorem 4.We will use condition 6 of Theorem 1 as our definition
of a Seiberg-Witten metric. Since we are working over∆, we may viewS
as a Levi-flat hypersurface in∆×C with circular fibers and radius function
r(z) = e−2u(z) [For, 26.1 & 30.5].

Since∆ is simply-connected,S is the disjoint union of graphs of holo-
morphic functions. Choosing one such functionf , and transformingS via
the map(z, w) 7→ (z, w − f(z)), we may assume that∆× {0} ⊂ S.

The fibers ofS are now seen to be circles passing through0 with bounded
radii. It follows that the centers are also bounded and thus that the functions
whose graphs lie inS are inH∞(∆). Let f1, f2, f3 be three such func-
tions. (We can takef3 ≡ 0.) Sincef1(z), f2(z), f3(z) determiner(z), r
has a well-defined non-negative non-tangential limit at each boundary point
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wheref1, f2, f3 have distinct non-tangential limits. (The boundedness of
r(z) implies that the limits cannot be distinct and collinear.) The theorem
now follows from Fatou’s theorem and the fact that anH∞ function is deter-
mined by its boundary values on any set of positive measure [Rud, 15.19].

ut
Proof of Theorem 5.Let eu(z) |dz| be a Seiberg-Witten metric on∆.

If eu(z) |dz| is non-flat then by condition 5 of Theorem 1, Lemma 12 and
a similar globalization of (3.4) there exist a non-constant holomorphic map
f : ∆ → ∆ with f(0) = 0 and a holomorphic functionξ(z) so that

e2u(z) =
1 − |f(z)|2

2|f ′(z)| |ξ(z)|;

f andξ are determined up to multiplication by a unimodular scalar.
Since the right-hand side has no zeros or poles,ξ(z) = 2f ′(z)e2h(z),

whereh is determined up to a purely imaginary additive constant. Thus

u(z) =
1
2

log(1 − |f(z)|2) + Reh.

Allowing f ≡ 0 we have included the flat metrics as well.
Assume now thatu is bounded below with boundary functionφ. Since

log(1−|f(z)|2) is negative,Reh is also bounded below. Thus the boundary
function ofReh is integrable [Rud, 11.30]; but this boundary function is just
φminus the boundary functionψ of 1

2 log(1−|f(z)|2). Thusψ is integrable,
which says precisely thatf is non-extreme inB (H∞

0 (∆)) [dLR, Thm. 12].
Moreover, there is a non-negative singular Borel measureµ on T so that
Reh is the Poisson integral of(φ− ψ) dθ + µ [Rud, 11.30].

Conversely, givenf ∈ Bne (H∞
0 (∆)) andµ ∈ M+

sing(T) the argument
above can be reversed to construct a Seiberg-Witten metric bounded below
on∆ with boundary functionφ. ut
Proof of Theorem 6.Suppose that the Riemann surfaceX admits a complete
non-flat Seiberg-Witten metric. The pullback of this metric to the universal
coverX̃ will also be Seiberg-Witten and complete [Cha, Prop. 4.1].

Lemma 12 shows that the formρ onX̃ induced by the metric by way of
condition 5 of Theorem 1 comes from a non-constant map fromX̃ to∆. By
Liouville’s theorem and the uniformization theorem for Riemann surfaces
[FK, IV.5.6], X̃ is biholomorphic to the unit disk∆. As in the beginning
of the proof of Theorem 5, the induced complete non-flat Seiberg-Witten
metric on∆ may be written in the formeu(z) |dz| with

u(z) =
1
2

log(1 − |f(z)|2) + Reh,
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f andh holomorphic. The flat metric|eh(z)| |dz| majorizeseu(z) |dz| and is
thus also complete. The corresponding exponential mapC ∼= T0∆ → ∆ is
thus entire and non-constant; but this contradicts Liouville’s theorem.

Thus no complete non-flat Seiberg-Witten exists. ut
Proof of Theorem 7.We use condition 5 of Theorem 1 as the definition of
a Seiberg-Witten metric.

If X is non-compact and hyperbolic thenX is covered by the disk∆; the
Poincaŕe metric on∆ induces the Poincaré metric onX. We may construct a
non-flat Seiberg-Witten metric by takingρ to be the corresponding area form
and takingξ to be the absolute value of any nowhere-vanishing quadratic
differential onX [For, Thm. 30.3].

If X is covered byC (that is,X is biholomorphic to the plane or to the
punctured plane, or elseX is compact of genus 1) thenX inherits a flat
metric fromC. But the proof of Theorem 6 shows thatX does not admit a
non-flat Seiberg-Witten metric.

If X is a compact of genus/= 1 then the Gauss-Bonnet theorem shows
thatX does not admit a flat metric, and Theorem 6 shows thatX does not
admit a non-flat Seiberg-Witten metric. ut
Proof of Theorem 8.We begin by accounting for the flat metrics. Lettingg
be a non-singular reference metric onX̂, a flat metriceψg onX with orders
χz1 , . . . χzP > −∞ must satisfy

∂∂ψ = −∂∂ log g − iπ

P∑
j=1

χzjδzj .(3.5)

Applying the (distribution-theoretic) Gauss-Bonnet theorem toeψg we have

4π(1 − genus X̂) = −2i
∫
X̂
∂∂ log(eψg) = −2π

P∑
j=1

χzj

so that

P∑
j=1

χzj = 2(genus X̂ − 1).(3.6)

On the other hand, if (3.6) holds then the right-hand side of (3.5) has mean
value zero and thus Hodge theory allows us to solve forψ.

Turning now to the non-flat case and using the notation of condition 5
of Theorem 1, letbp denote the order atp of the metric induced byξ so that

χp =
1
2
(3bp − sp + 1).

In particular,3bp = sp − 1 for p ∈ X.
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Applying the Gauss-Bonnet theorem to the metrics inducedξ andρ we
have, respectively, ∑

p∈X̂
bp = 2(genus X̂ − 1)

and

1
2π

∫
X̂
ρ+

∑
p∈X̂

(sp − 1) = 2(genus X̂ − 1).

Thus

P∑
j=1

χzj =
∑
p∈X̂

χp

=
1
2

∑
p∈X̂

3bp −
∑
p∈X̂

(sp − 1)


= 2(genus X̂ − 1) +

1
4π

∫
X̂
ρ

> 2(genus X̂ − 1),

yielding the left-hand side of (1.1) Also, lettingD =
∑

p∈X(sp − 1) we
have

P∑
j=1

χzj =
∑
p∈X̂

χp

=
1
2

∑
p∈X̂

3bp −
∑
p∈X̂

(sp − 1)


=

1
2

6(genus X̂ − 1) + P −D −
P∑
j=1

szj


so that (1.3) must hold. Since theszj are non-negative, (1.2) follows, as does
the right half of (1.1).

Conversely, given

– χzj satisfying (1.1);
– w1, . . . , wD ∈ X with D satisfying (1.2) (multiple listings allowed);
– non-negativeszj satisfying (1.3)
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the results of [HuTr, Thm. B] assert that there is a unique curvature−1
metric onX with a conical singularity with total angle2πszj at eachzj
and a conical singularity with total angle2π(1 + multiplicity) at eachwk.
Settingbzj = 1

3

(
2χzj + szj − 1

)
we find that (1.3) guarantees that

∑
p∈X̂

bp =
D

3
+

P∑
j=1

bzj = 2(genus X̂ − 1)

as required; the methods of the first paragraph of the current proof then allow
us to construct the flat factorξ, uniquely up to scalar multiplication. ut
Remark 14.The metric appearing onC\{±1} featured in [SW] hasχ−1 =
χ1 = 0, χ∞ = −3

2 ,N = 0, ands−1 = s1 = s∞ = 0. (See [Bar].)

Proof of Theorem 9.We apply Theorem 8 withP = N , D = 0, χzj = 0,
andszj = 1 − 6

N . Using Lemma 11, for eachzj we can pick a coordinatez
vanishing atzj so that the metric admits the local representation√

1 − |z|2−12/N |h(z)||dz|
with h holomorphic near0 andh(0) /= 0; thus the metric belongs belongs
to the regularity classC2−12/N . ut

References

[Bar] D. Barrett, On a problem of Seiberg and Witten, Ann. Polon. Math.70 (1998),
25–34.

[Ber] B. Berndtsson, Levi-flat surfaces with circular sections, Several Complex Variables,
Mathematical Notes Vol. 38, Princeton University Press, 1993, pp. 136–159.

[Cha] I. Chavel, Riemannian geometry: a modern introduction, Cambridge Univ. Press,
1993.

[dLR] K. deLeeuw and W. Rudin, Extreme points and extreme problems inH1, Pacific J.
Math.8 (1958), 467–485.

[FK] H. Farkas and I. Kra, Riemann surfaces, Springer-Verlag, 1980.
[For] O. Forster, Lecture on Riemann surfaces, Springer-Verlag, 1981.
[HuTr] D. Hulin and M. Troyanov, Prescribing curvature on open surfaces, Math. Ann.

293(1992), 277–315.
[Leh] O. Lehto, Univalent functions and Teichmüller spaces, Springer-Verlag, 1987.
[Rud] W. Rudin, Real and complex analysis (3rd ed.), McGraw-Hill, 1987.
[SW] N. Seiberg, E. Witten, Electric-magnetic duality, monopole condensation, and con-

finement inN = 2 supersymmetric Yang-Mills theory, Nuclear Physics B426
(1994), 19–52.


