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Abstract. We show that ifA is an abelian compact Lie group, afl-
equivariant complex vector bundles are orientable over a complex orientable
equivariant cohomology theory. In the process, we calculate the complex
orientable homology and cohomology of all complex Grassmannians.

1 Introduction

SupposeA is an abelian compact Lie group. We recall [3] that An
equivariant cohomology theody’; (-) is orientable if complex line bundles
are well behaved. More precisely, we@P (/) denote the space of lines in
a complete complex-universel/, ande denote the trivial representation.
We say thatF’ () is acomplex stableing theory if there are suspension
isomorphisms

oy E3(X) = ETTVI(SY A X)

for all complex representatiorig, whereS" is the one-point compactifi-
cation of V, and|V| is the real dimension of’; these are required to be
transitive, and given by multiplication with a generatorEiV'(SV). We
say the theory igsomplex orientabléf in addition, there is a cohomology
classz(e) € £ (CP(U), CP(e)) which restricts to a generator of

1

E%(CP(a®e),CP(e)) = E%(S* )
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for all one dimensional representationsThus if the complex orientation
z(e) is in cohomological degree 2, it determines a complex stable structure.
Many important theories are complex orientable, for instance equivdtiant
theory, tom Dieck’s equivariant bordist? U’ (-), and Borel cohomology
for non-equivariantly complex orientable theories.

The purpose of this article is to show that this good behaviour is sufficient
to ensure good behaviour of complex vector bundles of any dimension. In
particular all complex vector bundles have Thom classes.

Theorem 1.1. If E is complex orientable then ari-equivariant complex
vector bundle igv-orientable.

This is proved in Sect. 6.

Okonek [7] has proved that by constructidiU; (-) is universal for
cohomology theories with Thom classes. Combined with our main result
this implies the following universality statement.

Theorem 1.2. If £ (-) is acomplex oriented cohomology theory with orien-
tationin cohomological degree 2 thenthereisaunique ring #dp — E

of A-spectra under which the orientation &fis the image of the canonical
orientation. Conversely, a map/U — F of ring A-spectra endow#

with the structure of a complex oriented cohomology theory with orientation
in cohomological degree 2.

We include a proof of this in Sect. 7. To make this result somewhat more
useful we have the following calculation.

Theorem 1.3. If £%(-) is a complex orientable theory théiy!(MU) is a
polynomial £’ -algebra and

Ringa(MU, E) = E2-alg(EN(MU), EZ).

This is proved in Sect. 8. We shall be more specific about the polynomial
generators in due course. The good behaviodr 41/ U) should be con-
trasted with the facts thdt’ (CP(l{)) is not a power series ring in general,
andM U’ is not a polynomial algebra.

The main step for all the proofs is the calculation of the cohomology of
the universal Grassmannian for any complex oriented cohomology theory.
This is also an important step in the calculational exploitation of complex
orientable cohomology theories, as is familiar from the non-equivariant case.
The traditional methods for the non-equivariant case (see [1] for example)
do not apply since the cellular filtrations are not so simple equivariantly.
Accordingly, geometric arguments are required as substitutes for the use of
the Atiyah-Hirzebruch spectral sequence, and these are illuminating even in
the classical case.

We are grateful to the referee for his interesting comments, some of
which are reproduced in Remark 5.8.
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2 Equivariant Grassmannians

Let Gr, (V') be the complex Grassmannian of comptegimensional sub-
spaces of/. For examplesry (V) = CP(V).

Lemma 2.1. TheA-spaceGr,(U) is a classifying space fod-equivariant
complexn-plane bundles:

Grp,(U) = BU(n). O

We retain the Grassmannian notation, because it will be useful to display
the universe explicitly at various points. The direct sum of lines gives a map

CPU)™ = Gri(U)™™ — Gr,(UT™) = Gr,(U),

where the final homeomorphism arises from an isometric isomorphism
U®™ = Y. This sum map induces maps

EL(CPU)®" = B (CPU)*™) — B (GraU))

and
E4(Gra(U)) — E3(CPU)*™) = E5(CPU))",
where the completed tensor produéteefers to the skeletal filtration topol-
ogy. The Kinneth theorems implicit in this statement are corollaries of
Cole’s Splitting Theorem [3].
Since any permutation of the copiesi#fin /%™ is homotopic to the

identity through isometric isomorphisms, the induced maps factor through
coinvariants and invariants for the symmetric graup

Theorem 2.2. For any complex orientable cohomology theds;(-), the
direct sum of lines induces isomorphisms

EX(Gra()) = {BXCPU))*"} 5,

and )
E}(Gra(U)) = {E4(CPU))*"}>.

Remark 2.3.The homological result can be neatly stated if we takerall
together. Indeed the spectrugh, ., Gr,, (i) is aring under direct sum, and

Bl (\/ Grn(u)) = Symm(E{ (CPU))).

n>0
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Theorem 2.2 will be proved in Sect. 5 below. We pause to remark that this
gives us specific generators, and hence all the structure of the homology and
cohomology of Grassmannians follows from that®P (/) made explicit
in [4].

Indeed, Cole showed thdt!(CP(i{)) is additively free over=* and
E*%(CP(U)) is a product of suspensions éf;. Furthermore, he showed
how an orientation:(¢) of E, together with a complete flag

F=0=V'cVv'cVvic. )

in U determines a topological basis = y(V°),y(V1),y(V?),... of
E3(CP(U)), and we may letdy(F), 51(F), B2(F), ... denote the dual
basis of EA(CP(U)). The notation for the homology generators reflects
the fact that3;(F) depends on the initial segmewit c Vi c ... c V*

of the flag. Furthermore, a iineth theorem holds for the homology or
cohomology of products aE P(Uf).

Lemma 2.4. An E* -basis of the coinvariantsE2 (CP(U))®"} 5, is given
by the images of all products;, (F) ® 3;,(F) ® --- ® 3;,(F) so that
0 <4 < i < -+ < 4y A topological £ -basis of the invariants
{E;(CP(U))@)"}E" corresponds to the collection of sequenges i; <
iy < --- < i,; the basis elements are the symmetric sums

Ely(via(l)) ® y(VZU(Q)) ® e ® y(Vio(n))
whereY’ denotes the sum over the orbit(@f, 7o, . . . , iy).

Proof. The result is clear once we remark that thg action arises from
an action on the basis of the homology or cohomolog§{ /) *™. In the
case of cohomology, we pass to limits from the casé Bf V') *". a

Corollary 2.5. If E is a complex oriented cohomology theory them
Gr,(U) splits as a wedge of copies &findexed by sequencés< i; <
g <o <!

EAGryU) ~\/ 2?1 E,

whereli| = i; +i2 + - - - + i,,. The splitting depends on the orientation.

Proof. In the usual way, from the basis & (Gr,, (1)), we may construct
amap

s:\/ ZME — EAGr,(U)

of A-spectra, using the product an
By construction it induces an isomorphisnvigl(-). Now suppose3 C
A, and consider th8-equivariant situation. The restriction mag(CP())



The universality of equivariant complex bordism 459

— E5(CP(U)) takes and-orientation to aB-orientation, and the result-

ing basis corresponding to a complete flag to the basis corresponding to the
same flag regardeB-equivariantly. It therefore follows that the restriction
E%(Grp(U)) — E3(Gry(U)) takes the sequence basis to another basis.
Thuss induces an isomorphism af’(-). Since this applies to all subgroups

B of A, the maps is an A-equivalence by the Whitehead theorem. 0O

It may be useful to record the calculation relative to a specific orientation
in very concrete terms.

Corollary 2.6. If E is a complex oriented cohomology theory then
EXGra(U)) = BBV ® B(V™)
® - @BV™)[0< i <ig <0 <y}
and
Ex(Gra(U)) = EA-mod EL (Gra(U)), EY)

= Ej{{Zy(Viem) @ y(Vie)
® ...®y(Via(n)) 10<i; <ipg<---<ip)}. O

Finally we may consider the extra structure on the system
{BX(GraU))}nzo O {E4(Gra(U)) }nzo.

The relevant extra structure is given by the conjugation map

T Gr,(U) — Gr,(U) = Gr,(U),
the action maps
®a: GraU) — GraU @ a) = Grp(U)
for o € A*, the direct sum maps
@ : Gri(U) X Grp(U) — Grpgn(U SU) = Grpin(U)
and the tensor product maps
@ : Grp(U) x GraUd) — GrmnU QU) 2 Grpn (U).

The structure constants for all these maps in homology and cohomology can
be deduced from thosea for n = 1 and® for m = n = 1. Furthermore

the coproduct o4 (Gr,,(U)) and the product o’ (G, (1)) may be
deduced from the corresponding structure@dr(l/). These facts, like all

our methods, depend crucially on the fact that the grduigpabelian, so that

all representations are sums of one dimensional representations.
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3 The equivariant Schubert cells of a Grassmannian

Consider the decomposition 6%, (1) into Schubert cells, as described for
example in [6]. We choose a completeinvariant flag

0=V'cVvicv2cVic...cvm=yYV,

and leta; = V*/Vi~1 as usual. It is well known thatr, (V) admits a
non-equivariant CW-structure in which the cells are indexed by sequences
of integers

1<oi <o <~ <oy, <M

the sequence = (01,09, ...,0,) is called a Schubert symbol. It is conve-
nient to user to select a complete flag

0=V cV)lcVe?cVi)Pc --cV(io)
of lengthn where
V() = oy @ gy @ B g,

The celle(o) corresponding to the Schubert symlaotonsists of alln-
planesX with

dim(X NV9) =ianddim(X NV~ 1) =4 -1

fori =1,2,...,n. Such am-planeX admits a basis1, zo, . .., x, with

x; € V7 and non-zeroiv?i /V°i—1 Thisis usually represented asianx
n-matrix with rowsz, xs, . . . , z,, and columnsindexed by, s, . . . , .
Dividing x; by itsa,,, coordinate, we may assume the last entry in each row
is 1, and then subtracting a suitable multiplerpfrom the other rows we
may assume the matrix is in row-reduced echelon form.

Note that sincé 7 is A-invariant, the celé(o) is anA-subspace. Accord-
ingly, these same Schubert cellg) give a decomposition as an equivariant
Rep(d)-CW-complex, in the sense that the cells are unit discs in complex
representations afl, and attached to cells corresponding to proper sum-
mands. Indeed, thith row gives the representatiory! @ (V7 /V (c)*), so
that the celk(o) is of Rep(d)-dimension

Pos @ (v /vie)).
i=1



The universality of equivariant complex bordism 461

4 Thom complexes and the Schubert filtration

There is a convenient filtration associated to the Schubert cells, which we
shall need to use. We I&tr,,(i/)¥] be the subcomplex afr, () corre-
sponding to Schubert cells with, < & + 1; the indexing is chosen since

k + 1 is the lowest complex dimension of a cell not @, (U/)*. The
resulting filtration

Gr,(U)% c Gr,@)M c Gr,)? c - € Gro(U)

will be called the Schubert filtration. Of course the Schubert filtration de-
pends on the complete flaf; when we use the univergé — V*, we use
the cell structure associated to the complete fad*.

To obtain sufficient naturality we need to interpret the filtration in terms
of Thom complexes. For this we let, denote the tautologicat-plane
bundle ovelGr, (i) as usual.

The dimensions of the Regj-cells suggest the plausibility of the fol-
lowing result.

Theorem 4.1. There is a homotopy equivalence
Gro(U)/GroU) "1 o (Gry (U — V) Hombm V)

This may be chosen natural Avaries in the sense that there is a homotopy
commutative diagram

(W) /G (W)Y —Z (G (U — V) Homae V)

\

Gr,, (u _ Vlc))Hom('yn,V’““)

/

GT,L(U)/GT"(U)UC] = o (GT‘n(u _ Vk+1))Hom(7ka+1)

where the left hand vertical is the quotient map, ghi$ induced by the
inclusionV* C Vk+1,

Remark 4.2.Sincel/ is a completed-universe, for any finite dimensional
subspacé&” C U, the inclusiori/ — V' C U induces the stabilization equiv-
alence

Grp(U —V) ~ Grp(U).
Proof. The proofis by induction oA, using the following two equivalences.
Lemma 4.3. There is an equvialence

Grn(U — VE) Gra(U — VEYO ~ Gry (U — VF+1)HomGoni)
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Remark 4.4.In view of the fact thaGr, (U — V)0 = Gr,, (U — VF+1)
the lemma may be viewed as giving a Gysin cofibre sequence

ap+1D
-

Gro_1(U — V) Gro(U —VF)

— Grn(” o Vk+1)Hom(7n,ak+1)' 0
Lemma 4.5. There is a homeomorphism
GraU)™ /Gro(U)F=1 = (Gry (U — V)0 Hom(m, V5

Using these we may complete the proof. First note that takiag0 in
4.3 gives the base of the induction. Now suppose@hat(i/) /Gr,, (U) ¥~
has been identified as in the statement of the theorem. We then calculate

Gra(U)/Gro @) = (Gro@) [Gra@) 1) / (Gra @) /Gra @)

~ {Gra(U — V¥)/Gry (U — VF)OyHomGa V)
~ {Gry, (U — V1 yHom(n 0n41) y Hom(yn, V)

= Gy (U — VI Hom G VD
where the first equivalence uses the inductive hypothesis and 4.5, and the
second uses 4.3.

It therefore remains to prove the two lemmas.

Proof of 4.3.We view the Thom space as the mapping cone of the projection
of the unit sphere bundle. It therefore suffices to construct a homotopy
commutative square

S(Hom(vn, agi1)) — Grp (U — VFH)
~| d~
Gro(U —VHO — Gr, (U - VF).

The right hand equivalence is the stabilization equivalence induced by the
inclusion of complete universes. The right hand verti®@lom (v, ax11))
— Gro(U — VF) is defined by(z, X) — a1 @ ker(z), wherez is a
unit vector inHom (X, ax41). TO see it is an equivalence, we note that the
fibre overY is the unit sphere ity — (VF @ Y).

To see the square commutes up to homotopy, note that the two routes
round the square can both be interpreted as ser{ding) to the kernel of
a suitable magf : ag+1 & X — ag1. For the lower routef (w, x) =
z(x), and for the upper routg(w, x) = w. The interval joining these two
maps consists of nonzero linear maps and therefore provides a homotopy as
required. O
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Proof of 4.5. For this it is convenient to view the Thom space as a compact-
ification of the vector bundle. We may then define a map

Gra )M /Gr, @)= — (G (U — V) LO)Hom2VE)

by taking a representative-plane X, expressed in standard form As=
(X<k|Xsk), tothe vectorX <, in the fibre overX s . This is clearly a home-
omorphism away from the basepoint, and one may check it is equivariant
and that both it and its inverse are continuous at the basepoint. O

This completes the proof of 4.1. a

5 The spectral sequence of universal Thom complexes

We now construct a spectral sequence for calculafidgGr,, (1)) using
the Schubert cell filtration

Gr,W) c Gr,@)M c Gr,W)? c - c Gr,(U)

introduced in Sect. 4. We think of the supersckipt Gr,, (1) ¥ as a complex
dimension, and applying(-) to the filtration we obtain a right half-plane
homological spectral sequenég1); , concentrated in even filtration de-
grees with

E(1)3pg = Egpy o Gro @), Gry ()P~ = B3} (Gra(U)).

The spectral sequence is indexed so that a Rep{cell in filtration 2p
contributes toF3 2s- There is an analogous spectral sequence for coho-
mology obtained by applying* () to the filtration. It is a right half-plane
cohomological spectral sequence concentrated in even filtration degrees:

E(1) = EY TG, Gr, @)~ ) = EFT(GraU)).
Remark 5.1.In view of the equivalence
Gro(U) ) Gra(U)F1 =~ Gr, (U — VF)Homm V)

obtained from 4.1 by stabilization, the same spectral sequences may be
obtained from the sequence of maps

G'I"n(u)o — GTn(u)Hom(,Yn7V1) — Grn(u)Hom('Yn,V2)
— GrU)omOm Y —

This point of view is useful for establishing naturality.



464 M. Cole et al.

Proposition 5.2. If E'is a complex oriented cohomology theory then the ho-
mological spectral sequendg(1); , collapsesforalh. In factEA(Gr,(U))

is free overE”;, on the basis of all products;, (F) ® 3;,(F) @ - - ® s, (F)
sothat) < 71 <49 < --. <4, as described in 2.4.

Proof. We prove 2.2 and 5.2 by simultaneous inductionrornThe case

n = 1 is given by Cole’s Splitting Theorem [3], so we may suppase 2

and that the results have been proved for all smaller values. In particular we
have Thom isomorphisms for all vector bundles of dimensiom— 1 (see

Sect. 6 for more details).

We consider the embedding
CPU) X Gro_1(U) = Gri(U) % Gro1(U) -2 Gr,(UDU) = Gro(U).

The proof proceeds by constructing a compatible spectral seqigage,

for calculating B2/ (CP(U) x Gr,—1(U)). By induction the new spectral
sequence(2); , calculates known groups, and will be shown to collapse.
On the other hand the map(2); , — E(1); . of spectral sequences will
be shown to be surjective dii'-terms, so it follows that’(1) , collapses
as required.

We proceed to construct the new spectral sequence. The analogue of 4.4
is as follows.

Lemma 5.3. There is a cofibre sequence
X(k)y — (CPU—V*) x Grop (U - VF)) 4
— (CPU - Vk+1) X Grp_1(U — Vk+1))Hom('yn,ak+1)
whereX (k) is a pushout

Dokt

Gry_o(U — VFH) Grop_1(U —VF)

{Cak+171}i l’l

CPU — VF) x Grp_oU — V) X (k),

where the top horizontal is induced by adding, ; to the (n — 1)-plane
and universe as in 4.4, and the left hand vertical uses the inclusion of the
A-fixed lineay,, 1 in CP(U — V) in the first factor.

Proof. OverCP(U—V* 1) xGr,_1 (U—-V*+1) the bundldlom (v, vy 1)
is the producHom (71, ag+1) X Hom(v,—1, ag+1). Thus the unit disc bun-
dle is the productD(Hom(v;,ayy1)) X D(Hom(v,—1,x41)) and the
Thom space is the smash product

CP(U - Vk+1)Hom('yl,ak+1) A G’f‘n_l(u - Vk+1)H0m(7n_1,ak+1).
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Thisidentifies the unit sphere bundiéHom (1, a1 )xHom (-1, g11))
as the pushout

S(Hom(y1, cvk+1)) S(Hom(y1, ck+1))
xS(Hom(yn—1, ag41)) — xD(Hom(vp—1, pet1))

|

D(Hom(v1, ag11)) S(Hom(y1, ag11)
xS(Hom(vp—1, py1)) — xHom(yn—1, agq1)).

The description of{ (k) follows. 0
Corollary 5.4. There is a cofibre sequence
X (k)HomOm V) (CPU = VF) x Gryt (U — VF))Homm V)

— (CPU — VF) x Grp_q (U — VFTHHomOm. V),
O

In view of the inductive hypothesis we know the homologies of all the
spaces involved in the cofibre sequence of 5.3, and we have a basis corre-
sponding to a Rep{)-CW-decomposition (where the correspondence de-
pends on the orientation). We return to analysis of the maps and the bases
below.

Corollary 5.5. The map
CPU — V¥ x Gro_1 (U — VFY) 25 Gr, (U — VI
induces a retraction

r: X (k) = S(Hom(v1,agt1) x Hom(yp—1, axt1))
— S(Hom(7y,, ags1)) = Grop—1 (U — Vk)

on unit sphere bundles.

Proof. The inclusion corresponding to the retractiois the composite

Gro1(U — V) =~ S(Hom (71, ar1)) x D(Hom(vp_1, aps1)) —
S(Hom(v1, ag1) x Hom(yn—1, api1)) = X (k).

It is easily checked that with the equivalené§Hom(v,, gt1)) =~
Grn_1(U — V*) specified in 4.3, we have = 1.
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To guarantee a map of spectral sequerde€y; , — E(1); , converg-
ing to the map

EACPU) x Grp1(U)) — BANGr.U)),

the spectral sequence Bt (CP(U) x Gr,_1(U)) is constructed from the
sequence of maps

(CPU) % Grp_1(U))° — (CPU) x Gryp_1(U))FommV")
— (CPU) x Gry_1(U))FomOmV?) ..

asinb5.1. However, it may help if we relate this to a construction more closely
analogous to the construction 8Y1); , from the Schubert filtration. Note

that overCP (i) x Gr,_1(U) the bundlédom (v, V*) is Hom(vy, VF) x
Hom(v,_1,V*), and hence
(CP(U) x Gro_y (U))HomOm V")
~ CPU)HomVE) A G,y (U)FemOm—1VE),
We therefore define
(CPU) x Gro_1(U)F .= CPU) x (Gro_1(U)*) U
(CPUHY x Gro_1(U),
S0 as to ensure a cofibre sequence
(CPU) x Grp_1(U)FY — CPU) x Gro_1(U) —
(CPU — V*) x Gro_y (U — VF))HomOm V5,

Applying E4(-) to the resulting filtration we obtain a right half-plane
homological spectral sequence with
E2)ypg = By (CPU) X CroaU)P, (CPU) x Graa ))P~1)
= B4, (CPU) x Gro_1(U)).

By induction this spectral sequence is under complete control.

Proposition 5.6. If E (-) is a complex oriented cohomology theory then
the spectral sequende(2); , above collapses at(2); ..

Proof. This follows from the inductive hypothesis, sinéeA Gry,—1 (U) +

splits as a wedge of suspensionsiofindexed by the Schubert cells of

Grp—1(U)+. Smashing this withCP(U/)., we again get splitting from

Cole’s Splitting Theorem [3]. The filtration of the new spectral sequence

is compatible with that of the splitting in view of the smash product decom-

position of the Thom spaces. The collapse of the spectral sequence follows.
O
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To see that the map(2);™ — E(1)]"” is surjective, recall that
Cra(U)™ ) Gry @) FY =~ Gryyy (U — V) HomO V)
and

(CPU) x Gro_1(UNF/(CPU - VF) x Grop_i(U — VF))F1]
~ X(kj)Hom(’yn,Vk)'

It therefore suffices to show that for eakchthe map
X(k)Hom('yn,Vk) N G’I“n_l(u . Vk)Hom('yn,Vk)

of subquotients is surjective iZ(-). This follows for the unThomified
map, since by 5.5 the map: X (k) — Gr,_1(U — V*) is a retraction.
For k = 0 this is the required statement. For> 1 we use the fact that
overCP(U — V*) x Gr,_1(U — V) the bundley, splits as the product
Y1 X Yn_1. ThusHom(~,, V*) splits as a sum of bundles of dimension
< n — 1 for each of which we have a Thom isomorphism by induction.
Surjectivity now follows from that of the unThomified map for the universe
U-vk,

Finally, we may remark that the analysis identifies a basis. We may
visualize the basis of the homolo@ (/) *" as the points oN", with the
complex dimension of the cell correspondingite: (i1, i2, ..., i,) being
li| = 41 +i2 + -+ + in. The homology of all other relevant spaces have
bases given by the images of these basis elements. These correspond to
subsets ofN" as follows. The basis for the spa€& (i) = CP(U) x x
corresponds to the poin{,0,...,0), and that forGr,_;(U) = * x
Grp—1(U) corresponds to the point9, io, ..., i,) With 0 < iy < i3 <
-+ <'ip. The basis for the subspac€&-,_»(U) C Gr,—_1(U) corresponds
to the pointg0, 0, i3, ..., iy) With 0 < iz < iy < -+ < iy

Applying this discussion to the univerge-V*, we see thak (k) has ho-
mology in even degrees, with basis corresponding to the p@ints,. . ., i)
either (i) withi; = 0 and0 < iy < i3 < --- < 4, or (ii) with 4 arbitrary,

1o =0and0 < i3 < iy <--- < 1i,. Since the map occurs in the pushout
description ofX (k) we see that : X (k) — Gr,—1(U — V*) maps the
subspace on the basis elements elements corresponding @ < i3 <

... < i, isomorphically to the homology @¥r,,_1(U — V*). The effect of

the Thom isomorphism is to replace standard homology generators relative
to the flagF/V'* by those forF: the precise meaning becomes clear from
the special cas€ P(Uf).

Lemma 5.7. Naming the cohomologl, (CP (U — V*)Hom(n.Vh)y py the
equivalenceCP(U — VF)HomnVh) ~ CP)/CP(V*), the element
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y(V*) is a Thom class. The resulting Thom isomorphisiigCP (U —
ViyHomO V) > pr (CP(U — VF) and EA(CP(U — VF)Hem(nVh)y =
EACPU — V*) are given by

y(VEHVEY = y (VR (VEHVE) = (V)

in cohomology and
BUF/VF) — B (F)
in homology forl > 0. O

Now we return to find a basis fdt 2 (Gr,, (U)) itself. By induction we
know that the elements;, (7) ® 8, (F) ® B3i,(F) ® -+ ® 55, (F) with
i1 arbitrary and) < iy < i3 < --- < i, give a basis ofE,f‘((CP(u) X
Grp—1(U)). The proof of this shows that the filtration is such that the basis

of E(2)§p7* is given by the images of the elements either

(0)p Withp =iy <ip <iz <--- <, 0r
(’ii)p with ¢ Zpandp:ig <ig < - <.

Sincer is split by the map from the pushout description of (k), the
induced map., takes the basis elemerti$, to give a basis oE(l)%ZW Since
the spectral sequences collapsé&af and since thés! terms are free over
B, itfollows thatthe basis elementsBf' (CP(U) x Gr,,—1 (U)) giving rise
to the basis elements),, for somep (namely those with; < iy < --- <4y)

map to a basis oF4(Gr,, (1)) as required. 0

Remark 5.8.The referee suggests the following attractive repackaging of
the results of this section. For any representalioywe can define a spec-
trum
Ry = \/ G?“k(Z/l)Hom(%W).
k>0

Direct sum makes this into a ring spectrum and indeed there is a strictly
commutative ring spectrum in the category of [5] weakly equivalefijia
one takes the spectrum associated to the pre-spectrum Whbspace is
Vk ZVGrk(V)Hom(%W)_

The construction is natural in the sense that i€ 1, the inclusion of
Thom spaces gives a ring mdfyy — Ryy. The particular cas® = 0
gives a cofibre sequence

JW — Ro — Rw.
Theorem 4.1 then states

Jyk \/ Gry (U) =1,



The universality of equivariant complex bordism 469

A one dimensional representatiorgives a map
io SHom(a,W) — Grl(u)Hom(’y,W) C Ry
By Lemma 4.5 there is a cofibre sequence

SHom(a,W) N Ry Z—a> Ry — Rw@a,

so that in particular
Jweaa/Jw ~ fibre(Ry — Rwaa) ~ STm@W) A Ry,

Now for a complex orientable theory we may package the results of this
section as saying

E{(Ry) = Symm(E[ (CPU))),
and more generally

EA(Rw) = Symm(EA(CP(U),CP(W))). O

6 Thom classes

It follows from what we have proved that any complex oriented cohomology
theory has Thom classes for arbitrary bundles. Itis the purpose of the present
section to make this explicit: we prove Theorem 1.1.

Following Okonek [7] we say that” (-) has Thom classes if for any
complex vector bundle over a spakethere is an element(¢) € E%(X¢)
so that this system of elements is

1. natural for bundle maps,

2. product preserving in the sense thég x n) = 7(£) A 7(n) and

3. normalized so that ik = A/B and the fibre of over B is the repre-
sentation? of B thent(§) = oy (1)

Remark 6.1.(i) Okonek only requires the normalization whén= A.

(i) To obtain Thom isomorphisms we would only require the normalization
thatr (&) was a unit multiple of ;- (1). However, we show that any complex
oriented cohomology theory has Thom classes in the present stricter sense.

To prove that a system of Thom classes gives Thom isomorphisms
Ej(X) — E3(X°)
(essentially by cup product with(¢)) or

EA XS = BA(X)
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(essentially by cap product with(¢)) we proceed from the fact that, is
an isomorphism. We may then work our way up the cellular filtratioX of
using the normalization condition. Alternatively,§fhas a complement
so that¢ & n = V we may use the product preserving property.

Before proceeding we make a reduction.

Lemma 6.2. A cohomology theor¥” () has a system of Thom classes if
and only if it has universal Thom classes,

™ € E;‘;(Grn(u)%)
for eachn, so that

1. the system is product preserving in the sense that under the direct sum
mapGr,,(U) x Gr,(U) — Grp+n(U), the classr, ., pulls back to
Tm N\ Tn,

2. Over the pointV of Gr,, () with isotropyB C A the classr,, restricts
to ow (1);

We may then define the Thom class fomaplane bundle by pulling back

T, under the Thomification of its classifying map. O

Theorem 6.3. If E is acomplex oriented theory with orientation in cohomo-
logical degree 2 and complex stable structure determined by the orientation,
there is an associated system of Thom classes.

Proof. We shall construct classeg as specified in 6.2. Assume that the
flag begins with’'! = €. By pullback along conjugation, we see that

Gro(U)™ = Gro(U) "™ ~ Gro(U) ) Gr(U)©,

and we have identified the cohomology of this space exactly. From the
orientation we construct the cohomology clags) € E%(CP(U)), and
hence by 2.2, the elemepte)®" € E*(Gr,(U)). By construction this
restricts to zero i (Gr,, () [“!), and thus we obtain

T = y()°" € EX(Gra(U), Gra@)1)) = E4(GroU)™).
The element,, is identified with a map
Tn : Grp(U)™ — E.

Lemma 6.4. The classes,, are compatible under product in the sense that

Tm/N\Tn,

Grp(U)™ A Grp(U)"" ———FEANE

|

Grm+n (u)"{m+n E

Tm+n

commutes up to homotopy.
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Proof. This follows from the fact thay(e)®™ @ y(e)®" = y(e)®m+n),
O

Lemma 6.5. The class, is a Thom class foty,,.

Proof. An A-fixed point of Gr,,(U) is a representatiol’ = (1 & [y @
-+ @ By, and such a point lies in the image of the direct sum map from
(CP(U))*™. By naturality it therefore suffices to deal with the case 1.
However, by definition of an orientation = y(¢) restricts to a generator
of £ (CP(a @ €),CP(¢)). Since we have used the orientation to give the
complex stable structure, the generatorjs: (1) as required.

For the fibre over a non-fixed point we use the fact that orientations
behave well under restriction to subgroups. a

7 Universality of complex cobordism

Let us turn now to the spectrum level statements, and the connection with
mapsMU — E: we prove Theorem 1.2.

First we deduce that the existence of a ring Midp — FE givesE
a complex orientation. This is not quite obvious because of the distinction
between a map of spectra and a map preserving the complex stable structure.

Lemma 7.1. If there is aring ma@ : MU — F of A-spectra, therF' is
complex orientable, and the image of the canonical orientatioM&f is
an orientation ofF".

Remark 7.2.The proof makes no special use is made of the fact that the
domain isM U or the fact that we use its canonical orientation. However
our results show that the general case follows from this one.

Proof. Letz(e) € MU (CP(U)) denote an orientation af . By hypoth-
esis the restriction(a 1) of z(e) to MU (S* ') isagenerator as an U%-

—1
module. From the suspension isomorphsiy” ($* ') ~ MU~ “ , and
A(a~1) is a unitin theRO(G)-graded coefficient ring. Hendg (A (a™1))
is also a unitin thRO(G)-graded sense, and thereféréz(¢)) restricts to
a generator of the integer graded modE@(So‘fl) as required. O

In Sect. 6 we showed that any complex oriented theory has Thom classes
for arbitrary bundles. To complete the proof of 1.2 it therefore remains only
to construct a map/U — E from a system of Thom classes.

First recall thatM U is the prespectrum given on a subspéce U/ of
dimensionm by

MUV)=Gr,(Valu)rm.
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If U C V with U of dimensionm, the structure map
SYUANMUU) = Grp(U aU)V=U®m s Gr, (V@ U)"
is given by Thomifying the map addirig — U. Thus
MU ~ hol}mv >Var,(Vaeu),
and the cohomology a#/U may be calculated from that of Thom spaces

of Grassmannians by the Milnor exact sequence.
It is useful to be more explicit about the homology.

Lemma 7.3. Provided the complex stable structure is defined by the orien-
tation, the structure mapV —YGr,, (U @ U)'™ — Gr,(V & U)™, takes
the element
ov-vTm (B (F) @ Bi,(F) © -+ ® S, (F))
to
Proposition 7.4. The classes,, assemble to give a unique map
7T: MU —FE
of ring spectra.
Proof. Since the structure maps are surjective in cohomology,
E3(MU) = lim EX(Z7V Grau)™).
The existence of the map therefore follows from compatibility of the
elements,, under suspension.

Lemma 7.5. The classes,, are compatible under suspension in the sense
that

VfUTm

2VUGr, (U s U)m E
Gro(V @ U)™ “——F

commutes up to homotopy.

Proof. First note that the space of isometric isomorphigihs— U is
contractible, so the particular identificatiéhd I/ = U is not important.
Now, since the structure mapsiiUU arise from bundles, the lemma follows
from 6.4. O

Since the smash produkfU A MU — MU is induced by the Thomi-
fication of the map classifying direct sum of bundles, the compatibility of
the elements,, under products shows that the maig a map of ring spectra.
This completes the proof of 1.2. O
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8 Homology and cohomology oM U

In this section we give an account of the relationship between orientations
and ring maps\/U — E which makes no explicit reference to the orien-
tation. The main new result is Theorem 1.3.
First we need to calculate the homologyMfU. We use the notation of
Sect. 7. Of course we have
EAMU) = lim EAZV"MUWV™))
n

=lim EXNEZV"Gr,(V* @ U)").
—n
Thus we may construct elements using the maps

ENGra(U)) — ENZV" GroU)™)
= EMZV"MUWV™)) — EAMU).

We identified the effect of the maps in the direct system in 7.3. It is natural
to suppress the termi 1°).

Definition 8.1. We write b;(F) for the image ofg;41(F) in EA(MU).

It follows that the image o, +1(F) ® Biy4+1(F) @ -+ & By, +1(F) is
bi, (F)biy (F)---b;, (F). In the nonequivariant context, it is standard to
write 3,11 for B;+1(F) andb; for b;(F).

Note that Whitney sum of bundles gives a produtt/ A MU — MU,
and henceEA(MU) is an E’-algebra. The simplicity of the following
theorem is somewhat surprising.

Theorem 8.2. If £ (-) is a complex oriented theory, the homology\ét/
is polynomial overr; :

EXMU) = E4[bi(F), ba(F), b3(F), - -]

Furthermore there is a Bnneth theorem in the sense tHa} (M U"*) =
E5(MU)®s.

Proof. From our construction of the generators of the homology of Grass-
mannians, their behaviour under Whitney sum is obvious. The result for
MU follows from the relationNc @ 7) N (B ® ) = £(c N B) & (T N7).

0

Itis now straightforward to deduce the global statements we require. The
additive part is no problem since the homology\dt/ is free overt”, and
we have a Kinneth isomorphism.
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Corollary 8.3. If E'is complex orientable, passage kshomology gives
(MU, E|2 = EA-mod EXA(MU™), EX). O

We really wantto understand the $&tg 4 [M U, E] of homotopy classes
of ring mapsMU — E. SinceE2(MU) is a freeE-algebra, this too is
immediate.

Corollary 8.4. If E is complex orientable, passage kshomology gives
Ring[MU, E)|* = EA-alg(E2(MU), E4). O

Combining this with 7.4 and being careful about normalization, we ob-
tain a useful consequence.

Corollary 8.5. If z(¢) is a complex orientation of” (-), then there is a
natural bijective correspondence between orientation&f-) in coho-
mological degree 2 which give the same complex stable structuréeas
and

Ring[MU, E|* = EA-alg(EA(MU), ED).

More precisely, suppos€ (¢) is an orientation in cohomological degree
2 giving the same complex stable structureads). If V! = ¢ and the
associated parameter is

y'(e) = Zidiy(V?)
then\o = 0 and \; = 1. The associated algebra homomorphism
EX(MU) = E4[bi(F), ba(F), bs(F), ... — Ej
is then determined by
bi(F) — Aig1
fori > 1.

Proof. In general, ifz’(¢) is an orientation ofF, then the associated map
MU — E restricts tar’(¢)®" as a map

ZI(CPUY Y — ST (G U)) — E.

Thus the algebra homomorphism associated te) may be calculated on
an element arising fromX 2" MU (V) asx’(e)*"(z).
Now suppose’(¢) is expressed in terms of the basis associated to the ori-

entationz(e). The coefficient\y = 0 sincey’(¢) restricts trivially toCP(e).

The coefficient\; is obtained by restricting tCP(V2), CP(V'1)) = S '
since the complex stable structures defined:y andz’(¢) agree, the co-
efficientis 1. It is easy to see the image9gtF) for i > 1 are as specified
since they arise fronx =V MU(V1). O
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Remark 8.6.(i) For a complex stable structure arising from an orientation,
the element (1) for any chosern determines the rest, because of the ac-
tion of A*. This explains why consideration of, ' alone was enough to
show)\; = 1.

(i) The statement of the corollary is consistent with the conjecture that
MUAMU classifies strict isomorphisms of-equivariant formal group
laws.
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