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Abstract. We show that ifA is an abelian compact Lie group, allA-
equivariant complex vector bundles are orientable over a complex orientable
equivariant cohomology theory. In the process, we calculate the complex
orientable homology and cohomology of all complex Grassmannians.

1 Introduction

SupposeA is an abelian compact Lie group. We recall [3] that anA-
equivariant cohomology theoryE∗A(·) is orientable if complex line bundles
are well behaved. More precisely, we letCP (U) denote the space of lines in
a complete complexA-universeU , andε denote the trivial representation.
We say thatE∗A(·) is acomplex stablering theory if there are suspension
isomorphisms

σV : Ẽn
A(X)

∼=−→ Ẽ
n+|V |
A (SV ∧X)

for all complex representationsV , whereSV is the one-point compactifi-
cation ofV , and|V | is the real dimension ofV ; these are required to be
transitive, and given by multiplication with a generator ofẼ|V |(SV ). We
say the theory iscomplex orientableif in addition, there is a cohomology
classx(ε) ∈ E∗A(CP (U),CP (ε)) which restricts to a generator of

E∗A(CP (α⊕ ε),CP (ε)) ∼= Ẽ∗A(Sα−1
)
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for all one dimensional representationsα. Thus if the complex orientation
x(ε) is in cohomological degree 2, it determines a complex stable structure.
Many important theories are complex orientable, for instance equivariantK-
theory, tom Dieck’s equivariant bordismMU∗A(·), and Borel cohomology
for non-equivariantly complex orientable theories.

The purpose of this article is to show that this good behaviour is sufficient
to ensure good behaviour of complex vector bundles of any dimension. In
particular all complex vector bundles have Thom classes.

Theorem 1.1. If E is complex orientable then anyA-equivariant complex
vector bundle isE-orientable.

This is proved in Sect. 6.
Okonek [7] has proved that by constructionMU∗A(·) is universal for

cohomology theories with Thom classes. Combined with our main result
this implies the following universality statement.

Theorem 1.2. IfE∗A(·) is a complexorientedcohomology theorywithorien-
tation in cohomological degree2 then there is aunique ringmapMU −→ E
ofA-spectra under which the orientation ofE is the image of the canonical
orientation. Conversely, a mapMU −→ E of ring A-spectra endowsE
with the structure of a complex oriented cohomology theory with orientation
in cohomological degree 2.

We include a proof of this in Sect. 7. To make this result somewhat more
useful we have the following calculation.

Theorem 1.3. If E∗A(·) is a complex orientable theory thenEA∗ (MU) is a
polynomialE∗A-algebra and

RingA(MU,E) = EA∗ -alg(E
A
∗ (MU), EA

∗ ).

This is proved in Sect. 8. We shall be more specific about the polynomial
generators in due course. The good behaviour ofEA∗ (MU) should be con-
trasted with the facts thatE∗A(CP (U)) is not a power series ring in general,
andMU∗A is not a polynomial algebra.

The main step for all the proofs is the calculation of the cohomology of
the universal Grassmannian for any complex oriented cohomology theory.
This is also an important step in the calculational exploitation of complex
orientable cohomology theories, as is familiar from the non-equivariant case.
The traditional methods for the non-equivariant case (see [1] for example)
do not apply since the cellular filtrations are not so simple equivariantly.
Accordingly, geometric arguments are required as substitutes for the use of
the Atiyah-Hirzebruch spectral sequence, and these are illuminating even in
the classical case.

We are grateful to the referee for his interesting comments, some of
which are reproduced in Remark 5.8.
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2 Equivariant Grassmannians

LetGrn(V ) be the complex Grassmannian of complexn-dimensional sub-
spaces ofV . For exampleGr1(V ) = CP (V ).

Lemma 2.1. TheA-spaceGrn(U) is a classifying space forA-equivariant
complexn-plane bundles:

Grn(U) = BU(n). 
�
We retain the Grassmannian notation, because it will be useful to display

the universe explicitly at various points. The direct sum of lines gives a map

CP (U)×n = Gr1(U)×n −→ Grn(U⊕n) ∼= Grn(U),

where the final homeomorphism arises from an isometric isomorphism
U⊕n ∼= U . This sum map induces maps

EA
∗ (CP (U))⊗n = EA

∗ (CP (U)×n) −→ EA
∗ (Grn(U))

and

E∗A(Grn(U)) −→ E∗A(CP (U)×n) = E∗A(CP (U))⊗̂n,

where the completed tensor producte⊗̂ refers to the skeletal filtration topol-
ogy. The K̈unneth theorems implicit in this statement are corollaries of
Cole’s Splitting Theorem [3].

Since any permutation of the copies ofU in U⊕n is homotopic to the
identity through isometric isomorphisms, the induced maps factor through
coinvariants and invariants for the symmetric groupΣn.

Theorem 2.2. For any complex orientable cohomology theoryE∗A(·), the
direct sum of lines induces isomorphisms

EA
∗ (Grn(U)) ∼= {EA

∗ (CP (U))⊗n}Σn

and

E∗A(Grn(U)) ∼= {E∗A(CP (U))⊗̂n}Σn .

Remark 2.3.The homological result can be neatly stated if we take alln
together. Indeed the spectrum

∨
n≥0 Grn(U) is a ring under direct sum, and

EA
∗


 ∨

n≥0

Grn(U)


 = Symm(EA

∗ (CP (U))).
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Theorem 2.2 will be proved in Sect. 5 below. We pause to remark that this
gives us specific generators, and hence all the structure of the homology and
cohomology of Grassmannians follows from that ofCP (U) made explicit
in [4].

Indeed, Cole showed thatEA∗ (CP (U)) is additively free overE∗A and
E∗A(CP (U)) is a product of suspensions ofE∗A. Furthermore, he showed
how an orientationx(ε) of E, together with a complete flag

F =
(
0 = V 0 ⊂ V 1 ⊂ V 2 ⊂ · · ·)

in U determines a topological basis1 = y(V 0), y(V 1), y(V 2), . . . of
E∗A(CP (U)), and we may letβ0(F), β1(F), β2(F), . . . denote the dual
basis ofEA∗ (CP (U)). The notation for the homology generators reflects
the fact thatβi(F) depends on the initial segmentV 0 ⊂ V 1 ⊂ · · · ⊂ V i

of the flag. Furthermore, a K̈unneth theorem holds for the homology or
cohomology of products ofCP (U).

Lemma 2.4. AnE∗A-basis of the coinvariants{EA∗ (CP (U))⊗n}Σn is given
by the images of all productsβi1(F) ⊗ βi2(F) ⊗ · · · ⊗ βin(F) so that
0 ≤ i1 ≤ i2 ≤ · · · ≤ in. A topologicalE∗A-basis of the invariants

{E∗A(CP (U))⊗̂n}Σn corresponds to the collection of sequences0 ≤ i1 ≤
i2 ≤ · · · ≤ in; the basis elements are the symmetric sums

Σ′y(V iσ(1))⊗ y(V iσ(2))⊗ · · · ⊗ y(V iσ(n))

whereΣ′ denotes the sum over the orbit of(i1, i2, . . . , in).

Proof. The result is clear once we remark that theΣn action arises from
an action on the basis of the homology or cohomology ofCP (U)×n. In the
case of cohomology, we pass to limits from the case ofCP (V )×n. 
�
Corollary 2.5. If E is a complex oriented cohomology theory thenE ∧
Grn(U) splits as a wedge of copies ofE indexed by sequences0 ≤ i1 ≤
i2 ≤ · · · ≤ in:

E ∧Grn(U) �
∨
i

Σ2|i|E,

where|i| = i1 + i2 + · · ·+ in. The splitting depends on the orientation.

Proof. In the usual way, from the basis ofEA∗ (Grn(U)), we may construct
a map

s :
∨
i

Σ2|i|E −→ E ∧Grn(U)

of A-spectra, using the product onE.
By construction it induces an isomorphism inπA∗ (·). Now supposeB ⊆

A, andconsider theB-equivariant situation.The restrictionmapE∗A(CP (U))
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−→ E∗B(CP (U)) takes anA-orientation to aB-orientation, and the result-
ing basis corresponding to a complete flag to the basis corresponding to the
same flag regardedB-equivariantly. It therefore follows that the restriction
E∗A(Grn(U)) −→ E∗B(Grn(U)) takes the sequence basis to another basis.
Thuss induces an isomorphism ofπB∗ (·). Since this applies to all subgroups
B of A, the maps is anA-equivalence by the Whitehead theorem. 
�

It may be useful to record the calculation relative to a specific orientation
in very concrete terms.

Corollary 2.6. If E is a complex oriented cohomology theory then

EA
∗ (Grn(U)) = EA

∗ {β(V i1)⊗ β(V i2)
⊗ · · · ⊗ β(V in) | 0 ≤ i1 ≤ i2 ≤ · · · ≤ in}

and

E∗A(Grn(U)) = EA∗ -mod(E
A
∗ (Grn(U)), EA

∗ )
= E∗A{{Σ′y(V iσ(1))⊗ y(V iσ(2))
⊗ · · · ⊗ y(V iσ(n)) | 0 ≤ i1 ≤ i2 ≤ · · · ≤ in}}. 
�

Finally we may consider the extra structure on the system

{EA
∗ (Grn(U))}n≥0 or {E∗A(Grn(U))}n≥0.

The relevant extra structure is given by the conjugation map

· : Grn(U) −→ Grn(U) ∼= Grn(U),

the action maps

⊗α : Grn(U) −→ Grn(U ⊗ α) ∼= Grn(U)

for α ∈ A∗, the direct sum maps

⊕ : Grm(U)×Grn(U) −→ Grm+n(U ⊕ U) ∼= Grm+n(U)

and the tensor product maps

⊗ : Grm(U)×Grn(U) −→ Grmn(U ⊗ U) ∼= Grmn(U).

The structure constants for all these maps in homology and cohomology can
be deduced from those⊗α for n = 1 and⊗ for m = n = 1. Furthermore
the coproduct onEA∗ (Grn(U)) and the product onE∗A(Grn(U)) may be
deduced from the corresponding structure forCP (U). These facts, like all
our methods, depend crucially on the fact that the groupA is abelian, so that
all representations are sums of one dimensional representations.
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3 The equivariant Schubert cells of a Grassmannian

Consider the decomposition ofGrn(V ) into Schubert cells, as described for
example in [6]. We choose a completeA-invariant flag

0 = V 0 ⊂ V 1 ⊂ V 2 ⊂ V 3 ⊂ · · · ⊂ V m = V,

and letαi = V i/V i−1 as usual. It is well known thatGrn(V ) admits a
non-equivariant CW-structure in which the cells are indexed by sequences
of integers

1 ≤ σ1 < σ2 < · · · < σn ≤ m;

the sequenceσ = (σ1, σ2, . . . , σn) is called a Schubert symbol. It is conve-
nient to useσ to select a complete flag

0 = V (σ)0 ⊂ V (σ)1 ⊂ V (σ)2 ⊂ V (σ)3 ⊂ · · · ⊂ V (σ)n

of lengthn where

V (σ)i = ασ1 ⊕ ασ2 ⊕ · · · ⊕ ασi .

The celle(σ) corresponding to the Schubert symbolσ consists of alln-
planesX with

dim(X ∩ V σi) = i and dim(X ∩ V σi−1) = i− 1

for i = 1, 2, . . . , n. Such ann-planeX admits a basisx1, x2, . . . , xn with
xi ∈ V σi and non-zero inV σi/V σi−1. This is usually represented as anm×
n-matrix with rowsx1, x2, . . . , xn, and columns indexed byα1, α2, . . . , αm.
Dividing xi by itsασi coordinate, we may assume the last entry in each row
is 1, and then subtracting a suitable multiple ofxi from the other rows we
may assume the matrix is in row-reduced echelon form.

Note that sinceV j isA-invariant, the celle(σ) is anA-subspace. Accord-
ingly, these same Schubert cellse(σ) give a decomposition as an equivariant
Rep(A)-CW-complex, in the sense that the cells are unit discs in complex
representations ofA, and attached to cells corresponding to proper sum-
mands. Indeed, theith row gives the representationα−1

σi
⊗ (V σi/V (σ)i), so

that the celle(σ) is of Rep(A)-dimension

n⊕
i=1

α−1
σi
⊗ (V σi/V (σ)i).
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4 Thom complexes and the Schubert filtration

There is a convenient filtration associated to the Schubert cells, which we
shall need to use. We letGrn(U)[k] be the subcomplex ofGrn(U) corre-
sponding to Schubert cells withσ1 ≤ k + 1; the indexing is chosen since
k + 1 is the lowest complex dimension of a cell not inGrn(U)[k]. The
resulting filtration

Grn(U)[0] ⊂ Grn(U)[1] ⊂ Grn(U)[2] ⊂ · · · ⊂ Grn(U)

will be called the Schubert filtration. Of course the Schubert filtration de-
pends on the complete flagF ; when we use the universeU − V k, we use
the cell structure associated to the complete flagF/V k.

To obtain sufficient naturality we need to interpret the filtration in terms
of Thom complexes. For this we letγn denote the tautologicaln-plane
bundle overGrn(U) as usual.

The dimensions of the Rep(A)-cells suggest the plausibility of the fol-
lowing result.

Theorem 4.1. There is a homotopy equivalence

Grn(U)/Grn(U)[k−1] � (Grn(U − V k))Hom(γn,V k).

This may be chosen natural ask varies in the sense that there is a homotopy
commutative diagram

where the left hand vertical is the quotient map, andj is induced by the
inclusionV k ⊆ V k+1.

Remark 4.2.SinceU is a completeA-universe, for any finite dimensional
subspaceV ⊂ U , the inclusionU − V ⊆ U induces the stabilization equiv-
alence

Grn(U − V ) � Grn(U).

Proof. The proof is by induction onk, using the following two equivalences.

Lemma 4.3. There is an equvialence

Grn(U − V k)/Grn(U − V k)[0] � Grn(U − V k+1)Hom(γn,αk+1),
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Remark 4.4.In view of the fact thatGrn(U −V k)[0] ∼= Grn−1(U −V k+1)
the lemma may be viewed as giving a Gysin cofibre sequence

Grn−1(U − V k+1)
αk+1⊕−→ Grn(U − V k)

−→ Grn(U − V k+1)Hom(γn,αk+1). 
�
Lemma 4.5. There is a homeomorphism

Grn(U)[k]/Grn(U)[k−1] ∼= (Grn(U − V k)[0])Hom(γn,V k).

Using these we may complete the proof. First note that takingk = 0 in
4.3 gives the base of the induction. Now suppose thatGrn(U)/Grn(U)[k−1]

has been identified as in the statement of the theorem. We then calculate

Grn(U)/Grn(U)[k] =
(
Grn(U)/Grn(U)[k−1]

)
/
(
Grn(U)[k]/Grn(U)[k−1]

)

� {Grn(U − V k)/Grn(U − V k)[0]}Hom(γn,V k)

� {Grn(U − V k+1)Hom(γn,αk+1)}Hom(γn,V k)

∼= Grn(U − V k+1)Hom(γn,V k+1),

where the first equivalence uses the inductive hypothesis and 4.5, and the
second uses 4.3.

It therefore remains to prove the two lemmas.

Proof of 4.3.We view the Thom space as the mapping cone of the projection
of the unit sphere bundle. It therefore suffices to construct a homotopy
commutative square

S(Hom(γn, αk+1)) −→ Grn(U − V k+1)
�↓ ↓�

Grn(U − V k)[0] −→ Grn(U − V k).

The right hand equivalence is the stabilization equivalence induced by the
inclusion of complete universes. The right hand verticalS(Hom(γn, αk+1))
−→ Grn(U − V k)[0] is defined by(z,X) �−→ αk+1⊕ ker(z), wherez is a
unit vector inHom(X,αk+1). To see it is an equivalence, we note that the
fibre overY is the unit sphere inU − (V k ⊕ Y ).

To see the square commutes up to homotopy, note that the two routes
round the square can both be interpreted as sending(z,X) to the kernel of
a suitable mapf : αk+1 ⊕ X −→ αk+1. For the lower routef(w, x) =
z(x), and for the upper routef(w, x) = w. The interval joining these two
maps consists of nonzero linear maps and therefore provides a homotopy as
required. 
�
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Proof of 4.5.For this it is convenient to view the Thom space as a compact-
ification of the vector bundle. We may then define a map

Grn(U)[k]/Grn(U)[k−1] −→ (Grn(U − V k)[0])Hom(γn,V k)

by taking a representativen-planeX, expressed in standard form asX =
(X≤k|X>k), to the vectorX≤k in the fibre overX>k. This is clearly a home-
omorphism away from the basepoint, and one may check it is equivariant
and that both it and its inverse are continuous at the basepoint. 
�

This completes the proof of 4.1. 
�

5 The spectral sequence of universal Thom complexes

We now construct a spectral sequence for calculatingEA∗ (Grn(U)) using
the Schubert cell filtration

Grn(U)[0] ⊂ Grn(U)[1] ⊂ Grn(U)[2] ⊂ · · · ⊂ Grn(U)

introduced in Sect. 4. We think of the superscriptk inGrn(U)[k] as a complex
dimension, and applyingEA∗ (·) to the filtration we obtain a right half-plane
homological spectral sequenceE(1)∗∗,∗ concentrated in even filtration de-
grees with

E(1)12p,q = EA
2p+q(Grn(U)[p], Grn(U)[p−1]) =⇒ EA

2p+q(Grn(U)).

The spectral sequence is indexed so that a Rep(A)-s-cell in filtration 2p
contributes toE1

2p,2s. There is an analogous spectral sequence for coho-
mology obtained by applyingE∗A(·) to the filtration. It is a right half-plane
cohomological spectral sequence concentrated in even filtration degrees:

E(1)2p,q
1 = E2p+q

A (Grn(U)[p], Grn(U)[p−1]) =⇒ E2p+q
A (Grn(U)).

Remark 5.1.In view of the equivalence

Grn(U)/Grn(U)[k−1] � Grn(U − V k)Hom(γn,V k)

obtained from 4.1 by stabilization, the same spectral sequences may be
obtained from the sequence of maps

Grn(U)0 −→ Grn(U)Hom(γn,V 1) −→ Grn(U)Hom(γn,V 2)

−→ Grn(U)Hom(γn,V 3) −→ . . . .

This point of view is useful for establishing naturality.
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Proposition 5.2. If E is a complex oriented cohomology theory then the ho-
mological spectral sequenceE(1)∗∗,∗ collapses foralln. In factEA∗ (Grn(U))
is free overE∗A on the basis of all productsβi1(F)⊗βi2(F)⊗· · ·⊗βin(F)
so that0 ≤ i1 ≤ i2 ≤ · · · ≤ in as described in 2.4.

Proof. We prove 2.2 and 5.2 by simultaneous induction onn. The case
n = 1 is given by Cole’s Splitting Theorem [3], so we may supposen ≥ 2
and that the results have been proved for all smaller values. In particular we
have Thom isomorphisms for all vector bundles of dimension≤ n− 1 (see
Sect. 6 for more details).

We consider the embedding

CP (U)×Grn−1(U) = Gr1(U)×Grn−1(U) ⊕−→ Grn(U⊕U) ∼= Grn(U).

The proof proceeds by constructing a compatible spectral sequenceE(2)∗∗,∗
for calculatingEA∗ (CP (U) × Grn−1(U)). By induction the new spectral
sequenceE(2)∗∗,∗ calculates known groups, and will be shown to collapse.
On the other hand the mapE(2)∗∗,∗ −→ E(1)∗∗,∗ of spectral sequences will
be shown to be surjective onE1-terms, so it follows thatE(1)∗∗,∗ collapses
as required.

We proceed to construct the new spectral sequence. The analogue of 4.4
is as follows.

Lemma 5.3. There is a cofibre sequence

X(k)+ −→ (CP (U − V k)×Grn−1(U − V k))+
−→ (CP (U − V k+1)×Grn−1(U − V k+1))Hom(γn,αk+1)

whereX(k) is a pushout

Grn−2(U − V k+1)
⊕αk+1 ��

{cαk+1 ,1}
��

Grn−1(U − V k)

i

��
CP (U − V k)×Grn−2(U − V k+1) �� X(k),

where the top horizontal is induced by addingαk+1 to the(n − 1)-plane
and universe as in 4.4, and the left hand vertical uses the inclusion of the
A-fixed lineαk+1 in CP (U − V k) in the first factor.

Proof. OverCP (U−V k+1)×Grn−1(U−V k+1) thebundleHom(γn, αk+1)
is the productHom(γ1, αk+1)×Hom(γn−1, αk+1). Thus the unit disc bun-
dle is the productD(Hom(γ1, αk+1)) × D(Hom(γn−1, αk+1)) and the
Thom space is the smash product

CP (U − V k+1)Hom(γ1,αk+1) ∧Grn−1(U − V k+1)Hom(γn−1,αk+1).



The universality of equivariant complex bordism 465

This identifies theunit spherebundleS(Hom(γ1, αk+1)×Hom(γn−1, αk+1))
as the pushout

S(Hom(γ1, αk+1)) S(Hom(γ1, αk+1))
×S(Hom(γn−1, αk+1)) ��

��

×D(Hom(γn−1, αk+1))

i
��

D(Hom(γ1, αk+1)) S(Hom(γ1, αk+1)
×S(Hom(γn−1, αk+1)) �� ×Hom(γn−1, αk+1)).

The description ofX(k) follows. 
�
Corollary 5.4. There is a cofibre sequence

X(k)Hom(γn,V k) −→ (CP (U − V k)×Grn−1(U − V k))Hom(γn,V k)

−→ (CP (U − V k+1)×Grn−1(U − V k+1)Hom(γn,V k+1).


�
In view of the inductive hypothesis we know the homologies of all the

spaces involved in the cofibre sequence of 5.3, and we have a basis corre-
sponding to a Rep(A)-CW-decomposition (where the correspondence de-
pends on the orientation). We return to analysis of the maps and the bases
below.

Corollary 5.5. The map

CP (U − V k+1)×Grn−1(U − V k+1) ⊕−→ Grn(U − V k+1)

induces a retraction

r : X(k) = S(Hom(γ1, αk+1)×Hom(γn−1, αk+1))
−→ S(Hom(γn, αk+1)) � Grn−1(U − V k)

on unit sphere bundles.

Proof. The inclusion corresponding to the retractionr is the composite

Grn−1(U − V k) � S(Hom(γ1, αk+1))×D(Hom(γn−1, αk+1))
i−→

S(Hom(γ1, αk+1)×Hom(γn−1, αk+1)) = X(k).

It is easily checked that with the equivalenceS(Hom(γn, αk+1)) �
Grn−1(U − V k) specified in 4.3, we haveri = 1.
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To guarantee a map of spectral sequencesE(2)∗∗,∗ −→ E(1)∗∗,∗ converg-
ing to the map

EA
∗ (CP (U)×Grn−1(U)) −→ EA

∗ (Grn(U)),

the spectral sequence forEA∗ (CP (U)×Grn−1(U)) is constructed from the
sequence of maps

(CP (U)×Grn−1(U))0 −→ (CP (U)×Grn−1(U))Hom(γn,V 1)

−→ (CP (U)×Grn−1(U))Hom(γn,V 2) −→ · · ·
as in 5.1. However, it may help if we relate this to a construction more closely
analogous to the construction ofE(1)∗∗,∗ from the Schubert filtration. Note
that overCP (U)×Grn−1(U) the bundleHom(γn, V

k) is Hom(γ1, V
k)×

Hom(γn−1, V
k), and hence

(CP (U)×Grn−1(U))Hom(γn,V k)

� CP (U)Hom(γ1,V k) ∧Grn−1(U)Hom(γn−1,V k).

We therefore define

(CP (U)×Grn−1(U))[k] := CP (U)× (Grn−1(U)[k]) ∪
(CP (U)[k])×Grn−1(U),

so as to ensure a cofibre sequence

(CP (U)×Grn−1(U))[k−1] −→ CP (U)×Grn−1(U) −→
(CP (U − V k)×Grn−1(U − V k))Hom(γn,V k).

Applying EA∗ (·) to the resulting filtration we obtain a right half-plane
homological spectral sequence with

E(2)12p,q = EA
2p+q((CP (U)×Grn−1(U))[p], (CP (U)×Grn−1(U))[p−1])

=⇒ EA
2p+q(CP (U)×Grn−1(U)).

By induction this spectral sequence is under complete control.

Proposition 5.6. If E∗A(·) is a complex oriented cohomology theory then
the spectral sequenceE(2)∗∗,∗ above collapses atE(2)1∗,∗.

Proof. This follows from the inductive hypothesis, sinceE ∧Grn−1(U)+
splits as a wedge of suspensions ofE indexed by the Schubert cells of
Grn−1(U)+. Smashing this withCP (U)+, we again get splitting from
Cole’s Splitting Theorem [3]. The filtration of the new spectral sequence
is compatible with that of the splitting in view of the smash product decom-
position of the Thom spaces. The collapse of the spectral sequence follows.


�
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To see that the mapE(2)∗,∗1 −→ E(1)∗,∗1 is surjective, recall that

Grn(U)[k]/Grn(U)[k−1] � Grn−1(U − V k)Hom(γn,V k)

and

(CP (U)×Grn−1(U))[k]/(CP (U − V k) × Grn−1(U − V k))[k−1]

� X(k)Hom(γn,V k).

It therefore suffices to show that for eachk, the map

X(k)Hom(γn,V k) −→ Grn−1(U − V k)Hom(γn,V k)

of subquotients is surjective inEA∗ (·). This follows for the unThomified
map, since by 5.5 the mapr : X(k) −→ Grn−1(U − V k) is a retraction.
For k = 0 this is the required statement. Fork ≥ 1 we use the fact that
overCP (U − V k) × Grn−1(U − V k) the bundleγn splits as the product
γ1 × γn−1. ThusHom(γn, V

k) splits as a sum of bundles of dimension
≤ n − 1 for each of which we have a Thom isomorphism by induction.
Surjectivity now follows from that of the unThomified map for the universe
U − V k.

Finally, we may remark that the analysis identifies a basis. We may
visualize the basis of the homologyCP (U)×n as the points ofNn, with the
complex dimension of the cell corresponding toi = (i1, i2, . . . , in) being
|i| = i1 + i2 + · · · + in. The homology of all other relevant spaces have
bases given by the images of these basis elements. These correspond to
subsets ofNn as follows. The basis for the spaceCP (U) = CP (U) × ∗
corresponds to the points(i1, 0, . . . , 0), and that forGrn−1(U) = ∗ ×
Grn−1(U) corresponds to the points(0, i2, . . . , in) with 0 ≤ i2 ≤ i3 ≤
· · · ≤ in. The basis for the subspaceGrn−2(U) ⊆ Grn−1(U) corresponds
to the points(0, 0, i3, . . . , in) with 0 ≤ i3 ≤ i4 ≤ · · · ≤ in.

Applying this discussion to the universeU−V k, we see thatX(k)has ho-
mology in even degrees, with basis corresponding to the points(i1, i2,. . ., in)
either (i) with i1 = 0 and0 ≤ i2 ≤ i3 ≤ · · · ≤ in or (ii) with i1 arbitrary,
i2 = 0 and0 ≤ i3 ≤ i4 ≤ · · · ≤ in. Since the mapi occurs in the pushout
description ofX(k) we see thatr : X(k) −→ Grn−1(U − V k) maps the
subspace on the basis elements elements corresponding to0 ≤ i2 ≤ i3 ≤
· · · ≤ in isomorphically to the homology ofGrn−1(U − V k). The effect of
the Thom isomorphism is to replace standard homology generators relative
to the flagF/V k by those forF : the precise meaning becomes clear from
the special caseCP (U).

Lemma 5.7. Naming the cohomologyE∗A(CP (U −V k)Hom(γ1,V k)) by the
equivalenceCP (U − V k)Hom(γ1,V k) � CP (U)/CP (V k), the element
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y(V k) is a Thom class. The resulting Thom isomorphismsE∗A(CP (U −
V k)Hom(γ1,V k)) ∼= E∗A(CP (U − V k) andEA∗ (CP (U − V k)Hom(γ1,V k)) ∼=
EA∗ (CP (U − V k) are given by

y(V k+l/V k) �−→ y(V k)y(V k+l/V k) = y(V k+l)

in cohomology and
βl(F/V k)←− βk+l(F)

in homology forl ≥ 0. 
�
Now we return to find a basis forEA∗ (Grn(U)) itself. By induction we

know that the elementsβi1(F) ⊗ βi2(F) ⊗ βi3(F) ⊗ · · · ⊗ βin(F) with
i1 arbitrary and0 ≤ i2 ≤ i3 ≤ · · · ≤ in give a basis ofEA∗ (CP (U) ×
Grn−1(U)). The proof of this shows that the filtration is such that the basis
of E(2)12p,∗ is given by the images of the elements either

(i)p with p = i1 ≤ i2 ≤ i3 ≤ · · · ≤ in or
(ii)p with i1 ≥ p andp = i2 ≤ i3 ≤ · · · ≤ in.

Sincer is split by the mapi from the pushout description ofX(k), the
induced mapr∗ takes the basis elements(i)p to give a basis ofE(1)22p,∗. Since
the spectral sequences collapse atE1, and since theE1 terms are free over
E∗A, it follows that the basis elements ofEA∗ (CP (U)×Grn−1(U))giving rise
to the basis elements(i)p for somep (namely those withi1 ≤ i2 ≤ · · · ≤ in)
map to a basis ofEA∗ (Grn(U)) as required. 
�
Remark 5.8.The referee suggests the following attractive repackaging of
the results of this section. For any representationW , we can define a spec-
trum

RW :=
∨
k≥0

Grk(U)Hom(γ,W ).

Direct sum makes this into a ring spectrum and indeed there is a strictly
commutative ring spectrum in the category of [5] weakly equivalent toRW :
one takes the spectrum associated to the pre-spectrum whoseV th space is∨

k Σ
V Grk(V )Hom(γ,W ).

The construction is natural in the sense that ifV ⊆ W , the inclusion of
Thom spaces gives a ring mapRV −→ RW . The particular caseV = 0
gives a cofibre sequence

JW −→ R0 −→ RW .

Theorem 4.1 then states

JV k �
∨
n

Grn(U)[k−1].
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A one dimensional representationα gives a map

iα : SHom(α,W ) −→ Gr1(U)Hom(γ,W ) ⊆ RW

By Lemma 4.5 there is a cofibre sequence

SHom(α,W ) ∧RW
iα−→ RW −→ RW⊕α,

so that in particular

JW⊕α/JW � fibre(RW −→ RW⊕α) � SHom(α,W ) ∧RW .

Now for a complex orientable theory we may package the results of this
section as saying

EA
∗ (R0) = Symm(EA

∗ (CP (U))),

and more generally

EA
∗ (RW ) = Symm(EA

∗ (CP (U),CP (W ))). 
�

6 Thom classes

It follows from what we have proved that any complex oriented cohomology
theory has Thom classes for arbitrary bundles. It is the purpose of the present
section to make this explicit: we prove Theorem 1.1.

Following Okonek [7] we say thatE∗A(·) has Thom classes if for any
complex vector bundle over a spaceX, there is an elementτ(ξ) ∈ E∗A(Xξ)
so that this system of elements is

1. natural for bundle maps,
2. product preserving in the sense thatτ(ξ × η) = τ(ξ) ∧ τ(η) and
3. normalized so that ifX = A/B and the fibre ofξ overB is the repre-

sentationW of B thenτ(ξ) = σV (1)

Remark 6.1.(i) Okonek only requires the normalization whenB = A.
(ii) To obtain Thom isomorphisms we would only require the normalization
thatτ(ξ) was a unit multiple ofσW (1). However, we show that any complex
oriented cohomology theory has Thom classes in the present stricter sense.

To prove that a system of Thom classes gives Thom isomorphisms

E∗A(X)
∼=−→ Ẽ∗A(Xξ)

(essentially by cup product withτ(ξ)) or

ẼA
∗ (Xξ)

∼=−→ EA
∗ (X)
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(essentially by cap product withτ(ξ)) we proceed from the fact thatσV is
an isomorphism. We may then work our way up the cellular filtration ofX
using the normalization condition. Alternatively, ifξ has a complementη
so thatξ ⊕ η = V we may use the product preserving property.

Before proceeding we make a reduction.

Lemma 6.2. A cohomology theoryE∗A(·) has a system of Thom classes if
and only if it has universal Thom classes,

τn ∈ Ẽ∗A(Grn(U)γn)

for eachn, so that

1. the system is product preserving in the sense that under the direct sum
mapGrm(U)×Grn(U) −→ Grm+n(U), the classτm+n pulls back to
τm ∧ τn

2. Over the pointW ofGrn(U) with isotropyB ⊆ A the classτn restricts
to σW (1);

We may then define the Thom class for ann-plane bundle by pulling back
τn under the Thomification of its classifying map. 
�
Theorem 6.3. IfE is a complexoriented theorywith orientation in cohomo-
logical degree 2 and complex stable structure determined by the orientation,
there is an associated system of Thom classes.

Proof. We shall construct classesτn as specified in 6.2. Assume that the
flag begins withV 1 = ε. By pullback along conjugation, we see that

Grn(U)γn ∼= Grn(U)γ∗
n � Grn(U)/Grn(U)[0],

and we have identified the cohomology of this space exactly. From the
orientation we construct the cohomology classy(ε) ∈ E∗A(CP (U)), and
hence by 2.2, the elementy(ε)⊗n ∈ E∗A(Grn(U)). By construction this
restricts to zero inE∗A(Grn(U)[0]), and thus we obtain

τn = y(ε)⊗n ∈ E∗A(Grn(U), Grn(U)[0]) ∼= Ẽ∗A(Grn(U)γn).

The elementτn is identified with a map

τn : Grn(U)γn −→ E.

Lemma 6.4. The classesτn are compatible under product in the sense that

Grm(U)γm ∧Grn(U)γn
τm∧τn ��

��

E ∧ E

��
Grm+n(U)γm+n

τm+n

�� E

commutes up to homotopy.
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Proof. This follows from the fact thaty(ε)⊗m ⊗ y(ε)⊗n = y(ε)⊗(m+n).

�

Lemma 6.5. The classτn is a Thom class forγn.

Proof. An A-fixed point ofGrn(U) is a representationV = β1 ⊕ β2 ⊕
· · · ⊕ βn, and such a point lies in the image of the direct sum map from
(CP (U))×n. By naturality it therefore suffices to deal with the casen = 1.
However, by definition of an orientationτ1 = y(ε) restricts to a generator
of E∗A(CP (α ⊕ ε),CP (ε)). Since we have used the orientation to give the
complex stable structure, the generator isσα−1(1) as required.

For the fibre over a non-fixed point we use the fact that orientations
behave well under restriction to subgroups. 
�

7 Universality of complex cobordism

Let us turn now to the spectrum level statements, and the connection with
mapsMU −→ E: we prove Theorem 1.2.

First we deduce that the existence of a ring mapMU −→ E givesE
a complex orientation. This is not quite obvious because of the distinction
between a map of spectra and a map preserving the complex stable structure.

Lemma 7.1. If there is a ring mapθ : MU −→ F ofA-spectra, thenF is
complex orientable, and the image of the canonical orientation ofMU is
an orientation ofF .

Remark 7.2.The proof makes no special use is made of the fact that the
domain isMU or the fact that we use its canonical orientation. However
our results show that the general case follows from this one.

Proof. Letx(ε) ∈ M̃U
∗
(CP (U)) denote an orientation ofMU . By hypoth-

esis the restrictionλ(α−1) ofx(ε) toM̃U
∗
(Sα−1

) is a generator as anMU∗A-

module. From the suspension isomorphism̃MU
∗
(Sα−1

) ∼= M̃U
∗−α−1

, and
λ(α−1) is a unit in theRO(G)-graded coefficient ring. Henceθ∗(λ(α−1))
is also a unit in theRO(G)-graded sense, and thereforeθ∗(x(ε)) restricts to
a generator of the integer graded moduleẼ∗A(Sα−1

) as required. 
�
In Sect. 6 we showed that any complex oriented theory has Thom classes

for arbitrary bundles. To complete the proof of 1.2 it therefore remains only
to construct a mapMU −→ E from a system of Thom classes.

First recall thatMU is the prespectrum given on a subspaceV ⊂ U of
dimensionn by

MU(V ) = Grn(V ⊕ U)γn .
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If U ⊆ V with U of dimensionm, the structure map

SV−U ∧MU(U) = Grm(U ⊕ U)(V−U)⊕γm −→ Grn(V ⊕ U)γn

is given by Thomifying the map addingV − U . Thus

MU � holim→ V
Σ−V Grn(V ⊕ U)γn ,

and the cohomology ofMU may be calculated from that of Thom spaces
of Grassmannians by the Milnor exact sequence.

It is useful to be more explicit about the homology.

Lemma 7.3. Provided the complex stable structure is defined by the orien-
tation, the structure mapΣV−UGrn(U ⊕U)γm −→ Grn(V ⊕U)γn , takes
the element

σV−Uτm(βi1(F)⊗ βi2(F)⊗ · · · ⊗ βim(F))

to

τn(β0(F)⊗ · · · ⊗ β0(F)⊗ βi1(F))⊗ βi2(F)⊗ · · · ⊗ βim(F)). 
�
Proposition 7.4. The classesτn assemble to give a unique map

τ : MU −→ E

of ring spectra.

Proof. Since the structure maps are surjective in cohomology,

E∗A(MU) = lim← V
E∗A(Σ−V Grn(U)γn).

The existence of the mapτ therefore follows from compatibility of the
elementsτn under suspension.

Lemma 7.5. The classesτn are compatible under suspension in the sense
that

ΣV−UGrm(U ⊕ U)γm
ΣV −U τm ��

��

E

��
Grn(V ⊕ U)γn

τn �� E

commutes up to homotopy.

Proof. First note that the space of isometric isomorphismsU −→ U is
contractible, so the particular identificationV ⊕ U ∼= U is not important.
Now, since the structure maps inMU arise from bundles, the lemma follows
from 6.4. 
�

Since the smash productMU ∧MU −→MU is induced by the Thomi-
fication of the map classifying direct sum of bundles, the compatibility of
the elementsτn under products shows that the mapτ is a map of ring spectra.
This completes the proof of 1.2. 
�



The universality of equivariant complex bordism 473

8 Homology and cohomology ofMU

In this section we give an account of the relationship between orientations
and ring mapsMU −→ E which makes no explicit reference to the orien-
tation. The main new result is Theorem 1.3.

First we need to calculate the homology ofMU . We use the notation of
Sect. 7. Of course we have

EA
∗ (MU) = lim→ n

EA
∗ (Σ−V n

MU(V n))

= lim→ n
EA
∗ (Σ−V n

Grn(V n ⊕ U)γn).

Thus we may construct elements using the maps

EA
∗ (Grn(U))

∼=−→ EA
∗ (Σ−V n

Grn(U)γn)
= EA

∗ (Σ−V n
MU(V n)) −→ EA

∗ (MU).

We identified the effect of the maps in the direct system in 7.3. It is natural
to suppress the termsβ(V 0).

Definition 8.1. We writebi(F) for the image ofβi+1(F) in EA∗ (MU).
It follows that the image ofβi1+1(F) ⊗ βi2+1(F) ⊗ · · · ⊗ βin+1(F) is
bi1(F)bi2(F) · · · bin(F). In the nonequivariant context, it is standard to
write βi+1 for βi+1(F) andbi for bi(F).

Note that Whitney sum of bundles gives a productMU∧MU −→MU ,
and henceEA∗ (MU) is anE∗A-algebra. The simplicity of the following
theorem is somewhat surprising.

Theorem 8.2. If E∗A(·) is a complex oriented theory, the homology ofMU
is polynomial overE∗A:

EA
∗ (MU) = E∗A[b1(F), b2(F), b3(F), · · ·].

Furthermore there is a K̈unneth theorem in the sense thatE∗A(MU∧s) =
E∗A(MU)⊗s.

Proof. From our construction of the generators of the homology of Grass-
mannians, their behaviour under Whitney sum is obvious. The result for
MU follows from the relation(σ ⊗ τ) ∩ (β ⊗ γ) = ±(σ ∩ β) ⊗ (τ ∩ γ).


�
It is now straightforward to deduce the global statements we require. The

additive part is no problem since the homology ofMU is free overE∗A, and
we have a K̈unneth isomorphism.
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Corollary 8.3. If E is complex orientable, passage toE-homology gives

[MU∧s, E]A∗ = EA∗ -mod(E
A
∗ (MU∧s), EA

∗ ). 
�
We really want to understand the setRingA[MU,E]of homotopy classes

of ring mapsMU −→ E. SinceEA∗ (MU) is a freeEA∗ -algebra, this too is
immediate.

Corollary 8.4. If E is complex orientable, passage toE-homology gives

Ring[MU,E]A = EA∗ -alg(E
A
∗ (MU), EA

∗ ). 
�
Combining this with 7.4 and being careful about normalization, we ob-

tain a useful consequence.

Corollary 8.5. If x(ε) is a complex orientation ofE∗A(·), then there is a
natural bijective correspondence between orientations ofE∗A(·) in coho-
mological degree 2 which give the same complex stable structure asx(ε)
and

Ring[MU,E]A = EA∗ -alg(E
A
∗ (MU), EA

∗ ).

More precisely, supposex′(ε) is an orientation in cohomological degree
2 giving the same complex stable structure asx(ε). If V 1 = ε and the
associated parameter is

y′(ε) = Σiλiy(V i)

thenλ0 = 0 andλ1 = 1. The associated algebra homomorphism

EA
∗ (MU) = E∗A[b1(F), b2(F), b3(F), . . .] −→ E∗A

is then determined by
bi(F) �−→ λi+1

for i ≥ 1.

Proof. In general, ifx′(ε) is an orientation ofE, then the associated map
MU −→ E restricts tox′(ε)⊗n as a map

Σ−2n(CP (U)×n)γn −→ Σ−2n(Grn(U))γn −→ E.

Thus the algebra homomorphism associated tox′(ε) may be calculated on
an elementz arising fromΣ−2nMU(V ) asx′(ε)⊗n(z).

Now supposex′(ε) is expressed in terms of the basis associated to the ori-
entationx(ε). The coefficientλ0 = 0 sincey′(ε) restricts trivially toCP (ε).
The coefficientλ1 is obtained by restricting to(CP (V 2),CP (V 1)) ∼= Sα−1

2 ;
since the complex stable structures defined byx(ε) andx′(ε) agree, the co-
efficient is 1. It is easy to see the images ofbi(F) for i ≥ 1 are as specified
since they arise fromΣ−V 1

MU(V 1). 
�
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Remark 8.6.(i) For a complex stable structure arising from an orientation,
the elementσα(1) for any chosenα determines the rest, because of the ac-
tion of A∗. This explains why consideration ofα−1

2 alone was enough to
showλ1 = 1.
(ii) The statement of the corollary is consistent with the conjecture that
MUA∗ MU classifies strict isomorphisms ofA-equivariant formal group
laws.
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