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ABSTRACT -

Let tan Q(t) = (h-mt®) / (kt) where h, k, and m denote
non-negative constants. The functions y(x,t}) = cos[xt-a(t)], -

where the parameter t assumes all positive values, are the charac-
teristic functions of the boundary-value problem y" + t?y = 0
(x>0), y ~ky' +1y" = Oat x = 0, y(x,t) bounded for x 2

0. Integral formulas representing an arbitrary function f(x)(x > 0)

in terms of the functions y(x,t) or cos[xt-a(x)], analogous to the
Fourier cosine-integral formula, are derived and established assum-
ing that f(x) satisfies conditions under which it is represented by
the classical Fourier integral formula.

ii
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GENERALIZED FOURIER INTEGRAL FORMULAS*

1. Introduction

The solution of certain types of boundary value problems in partial
differential equations depends on a representation of a function f(x) pre-
scribed on the semi-infinite interval x > 0, in terms of the functions that
satisfy the system

TU(x,A) + A y(x,N) = 0 (x > 0)
(1)

hy(0,N) - ky’(O,K) +my" (O,LA) = O
where y(x,\) is bounded for all x (x i 0). Here h, k, and m denote non-
negative constants at leadt one of which is positive, and A is a paramenter.
Since y"(O,N) = AZ y(0O,\), the above boundary condition involves the para-
meter explicitly whenm # O.

The boundary-value problem (1) withm # O arises, for example,
in ﬁroblems of diffusion of gasés within electrodes of vacuum tubes to the
surface where they enter the vacuum chamber. It also arises in problems
of transverse displacements of membranes with certain forms of elastic
support along an edge. Applications in which m = O while h and k are
positive are treated in references [1], [2], and [3].

The characteristic functions of the system (1) are

(2) y(x,N) = cos[x-a(M)] ,

*
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where A is real and non-negative and, when k > 0, &(N) is defined by the

conditions
_ h-m\® 1 < <z
(3) tan a(r) = A% (-5= a(n) = 3.
In case k = O the characteristic functions are y = sin Ax

and the representation of the function f(x) is the classical Fourier sine-
integral formula. When h = m = 0, y = cos Ax and the representation
is the Fourier cosine-integral formula. In these two special cases the
generalized formulas found in this paper reduce to those classical for-
mulas. In establishing the generalized representation formula, then, the

cases k = Oandh = m = O will be excluded from consideration.

2. The Trigonometric Functions

Certain properties of functions associated with the chéracter—
istic functions (2) will be needed in the following sections. Their intro-
duction here simplifies the presentation of the principal results.

The identities

cos(Ax-0) cos(Au-Q) cos[A(x+p)-a] cos @ + sin Ax sin A

1

(&)

sin[A(x+u)-a] sin @ + cos Ax cos A

1]

can be verified by elementary trigonometry.

When m > O and k > O, consider the function

(5) P(t,r) = [r cos[Mt-a(N)] cos Q(N) AN = fr y(t,M)y(0,N)AN |

0

Let H = h/mand 2K = k/m; then in view of equation (3)

r 2 2 .
(6) P(t,r) = er 2K\~ cos At + AM(H-A") sin At .
0 LKEAE 4+ (H-AZ)Z
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It is to be proved that P(t,r) + Oasr =+ « , uniformly with respect to
t for t 2 x, where x is any positive constant.
An alternate form of the integral (6), found by formally writing

the Laplace transform of that integral with respect to t, leadsto the for-

mila
oo}
(7) P(t,r) = Kf E(t-t) sin rr &L
t T
where the function E is defined by the equations
K ~-Bt Bt
BE(t) = e ¢ [(k+B)e ~ -(K-B)e |, B = (k2-|)*/2

vhen H # K°. When H = K

E(t) = pe Kt (1-Kt).

~ To verify that formulas (6) and (7) represent the same function P(t,r) it
is only necessary to show that both give the same funcfion BP/Br and the
initial value P(t,0) = O.

If K° > H then B is real and 0 < B S K; if K2 < H then B is a pure
imaginary constant. Thus it is seen from the above two formulas for E(t)
that. whether B is zero or not, the function E(t) is either a function of
the form
F(t) = A o (a+id)t (£+C),

where A, a, b, and C are constants, a > O and real, and b is real, or else
E(t) is thelsum of two such functions. Now by a partial integration,

) ’ 00 '
f F(t-t) sin rr & . —l‘{ﬂp—)- cos rt +f cos rT‘!BB—T [F(T"t:l dry .
t t t

T r T

’
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When t Z x > 0 the absolute value of the first term inside the braces
does not exceed the constant |F(O)'x_l. It is easy to see that the abso-
lute value of the integrand of the integral inside the braces does not
exceed a constant multiple of exp [-a(T-t)] where the constant is inde-
pendent of t4 since T/t 5 1 and l/t j l/x . Thus the quantity in

the braces is bounded uniformly with respect to t and it follows that

(8) [pee,e) | < A (t
r

nv
»
\Y%

A=/

for some constant X, independent of t.

Whenm = Oand k¥ > 0 it will now be shown that the function

r
Qlt,r) = /; sin [AMt-@(N)] sin a(A) i

L hk/:rk%. sin At - h cos M 45
o h® + k22

>
tends to zero as r » «» , uniformly with respect to t fort _ x > O.

By the same procedure used above to obtain formula (7), the following

alternate form of the function (9) is found:

00
(10) Q(t,r) = - h f exp [- h (T—t)] sin rr ar
k Jt k i
Since the integral here has the same form as the integral in equation (7T)

when E(t) is replaced by a special case of the function F(t), it follows

at once that a constant X5 existé, independent of t, such that

(11) lat,r)] < %2 t 2 x > o).
r
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3. Formal Development

The linear representation of an arbitrary function f(x) prescribed
on the semi-infinite interval, in terms of the characteristic functions
v(x,\) where the values of the parameter A range over all positive numbers,

may be written in the form

00

(12) f(x) = k/; y(x,N) g(N) an .
a formal solution of this integral equation for the function g(A) will give
the expansion formula that is to be established. The method of solution
used here is analogous to the procedure with orthogonal functions when the
eigenvalues A\ are discreté. It has some advantages over the formal method
used in the special casem = O by Karush [1].

Let both members of equation (12) be multiplied by y(x,t) and inte-

grated with respect to x from O to r, then interchange the order of integra-

tion in the resulting iterated integral. This leads to the equation

o] [o0]
lim r
1) [ tevn e = 08 [ em) [vton st exan
o) o) 0
From either the Green's formula for the boundary-value problem (1)

or the direct integration of the product y(x,\) y(x,t) of trigonometric

functions (2) it follows that assuming k > O .

r
a2 yen en e = - Ry so) +
(0]

sin [ (Mt )r-c(N)-0(t) ] sin [ (A-t)r-a(\)+a(t)
AN+ L AN-t *
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According to the Riemann-Lebesgue theorem in the theory of Fourier
integrals,
o © ‘

1imf G(A) sin [(Att)r] an = 1imf G(N) cos [(Att)r]an = 0

r>0Jg I+ Jo
when the function G(A) is sectionally continuous on each finite interval
0 f A § ho and absolutely integrable on the semi-infinite interval [5].
The function (X-t)-l sin [a(x)-a(ﬁ)] that arises in equation (14) has a
limit as Mt. Thus if g(A) satisfies the conditions just cited on G(A) it

follows from equation (12) that

() = [ 300 & o,
(o]

and from equations (13) and (14) and the Riemann-Lebesgue theorem, that

Efo f(&)y(x,t) &x = '-2]-? £(0) y(0,t) +
(15) e T |
- f g(\) cos [a(n)-a(t)] Snl(A-t)r] 4y
*® Yo A=t

Now suppose that in addition to satisfying the conditions of sec-
tional continuity and absolute integrability assumed above, the function
g(N\) has one-sided derivatives of the first order from the right and from
the left at the point A = t (¢t > 0) . If g(\) is discontinuous at the
point A = t . let g(t) represent the mean value of the limits g(t+0) and
g(t-0) . Then the limit that appears in equation (15) represents ng(t),
according to the primitive form of the classical Fourier integral formula
or the extension of the Dirichlet integral formula to the unbounded inter-
val [4]. Thus

2 2m

(16  s(t) = 27200 y(xt) &x + 2(0) y(0,0) (t>0) .
0
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When m > O the representation (12) now becomes

2

f(x) = ;fo Y(x,K)fo £(1) y(u,N) dp an + %}% f(O)fO y(x,N) y(O,N) dn .

The last integral here vanishes when x > O since it represents the limit,
as r > o , of the function P(x,r) defined by equation (5) and satisfying
condition (8). Whenm = O the final term in equation (16) vanishes.

>

Thus for m O the expansion formula becomes

(17) f(x) = %j;w y(x,\) \/O‘°° () y(uyN) dp an (x> 0) .

When the trigonometric form (2) of the function y is substituted

here the formula becomes

2]

(18) f(x) = %\/ﬁwcos TXK-a(A)]\[: f(p) cos [Ap-a(A)] dp dx
a (x > 0).
This is the principal generalized Fourier integral formula that is to be
established. Whenh = m = Oand k > 0 it follows from equation (3)
that &(A) = O ; then formula (18)'reduces to the Fourier cosine-integral

formula, Whenk = O thena = ¥ ﬂ/2 and the formula reduces to the

Fourier sine-integral formula.

4. Theoreml

Let f(x) denote a function that is sectionally continuous on each
finite interval O Z X § Xy » defined at each point of discontinuity
X as the mean value of the two limits f (X+0) and f (X-0) and absolutely
integrable on the semi-infinite interval x > O0.. Then at each point x

(x > 0) at which the right- and left-hand derivatives of f(x) exist,

the generalized Fourier integral formula (18) represents the function f(x).
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Under the conditions stated in the theorem the function is repre-
sented by its Fourier sine- and cosine-integral formulas, at the points
specified in the theorem. In view of the identitles (4) it follows that

formula (18) represents f(x) at those points, provided that either

(19) JC \]; f(p) cos [Mx+p)-0(N)] cos @(N) dp dn = O

or
)

(20) l[ d£‘ £(u) sin [M(x+p)-0(N)] sin @(N) dp dv = O

Let eaéh of the outer integrals here, with respect to A, be written as the
limit as r = o of the integral from O to r. The conditions on f(u) insure
the uniform convergence, with respect to A, of each of the inner integrals
and the validity of interchanging the order of integration of the definite

and improper integrals. ' Thus the two conditions can be written

(21) ii: k/; f(u) P(x+p,r) dp = O (x > 0) >
(22)~ iii \/;W £(p) Qxtp,r) du = O (x > 0),

where the functions P and Q are those defined by equations (5) and (9).
Theorem 1 is true then if either of the conditions (21) or (22) is

satisfied.
Whenm > Oand k > O the function P satisfies condition (8).

Hence for each fixed x(x>0) a constant X; exists such that

U:o f(p) P(xtu,r) du| < 3(;1- f: l'f(u) Idu




and from the absolute integrability of f(u) it follows that condition (21)
is satisfied.

Whenm = Oand k > O it follows from the condition (11) on
Q(t,r), in the same manner, that condition (22) is satisfied. As noted
earlier, the case k = O is included in the classical theory.

This completes the proof of Theorem 1.

5. Remarks

The preceding proof is clearly valid under conditions other than
those stated in the theorem. Tt depends on f(x) being representable by
its Fourier sine- and cosine-integral formulas and satisfying either of
the conditions (19) or (20). In the above proof that one of thoée condi-
tions is satisfied, it is sufficient that f(x) be bounded and integrable
on each finite interval ;nd absolutely integrable on the infinite interval.

The formal development in section 3 above involved conditions on
the function g(t). Those conditions are the same as the conditions imposed
on f(x) in the theorem. Under those conditions, the improper integral in
equation (12) converges uniformly with respect to x (sz) and equation (13)
is true provided that the liﬁit on the right-hand side exists. But for
each positive t at which the one-sided derivatives of g(t) exist, it was
shown that the limit does exist and that g(t) is represented by formula
(16). When the expression (12) for f£(x) is substituted into (16) it

follows that, when k > O,

oo o]

@) e = 2[ vton st aves Z o [ ston o

i
L]

for each value of t just described. The following expansion is therefore

established..
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Theorem 2: Let f(x) satisfy the conditions stated in Theorem 1.
Then when k > 0, for each positive value of x for which f(x) has a deri-
vative from the right and from the left, the fﬁnction is represented by the

formula

o0 o]

(2k) £f(x) = % JC cos [hx«a(x)]h/; f(u) cos [Ap-a] dp an +

%% cos a(X)\/nmf(u) cos Q(p) du
0

When h = m = O then 0(x) = O and this formuls reduces to the
Fourier cosine-integral formula. Thus, formula (24) is another generali-
zation of the Fourler integral formula. It is a representation of'f(x)
in terms of the function cos [Ax-(x)] (M 2 0), not in terms of the
characteristic functions of the boundary-value problem (1).

The special case of formula (18) whenm = O was arrived at
formally in references [1] and [2]. The general case of that formula and
the representation (24) together with the two expansion theorems are be-

lieved to represent new results.

10
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