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Introduction

Equivariant algebraic topology uses discrete invariants to study spaces with a
specified group of symmetries, typically assuming that the symmetry group
is both Lie (for actions on manifolds and related spaces) and compact (to
make the theory accessible). Since the invariants are discrete, they depend
only on homotopy classes 6f-maps. The domain of equivariant homotopy
theory therefore is the homotopy category(ofspaces and the goal is to
describe this category in algebraic terms. In this paper, we describe a large
part of equivariant homotopy theory in algebraic terms when the compact
Lie groupG is Abelian.

We state our results in the language of localization. A ma@3-apaces
X — Y is anequivariant weak equivalencghen the induced map on
H-fixed spacesx” — Y is a (non-equivariant) weak equivalence for
every closed subgrouff C G. An equivariant homotopy equivalence is
therefore an equivariant weak equivalence, and a fundamental result is that
an equivariant weak equivalence is an equivariant homotopy equivalence
provided thez-spaces are suitably nice, that is, homotopy equivaleGtto
complexesMostG-spaces of geometric interest (including@iimanifolds)
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satisfy this. If weocalizethe category of7-spaces by formally inverting the
equivariant weak equivalences, the result is calle@thévariant homotopy
category.

We can also consider weaker notions of equivalencé:-fap X —

Y is anequivariant rationalor p-adic equivalencéf each induced map
XH — YH is a (non-equivariant) rational gradic equivalence, that is,
a homology isomorphism with rational @r/pZ coefficients. The category
obtained fromG-spaces by formally inverting the equivariant rational or
p-adic equivalences is called tleguivariant rationalor p-adic homotopy
category

The equivariant rational angdadic homotopy categories fracture equiv-
ariant homotopy theory into a rational piece and a piece for each prime
By the (non-equivariant) Whitehead theorent;anap X — Y between
G-spaces with simply connected fixed-point spaces is an equivariant weak
equivalence if and only if it is an equivariant rational equivalence and equiv-
ariantp-adic equivalence for afl. Just as in non-equivariant homotopy the-
ory, much of equivariant homotopy theory can be recovered from rational
homotopy theoryp-adic homotopy theory, and patching information.

We describe algebraic models for rational aradic equivariant homo-
topy theory. In the rational case, our description is in terms of diagrams
of commutative differential grade@-algebras (CDGA's) of a particular
shape. In Sect. 2, we describe a categorglosely related to the lattice of
closed subgroups @¥. We define @D-CDGA to be a functor fronD into
the category of commutative differential grad@dalgebras. We define a
contravariant functoA, from the category o&i-spaces to the category of
D-CDGAs; the value at each object Bfis the Thom—Sullivan De Rham
algebra of the singular complex of a Borel construction on a fixed point
space of the giverr-space; see Sect. 3 for details. Welgtbe a cofibrant
approximation ofA (x), wherex is the one-pointG-space; essentially, this
is a minimal model fol\,(*). Then we can regard,, as a functor fronG-
spaces to the category DFCDGAs underP,,. We will see that, converts
equivariant rational equivalences to (objectwise) quasi-isomorphisms, and
S0 A, passes to a functor on the homotopy categories. In the rational case,
our main result is the following.

Theorem A.LetG be an Abelian compact Lie group. There is a funcigr
from the equivariant rational homotopy category to the homotopy category
of D-CDGAs underP,. On the full subcategory of/-simply connected
G-finite Q-typeG-spaces, this functor is full and faithful.

In the p-adic case, we usB, F,-algebras in place of rational differen-
tial gradedQ-algebras, and the cochain complex in place of the De Rham
complex, but otherwise essentially the same outline holds. We prove the
following theorem.
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Theorem B.LetG be an Abelian compact Lie group. There is a funcigr
from the equivarianp-adic homotopy category to the homotopy category
of D-EDGAs underP,,. On the full subcategory df-simply connected
G-finite p-typeG-spaces, this functor is full and faithful.

Here G-simply connectedneans that each fixed-point space is sim-
ply connected in the non-equivariant sense (and may be empty or non-
connected). Likewise(7-finite Q- or p- type means that each fixed-point
space is (non-equivariantly) finit@- or p- type, that is, its homology with
coefficients inQ or Z/pZ is finitely generated in each degree. In the case of
each of these theorems, we can describe in homological terms the image of
the G-simply connected--finite typeG-spaces; see Sect. 3 for details.

Unfortunately, we are less successful at describing the objéctnd
P, and so the models obtained from our main theorems are not very explicit
in general. Wherlim G = 0, that is, when? is a finite group, we can take
P, to be the constant diagram @hin the rational case ang,, to be the
constant diagram oR), in the p-adic case. The models we obtain this way
are more complicated than the ones described in [11] (rationally) and in
[7] (p-adically), where the methods apply more generally to non-Abelian
finite groups. In the case whéhis the circle grou’, we can also describe
our rational models explicitly; we do this in Sect. 4. This is the algebraic
category described in the second author’s 1999 University of Chicago thesis

[9].

1 Diagrams of spaces

In order to produce algebraic models, we first reduce equivariant homotopy
theory to the study of diagrams of spaces and fibrations, and then apply
the algebraic models of [10] and [6]. Historically the first description of
equivariant homotopy theory in terms of diagrams is the theorem of El-
mendorf [5] that explains how to recoverGaspaceX up to equivariant
weak equivalence from its system of fixed-point spakés and inclusion
relations.

To make this precise, consider thibit categoryO of G, whose objects
are the canonical orbits/H for all closed subgroup&# C G, and whose
maps are equivariant maps between them. Any ma&pd(G/H,G/K) is
of the formgH — ga for somea € G with such that~'Ha C K, and
moreover that, andb represent the same map if and onlyéf ' € K. So
the maps in this category are given by

0q(G/H,G/K) = (G/K)H.

We regard); as a topological category, topologizing the maps by the above
isomorphism.
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Associated to angr-spaceX there is a contravariant fixed point functor
®X from O to spaces. This functor has the va& (G/H) = X1,
with morphisms induced by th@-action on the spac&’. This functor is
continuousn the sense that the map

0c(G/K,G/H) x X (G/H) — X (G/K)

is a continuous map for every pair of obje@g K, G/ H of O¢. Motivated
by this example we define the categddy:i/ of Os-spaces to be the cat-
egory of continuous contravariant functors fra@da, to spaces. We define
weak equivalence, rational equivalence, gratlic equivalence iU ob-
jectwise; we say that a mafi — Y in Ogl is aweak (esp.rational,
p-adic) equivalencef X(G/H) — Y (G/H) is a non-equivariant weak
(resp. rationalp-adic) equivalence for every objeGt/ H of O¢. We define
thehomotopy categoryherational homotopy categoryand thep-adic ho-
motopy categorgf On-spaces by formally inverting the weak equivalences,
rational equivalences, andadic equivalences respectively.

We can interpre® as a functor from the category 6f-spaces t@qU/.
The earlier definitions immediately imply that a mapofspacesX — Y
is an equivariant weak, rational, pradic equivalence if and only if the
induced ma@ X — @Y is a weak, rational, gr-adic equivalence idsU
respectively. It follows tha# factors through the homotopy categories we
obtain by inverting these equivalences. The following result showstKat
contains exactly the same homotopy information as the original sjace

Theorem 1.1. (Elmendorf) The functo® induces an equivalence of:

() The equivariant homotopy category and the homotopy categ@y-ef
spaces,

(i) Theequivariantrational homotopy category and the rational homotopy
category ofOs-spaces, and

(iii) The equivariantp-adic homotopy category and theadic homotopy
category ofOs-spaces for each prime

Proof. Elmendorf [5] constructs a functar from Og-spaces td--spaces,
and natural weak equivalenc€® — Id and®C — Id.

For reasons explained in the next section, we find it convenient to work
with a variant of the orbit category that we call thebdivided orbit cate-
gory AQ¢. Although Elmendorf’s theorem holds very generally, here we
need to restrict to the case whéhis Abelian. In this case, the orli/ K
has an action by the grouf/K. The idea for the categorAQg is to
have many objects corresponding to each afhifs, one for each group
G/H that can act on it. We use the symhl@) K [H] to denote the or-
bit G/K thought of as &7/H space. Following this idea, for maps, we
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have AOq(G/K[H|,G/K[H]) = G/H. As K varies, we have a canon-
ical quotient mapG/K'[H] — G/K[H] wheneverK’ C K. In addi-

tion, as H varies, we have a canonical group-change reap [H| —
G/K|[H'] wheneverH’ C H. To understand the variance i (which

may appear backwards), observe that for a contravariant fuiGtire map
X(G/K[H']) = X(G/K|[H]) goes from a space with some group acting
to a space with a quotient group acting. This leads to the precise definition
of the categoryAO. We emphasize that the variancefihis opposite to

that of K.

Definition 1.2. Let AO¢ be the category that has one objéet K'[H] for
each pair of closed subgrougé C K. Maps are defined by

G/H, ifHyCH CK;CK>

AOc(G/Eq[Hi], G/ Ko[Ho]) = {@ otherwise

Composition of maps is induced by multiplicatiorGnWe define the cate-
gory AOqcU of AOg-spaces to be the category of continuous contravariant
functors fromAQO¢ to spaces.

Again we define weak equivalences, rational equivalencespaauic
equivalences objectwise, and form the homotopy category, rational homo-
topy category, ang-adic homotopy category cAOs-spaces by formally
inverting the corresponding equivalences.

Regarding the obje¢t /K [H| as the orbit7 /K with aG /H-action defines
a(covariant) functor from\O¢ to O¢: The functor sends the obje&y K [H]
to G/K, and sends the morphism spat®q (G/ K [H1], G/ K2[Hs]) =
G/H; to the morphism spac®q(G/K1,G/K2) = G/K» via the quo-
tient map whenH, € H, € K; C K,. Composing with the functor
AOq — Og, we therefore obtain a functérfrom Ogif to AOU. Clearly
I preserves weak equivalences, rational equivalencesp-auic equiva-
lences, and so it passes to the categories obtained by formally inverting
these equivalences. In Sect. 7, we show:

Theorem 1.3. The functor/ induces full embeddings of:

(i) The homotopy category @s-spaces in the homotopy category of
AQOg-spaces,

(ii) The rational homotopy category dl;-spaces in the rational homotopy
category ofAO¢-spaces, and

(iif) The p-adic homotopy category @-spaces in the-adic homotopy
category ofAQO¢-spaces for each prime

In order to understand the embeddings, we also want to identify the image
of . Ifwe startwith an objeck in Ogl/, then by definitiod X (G /K [H]) =
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X(G/K)foreveryH C K. Define the categorym* to be the full subcat-
egory of the homotopy category afOsU consisting of those objects for
which any mapX (G/K[H]) — X(G/K|K]) is aweak equivalence for all
subgroupsi C K; likewise definelm§' andImﬁ to be the respective full
subcategories of the rational am@dic homotopy categories &fOqU con-
sisting of those objects for which any map(G/K[H]) — X (G/K[K])

is a rational angh-adic equivalence. In Sect. 7, we prove:

Theorem 1.4. An objectX in the homotopy category, rational homotopy
category, orp-adic homotopy category aiOs-spaces is isomorphic to
an object in the image of if and only if X is in Im?, Im§, or Im2
respectively.

Thus, we have equivalences of categories between the equivariant ho-
motopy category an#im?, the equivariant rational homotopy category and
Im#', and the equivariant-adic homotopy category aridnpA.

2 Diagrams of bundles

Since the categorie8; and AO¢ are topologized?o-spaces and\O¢-
spaces cannot be used directly to produce algebraic models urless
finite. Dwyer and Kan [3] showed that equivariant homotopy theory can be
reduced to the theory of diagrams on a certain discrete category and the
theory of fibrations. In this section, we describe a slightly different such
reduction that follows similar ideas.

We say that a map af’-spacesX — Y is anunderlying weak equiv-
alencewhen it is a non-equivariant weak equivalence. The projection map
EG x X — X is an underlying weak equivalence, and so ev&érgpace
is underlying weak equivalent to a frééspace. A basic tenet of bundle
theory is that &7-spaceX is determined up to underlying weak equivalence
by the classifying mag: EG x¢ X — BG. Precisely,X is underlying
weak equivalent to th&'-space obtained as the pullback algmaf the map
EG — BG, as this is again thé&/-spaceEG x X. In an Og-spaceX,
theG/H-spaceX (G/H) is determined only up to underlying weak equiv-
alence, and this piece of the structure can therefore be recovered from a
classifying map. The goal is to fit these classifying maps together in such a
way that the whol&;-space can be recovered.

The first difficulty is that the different objects in tlf¢; diagram have
actions of different groups. For an Abelian groGp the universal bundle
E(G/H) — B(G/H)iscovariantinG/H, whereasthe spac&§G/H) in
anOg-spaceX are contravariant. We have introduced the subdivided orbit
categoryAQ¢ in the previous section precisely to deal with this problem.
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For a mapG/K,[H,] — G/K>[H2], we have contravariance both in the
universal bundles

(E(G/H1) = B(G/Hy)) «— (E(G/H2) — B(G/H,))

and the spaceX (G/Ki[H1]) < X(G/K3[Hs]). In fact, in contrast to
O¢-spaces, we can defineB0s-spaceFE by

(2.1) E(G/K[H]) = E(G/H).

The final mapE — x* is a weak equivalence.

Before proceeding, we should note one other complication. We can re-
cover the-spaceX up to underlying weak equivalence from the classifying
mapEG xq X — BG, even ifitis known only up to weak equivalence in
the category of spaces ovBIGG. However, if we know the classifying map
only up to rational op-adic equivalence, we cannot necessarily recoier
up to underlying rational op-adic equivalence. An instructive example is
the case of = S? with the antipodal action off = Z/27Z. Here, the map
S? — x is not a rational equivalence but induces a rational equivalence on
Borel constructions. The classifying map therefore cannot distinguish the
freeZ /27-spaceS? from the trivialZ /2Z-spacex. This problem is directly
related to the fact that the group in the example is not connected. When
G is connectedBG is simply connected, and it follows from the ideas of
Eilenberg and Moore [4] that pullbacks along the fibratio® — BG pre-
serve homology isomorphisms. For this reason, we base our main bundle
constructions on an action of the identity compon@ptand separate out
the action of the finite groupoG = G/G.. Instead of working with the
classifying spac®&G, we work instead with the,G-spaceEG /G, which
is (non-equivariantly) equivalent t8(G.).

Now we combine these two ideas to define a cate@boy bundle dia-
grams whose various homotopy categories are equivalent to the correspond-
ing homotopy categories aAO;-spaces. Motivated by the observations
above, the functor fromAO¢-spaces to this new category tak&sto a
diagram of bundles of the form

E(G/H) x¢/m. X(G/K[H]) = E(G/H)/(G/H)e,
in other words, of the form
E(G/K[H]) X m). X(G/K[H]) = E(G/K[H]) X(G/m). *-

We want our diagrams to be indexed on a discrete catdfoapd examining
how these bundles fit together leads us to the following definition.
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Definition 2.2. Let D be the homotopy category #fOg: its objects are
the same as the objects 4D, and maps are

D(G/K1[H1|,G/K3[H)]) = mo(AOq(G/ K\ [Hy],G/K2[Hy)))
=mo(G/Hy)

if Hy C Hy C K, C K, and() otherwise. We define the categd of
D-spaces to be the category of contravariant functors fldito spaces.

We emphasize that althoug@his a homotopy category, a functor i/
has codomain the category of spaces as opposed to the homotopy category
of spaces.

The prescription

QX(G/K[H]) = E(G/K[H]) x(g/m). X(G/K[H])

defines a functofp from AOg-spaces tdD-spaces. We writé3 for Qx,
wherex is the constanAO¢-space on the one-point space. We regawab
a functor fromOgU to DU/ B.

Definition 2.3. The category5 is the categoryDl{ /B of D-spaces lying
overB.

In other words, an object df consists of an objed” of Dl together
with a mapY — B. Amap inB is a map inDY/ that commutes with the
maps tob.

We define weak equivalences, rational equivalencespaatic equiv-
alences in3 objectwise for the underlyin@-space. As always, we form
the homotopy category, rational homotopy category, jadic homotopy
category of3 by formally inverting those maps that are weak equivalences,
rational equivalences, andadic equivalences respectively. It follows from
classical bundle theory (and the Serre spectral sequence) that the functor
Q@ preserves weak equivalences, rational equivalencesy-agit equiva-
lences, and so we obtain induced functors between the various homotopy
categories ofAOg-spaces and the corresponding homotopy categories of
B. In Sect. 6, we show:

Theorem 2.4. The functorQ induces equivalences between the homotopy
category, rational homotopy category ampdadic homotopy category of
AQg-spaces and the corresponding homotopy categoriés of

Once again, we also wish to identify those objects equivalertspaces,
or equivalently, taDs-spaces. For a@;-spaceX, the AOg-spacel X has
the property that

IX(G/K[H)) = X(G/K) = IX(G/KIK])
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and the structure mags/K[K] — G/K[H] induce the identity isomor-
phism. It follows that for the objec/.X of B,

QIX(G/K[H]) = E(G/H) x(c/m). IX(G/K[H])
= E(G/H) xq/m), X(G/K)
= B(G/H) xp/k) E(G/K) x(G/K). X(G/K)
= B(G/K[H]) X pa/kk)) QIX(G/K[K]).

With this as motivation, we definém?, Imf, and Im5 to be the full
subcategories of the homotopy category, rational homotopy category, and
p-adic homotopy category @&, consisting of those objecis for which the

map

(25)  Y(G/K[H]) = B(G/K[H]) x pc/k(x)) Y(G/K[K]).

induced byle] € 70G/K = D(G/K|[K]|,G/K[H]) is a weak equivalence,
rational equivalence, angtadic equivalence respectively. In Sect. 6, we
prove:

Theorem 2.5. An objectY” in the homotopy category, rational homotopy
category, orp-adic homotopy category @ is isomorphic to an object in
the image of) if and only if X is in Im®, I'm§, or Im5 respectively.

3 The algebraization theorems

Armed with descriptions of the equivariant rational grddic homotopy
categories in terms of diagrams on a discrete category, we explain the alge-
braization theorems. The basic idea is that any (contravariant) functor from
spaces to some category of algebras defines a functor from the over cate-
gory B to the category of (covarianfp-diagrams of algebras lying under

the diagram obtained fro8. When the functor preserves rationaltpZ
homology isomorphisms, itinduces a functor on the rationadadic homo-

topy categories. We apply this observation to the Thom—Sullivan De Rham
and singular cochain functors.

Definition 3.1. Let £2* denote the functor from spaces to commutative dif-
ferential gradedQ-algebras obtained by applying the polynomial De Rham
functor of [10] to the singular simplicial set of a space. I(ét denote the
singular cochain functor from spaces &, F,-algebras.

We consider the category of (covariant) functors frbrto commutative
differential gradedQ-algebras and likewise t&,, F,-algebras. We call
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objects in these categoriésCDGAs andD- £, DGAs respectively. Weak
equivalences in these categories are maps that are quasi-isomorphisms at
each object. Applying the functof3* andC* objectwise to &-space, we
obtain functors fronD-spaces t@d-algebras.

Definition 3.2. Let £2* be the functor fronD-spaces t@>-CDGAs defined
by applying2* objectwise. LeC* be the functor frontD-spaces taD-
E..DGAs defined by applying™ objectwise.

If we apply the functor2* to an objec” of 3, we obtain not just &-
CDGA2*Y ,butalsoamap dP-CDGAs{2*B — §2*Y . Since the structure
mapY — B is necessary in the definition of the categd@yto obtain
the embedding of the rational equivariant homotopy category, we should
expect that to obtain an embedding of the rational homotopy category into
a homotopy category in algebra, we should need some form of the structure
map 2*B — 2*Y. We could look at the category @-CDGAs under
£2* B, but this might not have the correct homotopy category. An analogy to
keep in mind is that the category of spaces under a given spdgpically
does not contain all the homotopy types expected from the homotopy type
of X if X is not homotopy equivalent to a CW complex. Similarly, we need
to look at the category dP-CDGAs under a suitably nice quasi-isomorphic
replacement fof2* B.

In [7] it is shown that a diagram category of commutative differential
gradedQ-algebras or off,, F,-algebras is a closed model category. We
therefore have a notion abfibrant objectand the factoring axioms allow
us to choose aofibrant approximatiorP,, of £2* B and a cofibrant approx-
imation P, of C*B. This is one precise meaning for the phrase “suitably
nice quasi-isomorphic replacement”. However, to prove the theorems we
are after, we do not need to put such a stringent requiremetit,cand
P,; we only need to choose an objectwise cofibrant approximation. Since
we assume that the reader interested inptaglic case is familiar with [6],
we do not review the definition of a cofibrait, F,-algebra. It is entirely
analogous to the definition of a cofibrant commutative differential graded
Q-algebra from [1], which we do review.

Definition 3.3. Let R be a commutative differential grade@-algebra
(CDGA). We saythakis cellularifthere exist graded submodulé§y(= 0),
X1, Xo, ...of theunderlying graded module @t such that

() The differential of any element ifX,, is in the sub- graded algebra
generated byXy,..., X, _1.

(i) The underlying graded algebra ok is the free graded commutative
algebraonX; ¢ Xo @ ---.

We say that? is cofibrant if it is a retract of a cellular CDGA.
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A standard trick in model category theory for finding a weak equivalence
from a cellular object to an arbitrary object is call@dillen’s small object
argumentand it is explained for CDGA's in [1, pp. 20-22]. In this context,
it gives a functorl” from the category of CDGA’s to itself and a natural
quasi-isomorphisni® — Id such that for any CDGAR, I'R is a cellular
CDGA. We have an analogous construction i DGA's. The following
proposition is an immediate consequence.

Proposition 3.4. There exists éP-CDGA P, and a quasi-isomorphism
Py — £2°B,suchthatP,(G/K[H])isacofibrant CDGAforevery/ K [H|
in D. There exists a)—EooDGAEP and a quasi—isomorphisdjp — C*B,
such thatP,,(G/ K[H]) is a cofibrantE,DGA for everyG / K[H] in D.

We choose and fix such object, andgp. The functors2* andC*
now take objects i to objects undeP, and P,,. We denote these under-
categories asly and.A, respectively.

Definition 3.5. Let Ay denote the functor from8 to A, induced by2*; let
A, denote the functor fron to A, induced byC*. We define the functor
A, from G-spaces to4, to be the composit&, o Q) o I o @, and the functor
A, from G-spaces ta4,, to be the composité, o Q o [ o P.

The functorA, converts rational equivalences to quasi-isomorphisms
and the functoA, convertgp-adic equivalences to quasi-isomorphisms. We
therefore obtain functord, andA, on the homotopy categories obtained
by inverting these equivalences.

We can now explain the main theorems of the introduction. We say that
an objectY’ of B is simply connected each component o (G/K[H])
is simply connected for all:/ K[H]. Likewise, we say thaY’ is finite Q-
or p- typeif eachY (G/K[H]) is finite Q- or p- type. Clearly, when &-
spaceX is G-simply connected an@-finite type, the objecQ/® X of B
is simply connected and finite type. Theorems 1.1, 1.3, and 2.4 show that
the functor@ o I o & embeds the rational equivariant homotopy category
in the rational homotopy category 6fand embeds thg-adic equivariant
homotopy category in thg-adic homotopy category df. Therefore, the
main theorems are immediate corollaries of the following theorem that we
prove in Sect. 5.

Theorem 3.6.

() ThefunctorAy embeds the full subcategory of simply connected fihite
type objects in the rational homotopy categorysats a full subcategory
of the homotopy category ofp.

(i) The functorA, embeds the full subcategory of the simply connected
finite p-type objects in the-adic homotopy category df as a full
subcategory of the homotopy category/4f
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As aconsequence of Theorems 1.1,1.3, 2.4, and 3.6, we obtain an embed-
ding of the equivariant rational homotopy categoryGssimply connected
G-finite type G-spaces as a full subcategory of the homotopy category of
Ap. To complete the picture we need an intrinsic characterization of the
D-CDGA:s in this subcategory. For this, recall that a graded commutative
algebra is said to binite typeif it is finitely generated as a module in each
degree andimply connecteiflitis concentrated in non-negative degrees and
zero in degree 1. We say that itdpacelikdf in degree zero it is a cartesian
product of copies of). In Sect. 6, we prove the following characterization
theorem.

Theorem 3.7. Let R be an object of4y. ThenR is isomorphic in the homo-
topy category of4, to A, X for someG-simply connected:-finite Q-type
spaceX if and only if:

(i) H*R(G/K[H)) is finite type, simply connected, and spacelike for all
G/K[H]inD,

(i) The natural map
HOR(G/K[H)) ® H*Py(G/K[H]) - H2R(G/K[H))
is injective for allG/K[H] in D, and

(iii) The natural map

Torp, (/K (x)) (Lo(G/K[H]), R(G/K[K])) = R(G/K[H])
is a quasi-isomorphism for al/ K [H] in D.

Condition (i) ensures thatea¢{G/ K [H|) is equivalentto the De Rham
functor applied to a simply connected finite type space. Condition (ii) is
needed because the Borel construction ¢fzd H ).-space can be simply
connected even when the original space is not. In conditionbi) denotes
the differential torsion product; this condition is the algebraic analogue of
the condition 2.5 for an object df to be inImy'.

In the F,, context, the cohomology of af., algebra has an operation
called P°; we say that a finite type graded commutative algebra with an
operationP? is spacelike when it is generated asBgtmodule by fixed-
points of P, We have an analogous characterization theorem also proved
in Sect. 6.

Theorem 3.8. Let R be an object of4,,. ThenR is isomorphic in the homo-
topy category ofd,, to A, X for someG-simply connected:-finite p-type
spaceX if and only if:

(i) H*R(G/K[H)]) is finite type, simply connected, and spacelike for all
G/K[H]in D,

(i) The natural map
HOR(G/K[H)) ® H?P,(G/K[H)) — H*R(G/K[H])
is injective for allG/K[H] in D, and
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(i) The natural map
Torp (/K (K] (£,(G/K[H]), R(G/K[K])) — R(G/K[H])
is a quasi-isomorphism for ali / K [H],

In condition (iii), Tor denotes thd’., torsion product (see for example
[6, 3.1]).

4 Simplified diagrams

The last section described our algebraic models in general, but in the case
when the grougr is connected, that is, whénis a torus'”, we can simplify

these models and use smaller diagrams. The idea is to take advantage of the
fact that the mafB3(G/H) — B(G/K) is a rational equivalence when the
index of H in K is finite and is g-adic equivalence when the index Bf

in K is prime top. WhenG is the circleT = S, we can specify in detail

a choice for the cofibrant approximatidty, for the simplified diagrams in

the rational context, and we recover tliesystems of the second author’s
thesis [9].

Let Dy be the subcategory @1 consisting of only those objeats/ K [H |
with H connected, and |€p, be the subcategory @ of objectsG /K [H]
with o H a p-group. These subcategories will form the shape of our sim-
plified diagrams. The inclusion of these categorieRimduces functord
andJ, from D-spaces tdy-spaces an®,-spaces. We leB; and B, be
the over categorie®!//.JoB andDU / J,B. We therefore obtain functors
Jo: B— ByandJ,: B — B,

To compare the simplified categori#§ and B; to the original B we
produce functors going the other direction. Since we are assuming tkat
connected, the mapping setsIm Dy, andD,, are either empty or a single
point. It follows that we can define a functéfy : Dold — DU by

KoZ(G/K[H]) = Z(G/K[H.]),

whereH. is the identity component dff. Similarly we can define a functor
K,: DU — DU by

KpZ(G/K[H]) = Z(G/K[Hp)),

whereH,, denotes the-Sylow subgroupf /7, the subgroup of! consisting
of those components that are in th&ylow subgroup ofrg H. SinceH, C
H, C H, we have maps i®

G/K[H] — G/K[Hy] - G/K[H,]

and these induce natural transformatidiig/o — Id and K,.J, — Id.
Using these maps afi, we obtain functoré(y: B, — BandK,: B, — B.
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Proposition 4.1. The functorKy embeds the rational homotopy category of
Bj, as a full subcategory of the rational homotopy categor ofhe functor
K, embeds thg-adic homotopy category &, as a full subcategory of the
p-adic homotopy category &f.

Proof. The functors/y, J,,, Ko, K, preserve the relevant equivalences and
so induce functors on the relevant homotopy categories. The composite
functors.Jy K, and.J, K, are the identity functors, and the natural transfor-
mationsKoJo — Id and K, J, — Id are isomorphisms on objects in the
image of Ky and K, respectively.

In order to understand the restriction of the functdssand J, to Im5
and Imff, we need the following key fact that served as our motivation
above.

Proposition 4.2. The mapK,.JoB — B (resp.K,J,B — B) is arational
(resp.p-adic) equivalence.

Proof. The map
B(G/Hc) = B(G/K[Hc]) = B(G/K[H]) = B(G/H)

is anH/H.-bundle. Sinced/H. is a finite group that acts trivially on the
homology ofB(G/H.), this map is arational equivalence. Similady/ H,

is a finite group with order prime tp that acts trivially on the homology
of B(G/H,), and so the maB(G/K|[H,]) — B(G/K[H]) is ap-adic
equivalence.

We definelmg”‘g to be the full subcategory of the rational homotopy
category of3), consisting of those object for which the maps

Z(G/K[H]) — B(G/K[H]) X p/k(x)) Z(G/K[K]).

are rational equivalences for @/ K [H]| in Dy. Likewise, define[mfp to

be the full subcategory of the-adic homotopy category d#, consisting

of those objects for which the analogous mapsyaaelic equivalences for
all G/K[H]inD,. Then the previous proposition and the Eilenberg—Moore
spectral sequence give the following.

Proposition 4.3. The functors/y and K| restrict to inverse equivalences
of ImOB0 andIm§. The functors/, and K, restrict to inverse equivalences

of Iy andIm?5.

In algebra, we have analogous functdisand K. between the functor
categories orD and the functor categories dy andD,. We abbreviate
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JoP, and.J, P, to P} andﬂg, and we let4; and.A}, denote the categories
of Dy-CDGAs underP;, and of D-E,,DGAs underP;, respectively. The
same argument as that of Proposition 4.1 showsAfednd K, embed the
homotopy categories ofl; and.A;, in the homotopy categories of, and
A, respectively. We obtain the following version of our main theorems.

Theorem 4.4. LetG be a torus.

(i) The functorA, from the equivariant rational homotopy category to the
homotopy category ofl;, is full and faithful on the full subcategory of
G-simply connectedr-finite Q-type G-spaces.

(i) The functorA,, from the equivarianp-adic homotopy category to the
homotopy category of;; is full and faithful on the full subcategory of
G-simply connectedr-finite p-type G-spaces.

The obvious analogues of the characterization Theorems 3.7 and 3.8 are
also immediate consequences.

Finally, we close this section with a concrete description of the rational
models we obtain whet is the circle grougl’ = S*. SinceT has pre-
cisely two connected subgroupsandT, the categoryp, therefore consists
of the objectsG/H|[e] for H C T and the objectG/T[T]. Observe that
JoB(G/HJe]) = BT and the map induced b/ Kle] — G/H]e] is the
identity. JoB(G/T[T]) = B(T/T) = . SinceH*BT is the polynomial al-
gebra on a generatein degree2, choosing a representing cycle gives amap
of CDGA's fromQ|[c| to £2* BT. The unitmag) — (2*xis anisomorphism.

Definition 4.5 (Rational models for the circle group).Define theDy-
CDGAP{ by P((G/H|e]) = Q|c], and P{(G/T[T]) = Q. This is a cofi-
brant approximation of/y£2* B. The categoryA4], is the under category of
Dy-CDGAs, under thig?;,.

This is the category described in [9].

5 Proof of Theorem 3.6

Theorem 3.6 compares an over category of diagrams of spaces with under
categories of diagrams of algebras. In the present context where our objects
are indexed on the discrete diagrdmwe can use the singular complex and
geometric realization functors to translate the problem into the analogous
problem for simplicial sets. Le® denote the category of simplicial sets, let
DG denote the category @ simplicial sets, the category of contravariant
functors fromD to S. We denote by3, the singular complex aB; in other
words, B, is theD simplicial set withB,(G/K[H]) the singular complex

of B(G/K|[H]). Let B be the categor{PS/ B, of D simplicial sets lying
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over B,. We can regard the singular complex as a functor fidno 3s;
as such, it preserves weak equivalences, rational equivalences;aahc
equivalences. Standard arguments give the following observation.

Proposition 5.1. The singular complex functor induces equivalences of:

(i) The homotopy category &f and the homotopy category Bf.

(i) The rational homotopy category &f and the rational homotopy cate-
gory of 5.

(iii) The p-adic homotopy category & and thep-adic homotopy category
of B:.

The functorsA, and A,that we consider in Theorem 3.6 are defined
by objectwise application of a functor on simplicial sets to the singular
complex of an object o5. In other words, both of these functors factor
through the categoriss. We denote the corresponding functors&nby
the same symbolsy, applies the polynomial De Rham funct@r andA,,
applies the cochain funct@r* objectwise to an object d@8. Thus, to prove
Theorem 3.6, it suffices to prove the following simplicial analogue.

Theorem 5.2.

(i) The functorAy embeds the full subcategory of simply connected fi-
nite Q-type objects in the rational homotopy categoryi3fas a full
subcategory of the homotopy categorytyf

(i) The functorA, embeds the full subcategory of the simply connected
finite p-type objects in the-adic homotopy category d¥; as a full
subcategory of the homotopy category4f.

The advantage of working in the simplicial context is that now the func-
torsAy andA,, have adjoints. In [1], Bousfield and Gugenheim construct an
adjointU, to the De Rham functor and essentially the same construction in
[6] gives an adjoint/,, to the cochain functor. Léf,, andU,, denote the func-
tors fromD-CDGAs andD- E,,DGAs toDG obtained by applying/, and
U, objectwise. An easy exercise in category theory proves that these functors
are then adjoint to the functofg" andC* defined in 3.2. Sinc& P, is gen-
erally notB,, U,, does not define a functor from to 5. On the other hand,
the (£2*, U,,) adjunction does give us amap, — U,2*B, — U, P, and
so we can define a functdq : Ag — B by

VoR = Bg Xy, p, UpR.

A check of universal properties shows thatis adjoint toA. Similarly, we
defineV,: A, — Bs by V,R = By xy,p, U,R, andV, is adjoint toA,,.

The next obstacle is that the functd@ andV do not preserve weak
equivalences. In fact, the functarg andU, already do not preserve weak
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equivalences. This is handled in [10] by using minimal models, and simi-
larly in [1] and [6] by using cofibrant approximation. It is shown in [1] and
[6] that Uy andU,, do preserve weak equivalences between cofibrant ob-
jects. In current jargon, thg?2*,U) and(C*, U) adjunctions formQuillen
adjoint pairs which means that in additiatfy andU,, convertcofibrations

to Kan fibrations of simplicial sets. We recall the definition of cofibration of
CDGAS.

Definition 5.3. Let A — B be a map of CDGA'’s. Leti* denote the un-
derlying graded commutative algebra 4f We say thatd — B is cellular
if there exist graded submoduleX¥{ = 0), X, Xo, ... of theunderlying
graded module oB such that

() The differential of any element ii,, is in the sub- gradedi®-algebra
generated byXj,..., X, _1.

(i) The underlying graded! algebra ofR is the free graded commutative
Af algebraonX; & Xo & - -.

We say thatd — B is a cofibration (writtenA — B) if it is the retract of
some cellular map!’ — B’.

The definition of cofibration of’,.algebras is entirely similar. The def-
inition of cofibration is just a relative form of the definition of cofibrant: An
object is cofibrant if and only if the map from the initial object is a cofi-
bration. Although it may not be obvious from the definition given above, it
turns out that the composition of cofibrations is a cofibration; this is one of
the axioms of a closed model category structure.

Arelative form of the construction of the cofibrant approximation functor
alluded to in section 3 gives a factorization functor that takes a fmnap —

B to the composite of a cofibratioh — B’ and a weak equivalendg’ —

B, functorially in f. Functoriality here means that when the diagram on
the left commutes, the construction gives a niép— D’ that makes the
factorization diagram on the right commute.

A——B A——pB' —=B
C——=D C——=D —=1D

Applying this toD diagrams, we obtain objectwise cofibrant approximation
functor in Ag.

Proposition 5.4. There exists a functof’,: A4y — Ao and a natural
quasi-isomorphismy: I’y — Id, such that for evenk, the initial map
P, — IR is an objectwise cofibration, that is, the m&g(G/K[H]) —
(LyR)(G/K[H]) is a cofibration of CDGA's for everg /K [H| in D.
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Similarly, we obtain an objectwise cofibrant approximation fungtgr
in the categoryA,,.

Proposition 5.5. The functorl, L, converts quasi-isomorphisms. iy to
rational equivalences i8s. The functo, I, converts quasi-isomorphisms
in A, to p-adic equivalences if3;.

Proof. The functor U, preserves weak equivalences between cofibrant
CDGA's and converts cofibrations of CDGA's to Kan fibrations. It follows
that U,I", preserves weak equivalences between objectwise cofibrant
objects and converts objectwise weak equivalences to objectwise Kan fibra-
tions. ThuslU,P,(G/K[H]) is a Kan complex and/ ([  R(G/ K[H]) —
UyP,(G/K[H])is aKan fibration for everyz in Ao and evenG /K [H] in

D. SinceBy is simply connected/, P, is simply connected, and it follows
from the Eilenberg—Moore spectral sequence thatthe pullBagk; p, (—)
preserves rational equivalences. We conclude that

VoL'y(—) = By XUyPy UoLy(—)

converts quasi-isomorphisms to rational equivalences.praéic case is
entirely similar.

We obtain an induced functdr, from the homotopy category of, to
the rational homotopy category 8, and an induced functdv,, from the
homotopy category ofl,, to thep-adic homotopy category &;. A standard
model category argument then gives the following result, but we include a
self-contained proof.

Proposition 5.6. The derived functorg§Ay, Vo) and (A, V,,) are adjoint
pairs.

Proof. Letn: Id — VhAp ande: Id — AgVj be the unit and counit of the
(A, Vp) adjunction. We obtain a natural transformation”, — AgVo L,
and using the natural transformatiof’, — Id, we obtain a natural trans-
formationn’: 1d — V,I'yAy. For an objeclt” in B, the composite

ToAoY S5 AgVoLyAg 227 Agy

is the natural transformation Conversely, for an objed® in Ay, the com-
posite
! Vol €

VoLoR 5 VoLyAgVo L R —=2 Vo[, R
is the identity. In the homotopy category &y, the natural mapy is an
isomorphism, and using the inverse natural isomorphisf an easy check
verifies that the derived functorsy andVy are adjoint. The argument in
the p-adic case is entirely similar.
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We can now prove Theorem 5.2.

Proof (Proof of Theorem 5.2)Ve treat the rational case in detail; thadic
case follows by analogous arguments. Using the previous proposition, it
suffices to show that the unit of the adjunction

7]/3 Y — %EOAOX

is a rational equivalence whenewéris a simply connected and finifg-type
object of B;.

By construction, each CDGA,AoY )(G/K[H]) is acofibrant approx-
imation of (AoY)(G/K[H]) = 2*(Y(G/K[H])). The main argument of
[1] is that the map

Y(G/K[H]) = Uo(LyAoY)(G/K[H])

is a rational equivalence sindgé(G/K[H]) is a simply connected finite
Q-type space. SincEj converts cofibrations to Kan fibrations, the map

Uy(LpAoY)(G/K[H]) — UyPy

is a Kan fibration between simply connected Kan complexes, and it follows
that the maps

Y(G/K[H]) = Bsxu,p, UgLyAcY (G/K[H]) = UpLoAoY (G/K[H])

are rational equivalences. Since the first mag/ ien G/K[H], it follows
thatr’ is a rational equivalence.

6 The sections functor and the proof of the characterization theorems

In this section, we prove the characterization Theorems 3.7 and 3.8. It turns
outthatitis much easier to prove these theorems using the categd ) of
spaces rather than the categsryFor this reason, we introduce thections
functor S inverse to the bundle funct@y. This functor is also exactly what
is needed to prove Theorems 2.4 and 2.5 from Sect. 2, giving the passage
from diagrams of spaces to bundles, and so we begin with the proof of these
theorems.

The most concise way to define the funckiis to note that the map
that takes a space to its set of components defines a fudeéfer — D
that allows us to regard B-space as aAOg-space. Recall thak is the
AO¢-space defined in (2.1) d5(G/K[H]|) = E(G/H), andB is given
by B(G/K[H]) = E(G/H)/(G/H). (as aryG space). Then we have a
map of AOg-spacedy — B. For an objeclt” of 5, we define

SY =ExpY,
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the pullback in the category aiOs-spaces. In concrete terms

SY(G/K[H]) = E(G/K[H ]) X B(G/K[H]) (G/K[ )
= E(G/H) X(g@/m)/c/m).) Y.(G/K[H]).
ThenS defines a functor fron8 to A(’)Gu.
ThemapE(G/H) — E(G/H)/(G/H). is afibration, and so the func-
tor S preserves weak equivalences. Moreo¥®; /H) /(G /H). isamodel
for B(G/H). and is therefore connected and simply connected; it follows

from the Eilenberg—Moore spectral sequence fhatso preserves rational
equivalences ang-adic equivalences.

Proof (Proof of 2.4)Consider the composite functéi). For any AO¢-
spaceX, we have

SQX(G/K[H])
= E(G/K[H]) X (5(G/KH)x G /m), = (E(G/K[H]) X G/m), X(G/K[H])
= E(G/K[H])x X(G/K[H])
= (Ex X)(G/K[H]).
These isomorphisms are natural Gy K[H] and so we obtain a natural
isomorphismSQX = E x X. The weak equivalenc& — x induces a

natural weak equivalence) — Id.
Now consider the other composite. By definition,

QSY(G/K[H]) = EG/H)xc/m). SY(G/K[H])
= EG/H)x@G/m). (EG/H) X/ Y (G/K[H]))
= (EG/H)xc/nm). (G/H))XBG/K[H)Y(G/K[H])
There is a homotopy equivalence
B(G/K[H]) = E(G/H)/(G/H). — E(G/H) X(G/m). E(G/H)

whose composite with both projection mapd20G/ K[H]) is the identity;

it is constructed using the diagonal map®fG/H). Using this, we can
define a magy (G/K[H]) — QSY(G/K|[H]) which commutes with the
projections toB(G/ K [H]), and this map is also a homotopy equivalence.
These maps fit together to give a natural weak equival&hee Q.S.

Proof. (Proof of 2.6.)An easy bundle argument shows that the func¢por
takes objects ifm?, Im3', andIm2' to objects infm”, Im§, andI'm5.
Likewise, an easy bundle argument together with the Eilenberg—Moore spec-
tral sequence implies that the functotakes objects idim”®, I'm§, andI'm5

to objects infm?, I'mg', andImg'.
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Now we move on to the proof of the characterization theorems.

Proof (Proof of Theorems 3.7 and 3.8).

Let X be aG-simply connected and-finite Q- or p- type G-space.
ThenH*AyX andH*A, X are isomorphic as commutative algebras to the
cohomology of Borel constructions 6 ; since these are simply connected
and finiteQ- or p- type spaces, their cohomology satisfies condition (i).
We have that each spadeX is (non-equivariantly) homotopy equivalent
to the fiber of the mag® X (G/K[H]|) — B(G/K[H]), and so itsQ- or
Z/pZ- cohomology is calculated by the Eilenberg—Moore spectral sequence.
Looking at this spectral sequence, we see i X is the kernel of the
differential

H°XE  H?B(G/K[H]) — H>*X¥.
Since eachX ¥ is simply connected, condition (ii) holds. Finally, we have
that/¢ X (G/K[H]) is isomorphic to the fiber product

B(G/K[H]) Xp(c/kk)) 19X (G/K[K])

and the mapg?X (G/K[K]|) — B(G/K|[K]) is afibration, and so by [1,
3.1] or [6, 5.2], condition (iii) holds.

In proving the converse, consider first the rational case. SupRcsa-
isfies conditions (i), (ii), and (iii). We can assume without loss of generality
that R is objectwise cofibrant by replacing by I'y R if necessary. Now
B is not rational, butE is, and so (as mentioned above) it is much easier
to make the arguments in the categoryz®-spaces than it is if. Let
X = S|V R| where| - | denotes geometric realization. Explicitly,

X = E xp|Bs xu,p, UgR| = (E xp |By]) X1y, p,| IUoR|-

Itis convenientto abbreviafé x | B,| to E’. SinceE — B is an objectwise
fibration and B,| — B is an objectwise weak equivalence, we have fffat

is objectwise contractible. It follows thaf (G / K [H]) is a rational space for

all G/K[H]. By condition (i),U,R(G/K[H]) is finite Q-type and simply
connected for allz/K[H], and soX is finite Q-type. To see thak is
simply connected, it suffices to show thdt X (G/K[H]) = 0, and this
follows from condition (ii) and the Eilenberg—Moore spectral sequence (and
[1, 3.1]). Finally, condition (iii) implies that the map

UyR(G/K[H]) — UyPy(G/K[H]) Xy, Py (G/KIK]) UoR (G/K[K])

is a rational equivalence, and so the map

X(G/K[H]) — (E'(G/K[H]) xy,pyc/kx) UsR(G/K[K])
— E'(G/KIK]) xu,pyc/kix) UoL(G/K[K]) = X(G/K[K]),
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obtained by pulling back along the m&}(G /K [H]) — P,(G/K[H]), is
a rational equivalence. Thug; is a finiteQ-type simply connected object
of Im§'. ThereforeX is rationally equivalent td®X for someG-simply
connected>-finite Q-type G-spaceX . We have quasi-isomorphisms.iy

R = AgVoR = ApQS|VoR| = AgQX ~ AgQIPX = Ay X.

Thep-adic case is identical, with [6, 5.2] taking the place of [1, 3.1].

7 Proof of Theorems 1.3 and 1.4

In this section, we prove the equivalences of categories claimed in Sect. 1.
We prove both equivalences together, by constructing a left inverdecior
the various homotopy categories.

The first step is to construct a functbfrom AQOg-spaces t@;-spaces
and a natural transformatiaii/ — 1d that is always a weak equivalence.
We constructl as a homotopy colimit preserves weak equivalences, ra-
tional equivalences, angtadic equivalences, and so it induces a functor
on the various homotopy categories. This gives us retractions. To prove the
equivalences, we need to analyze the other comppbsitRather than com-
paring! L to the identity functor directly, we must construct an intermediate
functor¥ from AOqU to itself and natural transformations

(7.1) d& w9 rL

We show that the backwards transformatiois homotopy equivalence at
each object. It follows that the functérpreserves weak equivalences, ratio-
nal equivalences, angadic equivalences, and so induces a functor on the
various homotopy categories. The zigzag (7.1) then defines a natural trans-
formationn: Id — IL in each of these homotopy categories. Finally we
show thatx is a weak equivalence, rational equivalence, giadlic equiva-
lence at each object when we restrict to the subcategbnigs, I mOA, and

Imﬁ respectively. We conclude thatis an isomorphism exactly for the
objects infm#, Im§', andIm2* respectively (as it cannot be an isomor-

phism for objects not idm?, Img', andImz"). Theorems 1.3 and 1.4 are
immediate consequences.

Since our arguments make extensive use of homotopy colimits, we be-
gin by recalling a few facts about them. First, since we are working with
contravariantfunctors to spaces, we have:

Lemma 7.2. If C is a category with initial object € C' and X is a con-
travariant functor fromC'to spaces, then the inclusiof(c) — Hocolim¢ X
is a homotopy equivalence.



Algebraic models for equivariant homotopy theory 283

We understandiocolim always to denote the geometric realization of
the usual categorical bar construction. We will use the following observation
extensively to construct maps between homotopy colimits in what follows.

Observation.Let C andD be categories, andl andY contravariant func-
tors fromC and D to spaces respectively. K is a functorF': C — D,
we denote the composite functbro F' from D to spaces a$™Y. Then
a natural transformation frolX to F*Y induces a maplocolim¢ X —
Hocolimp Y.

We use the notion of keft cofinalfunctor introduced by Bousfield-Kan
in [2]. Given afunctorF': A — B and an objech € B, letF' | b denote the
category whose objects are paits ¢) wherea € A and¢: F(a) — bisa
map inB. Morphisms inF" | b between(ay, ¢1) and(az, ¢2) are given by
mapsa: a; — az in A suchthat, F'(a)) = ¢1. The functorF isleft cofinal
if for every objectb € B, the nerve of the category | b is contractible.
This notion is useful because of the following:

Lemma 7.3. If F': A — Bis aleft cofinal functor anc is a contravariant
functor fromB to spaces, then the induced map

Hocolimy4 F*X — Hocolimp X
is a weak equivalence.

Proof. The proof follows that of Theorem XI1.9.2 in [2]. The only difference
is that we are dealing with contravariant functors and direct limits rather
than covariant functors and inverse limits.

We now describe the constructionbfLet £ be the category which has
the same objects &3 but only the maps corresponding to the unitf G.
Therefore€(G/H,G/K) is either a single map iff C K, or is empty. We
defineA€ similarly, as the category with objects the same\g%; and only
the unit maps. Le€y be the full subcategory df with objectsG/A such
that H C A; let A&y be the full subcategory oA with objectsG/ B[ A]
such thatd C A. DefineLX(G/H) = Hocolimag,, X.

To makeL into a functor onO¢, observe thatif;: G/H — G/K is a
map inOg, thenH C K and Afk is a subcategory af\A€y. Moreover,
the action ofy is well-defined onX (G/B[A]) for H C K C A C B, and
sog induces a natural transformation on the restrictiah$ AEx — X |
A&y . Using the observation, we get induced structure nialg$G/ K) —
LX(G/H) from the inclusion of categories and the twisting action of the
natural transformation. This makésX into a functor onO. ThereforeL
defines a functor from\OqU to Oql.

Next we examine the composite functof.
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Proposition 7.4. There is a natural transformatioh/ — Id that is a weak
equivalence at each object.

Proof. The functorl is defined as composition with the projectidd® —
Og¢. This projection also induces a projectiab€y; — Ep. Therefore
we have a natural maHocolimag,, IX — Hocolimg,, X. Observe that
for any objectG/K € &g, the categoryl | G/K has a final object
given by(G/K[H],id). Therefore the nerve of this category is contractible
and soAfy — &y is left cofinal. Invoking Lemma 7.3, we see that
Hocolimag,, IX — Hocolimg,, X is a weak equivalence.

SinceG/ H istheinitial objectirf, the mafocolimg,, X - X (G/H)
is a homotopy equivalence. The composite maps

IX(G/H) = Hocolimag,, IX — Hocolimg,, X — X(G/H)

fit together to give a natural transformatidd — Id which is a weak
equivalence at each object.

The construction of the endofunctérhas a similar flavor. Recall that
A& denotes the subcategory of maps AO¢, and defineAlq k() to
be the full subcategory o€ consisting of objecté// B[H] with B > K.
Define

vX(G/K[H]) = Hocolimag, o X
We make this a functor oAOq in the same way we did fof: Given
a mapg: G/K1[H1] — G/K3[Hs], we have a functoldéq i, (m,) —
A€q K, 1, that takes the objedt/ B[Ha] in Afqk,m,) to the object
G/B[H,] € AEq K,y note thatB > K becauseB > K > K. Also,

g induces a twisting natural transformation via the actiofG/ B[H,]) %
X(G/B[H1]). The AO¢ structure maps are induced by these as in the
observation. This make into a functor fromAQOgU to itself.

The categoryAfq k() has an initial objectG/K[H]. For any
G/B[H] in Afq kg, the initial mapG/K[H] — G/B[H] induces a
mapX (G/B[H]) — X(G/K[H]), and we obtain a map

vX(G/K[H]) = Hocolimag,, oy X — X(G/K[H])

that is a homotopy equivalence by Lemma 7.2. These maps assemble into
the natural transformation: ¥ — Id.

We define the natural transformatiams follows. Foreach > K > H,
consider the functor from\Eq i) to A€k that sends the object/ B[H ]
to G/B[K]. SinceH C K C B, we have amap: G/B[K| — G/B[H]
in AE (or AO¢) thatinduces ama@ (G/B[H|) — X (G/B[K]). By the
observation, this induces a map

X (G/K[H]) = Hocolimag,,, ;) X — Hocolimag, X
=ILX(G/K[H]).
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These maps assemble into the natural transformatioti — IL.
Finally, all that remains is to prove the following theorem.

Theorem 7.5. WhenX is in Im4, Im§', or Im2 the natural transforma-
tion « is a weak equivalence, rational equivalence peadic equivalence
respectively.

We begin with a few reductions. Recall théitin Im?, Im§, orlmf
means that each map(G/K[H]) — X (G/K][K]) is a weak equivalence,
rational equivalence, gr-adic equivalence for alH C K respectively. It
then follows tha¥ X (G/K[H|) — ¥ X (G/K|[K]) is also a weak equiva-
lence, rational equivalence, pradic equivalence since these are homotopy
equivalent toX (G/K[H]) and X (G/K|K]). Thus, it is enough to show
that the map

VX (G/K[K]) — ILX(G/K[K]) = LX(G/K)

is a weak equivalence, rational equivalencep-@dic equivalence. More-
over, we see from the argument above that the inclusioX @/ K[K])

in X (G/K|[K]) at the zero simplicial level (as the value &f on the
objectG/K[K]) is a homotopy equivalence. The mapcarries this copy

of X(G/K|K]) to a corresponding copy ibX (G/K) at the zero sim-
plicial level. The theorem now becomes an immediate consequence of the
following lemma.

Lemma 7.6. LetX beinm?, Img', or Im2'. Theinclusion of (G /K[K])
in LX(G/K) is aweak equivalence, rational equivalencepeadic equiv-
alence respectively.

Proof. We argue by induction. Lef be the set of finite collection§’ of
closed subgroups aff such that € C and K C J for eachJ € C;
partially orderC by inclusion. Note that the single element collecti{dii }
is the smallest element @f. For any collectionC' in C, let A&¢ be the
full subcategory ofAEx with objectsG/B[A] where bothA and B are
in C. Let AC' = Hocolimag, X. Observe thatl is a functor orC, since
C C D induces a maplC — AD. ThenLX(G/K) = Colim¢ A, and
the maps in the colimit system are induced by maps of simplicial spaces
which are just inclusions of disjoint summands in each simplicial degree.
Therefore, if we can show that the inclusigh(G/K[K]) in eachAC is
an equivalence, passing to the colimit system, we will have shown that the
inclusion inLX (G/K) is an equivalence.

We induct on the number of elements@f If C has only one element,
thenC = {K} andAC = X(G/K|K]). For the inductive step, let/
be a maximal subgroup ¢, so thatif K € M C N thenM = N.
Let C; be the complement ofM } in C. WhenC # {K}, we must have
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M # K, and we can assume by induction that the inclusiaoki ¢/ K [K])

in AC5; is an equivalence. LQMC;GW] be the full subcategory aA&q-

consisting of all objects except/M [M]. Let M be the full subcategory of

A& with objectsG /M [A] such thatd € C, and Iet/\/lG/M ] be the full

subcategory of\ consisting of all objects excefit/M [M]. Observe that
the only objects ofA€- which have a map to or fro& /M [M] are in M,
and so

Hocolimag, X

= (Hocolim X U Hocolimy X
( AgC%G/M[M] 7) Hocolimpyg X ( M 7)
G/M[M)]

This is a pushout along a cofibration, and so we just need to show that

the inclusion ofACA in Hocolimpg X and the inclusion of
CG/M[M]

Hocolim x4 AT X in Hocolim n¢ X are equivalences.

To show the first, we show that the mclusmmﬁﬂfc7 in AEC;GW}

is left cofinal and invoke Lemma 7.3. Lét/P[J] € AEC;GW], and
consider the categorincl | G/P[J]. If P # M thenG/P[J] € Al
and(G/P[J],id)is afinal object, so the nerve of this category is contractible.
If P= M,then C M,J # M and(G/J[J],G/J[J] — G/M]|J]) is an
initial object; again the nerve of this category is contractible.

For the second inclusion, note th&t/M[K] is the final object of

MGm[\M] Therefore the nerve OT/IG/M[ ] is contractible and the map
X(G/MIK]) = X(G/MIK]) x NM e
= Hocolimu__— X(G/MIK])

G/M[M] —

is a homotopy equivalence. Now is in Im4, and so all the maps in

MGW] induce equivalences oK. Thus,

Hocolimg__— X(G/M[K]) — Hocolimg

G/M[M)] GJM[M] =

is the geometric realization of a simplicial (weak, rational, peadic)

equivalence, and hence an equivalence. The inclugid6'/M[K]) in

Hocolimy, __ X is therefore an equivalence. On the other hand,
G/M[M]

M has an initial objectG/M[M], so the inclusion ofX (G/M[M]) in
Hocolim X is a homotopy equivalence. Furthermore the composite map

X(G/M[K]) - X(G/M[M]) — Hocolim g X

is homotopic to the inclusion oX (G/M[K]) in Hocolim X. Thus, the

inclusionHocolim M i X inHocolim X isaweak, rational, gr-adic

equivalence as required.
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