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1. Introduction

A classical theorem in complex algebraic geometry states that, for any
smooth projective variety, the Gauss map is finite; in particular, a smooth
variety and its Gauss image have the same dimension (with the obvious ex-
ception of a linear space). Furthermore, even when the variety is not smooth,
Zak proved a lower bound on the dimension of its Gauss image in terms of
the dimension of its singular locus. Our purpose in this note is to reinterpret
Gauss maps within a more general algebraic framework, and thus recover
Zak’s bound on the dimension of the Gauss image as a special case of an
interesting new bound on the analytic spread of a moduleatfiét differ-
entials. This connects that classical subject in complex geometry to recent
research in commutative algebra concerning integral closures of modules.
In particular, we give a new, purely algebraic proof of Zak’s theorem.

We recall a precise version of Zak’s theorem. Déte an irreducible
projective variety of dimensiod defined over an algebraically closed field
k, considered with a fixed embeddidg C P(V') for some finite dimen-
sional k-vector spacé’. The Gauss mags the rational map fronX to
the Grassmannian of projectiveplanes inP(1') assigning to each smooth
k-point of X the projective tangent plane there,

I': X --> G(dim X, P(V))
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p— TpX.

The Gauss imagef X, denotedl"(X), is the closure of the image of the
smooth locus ofX underI’. Zak’s theorem states that, providédis not
a linear subvariety aP(V'), the dimension of the Gauss image satisfies the
inequality

dim I'(X) > dim X — dim Sing(X) — 1,

where Sing.X) denotes the closed locus of non-smooth points{oand
dim@ = —1 [Z, 2.8, p.23]. In the smooth case one obtaits ['(X) =

dim X, a result that was known before, at least for complex algebraic vari-
eties ([GH, 2.29)).

In this paper, we deduce Zak’s theorem from our main result, which is an
interesting bound on the analytic spread of a moduledaflir differentials.

The analytic spread is an importantinvariantin the theory of integral closures
of ideals — and more recently modules — over a commutative local ring.
Roughly, the analytic spread of an iddain a local ringR is the smallest
number of generators of any ideal having the same integral closiiyenase
geometrically it can be formulated in terms of the dimension of the closed
fiber under the blowing up morphism of the sche$pec(R) alongV'(I).

The notions of analytic spread and integral closure are well-understood for
ideals; the natural extension of these notions to modules is of more recent
interest. The precise definitions are recalled in Sect. 2.

The main objective of this work is to give a lower bound for the analytic
spread ofA\? 2r/1, in terms of the singular locus &fpec(R), where(2y /;,
denotes the module ofdbler k-differentials on a standard graded domain
R over a fieldk, andd denotes the dimension &. Specifically, Theorem
2.1 establishes that unle&sis a polynomial ring, this analytic spread is at
least as large as the codimension of the locus of non-smooth poirfts of
over k. The fundamental importance of this result is evidenced by the fact
that it quickly recovers Zak’s bound on the dimension of the Gauss image;
indeed, one might call it an algebraic interpretation of Zak’s bound.

Our method for bounding the analytic spread/(ijQR/k is to use the

so-called canonical clasgy, : /\d 2p/1 — wryk, @ Natural map from the
module of differentiaki-forms to the graded canonical module Bf We
show that the required bound holds providegd,. is not integral, that is,
provided that the inclusion

d
CR/k (/\ QR/k) C WR/k

is not an integral extension of modules in the sense discussed in Sect. 2.
An essential point of our argument is that the singularit§eéc( R) forces
this extension to be non-integral. To see this, we argue in terms of the
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homogeneous pieces©f ;,: noting that an integral extension p\fi Qrk
can contain no element of degree less ttianwe then show by contrast that
wr/, Must contain an element of degrée 1. This result, which may be of
independentinterest, is stated in a dual form in Theorem 2.3:-theariant
of R is greater than-d unlessR is a polynomial ring. To fetch a nonzero
element ofHZ (R) of degree greater thand the theory of tight closure is
used.

In Sect. 3 of the paper, we show how our bound on the analytic spread of
the module of Kahler differentials leads to the classical theorem on the Gauss
map. For this, we develop more generally a notion of algebraic “Gauss maps”
attached to a finitely generated gradednodule M that, when applied to
the case where is the homogeneous coordinate ring%fin P(17) and
M = g, leads to the classical Gauss map for the projective variety

X. The connection to the modu}&d {2r/1 is via the Plicker embedding.
Zak’s theorem then becomes an immediate corollary of the main bound in
Theorem 2.1.

Our estimate leads naturally to a more general question. To wit/let
be a finitely generated graded module of rarflvhich is not a direct sum of
a free module and a torsion module) over a standard graded domain. When
is the analytic spread of" M at least as large as the codimension of the
closed locus oSpec(R) whereM is not free?

2. The main theorem

If M is a finitely generated module over a Noetherian donfgithen the
Rees algebr& (M) is the symmetric algebra af/ modulo the ideal of
R-torsion elements. I/ = I is an ideal inR, then of cours&k (Z) is the
classical Rees algebra
Relol’o...

whose associated projective schefwj (R(Z)) defines the blowup of
Spec(R) alongV' ().

Given a mapN — M of finitely generated?-modules, there is of
course an induced map

RIN) — R(M)

of Rees algebras. We say that the mép— M is integral if the induced

map of Rees algebras is finite, that isR{M) is finitely generated as a
module ovefR (N). If the mapN — M is aninclusion, we also say thae
module) is integral overN. For an inclusion of ideald C I, this notion
recovers the standard notion of integral dependence, which is commonly
defined as follows: each elemenof I satisfies some polynomial

a2 M+ +a, =0
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whereq; € J* for all .
If M is a finitely generated module over a local domainthen the
analytic spread/(M) is defined to be the dimension of the fiber ring

R(M)®gr R/m

wherem is the unique maximal ideal dkR. WhenM = I is an ideal of
R, note that the projective scherfteoj (R(M)) ®r R/m is precisely the
scheme-theoretic fiber over the closed paiiih Spec(R) under the blowing
up morphismProj (R(I)) — Spec(R). Thus the analytic spread is one
more than the dimension of this closed fiber. If the residue fielch is
infinite, then the analytic spread is the smallest possible minimal number
of generators for an ideal over whidhis integral. WhenM is a finitely
generated graded module over a finitely generaiegtaded ringR over a
field & = Ry, the analytic spread is defined analogously, witldenoting
the uniqgue homogeneous maximal ideaRofor generalities on Rees rings
of modules, see [SUV].

Our main result reads as follows.

Theorem 2.1. Let R be a standard graded domain of dimensibissume
that Ry = k is a field algebraically closed in the quotient field®fIf R is

not a polynomial ring, then the analytic spread of the module of differential
d-forms ofR is at least the codimension of the locus of mesmooth points

of R, that is,

d
L (/\ QR/k> > codim Sing(R).

By standard gradedwe mean thai? is anN-graded algebra, finitely
generated by its degree one elements over its degree zero compgnerit.

In order to prove this result we develop some preliminaries. Let, more
generally,R be a NoetheriaiN-graded domain of dimensieh Assume that
Ry = kisaninfinite field and that the quotient fieldof R is separable over
k. Consider the graded canonical moduig,;. of R, which is the graded
k-dual of H¢(R), the highest local conomology module Bfwith support
in its homogeneous maximal ideal. According to [E], [L] or [KW], there
exists a homogeneouglinear map

d
CR/K * /\ Rk = WR/ks

that is an isomorphism locally on the smooth locugzofT his map is called

the canonical clasof R. In fact, ¢/, can be defined by takingg/;, C

/\d {21,/ as the Dedekind complementary moduléind showing that this

module contains the image of the localization b2z, — A? 21 1.



An algebraic proof of Zak’s inequality for the dimension of the Gauss image 875

Proposition 2.2. Let R be a NoetheriatN-graded domain of dimensiah
Assume thaR, = k is an infinite field and that the quotient field Bfis
separable ovek:. If £(\? 2r/1) < codim Sing(R), then the mapp/,, is
integral.

Proof. Assume that(\? Qrs) < s wheres is the codimension of the
non-smooth locus of?. Multiplying the inclusionim(cg /) C wr/i by @
fixed nonzero homogeneous elementiyfwe get an inclusion/ C I of
homogeneous ideals &f. In this setup one has to prove that .J, where
J denotes the integral closure &f Clearly, it is enough to verify the latter
inclusion after localization at each associated primeRgf/. SinceR is
universally catenary, a result due to McAdam [M, 4.1] shows that

dim Rp < £(J) = £(J)

for any primeP associated td&/.J. Sinceé(/\d 2r/1) < s by our assump-
tion, we know that(.J) < s, so that for any primé associated t&/.J, we
have the inequalitdim Rp < s. This forcesP to be in the smooth locus of
Spec(R). Thus, as seen abovép = Ip. It follows that/Rp C JRp for
every prime ideaP associated td/.J, and the proposition is proved. O

Proof of Theorem 2.1.Replacingk by k(t), wheret is an indetermi-
nate, we may assume thatis infinite. We may further suppose that
codim Sing(R) > 0 in which case the quotient field d® is separable
over k and R is geometrically reduced. According to Proposition 2.2, it
suffices to show that the canonical class

d
CR/K /\ Qr/m — WR/k

is not integral unles® is a polynomial ring. To do this, we make use of the
following easy-to-prove fact: iV C M is an integral extension of torsion-
free finitely generated graded modules over a graded domathen no
element ofM can have degree less than the smallest non-zero degree that
occurs in\N.

Recall that the:-invariant of R can be defined as

a(R) = —min{n € Z|[wg/k|n # 0}

where[wr ;| denotes thew-th graded part ofvg .. If a(R) > —d, then
wr/r has nontrivial elements of degree less thlarOn the other hand,
becauser is generated by elements of degree one, the moAﬂIQR/k

is generated in degreg as the elementdz; A ... A dxy generate it for
x1, ..., xq ranging through all the degree one algebra generatofs 8o
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because the magy/;. is degree preserving, the extension of torsion-free

modules
d
CR/k (/\ QR/k) C WR/k

cannot be integral whem(R) > —d. Thus Theorem 2.1 follows from the
next theorem.

Theorem 2.3. Let R be a standard graded domain of dimensibi\ssume
that Ry = k is a field algebraically closed in the quotient field ®Bf and
that R is geometrically reduced. IR is not a polynomial ring, then the
a-invariant of R satisfiesu(R) > —d.

Proof. The modulevy , is the graded:-dual of H¢(R), wherem denotes
the homogeneous maximal ideal Bf Thus it suffices to show thdf? (R)
has a nonzero element of degreé + 1. We may assume thatis infinite,
in which caseR admits a homogeneous system of parameters. . , x, of
degree one.

Recall thatF/ g (R) can be identified with the cokernel of the map

Rx/:}cl@"'@Rx/md—) R,
. ‘
(swﬁ de2> L i (CD'sa

xt ) J;t 7t

wherex = z;---x4. Thus we represent an elemepof HZ(R) by an
equivalence class of fractions

- [z]

Itis not difficult to check that the elemenis zero if and only if there exists
a natural numbes such thatz*w € (27", ...,24"*). Now, provided that
R is not regular, the maximal ideal is not generated by, . .., z4, SOwWe
can find an element of degree one not in the ideg@t, ..., z4). Consider
the element
H
n=|-
X

in H4(R). This element has degreel + 1, provided it is nonzero. So we
need only show thaj # 0.

Supposing to the contrary, there exists such that z°z €
(x5, ..., 25T R. By the colon-capturing property of tight closure ([HH1,
7.9], [HH3, 4.1.7]) this implies that: belongs to the tight closure
(z1,...,2q)" of (x1,...,24). But the tight closure of an ideal generated
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by elements of a fixed degredn a ring satisfying the hypothesis of Theo-
rem 2.3 contains no element of degeemot already in the ideal ([S2, 2.4]).

Soz € (z1,...,x4), CcONtrary to our choice of. This contradiction estab-
lishes that) = [Z] is a nonzero element of degreel + 1, and the theorem
is proved. O

Remark 2.4.Here is an alternate proof of Theorem 2.3, perhaps more intu-
itive, in the case wherk is an algebraically closed field of positive charac-
teristic. Note that ifey, . . ., 24 form a regular sequence dty thenn = [£]

is zero if and only ifz € (x1,...,24). Now if 5 is zero in HL(R), its
image inHY(R*9") is also zero, wher&*9" is agraded absolute integral
closure of R, that is, the subring of the integral closuref®fin an algebraic
closure of its quotient field generated by homogeneous elements of inte-
ger degree. Sinc&™9" is a Cohen-Macaulay-algebra ([HH2, 5.15)), if

n = (2] € HL(R'9") is zero, therx € (z1,...,24)RT9". Sincez € [R];
and[R™9"]y = k = k, it follows thatz € (z1,...,z4)R, and we arrive at
the same contradiction as in the above proof of Theorem 2.3.

Actually, the argument is essentially the same as the original. Indeed,
for any ideall generated by a homogeneous system of parameters in a
graded domain of prime characteristic, it is known that= TR N R
([S1, Theorem 1]). We can use the above alternative, more generally, by
using reduction to prime characteristic, and then passing to the case where
the base field is algebraically closed. These steps are somewhat technical,
but of course our proof above hides the technical difficulties behind the
definition of tight closure in characteristic zero.

3. Algebraic “Gauss maps”

In this section we develop a general algebraic theory of Gauss maps, which
will allow us to deduce Zak’s bound on the dimension of the Gauss image
of a projective variety as a corollary of the main theorem of the preceding
section.

Let R denote a standard graded domain with = & an algebraically
closed field, and let be the homogeneous maximal idealfafWrite X =
Proj(R). Thinking of X in this way, we have essentially fixed an embedding
X c P(V) whereV = Rj is the k-vector space of linear functionals
on the space of degree one formsin Let M be any finitely generated
graded R-module of rankr generated by homogeneous elements of the
same degree, and |&tbe a graded fre®-module generated by a finite set
of homogeneous elements of the same degree mapping surjectively/onto
by a degree-preserving map. Writé for thek-vector spacéF' @ p R/m)*,
the k-dual of F @ R/m.
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For any closed-pointp = [ag, ..., a,] € X C P(V), pick a maximal
idealm,: = (x9 — ao, ..., x, — a,) Of R corresponding to a representative
of p on the affine cone oveX in V. Note that there is a natural isomorphism
of vector spaces' ®r R/m, ~ W*. Thus the surjectiof’ — M induces a
k-linear surjectioiV* — M ®@r R/m,: = M, and therefore an embedding
of k-vector spaces

My — W.

The image)M; in W depends only op, and for anyp in the free locus of
M, is ak-vector space of dimensian This yields a well-defined map on
the free locus of the modulé/,

vt X —=» G(r — 1L,P(W)) C P (/\W) :

where the last inclusion is thetRlker embedding d&(r — 1, P(W)). In the
case wherd/ = (25, one recovers the ordinary Gauss magot- P(V'),

by identifying W with V. The following result shows thaf,, is indeed a
rational map onX and, furthermore, identifies the coordinate ring of its
image inP(A\" W). (By definition, the image of a rational mapis the
closure of the image of restricted to a dense open set wheiis regular.)

Proposition 3.1. With notation as in the preceding paragrapin, is a
rational map onX and the homogeneous coordinate ring of the image of

YM in P(/\T W) is
R (/\M) ®r R/m.

Proof. Consider the exact sequence of graded modules U — F —
M — 0whereF is a free module generated by finitely many homogeneous
elements of the same degree. There exists a homogeneoissrdemodule
U’ of U which coincides withU at the minimal prime ofR, and hence
generically onX. Let M’ = F/U’. The natural surjection!’ = F/U’ —
F/U ~ M is obtained by factoring out a torsidR-module, so similarly
A" M’ surjects ontg\" M with an R-torsion kernel, and the natural map
of Rees ringsR(A\" M’) — R(A" M) is an isomorphism. Thus, without
loss of generality, we may repladé by M’ and therefore assume thiaf
has projective dimension one, i.e., tliafs free. Letc be the rank ot’.

Using the natural identification of the setioflimensional subspaces of
the vector spac8l” with the set of complementary-dimensional subspaces

of W*, we can interpret the map,; as a mapX - P(A° W*) sendingp

to the image of thé-linear mapU @i R/m, — F @ R/m, = W*. It
suffices to show thaty, is a rational map and that the coordinate ring of the
image ofe,, is isomorphic taR (A" M) ®r R/m. Now fix homogeneous
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generators fot/ and homogeneous generatess. . ., e, for F', and letp
be the matrix corresponding to the presentation fiap F' in these bases.
Let A;, . ;. be the maximal minor o indexed by the rowg, . . ., j.. Then
the mape), described above sends a pgine X to the point[4;, ;. (p)]
of P(A“W*) = P(dkej, A...Aej.). This shows that,, is a rational map
which is regular on the locus whetehas full rank (the free locus a¥/).
Furthermore, ifl denotes the ideal of maximal minors @f thenR (1) is
the bigraded coordinate ring of the graphe@onsidered as a subscheme of
P(V)xP(A\°W*). ThusR(I)®r R/mis the homogeneous coordinate ring
of the projection of the graph onf® A\“ W*), which is to say, the image
of e.

Thus it remains only to show th& (1) = R(A\" M). The mapUg F
induces a map

/\F: </C\F>vwﬂv (/C\U>V:R

whose image id, where—Y = Hom(—, R). This map factors through
A" M, and thus induces a surjectigi M — I. Because\" M has rank
one, the kernel is torsion, S8(A\" M) ~ R(I).

As a corollary to Proposition 3.1, we obtain the following result.

Corollary 3.2. Let X be a reduced and irreducible variety of dimension

d — 1 over an algebraically closed fieldand fix an embedding c P(V),
whereV is a finite dimensionat-vector space. LeR be the homogeneous
coordinate ring of this embedding and tetdenote its homogeneous maxi-
mal ideal. Then the homogeneous coordinate ring of the Gauss image in the
Plicker embedding’(X) c P(A?V) is

R(/\dQR/k) KR R/m

Itis now clear that Zak’s inequality for the dimension of the Gauss image
of X is an immediate consequence of Theorem 2.1 and Corollary 3.2.

Remark 3.3.1t is of course also possible to study a “local Gauss mapping”
and ask whether Theorem 2.1 holds more generally. Retn) be a Noethe-
rian local domain essentially of finite type over an algebraically closed field
k,and setl = dim R + trdeg, R/m. Alocal version of Zak’s theorem would
predict that the analytic spread Afi 2R/ 1s greater than or equal to the
codimension of the singular locus & (provided thatR is not regular).
Does this hold true? In other wordsﬂ(s/\d (ZR/k) > height F,;, whereFy

is thed-th Fitting ideal of(2 ;,?
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One approach to this question is to try to carry out the same sort of
argument we used to settle the graded case. One still has the canonical class

d
CR/K /\ Qr/k — WR/k

that is an isomorphism locally on the smooth locugioiVe ask: IfR is not
regular, is it true thatr, 4, is not integral? Proposition 2.2 can be adapted to
this setting, so a positive answer to this question would establish the local
version of Zak's theorem proposed above. In addition to our work here in
the graded case, there is some evidence to support this approach.

For example, assuming is Cohen-Macaulay, a positive answer follows
from work of Kunz and Waldi ([KW, 5.20]). Also, a positive answer can be
shown in the quasi-Gorenstein case (that is, whgp, is free), using the
Dedekind different and the theorem on the purity on the branch locus. It
seems reasonable to conjecture that in the general setting described above,
cr/k IS never integral unlesg is regular.

Remark 3.4.1t is natural to investigate whether the local version of Zak’s
theorem might hold much more generally. NamelyRifis a Noetherian

local domain andV/ is a finitely generated-module of rank- (which is

not a direct sum of a free module and a torsion module), when is the analytic
spread of/\" M at least the codimension of the non-free locus\6? In

other words, when ig(A" M) > height F,.(M), whereF,.(M) is the

r-th Fitting ideal of M? In light of Proposition 3.1, this inequality in the
graded case implies a general statement analogous to Zak’s theorem on the
dimension of the Gauss image for the mapgdiscussed above.

Remark 3.5.In more geometric language, a key point of our approach to
Zak’s theorem is to show that there is a non-zero global section of the sheaf
wx (d—1). This should be compared to the work of Ein in [Ei], in which it is
shown in the case wheféis smooth, that the global generation.of (d—1)
implies thefinitenes®f the Gauss map. Ein establishes the global generation
of wx (d — 1) in the smooth case using vanishing theorems in characteristic
zero; the global generation afy (d — 1) in the prime characteristic case is
proved in [S3]. This recovers the finiteness of the Gauss map in the smooth
case in arbitrary characteristic.
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