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Summary. We construct and analyse a family of absorbing boundary conditions
for diffusion equations with variable coefficients, curved artifical boundary, and
arbitrary convection. It relies on the geometric identification of the Dirichlet
to Neumann map and rational interpolation 2 in the complex plane. The
boundary conditions are stable, accurate, and practical for computations.

Résune. Nous introduisons une famille de conditions aux limites absorbantes
pour deséquations paraboliques coefficients variables et une fromte quel-
congue. Elle repose sur l'identificatioregnetrique de I'application Dirichlea
Neumann, et une approximation rationelle zZ}¢?> dans le plan complexe. Les
conditions aux limites obtenues sont stableg¢cmes, et facilead mettre en ceuvre.
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1. Introduction

The construction of reliable artificial boundary conditions for the numerical com-
putation of problems in unbounded domains has received much attention (see [4]
and references therein). The goal is to impose boundary conditions on an arti-
ficial boundary which is close to the domain where one hopes to calculate the
solution, and so that the solution of the problem in the reduced domain is a
good approximation to the solution of the original problem. The conditions must
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lead to well posed problems which are practical in the sense that they can be
implemented numerically. The artificial boundary conditions tend to be nonlocal
and the requirement of practicality demands that they be causal, or even better
local, in time.

For hyperbolic problems a key idea is to minimize the reflection of waves
at the artificial boundary. Engquist and Majda [3] introduced a method which
is now standard for the wave equation in a disk. They computed the symbol
of the Dirichlet to Neumann map (called simply theeumann operatoin the
sequel) at the artificial boundary and then found stable, accurate, and practical
approximations.

We perform a similar analysis for parabolic equations. For problems in a
half space with constant coefficients, problems which are essentially one dimen-
sional, or problems with very small diffusion constants there are related works
for example [5-8, 10, 13]. Our approach does not require such special hypotheses
in particular it applies to variable coefficients, curved artificial boundaries, and
arbitrary advection in the domain.

The analysis consists of four distinct parts. First there is the study of the
Neumann operator. Consider the operator

n
Lu=au— Y al(t,x)agu+lot
ij=1

Suppose thaf? is a bounded domain i andS the boundary of the exterior
of £2. If Lu = 0 in the exterior off2 thend,u on S is determined by on S,
that is

(1.1) ou/dv=—Nu.

This definesNg the Neumann operator associated to the equatior O in the
exterior {2. The minus sign is present becauses the outward normal té? and

not (2. The condition (1.1) is the exactly transparent boundary condition. The
Neumann operator is pseudodifferentiallinx S. The symbol has an expansion

in terms homogeneous in¥/?, €)

(12) NGt X, 7,8) ~ > N j(t,x,7,) .
0

The principal term is easy to describe. The symibf; ¢ is for each fixed
t a metric on the cotangent bundle (R%). This in turn induces a metric on
T*(S). Denote by| - | the associated length. Then

(1.3) Ny = (it +[¢[)Y2

the square root taken with positive real part. Particular attention is paid to iden-
tifying geometrically the next termlg.
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The Dirichlet to Neumann operator is nonlocal in space and time. The second
step, following Lindmann [12], is to show that using rational approximations of
the functionz®/? of the form

m
(14) 2% ~ az+B+) _oxz/(z+d) with a >0, 3>0, ax >0, dc >0
k=1

one can construct stable and computationally feasible approximations to the Neu-
mann operator. Rational approximations as in (1.4) weamhhissible For each
such approximation we construct four distinct absorbing boundary conditions.
Two in Sect. 5 correspond to truncating (1.1)N\atand two more in Sect. 6 come
from truncation afNp.

The two families correspond to distinct ways of using the rational approxi-
mation i.e.

(L5) (G —As)?~a(d —As) + B+ au(dh — As)( — As + )"

k>1
and

(O — As)Y? = (—As) Y2

(1.6) x [a(at — As) — A4s (ﬁ +> o — As)(@k — (1 +dk)AS)_l>] -

k

The second, (1.6), corresponds to the strategy adopted in [10]. A priori it is not
clear which of these algorithms is preferable, though in all cases we prefer those
which truncate afteNy as the added precision has small computational cost.

Third, and this is a key step, we show in Sect. 7 that interpolation of the
function z¥/2 at a family of points inC\] — oo, 0] which is symmetric with
respect to the real axis, by rational functions of exact degnee)(or (n +1,n)
(depending on whether the number of interpolation points is odd or even) yields
admissible approximations. Note that it is not obvious that such interpolations
exist and in fact without the symmetry hypothesis there are counterexamples.
That the interpolates have form (1.4) is even less clear.

An interesting question is whether other methods of generating rational ap-
proximations, for example least squares might be admissible and possibly better.

Finally in Sect.8 we present a result which shows that approximating the
Dirichlet to Neumann map by its principal symbol or its symbol up to the next
order does indeed yield an approximate solution in the sense that the error is
smoother than the solution itself.

We would like to call attention to two weaknesses of the analysis. First
we have no convergence theorems. We do not provide a sequence of artificial
conditions whose precision converges to 100%. On the other hand, exactly this
strategy with the same effect has proved to be quite efficient for hyperbolic
problems. Second, for hyperbolic problems, approximating the Neumann operator
corresponds to avoiding the reflection of singularities at the artificial boundary.
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However, for parabolic problems singularities do not propagate to the artificial
boundary. For that reason accurately treating singularities, is not as natural. In
any event the utility of the methods introduced must be assessed by experience.
In addition, there do not appear to be many other options at present.

A detailed numerical study of our conditions in the case of a circular boundary
in 22 has been carried out by Dubach [2]. We present here a few of his results.
He computes solutions of the advection-diffusion equation

(1.7) dU+0u/dx; —vAu =0 in [0, co xR

(1.8) u(0,x) = eI

wherev is constant and is chosen so that(0, x) > 10~10 when|x| = 2. We are
interested in the values af in the diskD(2) whereD(r) = {|x| < R} and we
take for computational domains the slightly larger di32.1) and also the disk
D(3). Our conditionBy; corresponding to the choice (1.5) and keeping the terms
j =0,1 from (1.2) leads to a system of equations foand auxiliary functions
wk(@),k=0,1,....monS = 9D. Here In + 1 is the number of interpolation
points forz'/2. The functionsy, and most importantly are determined from
(1.7), (1.8) together with

(1.9) v okpk—R 2050+ =U, @k(0,0)=0, 0<k<m, dy=0,

—0u/or = |1/2R+3+) oy — 005(9)/21/1 U= oxdkepr
1 1
(1.10) +(1/2R})2p0 — (sin(@)/2vR) [ﬁ@wo + Zakawk] whenr =R.
1

The somewhat frightening line (1.10) is the absorbing condition for the disk.
Notice that computing they involves solving parabolic equations @i x S thus
with one fewer space variable than for In this sense the added computational
cost is small.

We take Dubach’s example witim = 3 and the seven interpolation points

0.01692, +i0.09254, +i0.39899, +i0.84195.

Note that these numbers are all not far from the origin. This results in the
somewhat paradoxical fact that we are approximating high frequency asymptotics
at low frequency.

Figure 1 presents the errors and relative errorgfer2 and also a comparison
with the errors committed when the Dirichlet conditions are imposedbn
The Neumann conditions are much worse than either of these. The error for our
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Fig. 1. L2 error for Dirichlet (dashed) and absorbing (solid) boundary conditions as a function of time
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Fig. 2. RelativeL? error for Dirichlet (dashed) and absorbing (solid) boundary conditions as a function
of time

method is much smaller than for Dirichlet yielding relative errors of the order
.025 for times up td = 5.

Figure 2 presents a closer look at the relative error for the absorbing condition.

Figure 3 presents the>([0,10] : L?(|x| < 2)) error as a function of
showing as expected that the method is better when the diffusion coefficient
is large.

Figure 4 shows that increasing the size of the disRte 3 pays very little
dividend in this case, supporting our belief that the absorbing conditions are
performing as desired. Frankly speaking they perform better than we thought
they would!
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Fig. 3. Dependence of the>(L?) error onv, with R = 2.1
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Fig. 4. Dependence of the>°(L2) error onv, with R =3

2. A geometric normal form for L

Consider the parabolic operator

n
(2.1) Lu = du — Z a' (t, x)dy Oy u + lower order terms.
e

The spatial part of the operator is assumed to be smooth and elliptic in the sense
thatal is smooth onk"*?, all = al', D@all ¢ L>°(R"*) for all «, and, there is
au > 0 so that for allt, x, £ € R"™! x R"

(22) doal(t,x)6§ > wE+G+...+8).
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For anyx in R", we denote byT(R") the linear space of tangent vectors
to R" at x. The dual space of covectors is denofgd[R"). The corresponding
tangent and cotangent bundles arg") and T*(IR").

For eacht, x, the principal symbol of the spatial palt;, a' (t,x)& &, defines
a scalar product ofi;’(R"). The corresponding length is denotgdf = (¢,¢) =
Z a' (ta X)fi gj : .

The associated quadratic forfd,n) = > a'¢&n induces an isomorphism
betweenTy and T, as follows. Each vectov € T4 defines a linear functional
& — v(&) on T}. There is a unique; = n(v) € T} such thatv(§) = (£,7n)
for all £ If v = 0'9/0% (summation convention) the relation definin@) is
Yalgn = ', Thusy (v) = (@ Yol o

The isomorphismy — 7(v) induces a Riemannian metrig dx'dx' on the
tangent bundlel (R") by

giv'vh = (v,v) = (g,n) =alny
It follows that
(2.3) gt,x) =a(t,x)™*, thatis g = (a(t,x) V) .

The correspondence— 7(v) is the classical lowering of indices defined by the
metric g, and the inverse is raising indices. These operations preserve lengths.
The volume element of the Riemannian metric is equal to

dvol = (detg; )*/?dx = (deta)~/2dx .

For a smooth functiofi, the one formdf corresonds to the vector field grad
by raising indices. One then has the Dirichlet integral

D(f) E/\gradf|2dvol/2:/|df|2dvol/2:/a” afgf dvol/2.
The Laplace-Beltrami operator for a Riemannian meyids defined by
(2.4) Variation of D(f) in directiony = —/cpAgf dvol .
The variation on the left is the Frechet derivative
(d/de)D(f +ep)|e=0 = /(gradgp, gradf )dvol
= /aijaifﬁlgo dvol .

The reader is warned that this is the analyst’s sign convention, the opposite sign
being the usual choice in geometry. The analyst’s choice yields
n
(2.5) Agv =Y (detg)~V/?0, ((detg)™/?a’ o v) .
i,j=1
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The principal part of this operator is equal ¥ a' 9,6, which is equal to the
principal part of the spatial part df. In the sequel’ will denote g—1); =al.
This underlines the connection betwdeand the geomtry defined by the metric
¢ induced bya.

So far we have observed that

(2.6) L =06 — A, + lower order terms.

Under coordinate changes t, x = x(t, x) which preserve the time variablg,
has invariant meaning as does the degree zero terimvitnich has coefficient
given bys(t,x) = L1.

ThenL+A,—s s afirst order differential operator which annihilates constants.
Thus it is a vector field irt, x. The coefficient oD/0t is equal to one. The latter
condition is preserved by the above changes of variables.

Proposition 2.1.1f ¢ = a~! and s= L1, then there is a unique time dependent
vector field V orR{;"

2.7) V=0/ot+Y o (t,%)/9,
such that
(2.8) L=V — A, +s.

Note that neitherd; nor Z’Ujaj are well defined operators under the above
coordinate changes. For example

0/0t=0/dt+> (9% /0t)0/0x; # 0/t

except if the change of variables is independent of time.

3. The symbol of the Neumann operator

Suppose that? c R" is an open set which together with its boundary is an
embedded submanifold with boundary. [®denote the boundary d?.

SinceR x S is noncharacteristic fok it follows that if t,x € R x S and
u is a square integrable solution bti = 0 on B, (t,x) N (R x {2), then all the
derivatives ofu have well defined traces dB (t,x) N (R x S) (B (t,x) is the
ball of radiusr centered at pointt(x)).

Fort,x € R x S, let v(t,x) be the unit outward pointing normal t@ for
the metricg; (t,x). The normal derivatived, u is then defined to belu(v) =
(gradu,v),. The previous paragraph shows tidgu|s andu|s are well defined
distributions on a neighborhood ¢fx in S. Standard regularity theorems for
the Dirichlet boundary condition oR x {2 for the operatoL assert that iL.u is
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smooth onB, (t, x) N (R x £2) andu|s is smooth on a neighborhood tfx, then
u is smooth on ark x {2 neighborhood ot, x.

Consider the Dirichlet problem for the operatarForh € C5°(R x S), let
u be the unigue solution of

3.1 Lu=0 in Rx £, ulgxs=h, u=0 for t«O0.

The mapN : h — 9, uls is called theNeumann operatoor Dirichlet to Neumann
operator for the domaif?. For emphasis we sometimes writ,.

If h =0 fort < tyg thenu and thereforeNh vanish fort < tg. ThusN is
causalin the sense thahe values of Nh in & T are determined by the values
ofhint<T.

The regularity theorem asserts that the operbitas pseudolocal in the sense
that

(3.2) singsupp llu) C singsuppy) .

Even more is true. The operathr is a pseudodifferential operator with symbol
(3.3) N X, 7€) ~ Y Nij(t,x, 7,8
0

whereN is homogeneous of degree k i#/2, ¢ in the sense that
(34) Nk(t, X, A7, AE) = NNi(t, X, 7,€) - (V(7,€) #0, A > 0).

Nk belongs to Hormander's symbol clasgéfz’o (see [16]). A more refined
symbol class adapted to heat equations is described at the end of Sect. 4.

To compute the symbdl, the key idea is to use geodesic normal coordi-
nates. Fop € S, let y(s, p) be the unique geodesic for the metticsuch that
~v(0,p) = p and~/(0, p) = v(p). Let X’ = (X, ..., % _1) denote local coordinates
for a neighborhood op in S. The map X/, x,) — ~v(X,, p(x’)) defines a local
coordinate system for a neighborhoodpoin R". Sincer is an outward normal,
the interior of 2 corresponds ta, < 0. The metricg has the form

n—1

(35) 9= D Gapdx*dx’ +(dx)? .
a,B=1

Here we introduce the convention th@reek indices run froml to n — 1 and
Roman indices run frort to n.

Sincegy; = 0 forj < n andgn, = 1 the Laplace-Beltrami operator takes the
form

(3.6) Agu = p 0 (pOU) + > p Oy, (pg* Oy, 1)
aB

where
p = (detgy)'/? = (detgap)*/?
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so the volume element jg(x)dx and g* = (g~ 1)uzs.
With the standard notatioR = —id = (D4,...,D,) = (D’, Dy), the operator

L takes the form

L= Dr% + i(_p_lanp + Un)Dn + Q(tax7 D/) + IDt )
(3.7) Q=Q+Q+Qo,

Q=) ¢*’DaDy,
(3.8) Q=) {Uﬁ - Zp_laa(/)gaﬁ)} iDg, Qo=s.

Jé] a

The calculation ofN proceeds by factoring., a procedure which is now
standard (see [3, 11, 15, 16)).

Theorem 3.1. Suppose that geodesic normal coordinates are introduced as
above. Then there are tangential pseudodifferential operatdisxAD;,D’),
B(t,x,D;,D’) in

C* (1= 8,812 OPS20(Bf X B1.0)

with symbols
At X, 78) ~ > At x, 7€)
(3.9) 120
B(t,X,7,¢) ~ > Bij(t,x,7,¢)
j>0

with A, B, homogeneous of degree k2, ¢ satisfying

(3.10) L = (Dn +A)(Dn +B) modC>(] — 6,4[: OpS,55) -
(3.11) ImBy > 0.

The homogeneous termg And B are uniquely determined. For k 1,0 they
are given by formulas (3.12), (3.13), (3.15).

Proof.To show the uniqueness expand the right hand side of (3.10)
(Dn +A)(Dn +B) = D + (A+B)Dp + C(t, X, Dy xr)
C =AB+[Dn,B] ~ —i0B /0%, + Y _(92A)(DSB)/al .
The Ay andBy are determined by the conditions

A+B =i(—p tdup+vy), and
C =Q+iDy modC>(] — 4, 6[: OpS5%) -

The first condition is satisfied if and only if
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(3.12) A +Bc=0ifk #0andAy + By = i(—p 10np +vn) .
Computing the leading terms & ~ C, +C; +. .. yields
C,=AB;
Cy = AgBy +A1By + DBy + ) (9e,A1)(Dyx, By) -

In making the second calculation recall that thelerivative of a function ho-
mogeneous of degrek in 72, ¢ is homogeneous of degrde— 2 so the
(0-A1)(D¢By) term is of order zero and does not contributeCto

The degree 2 term i€ = Q +iD; combined with (3.12) fok = 1 yields

(3.13) —(B)? =i+ g*.&s so By=i(iT+[¢|H)Y?
the square root being the one with positive real part soBaatatisfies (3.11).
Identities (3.12) forkk = 0, 1 show that the degree one term@nis given in
terms ofBy andB; by
Cy = (—2By)Bg +i(—p *6hp + vn)By + DBy
(3.14) — > (9, B1)(Dx, By) -
Setting this equal t®; yields

Q1 +DnB1 — > (9¢B1)(DxB1)

(3.15) Bo = i(—p tdnp+wn)/2+
2B,

where division byB; is justified sinceB; is nowhere zero i, ¢’ # 0.

Continuing in this fashion uniquely determinAg and By.

ChooseA B € C>°(] — 4,4 SDZ,O) satisfying (3.9). The calculus of pseu-
dodifferential operators then implies that

(L — (Dn +A)(Dn +B)) € C*(] — 00, 0] : §,5%)
which proves (3.10).

Remark. NeitherBy nor B; depends on the zeroth order tesft, x).

Theorem 3.2 The Neumann operator Nis equal to—iB modulo a smoothing
operator.

Proof Thanks to (3.11) the final vaue problem
(3.16) DU +BU=0 in x,<0, Ulx=0=h

has for anyh € HS(RY,,) a unique solutiold € C(] — 6, 0]x, : HS(R{,/)).
Thanks to (3.10), this solutiob satisfiesLU € C>*(—6 < x, < 0). Thus
L(U —u) € C> andU — u vanishes ak, = 0. The Local Regularity Theorem

for the Dirichlet problem foiL implies thatU — u € C*°(-6 < x, < 0).
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Since the metric has the form (3.5) the conormal derivative at the boundary
is 0/dy,. Therefore at, =0,

Nh = 0u/0x, = 0U /Ox, + C° = —iBU +C> = —iBh+C* .

An interesting special case occurs whgh x) and they; (t, x) vanish and the
operatorL in geodesic normal coordinates has coefficients independent of time.
This is the heat equatiofl, — A where A is the Laplace-Beltrami operator on
the product Riemannian manifoix 2. with metric equal tays + gy = gs +dx2.

The heat operator has the form

(3.17) L=08 —As — 2.
The Neumann operator in this case is dendtigd

Proposition 3.3.For the heat equation on the produgt x (S x R+) the Neumann
operator N satisfies I = 6, — As.

Prooflf u is a solution ofLu = 0 thenw = du/9dx, satisfiesLw = 0. Therefore
atx, =0,
93U = qw = No(w|rxs) = No(@nU|sxs) = No(No(u|s xs)) -
On the other hand)2u = (9, — As)u and the result is proved.
Proposition 3.3 motivates the following definition.

Definition. The operator(d; — As)Y/? is defined to be the Neumann operator
associated to heat equation @ x (S x R,). It is denoted N.

Then,

(8 — As)?) = ¢(No) = —iB; — iBg + l.o0t.

> o P 0a(pgP)Es + 13 (e, B1)(Dx, B1)

1 = —iBy +
(3.18) iBy 2B,

+1l.0.t.

whereB; is given by (3.13).

Remark. The operato; — As on R; x S has many square roots. The one singled
out above is characterized by the following three properties

i.) It commutes with operators that commute with— As.

ii.) Itis pseudodifferential with classical symbol expansion.

ii.) It has principal symbol with nonnegative real part.

Several of the terms in (3.15) have already been identified. Write 9/t
as a sum of its tangential and normal components

VvV — a/fat =Vian+Vior,  Vnor = <(V - a/at)a V>V »
(3.19) o(Vian) = Y _ va(t, X)ika -
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In geodesic normal coordinate¥y, = v,0n. The next result summarizes the
information in Theorem 3.2 and equations (3.13), (3.15), (3.18).

Theorem 3.4. The Neumann operator \Nsatisfies

o(Ng) = o((3 — As)*?) +i(0(Vian) — DnB1)/2B1
(3.20) +(—p L0hp +vn)/2 modSl_/;f :

Question.The operatoro((9; — As)Y/?) is determined by a calculation inside
R; x S and does not depend on the embeddig- R". The order 1 part of
this operator has a clear interpretation in terms of the first fundamental form of
S. We do not know a geometric interpretation of the zeroth order term in the
symbol of o((8; — As)Y/?). We are equally ignorant with regard to the zeroth
order term ino((—As)Y?).

4. Geometric identification B; + Bg

The identity
(4.2) By = i(i +¢"76uts)"/? = i(iT + |¢'[7)"*

givesB; in terms of the first fundamental form & In this sense it is geometric.

In this section, we compute a geometric formula for the symboBgfvhich
depends, in addition, on the second fundamental form\anBut another way,
the goal of this section is to identify geometrically the two terms in equation
(3.20) which involve derivatives with respect xg.

The formula forBgy involves no time derivatives. It is determined by the
geometry ofS — R", g andV (t, ) for t fixed and not on the way the geometry
depends on time. We begin by recalling some of the basic notions concerning
the local Riemannian geometry of the embeddhg- R", g (see [9)).

In geodesic normal coordinates for a collar abButhe vectors)/ox;, 1 <
i < n form a basis for the tangent spacel®d, and9d/0x, is orthogonal to the
others. The fish — 1 vectors wherx, = 0 are a basis for the tangent spaceto

Denote byD the Riemannian connection f@t", g. Then

n
(4.2) Do 0y = > Ifok .
k=1

The time dependent Christoffel symdeSare given by

(4.3) I !

n
1( = 2 Z g (8gim/8Xj +dgim/0% — Ogji /8xm) .

m=1

The metricg on R" induces a metric o1 which in turn determines a Rie-
mannian connection, denot&xl on S
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n—1
(4.4) Do = Y T,0y
~¥=1

where the Christoffel symbolEga are given by

1 n—-1
(4.5) 3o =, > 9" (0gapn/0%s + gpu/ 0% — Ogpa/0X,) -
p=1

In the geodesic normal coordinates,

_[9as O “1_[(gap)™t O] _[9*” O
9‘{0 1}""”0'9‘[0 1= o 1]°

Note thatd, is a unit normal t5 with respect td-, -), so the Weingarten map
W :T(S) — T(S) is defined byWX = Dxd,. W is a symmetric linear operator
with respect to the scalar produgt-), for T(S). The second fundamental form
of S is defined as the quadratic forth(X,Y) = (WX,Y), on T(S).

The formula of Gauss reads

(4.6) DxY =DxY — (WX, Y),d, VX,Y tangent tcS .

This gives the orthogonal decomposition B%Y into parts tangent t& and
orthogonal tdS and also relates the connections®iy andRR", g. TakingX = 9,
andY = Jg formula (4.2) also gives an orthogonal decomposition, so the normal
parts must be equal

4.7) My = (W, 95)g = — I (B, ) -

In the sum (4.2) defining the coefficient?*, the termg"™ vanishes unless
m = n in which case it is equal to one. In the= m summandgim = gjm = 0
which yieIdchQ[j = —(998a/0%n)/2. Together with (4.7) this yields

(48) 8gag/8xn\xn:o = 2<W(9a, ag>g =2l (80,85) .

Introduce the matriV,, of W in the basisd,, W9, = > W,-0,. Then

(4.9) <W80m aﬁ>g = Z\Na—y <8'yv 8ﬁ>g = chwgwﬁ = (Wg)(xﬁ s
Y

~

whereW g is the matrix product. Note that the matki%, s need not be symmetric.
The symmetry of the Weingarten map is equivalent to the symmetry of the matrix
(Wg)as. Identities (4.8) and (4.9) yield the matrix equatidg/ox, = 2Wg.

Now consider the termp—19,p in (3.15). Denote by, ..., g, the columns
of the matrixgj. We have just shown thal,g; = 2Wg;. To computep=1d,p
note that

(4.10) Anp = On(detg)t/? = ;(detg)’l/zan(detg) , and



Absorbing boundary conditions for diffusion equations 199

n
On(detg) = > detga,....g-1,0ngj,gj+1:- - - gn)
i=1

n
(411) :zzdet(qla'"agj—17ngagj+la-"79“)'
j=1

The map sending the to the right hand side is an element 4f(R"). Since
A"(R™) has dimension equal to 1, there is a cons@i¥) such that the right
hand side is equal to(W)det (g). Takingg =1, yieldsc(W) = 2Tr(W). Thus

(4.12) p~Y0,p = (detg) /2 ;(detg)‘l/z(ZTr(w))(detg) =Tr(w).
The mean curvaturkl of S is by definition equal to Tk/)/ dim(S), so
(4.13) p Yohp = (n — DH(L,X) .

Examples.The mean curvature is defined by the outward pointing normal to
2. Thus if 2 is the interior (resp. exterior) of the ball of radiusn R", then
H =1/r (resp.—1/r).

The computation for th®,B; term in (3.15) is similar. One has

(@14) (i + 9682 = (i + 9" 6al) VP00(g )
The derivative of the matriy®” of ¢~ is computed as

Ohgt= =g (Ong)gt = —g " 2Wgg Tt = —297'W
o)

(4.15) On(9°7€atp) = —29""W,5€als -

Whenx, = 0, formula 4.15 has an elegant geometric interpretation. In the
right hand side insert the index lowering isomorphigge g,.v* from T(S) to
T*(S) to find for ¢ € T*(S)

an(gaﬁfagﬁ) = _Zg(yyw'yﬂguavugxﬁvx .
Sinceg®7gua = 0, this yields
(4.16) 8n(g“ﬁ§aflg) = =29, W, 70X = =2l (v,v) = =2l (£,8) ,

where the second fundamental form is transported ff¢8) to T*(S) by raising
indices.
Equations (4.14) and (4.16) yield

4.17) iDBi(t, X', 7, &) /By = =l (¢, &) /(iT+ €% .

Combining (4.3), (4.13) and (4.17) proves the following formula.
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Theorem 4.1 In local coordinates kfor S the symbol of the Neumann operator

Ny, is given, modulo §;/02(]Rt X Ry Ry x Rer), by

(= DH + (v —0/0t,v) _ olva) , 1 €,€)

-
(4.18)  o((3 — As)?) + 5 w2 T ow

where? = it + (¢, ¢')2.

The error estimate implicit in Theorem 4.1 is not optimal. For example,
operators with symbols iSl’/;/o2 mapH S to H $*%/2 while the difference between
the Neumann operator and the operator with symbol given by (4.18) gains 1/2
a derivative int and a full derivative in % To get this more precise result it is
natural to introduce the weight function

(4.19) O(r,n) = L+ + @ +nP)Y2, n=¢
and the inhomogeneous Sobolev space

(4.20) Hieat= {U € S'(®") 1 |Q(7, n)|P° € L2(R" )} .

Y

Heres is a real number and not the zero order terrh.iThese spaces are natural
for the heat equation.
We use the Beals-Fefferman calculus of pseudodifferential operators with
dual weighty = 1 [1]. The Beals-Fefferman symbol clas3 " is defined by
the estimates
|8ﬁ‘x5§np(t, X, 7, )| < Caﬁgpm_‘m :

For brevity we denote this symbol class §§,,. A function homogeneous of
degreem in 7%/2, 1 for large 7,7 defines an element @7, and the operators
in OpSha Map H e, continuously toH 5.t

The difference between the Neumann operator and the operator with symbol
given by (4.18) belongs t®pS,.L. These remarks suffice to justify the more
precise result indicated after the statement of Theorem 4.1. We summarize the

basic facts relating the Neumann operator and this calculus.

Theorem 4.2. The operator Bt,x,D,D,/) in Theorem 3.1 belongs to
C>(] — 6,0[: OpSieq)- For any m < 1, the difference B- 3, ., Bx with B
from Theorem 3.1, belongs to°q] — 6, 4[: Op%;tl). In particular, the symbol
of Ny, is equal to (4.18) modulo, 5.,

5. First order absorbing conditions

Consider the numerical computation of a solutiote Lu = 0 in all of k. Usually

one truncates the domain to a practical (hence bounded) dofdainc R".

The differential equation is then supplemented with boundary conditions at the
artificial boundaryS = 912.
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The exact solution satisfiesLu = 0 on all of the exteriof x {2 so
(5.1) ou/Ovy = Np(U|gxs) -

Since the outward normal to the exterior is opposite the norm# tbfollows
thatu in R x {2 satisfies

(5.2) ou/dvg = —Ng(U[rxs) -

This is called tharansparent boundary conditiom R x (2, since the exact full
space solution satisfies this condition.

The strategy is to impose boundary conditions at the artificial boundary which
approximate (5.2). That is solve

(5.3) LUsppr=0 in Ry x 2, and OUapp/0vo = BlUggpr 0N Ry X S,

whereB ~ —Ng, in some sense. Practical considerations suggest that the approx-
imate boundary condition must lmausaland stable Stability means that (5.3)
defines a well posed initial value problef@ausality means that the values of
Buint < T depend only on the values afin t < T. This is needed so that a
marching scheme can be implemented. Note that we do not insist on locality in
X or t. Some standard approximations are nonlocal.

Recall that the principal symbol df; is equal to (i + |¢'|?)Y/? where the
length square is given by the metie”¢, &5 induced by the spatial part df.
In this section two families of algorithms are proposed. Both are generated by
taking rational approximations to the functiom i |¢'|?)%/2. Both methods have
the feature that their stability is proved directly by integration by parts as opposed
to verifying Lopatinski conditions.

Both families are generated by rational approximationgt@ of the form

m
F@)=2"?~R@)=az+3+Y  az/(z+dk),
k=1
(5.4) a>0,3>0,a>0,d>0.

Note that one can equally well write

R@2)=az+b+» c/(z+d)
k=1

but thec, may be negative even whehand ok are positive.The special form
(5.4) is crucial in proving stability.

Section 7 is devoted to showing that approximations of this sort are generated
by rational interpolation of the functioR (z) by rational functions of exact type
(p,q) with g < p < g+ 1 provided that the interpolation points lie in Rgf 0
and are symmetric with respect to the real axis. If the number of interpolation
points is odd the approximant of type,() satisfiesa = 0 and this yields a
somewhat simpler form for the algorithm which follows.
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The choice of the interpolation points is the subject of research, both theo-
retical and numerical, of E. Dubach [2].
The approximation (5.4) yields the formal identity

O — As)? m a0 — As) + B+ k(B — As)(Or — As +d) "
K

The operator on the right must be appliedujg «s. There is a natural causal
realization of 6, — As + di)~* given by solving auxiliary problems introduced
by Lindmann [12]. For I< k < m introduceyy = (8; — As +dk)~u solution of

(55) (O —As+d)pxk=u for t>0, ¢li=0=0, k=1,2,...,m.

Note that this is a parabolic initial value problem ondo[xS, a lower dimen-
sional manifold without boundary. The absorbing boundary condition is given as
follows.

Absorbing boundary conditions Approximatez'/? as in (5.4). Then fou(x)
given, solve the system defined by (5.5) coupled to

(5.6) Lu=0 in [0,00[xf2 Ulizo=Up oOn (2 and

0u/dv = — (O — As)u — Bu — > (B — As)px
k
(5.7) =Bu on [0,00[xS.

The second family of absorbing conditions approximates (§’|2)Y/? differ-
ently. This is the path proposed by P. Joly [10] for constant coefficient problems
in a half space. Fo¢’ # 0 one factors

(7 +|EAY2 =1 | +ir/|¢ Y2

Using an approximation of type (5.4) yields

f@) =1+~ a(l+2)+ 3+ i (f i(i)izék ’
(5.8) B3>0, k>0, 0 >0. -
Plugging inz =it /|¢'|? yields
ak(|¢'[? +i)

(rir/[¢P) 2~ alg'|2ir + 1€ P + B+ S +AIE?

Multiply by |¢'| to obtain

(7 +1€2 ~ €17 (atir+ |62 + €7 (54 2 i7a+k((1€/+|2d:>i|2|2)> |

This generates the approximation
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(0 — As)'/? = (—As) 2
(5.9) x [a(& — As) — A4s (/3 +> (@ — As)@r - (1 +dk)AS)1>] :
k

Introduce the auxiliary functiongy(t,x) on R x S solutions of the parabolic
initial value problems

(5.10) O — (1 +d)As)yx =u, tkl=0=0, k=12....m.

The boundary condition (5.2) is then approximated by
(5.11)

Ou/Oy = —(~A5)Y2 (@ — Ag)u — As (Bu+ Y aw(@ — Ay ) | = Buu.

Absorbing boundary conditions IApproximate (1 +z)1/2 as in (5.8) then for
Up(X) given solve the system defined by (5.6), (5.10), and (5.11).

In order to see that the conditions are at least well formulated, use the fol-
lowing simple continuity estimates for the approximationd\g which are im-
mediate consequences of elementary regularity for the parabolic equations (5.12)
and (5.13).

Lemma 5.1. The operator Bdefined by

Bih = —a(d — As)h — Bh = > (@ — As)x
k

where thepy solve
(5.12) O — As+d)px=h for t>0, ¢«l=0=0,

is a causal and bounded operator from*@0, T] x S) to H3=2([0, T] x S) for
all s e R.

Similarly the operatoB), defined by

Buh = —(~A5) /2 (a(@ — As)h — As (B + Y~ aw@ — Ay )|
where theyy are the solutions of
(5.13) O — (A +d)As)x =h, kl=0=0,

defines a causal and bounded operator fidR[0, T] x S) to HS~%([0, T] x S)
for all s € R.

The absorbing boundary conditions take the féydvg, = Bu with B = B,
or B = By.

The boundary operator will be applied to solutionslaf = 0 which satisfy
u € L?([0, T] : H(£2)). Consideringu as a function of 0< x, < ¢ in geodesic
normal coordinates, one has
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u € HY(x, : L%(0,T] x R""1)
OU/9%, € L?(x, : L2([0, T] x =" Yy .
It follows that the trace ofi at x, = 0 satisfies
Ulx,=0 € L3([0, T] x B"~1y .

In particular,Bu has a well defined sense for such solutions.

The absorbing strategies define well posed evolution equations, {erand
u, v respectively. We give a typically parabolic well-posedness result. Estimates
for higher derivatives are left to the reader.

Theorem 5.2. For any w € L2(2) and T > 0, there is a unique
ue C(0,T]: L3(2)) NHY([O0,T]: H1(2)) N L3([0, T] : H(£2))
ok € C([0,T]: L3(S)) N H([0, T]: HYS)) N L2([0, T]: H(S))
satisfying(5.5), (5.6), (5.7)

The same conclusions are validgfis replaced by and (5.5) and (5.7) are
replaced by (5.10) and (5.11).

Proof.Multiply the equationLu = 0 by u and integrate dvq) over (2. Two of
the terms simplify. First,

(5.14) f/ uA,u dvol =/ |V,ul? dvol f/u&,u do .
0] 2 S

Second, note that the volume element is smoothly time dependent so
/uq dvol zat/uz/Z dvol +/f(t,x)u2dvol

whereD¢,f are bounded on [@[ x£2. Summing we find

1d
u(t)|? +/ Vul|?dvol —/ ud,u do
2dt|| ”LZ(Q) Q| | 00

(5.15) +/ (U > o +SU2) dvol < cf|u(®) (7, -
2

i>1
Sincew(t, x) ands(t, x) are bounded the last integral on the left is dominated by
(5.16) e[ VU®) 12 + c2HIUD 1Py -

The first of these is absorbed in the gradient term on the left and the second is
passed to the right. The key is to analyse the boundary terffwd, udo on the
left of (5.15) whend, u = Bu.

We derivea priori estimates from which the existence and uniqueness results
follow easily. Consider the case 8f first. Then
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—/uf),,uda= —/uB,u do=a/u(8t —As)uda+/ﬁu2da

+Zoék/u(3t — As)pkdo .
k

In the first term on the right use
/u(at fAS)udazat/u2/2da+/|vgu|2da
+/f(t,x)u2da,

where this newf satisfiesD7f € L*°([0, oo[ xS) because of the smoothness of
the surface elememntos. Use (5.5) in the final terms to write

/ U@, — As)pedo = / (6 — As)pul?do +dl / (@ — As)pdo

/w(at —As)apkdo=8t/<p§/2da+/|Vs<pk\2da+/f(t,x)<p§da.

Multiplying by « andax and summing yields

1d
5 gt [UOIEzg) + AUl + > ardil ol

+(1- E)HVUHEZ(Q) + 0‘||VSUHEZ(S) + ﬁHquZ(s) + Z akdkHvS(PkHEZ(s)
+ Z OékdkH(at - AS)SDKHEZ(_Q)

(5-17) S c (Hu(t)HEZ(Q) + ||u(t)||52(s) + Z H‘Pk(t)HEZ(S)) .

If o #0, Gronwall's method yields
1
5 (U120 + allu®Zzs) + D ko ® i)
t
o [ @190l allVsulfag + Aluliag

+ 3 awce [ VliZ2) + 10 — AshllZzey |

(5.18) < e°‘||u(0)||f2(m .

If « =0, theu|s term on the right of (5.17) is first estimated by

Hu(t)HEZ(s) <c (n_lHu(t)HEZ(Q) + 17||Vu(t)||52(9))

and then use Gronwall.

Using the equatiom.u = 0 yields estimates fou, in L?([0, T] : H ~1(£2)).

Turn next to the case d,. The boundary integral on the left hand side of
(5.15) is equal to
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—/u&,u da=—/uB”udo

= [ [au-20) 42 - Agu + u(-A5)"2

x {Bu+ > a@ - A9y }] do .

The terms on the right are analysed as follows.

/u(fAS)*l/Zatu do =6 H(—As)*l/“u”fz(s)/z + /f (t,)[(—As)"Y*u)?do ,

/U(*As)fl/z(*AS)UdU = /U(*As)l/ZUdU = [|[(—As)Y s, -

The last identity is also used for thi#[ u(—As)2udo term.

Jut- 220, — Asyido = [ (01 - (1 +d) A0~ 4020 — Ashirdo
= [@ - A0i(-20)%0, - Ayindo

¥ / Gk Astin(~As)Y3(B, — As)ihdo

= (= A)Y4(0 — As)ulIFas) + ol (= A8)* *iI Pz,
+ (dk/z)at ||(_AS)3/4wk HEZ(s) + O(H(_AS)?)/AQW HEZ(s) :

This yields an estimate
1 _
5 (IO * all(=A6)™4u[12 ) + artil| (- A8 0Ol 2|
t
+/0 |:||vu(t)||52(_()) + a||v5u(t)HEZ(s) + (04 + 6)||(_AS)1/4U('()HEZ(S)

+Y akll(=A8)Y40 — Ay 72

+ || (—As)* k(1) 12, | it

(5.19)< e°t||u(0)||fz(m .
Remarksl. In casel = d; — A, with coefficients independent of time the above
energy estimates are valid with= 0. The resulting stability results are uniform
in t > 0 in contrast to the general case where the bounds grow exponentially in
time.

2. The estimates for the functions are stronger than those far. We will
not state the corresponding strenghtening in Theorem 5.2.

3. A computation like the proof of energy estimates by this integration by parts
allows one to give a variational formulation of the boundary value problem which
can be used as the basis of a constructive existence proof by Galerkin’s method
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and as the foundation of finite element methods for the discretization of the
absorbing boundary value problems. In this way high order stable discretizations
are available.

6. Second order absorbing conditions

In the last section, absorbing conditions were constructed using only the principal
symbol of the first order operatdds. In this section we show how these can
be refined to take advantage of the terms of order zero in the symhi},of
Again, depending on the strategy for the rational approximationrof |§’|?)%/2,
there are two distinct approaches. The estimates of this section show that both
approaches yield stable approximations.

In the first approach, the approximation (5.4) generated

(61) (G —As)?~a(d —As)+ B+ a(dh — As)( — As +di) !
k

We do note improve the approximation of the first term in (4.18). Rather, the
other terms are added to the algorithm. The second term in (4.18) is merely
multiplication by a smooth function so causes no problem. The action of the last
term onu is approximated by ID’, D’)po/2 whereyy is the solution of

(6.2) G — As)po=U, ¢olt=0=0.
For the (1/2)Vian(dy — As)~ Y2 term in (4.18) use (6.1) to get

(O — As) M2 = (& — As) (O — As)?
(6.3) R+ B0 - As) T+ Y (O — As+d) T
k

The Vian term is then approximated by

(64)  Vanld — As)™u/2 % Vian [0+ Bipo + Y awer] /2

where the auxiliary functiongy are defined in (5.5). This yields the following
algorithm.

Absorbing boundary condition lllApproximatez®/? as in (5.4) then forg(x)
given solve the coupled system fargx 0 < k < m defined by (5.5), (5.6),
(6.2), and

Ou/dv = — a(d — As)u — Bu — > ax(dh — As)pk
k>1

_(nfl)H_Q*<V78/at,VQ>u_Vt [

5 O<U+5<Po+zak<ﬂk] /2

k>1
(6.5) +11(D’,D")po/2=Byu on [0,00[xS.
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Warning on signsTheorem 4.1 gives the symbol for the Neumann operisitor

to (2. The right hand side of (6.5) is an approximation-tdl. This explains

one change of sign relative to (4.18). In addition when (4.18) is appliefd the
mean curvature and outward normal are thos&€ofn (6.5) we have chosen the
normal to {2 and the mean curvature measured with that normal. For example,
if £2 is a ball of radiuR thenHy, = 1/R. The mean curvature and normal with
respect tof?2 differ by a minus sign from those a®.

The second strategy of the last section is based on the approximation

(6.6) (0 — As)"/?
~ (—As) M2 la(at — As) - As (6 +> (@ — As)(@ - (1 +dk>As)—1)] :
k
As in (6.3) we then have
(O — As) ™2

~ (—As) Y2

a—As (ﬁ(at — A9+ Y (@ - +dk)As)—1>] .
k

Use this withyy defined in (5.10) to generate the approximation
Vtan(at - AS)_l/ZU
6.7) ~ Vian(—A6) M2 [au = As (B0 + Y awct )|

Absorbing condition IVApproximate (1 +z)%/2 as in (5.8) then fouy(x) given
solve the coupled system fart ¢, x 1 < k < m defined by (5.6), (5.10), (6.2),
with boundary condition

0u/ov = — (~As) ™2 a(dk — As)u — As (Bu+ Y aw(dr — A ) |
C(n—DHe — (V - 9/ot,ve)
2

(6.8) x [au = As (Bpo+ > awth ) | /2411 (D', D")p0/2 = Buu

on [0, oo[ x S.

u-— Vtan(_AS)_l/2

As in the last section, we must show that these boundary value problems are
well posed. The operato®;,, and B,y are causal and bounded linear maps of
HS([0,T] x S) to H3%([0, T] x S) for all s € & (proof omitted). The key to
the well posedness is the analysis of the new terms introduced in the boundary
contribution— ['ud,u do = — [uBuds on the left of (5.15).

Theorem 6.1. The absorbing conditions;Band By define well posed evolution
equations.

Proof.For the first order approximation estimates (5.18) and (5.19) take the form
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t
(6.9) o)+ [ B < s
and were derived as consequences of differential inequalities
(6.10) de/dt +E < ce

with nonnegative quadratic fornesandE.
The boundary conditionBy; andB,y are treated as perturbations Bf and
B, respectively. One has

(611) By =B +ad +C
(6.12) By =By +ak(~4s) Y2 {au— A (Bpo+ Y awth) } /2+Ci

where the operator€ are bounded and causal fram([0, T] : L%(S)) to itself
(proof omitted).

Case 1, B;. The basic inequality (6.10) is modified in two ways. First there are
two new terms on the left hand side, namely

/au@tuda+/uc|udo.
s s

Second, multiply equation (6.2) by, and perform the standard integration
by parts. Add the result to (6.10).
Finally, estimate

[ ucuss| < clu®lizgCullzg
< cllu(®)|lfzs + cliCu(t)|lf2s) -

The causality and continuity & imply that

t t
The next effect is to obtain an inequality of the same form as (6.10) where
(lu®) oy * 202y ) /2

is added tce and |\Vgo(t)||fz(s) is added toE. This suffices to prove stability.

Case 2, B/. The same strategy as above works but is more complicated. The
new terms on the left hand side are

(1/2)/; U (—As) Y2 {CYU — As (5@0 + Zakd)k)} do

+ / uCudo .
s
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The au term is equal to

(L/4)d/dt)[[(—As) Ul -

For thes term, write
[ udn(- 25 2~ Aspeeydo
S

=5 /S (& — As)po((—As)20kpo)do
= B10(= As) ol Fas) + (3/2)(d /dD)[ (= As)* ol s, -

In the same way,
[ udn(- 25y 2~ Agyindo
S

- / (@ — (1 +d) As)cd(— Ag) 2 do
S
= (|0~ As) *ic 1 Fas) + (1/2)(L +dh)(d/dt) [(— As)* *ox 1P, -

The C term is estimated exactly as in Case 1. The net result is an estimate
of form (6.10) where

(8/2)l10(—As)* *20l1 s
+) (/2 +d)|1a(~As) *eIF s,
is added toE and
(L/B(—As) M ullZ2s) + B/ (= As)*polZ2g
+ ) (/D= As) 22

is added tce. This suffices to prove stability.

7. Rational approximations to z1/2

Our absorbing boundary conditions are constructed with the aid of approxima-
tions to the functiorz’/2. The approximants must have the form (5.4). Hev&

has nonnegative real part and is defined on the complex plane with the strictly
negative real axis removed.

In this section we show that such approximations can be constructed by
interpolation by rational functions of suitable order at a set of points symmetric
with respect to the real axis. The analysis falls into two parts. The first is to show
that under these conditions, the rational interpolant is uniquely determined. Then
we show that under suitable restrictions on the order, the interpolant has form
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(5.4) so leads to a well posed absorbing boundary condition. The interpolants of
form (5.4) are calledadmissible The main result is Theorem 7.5.

Part |. Existence and uniqueness of interpolant

Symmetry hypothesiédle suppose tha, z, . . . , zy areN distinct complex num-
bers inC\] — oo, O[ which are closed under complex conjugation, that is foy all
z" is also a member of the set. We say that such a sgfriemetric with respect
to the real axis.

Definitions. A rational functionR = P /Q is of exact typgm, n) if P andQ are
relatively prime polynomials of exact degreeandn respectively. Without loss
of generality we may tak€ to be monic. The rational function igal if R(z)
is real whenever is. In that case, the coefficients BfandQ are real.

Theorem 7.1. If the 7z satisfy the symmetry hypothesis, then for any nonnegative
integers mn with m+n+1 =N, there is a unique rational function(® of exact
type(m, n) such that

(7.1) R(z)=2z"% for j=12....N.

In addition, the interpolant is real.

Remark. The symmetry is crucial. In contrast to the case of polynomial interpo-
lation, having the correct number of interpolation points is not sufficient. After
the proof we present an example with= 1, m = 3, and a nonsymmetric set of
points for which interpolation fails.

Proof of TheoremFirst we show that reality follows from uniqueness. Odk)
denote the rational function obtained frdRby taking the complex conjugate of
the coefficients. TheR(z)* = T(z)* for all z. The symmetry hypothesis implies
thatR(z*) = R(z)* whenz is an interpolation point. Thu® andT agree at the
N pointsz and therefore must be identical.

Forj < N letx = 41/2, Re ) > 0. We must find polynomial®,Q of

degreem andn respectively withQ monic and such that
(7.2) P(x?) — xQ(x?) =0 at the pointsq, Xo, . .., Xy -

The condition (7.2) gives a system Nf linear equations for the undetermined
coefficients of the polynomialB andQ. It suffices to show that the determinant
of the coefficient matrix does not vanish. TH& row of the coefficient matrix is
equal to
= @@ %t xE )

The determinant is denotdal(xy, . .., X ).

If one of thex;’s is zero, we may renumber so that = 0. Expanding the
determinant along the first row shows that
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D(X]_,...,XN)=X2...XND(X2,...,XN)

so it suffices to treat the cas of nonzegts.

Next permute the columns d@ so that the exponents are decreasing. The
firstk = (J2n — 1— 2m| — 1)/2 exponents decrease by two. The rest decrease by
one. Thus, if); is the nonincreasing sequence defined by

(73) )\]_:k7 /\2:|(—:|.,...,)\k:17 )\k+1:>\k+2:~--:>\N:0
then still denoting byr; the rows after the permutation,
=) "™ i=12...,N.

Sincex; — X = 0 implies thatD = 0, andx — X; is irreducible it follows
that D is divisible byx — Xj in Z(Xy,...,%). ThereforeD is divisible by the
Vandermonde determinant

det [0V on] =TT 6= %)
1<i<j<N

The quotient is called th&chur determinantissociated to\ and is denoted
Xk(X1, ..., xn). From the definition note that permuting two of tkés does not
change the value of so x is a symmetric function. It suffices to prove that
xk(X1, - - -, X,) # 0. Sinceyo = 1 the cas&k = 0 is trivial.

Theorem 7.2.1f {x1,..., Xy} C {Re @) > 0} is a set of distinct complex numbers
which is symmetric with respect to the real axis, thg(xs, ..., xn) # 0.

Proof.Denote byo; the elementry symmetry function of degrgethat is
oi (X1, .., XN) = Z X - X -
lSi1<i2...<ij <N

Extend this definition by the conventiong = 1 ands; = 0 whenevelj < 0 or
j >N.
Order thex;’s with the reals last as follows

(74) Xla"'aX|5)6.7"'7%7X2|+17---;XN~

Let S be the monic polynomial with thg as roots so

N
75 s@=]Je-xe-%[[e-x)=> (D" Ton iz .
i<l i>2l j=0
Since the quadratic and linear factors have real coefficients it follows that the
oj(X,...,Xy) are real. The quadratic factorf — 2Re )z + |x |> and linear
factors both have nonvanishing coefficients of alternating signs. The same is
therefore true of the product so

(76) O’J(X]_,...,XN)>O.
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For a nonincreasing sequenggthe dual sequence\’ is defined by
N=#jIN =i},

The sequence defined by (7.3) is its own dual.
Jacobi’s identity[14, formula 3.5] applied to ouk and withm =k reads

(7.7)  xk(X1,...,xN) = det (U)\i’fi+j)1§i ,jgk] = det [(Uk—2i+j+1)1§i ,jgk] .

The last equality follows sinc& = Aj = (K—i+1), impliesA/ —i+j =k—2i+j+1
fori <Kk.

To show thaty is nonzero we show that the matrix appearing on the right of
(7.7) is nonsingular. The matrices fkr=1,2,3 are

g3 04 Os
02 03
g1 g1 02 O3 .
0o 01
og_1 0Op O1

Sinceo; = Y % > 0, thek = 1 case is nonsingular. Note that the lower right
(k — 1) x (k — 1) minor is equal to the previous matrix and that all terms more
than one below the principal diagonal vanish.

A vector (—ag, +ay, ..., (—1)i+1aj- ,...,(=D¥a._1) belongs to the nullspace
if and only if for 1 <i <k

K k-1
(7.8) 0=> (Vg 10k zi4j+1= > _(—1) Mg ok 2i+j+2 -
j=1 =0

Let R(x) be the polynomial of degreg < k — 1 defined byR(x) = Za,—xj.
With S defined in (7.5) one has

N+k—1 [k—1 .
(7.9) RS= Y [ Y -V ™on ng | X"
h=0

j=0

with the convention thas; vanishes iff < 0 orj > N. Thus (7.8) is equivalent
to the vanishing of the terms of order=N +2i —k — 2 in RSfor 1 <i <k.
These ar& alternating terms beginning with the term of ordérk — 2, which
is the next to leading order.

Sinced denotes the degree &, ag # 0 andag; = 0 forj > d. Thanks to
(7.6) and the form of the matrix af’s, d must be greater than or equal to 1 for
any element of the nullspace.

The productRS then has the fornRS = agxN*® +lot sod andk must have
opposite parity, otherwise (7.8), (7.9) would show that this leading term would
vanish. ThuskS has the form

RS = adXN+d + bN+d_2XN+d72 + bN+d_4XN7d74 + ...
+ by ke xXN K+ 0(xN ) + lower order.
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If N +d is even then the even part is of order+ d and the first possible odd
term inxN—%=2 so the even and odd parts BS have degrees differing by at
leastd+k+2. If N +d is odd, the odd part has degriderd and the first possible
even term is ixN—K*2, The difference of degrees is again at ledst k + 2.
Sinced < k — 1, this shows that in both cases the even and odd pari&Sof
have degrees differing by at leasd 2 3.

Theorem 7.2 is an immediate consequence of the following Lemma which is
the main result of this section.

Lemma 7.3. Suppose that (k) is a real polynomial whose even and odd parts
have degrees differing 8K + 1. Denote by M(U) (resp. M~ (U)) the number
of roots of U with strictly positive (resp. negative) real parts. Theh(M) > K
and M—(U) > K.

End of proof of Theorem 7.2 assuming Lemma ABply the lemma to the
polynomialU = RS.

The remark before the Lemma shows tKat- d +1. However, the only roots
of RSin the half plane Re#) < 0 are roots oR soM ~ < d. This contradiction
shows that no nontrivial element of the nullspace exists.

Proof of LemmaBy hypothesisU (x) = P(x?) — xQ(x?) with real polynomials
P andQ of exact degreep andq respectively. The difference of degrees of the
even and odd parts & is then equal td2p — (2q + 1)|. ThusK is given by
2K +1=|2p — (29 +1)|.

If the polynomialsP and Q are not relatively prime, then one can write
U = GU with U = P(x?) — xQ(x?) with P and Q relatively prime. Then
MEU) > MEU) andK (U) = K(U). Thus it suffices to prove the result for
U. Thus we may suppose thBtandQ are relatively prime.

If P(0) = 0 thenQ(0) # 0 for otherwisex would be a common factor.
FactorU = xU with U = P(x?) — xQ(x?) whereP = —Q andQ = P/x. Then
20— 26 —1=—(2p — 29 — 1) soK(U) = K(U) Thus it suffices to prove the
lemma forU, so, we may suppose thR{(0) #0.

We split the proof according to the parity of dekj

Case 1degQ) is even, that i2p > 2q+1. ThenK = p —q — 1. The strategy is
to deformQ to a polynomial of degree zero. @ is not of degree zero, denote
by a > 0 the largest integer such that dividesQ. Then

Q(X) =agx9+...+a,Xx", aqg#0#ay
U (x) = P(x?) — x***1Qy(x?)
QX) =agx4 % +... +a, .

Let

Q) =t(agx? > +... +a,.x*"M) +a,, and
Ui(X) = P(x?) — x?2*1Qy(x?) .

If the roots ofU; are never purely imaginary thedy satisfies
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MEUg) =M*(U), Up=P(x?) +x**1Qy(x?),
degQo < degQ , K(Ug) >K(U).

If on the other handy is the firstt < 1 such thatJ; has roots on the imaginary
axis, write

Up(®) = [T+ 230 (x)
with ) real and the roots dfi with nonzero real parts. Write
Uy, (X) = P(x?) — x***"1Q(x?) .
Then 5 .
M*(U) <M*(U), degf) < degP),
degQ) < degQ), 2p>2G+1, KU)=K(U).
Both cases lead to a new polynomial with 272§ + 1 and withM * non-

increasing,K nondecreasing and the degree@fstrictly decreasing. A finite
number of iterations leads to a polynomi@lof degree zero, thath is

U(x) =P —cx***t, c#0, P0)#0,
M*(U) <M*(U), K(U)=K(U).
On iR, the first term ofJ is real and is nonzero at 0 while the second is imaginary

and nonzero o \ 0. Thus, such a polynomial cannot have purely imaginary
roots. A deformation leavinl = andK invariant reduces to the case

U)=x®+1+x>**" K=p—a-1.
We must show tham = > K. Consider the deformations
X% + 14 ex?tl

with ¢ decreasing from 1 to 0. The numbdvs® are independent of. For ¢
equal to zero at most 2 of thgp2oots lie on the imaginary axis. Thup 2- 2
roots are off axis and remain so fersmall. At leastp — 1 of these lie in each
half space, so for small one had1* > p—1> p—a—1 =K. This completes
the proof for case 1.

Case 2.degU) is odd, that is2p < 2q + 1. The strategy is to deforn® to a
polynomial of degree zero. Withdecreasing from 1 to zero let

P(x) =bpx” +... +byx + by ,
Pi(x) = t(bpxP +...+bix) +by, and
Ui (x) = Py(x?) — xQ(x?) .

If complex roots appear one extracts factorsxéf+ )\jz as in case 1. If not,
one setst equal to zero. Either way one gets a new polynontalwith M *
nonincreasingKk nondecreasing, and the degreePostrictly decreasing. A finite
number of iterations leads to
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Ux)=b—-xQ(x?, b#o0.

Such polynomials cannot have purely imaginary roots so a deformation reduces
to the case N
U(x) = £1 + x2*1

The reflectionx — —x reduces tot1 +x29*1, In this case there are no purely
imaginary roots and at leagtroots in each half space. Thig* > q =K and
the proof is complete.

Nonsymmetric counterexampl&/e construct five pointsgin the half-plane
Re &) > 0 such that there does not exist an interpolating rational function
R =P/Q of type (3,1) withQ monic. The interpolation (7.1) holds if and only

if the coefficients |3, P2, p1, Po, 1) Satisfy the linear system whose coefficient
matrix has rows equal to

(Lx2. %" x% %) j=1,...,5

and right hand side equal t&f(). In order that matrix not be surjective one must
choose the points so that the determinant of the coefficient matrix vanishes, that
is

(7.10) x2(X1,...,X%) =0.
We will choose the points so that in addition

(7.11) x2(X1, .., %) # 0

which implies that the last four columns of the coefficient matrix are linearly
independent and therefore span the range. In that case, the vxﬁ)tdne(ongs
to the range if and only if

det(>(i37Xi27Xi47Xi67Xi):O iff X]_(X]_,...,XS):ZX]- =0.

The last equality cannot hold since tehave positive real parts. Thus it suffices
to find points satisfying (7.10), (7.11).
Our interest beingN = 5, compute

X, xn) = D XD +2 D i = [(2%)° - 2%7]/3

i% i<j<k

N-1 N—1 \?2
= <in> X3 + (ZN) XN+ x2(Xe, -, XN—1) -
1 1

Choose with the same imaginary pamts= o + §; with

N-1
(7.12) S 4 =0.
1

Then
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N—1 N—1

(7.13) Xa(1, - Xn—1) =N(N = 1)(N — 2)a®/3 +a 21: B+ 21: 33/3.

X2(Xas -+ Xn) = (@ +iBN)(N — Da(Na +i6n) + xa(Xe, - - - s Xn-1) -

The j3; are chosen with

(7.14) d pi=1

S0 x2(Xa, - - -, Xy—1) # O which yields (7.11).
Equation (7.13) shows that(Xy,...,Xn) = 0 if and only if
N—-1
(7.15) N(N2 —1)a? — 3(N — 1)32 +321:5j =0, and
(N2 —1)a’fy +1/3=0.

Eliminating o yields a cubic equation fafy

N—1
9N — 1)38 — (9255) Bu+N=0.
1

Choosefy, . .., An—1 SO that8y = —1 is a solution. That is

N-—-1
(7.16) > BP=(8N-9)/9.
1

Thena > 0 is determined by (7.15).
To finish the construction it suffices to chogsg. . ., Gy —1 distinct inR\ {1}
satisfying (7.12), (7.14), (7.16) which is possible siite- 1 > 3.

Part Il. Partial fraction decomposition of the interpolant

In order that the approximant generate an artificial boundary condition which
can be implemented by solving surface differential equations no worse than heat
equations we restrict attention to rational approximations of the form

(7.17) R@)=az+B+) az/(z+d).

SinceR grows at most linearly at infinity this restricts to rational functions of
exact order i, n) with m < n + 1. In order that the resulting artificial boundary
conditions satisfy an energy identity which implies well posedness, we impose
the following admissibility condition.

Definition. A rational function Rz) is admissible if its partial fraction decompo-
sition has form (7.17) witlx > 0, 5> 0, o; > 0, and d > 0.
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Note that admissibility implies reality.

Proposition 7.4.An admissible rational function of exact tyfra, n) must satisfy
n+1>m2>n.

Proof.SinceR grows at most linearly at infinity one must hamet 1 > m. It
remains to show than > n.

If m < n-—1, then ax tends to infinity,R(z) tends to zero. However, for
an admissible rational function,

R@) = az + (@+ Zai) +0(1/2) .

Since theg + > «; > 0, this cannot tend to zero.

To study fractions of exact typen( n) with n < m < n+1 which interpolate
zY/2 atN = m+n+ 1 pointsz, ..., zy symmetric with respect to the real axis
a crucial role is played by = Sy(z) defined in (7.5). As above = zil/2 are
ordered as in (7.4). Denote B¥(z2) and zQ(z?) the even and odd parts &
defined by

P(z?) = [S(z) + S(-2)] /2.

2Q(z%) = [S(z) - S(-2)]/2.
ThenP andQ are polynomials of exact degrédl /2| and [(N — 1)/2] where
|| denotedloor function that is the largest integer less than or equal to.

We next study the negative real roots®fw) and Q(w). These correspond
to purely imaginary roots of the polynomiaz2) and Q(z2). Writing

Sy _ P(-y)+iyQ(-y?)
S(=iy)  P(-y?) —iyQ(-y?)
shows that this is equivalent to studying the real rootS@¥)/S(—iy) = +1

respectively.
Thanks to the symmetry of the one has

Stiy)/S(—iy) = [ [ty — 0/ ]~y = %0 = [Tty — %/ T =iy = x) -

This is a product oN factors of modulus 1. We study its argumentydacreases
from 0 to co. Each of the factors is

(X — iy)/(xk +iy) = #%O)

where the argumertk (y) decreases from ag) to —n/2 asy increases from 0
to co. The branch of the argument is defined-by /2 < arg < 7 /2. In particular
argf) + arg kx) = 0. Thus

S(iy)/S(—iy) = €°® where 6(y) =2 6(y),

andfd decreases from 0 te N7 asy increases from 0 too.
S(iy)/S(—iy) is equal to +1 (resp-1) whené is equal to—nz with n an
odd (resp. even) integer in J8[. This gives|N /2] (resp.|[(N — 1)/2]) values
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of y such thatS(iy)/S(—iy) = —1 (resp. +1). Denote the valuesws. ..,y |n 2|
(resp.Yi, ..., Y| (n—1)/2))- The roots are interlaced so that

(7.18) Y1 <Y1 <Y2<...<Yny2)-1 < Yn/2)-1 < Yns2if N is even
(719) y1<Yi<Y2<...<Yn-1)/2 < Yn-1)2if N is odd.

This gives exactlyN /2] negative real zeros;y?, of P and|(N —1)/2] negative
real zeros,—sz, of @ with a root of P closest to the origin. The number of zeros
is equal to the order of the corresponding polynomial in all cases.

The signs oﬂ5(Yj2) (resp.Q(yf)) alternate. The signs are determined by the
signs of the extreme elements which in turn are determined by the asymptotics
on the real axis.

The leading terms i andQ in caseN = 2p is even are

(7.20) P(w) = wP + lower order, Q(w) = —o1wP~! + lower order,

where as before;, = > x. On]— y2, oc, P is positive. The alternation then
shows that

(7.21) (-1)!P(-Y;?) > 0 whenN is even.
If N =2p+1is odd, then
(7.22) P(w) = —o1wP + lower order, Q(w) = wP + lower order.
Reasoning as above shows tifak 0 on | — y2, o0 and
(7.23) 1)I*P(-Y?) > 0.

Theorem 7.5. Suppose that;z. . ., zy are distinct points inC\]0, oo[ symmetric

with respect to the real axis and containing at least one nonzero point. Then, there
is exactly one admissible rational function interpolatingZat these points. That
rational function is real and of typém, m) when N= 2m + 1 is odd and of type
(m,m — 1) when N = 2m is even. In both cases the interpolant is given by the
formula Rz) = —P(z)/Q(z) whereP(z2) and 2Q(z?) are the even and odd parts

of S(z) = [1z - /.

Proof The proof is a case by case analysis of rational interpolants of type)(
withn <m<n+1.

We seekP and monicQ of exact degreesn and n respectively such that
P(x?) — xQ(x?) vanishes at the points, ..., xy. Recall thatN =m+n+1 and
x =22, ThusS(x) dividesP(x?) — xQ(x?).

Case 1, m= n. ThenN = 2n + 1 is odd and—P(x?) + xQ(x?) is a monic
polynomial of degree 2+ 1 which dividesS which is also monic and of degree
2n + 1. It follows that the two polynomials must be equal.

Thus —P andxQ are the even and odd parts 8ffrom the statement of the
theorem,
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P(z)=-P(@), Q(2=Q(2).
Q is monic and the leading term &f is 01z". Re (1) > 0 since ReXj) > 0. In
fact the real part of, is strictly positive unless the set gfis the singletor{ 0}
which is ruled out by hypothesis. Thus the exact degrea,in)(
To prove admissibility, decompos$einto partial fractions. We have observed
that Q hasn distinct negative real rootsg;, so

P@)/Q@) ~o1+> p/Z—1)-

Rewrite this in the form

P@)/Q@) ~ B+ jz/z—q).
Then ; y
B =P(0)/Q(0) = —P(0)/Q(0) = ozn+1/02n -
the last equality following from (7.5) and the relation betwéei®) and the even
and odd parts 06. Compute

0’2n+1:HXj :H|Xj|2HXj >0, and

i<l i>2l

O2n :Z (ij) =02n+121/x,- >0.

i=1 \j#

Thus, 3 > 0.
To find the sign ofy; use the formula

Goj =—P@)/ ][> @ -a).
i7
Then (7.16) implies that; > 0.
ThusR =P/Q is admissible.

Case 2, = n + 1. In this caseN = 2m is even and (7.20) shows thB{(x?) —
xQ(x?) is a monic polynomial of degreer® As this polynomial divide$ which

is also monic of degreen2, the two polynomials must be equal. Thus we must
have

P2)=P(z), and Q(2)=-Q(2).
Decompose as in case 1,
P@)/Q@) =az+B+) 0z/(z—q).

Then
a=1/01>0,

8=-P(0)/Q(0) =02n/02-1>0, and

gy = —P(q)/ (Uln(QJ - Qi)) <0,

i#
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the last inequality relying on (7.23). It follows thaj > 0 and we conclude that
R is admissible.

8. Estimates of the truncation error

In Theorems 5.2 and 6.1 it was shown that the absorbing boundary conditions
define parabolic time evolutions. This suggests that the ereemuey — Uapprx b€
considered as a solution of the boundary value problem

(81) Lv=0inRx{, v=0 for t<0, Ov/Ov=Bu+(B+Ng)ue

where the equatiofue,/0v = —NgUex for the exact solutiony, is used in the
last equality. Recall thaB is constructed as an approximation+iNg so it is
expected thatR + Ng)uex Will be small in some sense. The size of the error is
bounded by the size of this quantity.

Theorem 8.1. There is a constant c, independent of the absorbing boundary
condition duappr/ Ov = Bu constructed in the last sections, such that

| (ex — Uapprd )2y + / 19 (U Uapon (1)t

(82) < eCt/ ||(B + Ng)uex|||_2(s)

Proof.Let v = Ueyx — Uapprx

e(t) = [|(Uex — Uapprx)(t)”Lz(Q) ;
E(t) = ||V(UEX - uapprx)(t)”Lz(Q) .

The standard parabolic estimate fothen reads

(8.3) de/dt + 2E < ce+/

vBvdo + / v(B — Ng)uexdo .
s s

The derivation of the stability estimates fBrshows that

t t t
/ /vadodt gs/ E(t)dt+ca’l/ e(t)dt .
0 JS 0 0

The integral of the last term in (8.3) is estimated as follows.

t t
/ / (B — N)Uexdodt < c / lo(t)]22(sdt

/ (B — NQ)Uex(t)|||_2(s)

<s/ E(t)dt+C€71/0 e(t)dt+/ (B — NQ)Uex(t)HLZ(s)
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Therefore

t t t
84)  e(t)+ /o E(t)dt < ¢ /0 e(t)dt + /O (B — Nip)x(®) |26,

with constantc uniform for the absorbing conditions constructed in the previous
sections.
Gronwall's method applied to (8.4) yields (8.2).

There is a second estimate which is relevant for our absorbing conditions.
This one is qualitative in nature. The boundary conditions are constructed by
approximating the symbol of the Neumann operdils by suitable rational
functions. Only the terms of order zero and one in the symbol are used as these
are given in terms of simple geometric quantities associatedSviithe error has
two sources. First there is the error committed by taking only one or two terms
from the symbol which approximates the Neumann operatoNgyx which
differs fromN by an element oDpSj,,; with m = 0 orm = —1, depending on
whether the first order or second order approach is used. Second, there is the error
from approximatingNappr by an operatoB which has symbol an appropriate
rational function. The next theorem considers the error upon repladirgy
Napprx The result is that the error is smoother thapnear tot = 0. If N — Napprx
is in OpS~1 the degree of smoothness is higher thaN if- Napprx is in OpS°.

Suppose that

(8.5) NapprxiS @ causal member @pSi. (& x S), and
(8.6) Ng — Napprx € OpSieaf® X S), m=0 or m=-1.

For up € HM™(R") with suppuy C 2 let Uk denote the solution dfuex = 0 on
[0, oo xIR™ with initial dataug. Letu denote the solution in [@o[ x {2 defined by
the same initial data and the absorbing boundary condéi®fOr = —Nappru.
It is not difficult to show that this boundary condition defines a stable parabolic
evolution.
The errorw = Ugx — U, extended by zero far < 0, is then a solution of

(8.7) Lw=0 in ]—o0,00[x2, w=0 in t<O0,

(8.8) Oy w = —Nappnw — (N5 — NapprdUex 0N [0, 00[ XS .

The idea for estimatingy is that the difference of th&l's belongs toOpS..;
so is a lower order term. Whereas batly andu are continuous with values in

H™(42), the difference is continuous with valueskht(£2). In this sensei gives
a good approximation of the singular and most interesting behaviog,of

Theorem 8.2. If Nappix satisfies (8.5) and (8.6) then, the erreris continuous
on [0, oo[ with values in H"(£2). In addition there is a constant(€) such that

(8.9) [ (®)ll3ey < Cllvollmiy 0<t<T.

The regularizing property of the heat equation implies that th&s) norm of
both wy and of u are finite for t> 0 but they usually grow liket**™ times the
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H™(£2) norm of  as t decreases to zero. Thus (8.9) shows that u is genuinely
an approximation to & for t small.

ProofWe derive (8.9) for regular solutions. Standard techniques suffice from
there.
Multiply the equationLw = 0 by w and integrate ovef? to find that

(8.10) d 1/ |w(t)|2dx+/ \Vw\zdx:/w&,wdaﬂ.o.t.

Write the boundary terms as

(8.11) /waywdcf: /w(fNﬁ)wda+/wOpSmuede.
s Js s

If U is the solution ofLlU =0 inNgp, U =0 fort <« 0, andU = w on 942,
then

t t
Cc
/ /w(—Nfz)wda < I\U(t)||fz(fz)+0/ VU [|F255dt
0 JS 2 0

t
§C/ /|w|2dadt.
0Js

This, along with the lower order terms can be absorbed by a combination of the
two terms on the left of (8.10) by an argument we have now used several times.
For the final boundary term in (8.11), observe thgt extended by zero in

Ng belongs toH3M(] — oo, T] x 2) with norm bounded by thél ™(£2) norm

of up. Form = 0, a standard trace inequality shows thatjo 17xs belongs to
H,_l,égg'm(]—oo, T]xS) with norm bounded by thel ™ norm ofug. The same result

is true form = —1, though in that case,}:™ does not have traces. The Sobolev
regularity must be combined with an expression for the second normal derivative
D2Uex in terms of tangential and lower order derivatives which is furnished by
the equationLu = 0. The steps, in normal coordinates, are as follows. With

| ={0<x, <7} SoR x R"1 x| represents a part Gt x {2

Uex € L2(1 : Hieaf[—00, T1 x BRI H)
Pex/OxZ € L(1 1 Hiy2d — 00, TI x BI1)
Oex/ % € LA : Hiponfl — 00, T] x R H)
Uex € C(I": Hyom?( — 00, T] x BY3)) .

The integral of the last term of (8.11) is estimated as follows,

t
/ / wops’n Uede
0 Js

< cllwllizgo garr/zsy | OPS exll 2o 1 ~1/2(s) -

Now,
||OpSmUeXHL2([o,t];H71/2(3)) < HOpSmUeXHHfl/Z

o 2100, TIxS)
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The causality of the operat®pS].,, yields
||OpSmUeXHHfl/2
He:

1/2(1—00,T]xS) < CHUEXHHF;;{Z*’“(]foo,T]x:S)

< CHUGXHH'_'{;at(]—oo,T]XQ < c||uo[Hm(e) -

Summarizing,

t t
/ /wopsnuexda' < C/ / |V1U|2dx dt+ CHUOHﬁm(Q) .
0 JSs —o0 J 2

This estimate together with (8.10), (8.11), and Gronwall's inequality yields the
desired result.
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