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Summary. We construct and analyse a family of absorbing boundary conditions
for diffusion equations with variable coefficients, curved artifical boundary, and
arbitrary convection. It relies on the geometric identification of the Dirichlet
to Neumann map and rational interpolation ofz1/2 in the complex plane. The
boundary conditions are stable, accurate, and practical for computations.

Résuḿe. Nous introduisons une famille de conditions aux limites absorbantes
pour deséquations paraboliques̀a coefficients variables et une frontière quel-
conque. Elle repose sur l’identification géoḿetrique de l’application Dirichlet̀a
Neumann, et une approximation rationelle dez1/2 dans le plan complexe. Les
conditions aux limites obtenues sont stables, précises, et faciles̀a mettre en œuvre.

Mathematics Subject Classification (1991):65 P05

1. Introduction

The construction of reliable artificial boundary conditions for the numerical com-
putation of problems in unbounded domains has received much attention (see [4]
and references therein). The goal is to impose boundary conditions on an arti-
ficial boundary which is close to the domain where one hopes to calculate the
solution, and so that the solution of the problem in the reduced domain is a
good approximation to the solution of the original problem. The conditions must
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lead to well posed problems which are practical in the sense that they can be
implemented numerically. The artificial boundary conditions tend to be nonlocal
and the requirement of practicality demands that they be causal, or even better
local, in time.

For hyperbolic problems a key idea is to minimize the reflection of waves
at the artificial boundary. Engquist and Majda [3] introduced a method which
is now standard for the wave equation in a disk. They computed the symbol
of the Dirichlet to Neumann map (called simply theNeumann operatorin the
sequel) at the artificial boundary and then found stable, accurate, and practical
approximations.

We perform a similar analysis for parabolic equations. For problems in a
half space with constant coefficients, problems which are essentially one dimen-
sional, or problems with very small diffusion constants there are related works
for example [5–8, 10, 13]. Our approach does not require such special hypotheses
in particular it applies to variable coefficients, curved artificial boundaries, and
arbitrary advection in the domain.

The analysis consists of four distinct parts. First there is the study of the
Neumann operator. Consider the operator

Lu ≡ ∂t u −
n∑

i , j =1

aij (t , x)∂i ∂j u + l.o.t.

Suppose thatΩ is a bounded domain inRd and S the boundary of the exterior
of Ω. If Lu = 0 in the exterior ofΩ then∂νu on S is determined byu on S,
that is

(1.1) ∂u/∂ν = −Nu .

This definesNΩ̃ the Neumann operator associated to the equationLu = 0 in the
exteriorΩ̃. The minus sign is present becauseν is the outward normal toΩ and
not Ω̃. The condition (1.1) is the exactly transparent boundary condition. The
Neumann operator is pseudodifferential inRt × S. The symbol has an expansion
in terms homogeneous in (τ1/2, ξ)

(1.2) N (t , x, τ, ξ) ∼
∞∑
0

N1−j (t , x, τ, ξ) .

The principal term is easy to describe. The symbolaij ξi ξj is for each fixed
t a metric on the cotangent bundleT∗(Rd). This in turn induces a metric on
T∗(S). Denote by| · | the associated length. Then

(1.3) N1 = (iτ + |ξ|2)1/2

the square root taken with positive real part. Particular attention is paid to iden-
tifying geometrically the next termN0.
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The Dirichlet to Neumann operator is nonlocal in space and time. The second
step, following Lindmann [12], is to show that using rational approximations of
the functionz1/2 of the form

(1.4) z1/2 ≈ αz+β+
m∑

k=1

αkz/(z+dk) with α ≥ 0 , β ≥ 0 , αk > 0 , dk > 0

one can construct stable and computationally feasible approximations to the Neu-
mann operator. Rational approximations as in (1.4) we calladmissible. For each
such approximation we construct four distinct absorbing boundary conditions.
Two in Sect. 5 correspond to truncating (1.1) atN1 and two more in Sect. 6 come
from truncation atN0.

The two families correspond to distinct ways of using the rational approxi-
mation i.e.

(1.5) (∂t −∆S)1/2 ≈ α(∂t −∆S) + β +
∑
k≥1

αk(∂t −∆S)(∂t −∆S + dk)−1

and

(∂t −∆S)1/2 ≈ (−∆S)−1/2

×
[
α(∂t −∆S) −∆S

(
β +

∑
k

αk(∂t −∆S)(∂t − (1 + dk)∆S)−1

)]
.(1.6)

The second, (1.6), corresponds to the strategy adopted in [10]. A priori it is not
clear which of these algorithms is preferable, though in all cases we prefer those
which truncate afterN0 as the added precision has small computational cost.

Third, and this is a key step, we show in Sect. 7 that interpolation of the
function z1/2 at a family of points inC\] − ∞, 0] which is symmetric with
respect to the real axis, by rational functions of exact degree (n, n) or (n + 1, n)
(depending on whether the number of interpolation points is odd or even) yields
admissible approximations. Note that it is not obvious that such interpolations
exist and in fact without the symmetry hypothesis there are counterexamples.
That the interpolates have form (1.4) is even less clear.

An interesting question is whether other methods of generating rational ap-
proximations, for example least squares might be admissible and possibly better.

Finally in Sect. 8 we present a result which shows that approximating the
Dirichlet to Neumann map by its principal symbol or its symbol up to the next
order does indeed yield an approximate solution in the sense that the error is
smoother than the solution itself.

We would like to call attention to two weaknesses of the analysis. First
we have no convergence theorems. We do not provide a sequence of artificial
conditions whose precision converges to 100%. On the other hand, exactly this
strategy with the same effect has proved to be quite efficient for hyperbolic
problems. Second, for hyperbolic problems, approximating the Neumann operator
corresponds to avoiding the reflection of singularities at the artificial boundary.
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However, for parabolic problems singularities do not propagate to the artificial
boundary. For that reason accurately treating singularities, is not as natural. In
any event the utility of the methods introduced must be assessed by experience.
In addition, there do not appear to be many other options at present.

A detailed numerical study of our conditions in the case of a circular boundary
in R2 has been carried out by Dubach [2]. We present here a few of his results.
He computes solutions of the advection-diffusion equation

(1.7) ∂t u + ∂u/∂x1 − ν∆u = 0 in [0,∞[×R2

(1.8) u(0, x) = e−γ|x|2

whereν is constant andγ is chosen so thatu(0, x) ≥ 10−10 when|x| = 2. We are
interested in the values ofu in the diskD(2) whereD(r ) ≡ {|x| < R} and we
take for computational domains the slightly larger diskD(2.1) and also the disk
D(3). Our conditionBIII corresponding to the choice (1.5) and keeping the terms
j = 0, 1 from (1.2) leads to a system of equations foru and auxiliary functions
ϕk(θ), k = 0, 1, . . . ,m on S ≡ ∂D . Here 2m + 1 is the number of interpolation
points for z1/2. The functionsϕk and most importantlyu are determined from
(1.7), (1.8) together with

(1.9) ν−1∂tϕk−R−2∂2
θϕ+dkϕk = u , ϕk(0, θ) = 0 , 0 ≤ k ≤ m , d0 ≡ 0 ,

−∂u/∂r =

[
1/2R + β +

m∑
1

αk − cos(θ)/2ν

]
u −

m∑
1

αkdkϕk

+ (1/2R3)∂2
θϕ0 − (sin(θ)/2νR)

[
β∂θϕ0 +

m∑
1

αk∂θϕk

]
whenr = R .(1.10)

The somewhat frightening line (1.10) is the absorbing condition for the disk.
Notice that computing theϕk involves solving parabolic equations onRt ×S thus
with one fewer space variable than foru. In this sense the added computational
cost is small.

We take Dubach’s example withm = 3 and the seven interpolation points

0.01692, ±i0.09254, ±i0.39899, ±i0.84195.

Note that these numbers are all not far from the origin. This results in the
somewhat paradoxical fact that we are approximating high frequency asymptotics
at low frequency.

Figure 1 presents the errors and relative errors forν = 2 and also a comparison
with the errors committed when the Dirichlet conditions are imposed on∂D .
The Neumann conditions are much worse than either of these. The error for our
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Fig. 1. L2 error for Dirichlet (dashed) and absorbing (solid) boundary conditions as a function of time

Fig. 2. RelativeL2 error for Dirichlet (dashed) and absorbing (solid) boundary conditions as a function
of time

method is much smaller than for Dirichlet yielding relative errors of the order
.025 for times up tot = 5.

Figure 2 presents a closer look at the relative error for the absorbing condition.
Figure 3 presents theL∞([0, 10] : L2(|x| ≤ 2)) error as a function ofν

showing as expected that the method is better when the diffusion coefficientν
is large.

Figure 4 shows that increasing the size of the disk toR = 3 pays very little
dividend in this case, supporting our belief that the absorbing conditions are
performing as desired. Frankly speaking they perform better than we thought
they would!
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Fig. 3. Dependence of theL∞(L2) error onν, with R = 2.1

Fig. 4. Dependence of theL∞(L2) error onν, with R = 3

2. A geometric normal form for L

Consider the parabolic operator

(2.1) Lu ≡ ∂t u −
n∑

i , j =1

aij (t , x)∂xi ∂xj u + lower order terms.

The spatial part of the operator is assumed to be smooth and elliptic in the sense
that aij is smooth onRn+1, aij = aji , Dαaij ∈ L∞(Rn+1) for all α, and, there is
a µ > 0 so that for allt , x, ξ ∈ Rn+1 × R

n

(2.2)
∑

aij (t , x)ξi ξj ≥ µ(ξ2
1 + ξ2

2 + . . . + ξ2
n) .
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For anyx in R
n, we denote byTx(Rn) the linear space of tangent vectors

to Rn at x. The dual space of covectors is denotedT∗
x (Rn). The corresponding

tangent and cotangent bundles areT(Rn) andT∗(Rn).
For eacht , x, the principal symbol of the spatial part,

∑
aij (t , x)ξi ξj , defines

a scalar product onT∗
x (Rn). The corresponding length is denoted|ξ|2 ≡ 〈ξ, ξ〉 =∑

aij (t , x)ξi ξj .
The associated quadratic form〈ξ, η〉 =

∑
aij ξi ηj induces an isomorphism

betweenTx and T∗
x as follows. Each vectorv ∈ Tx defines a linear functional

ξ 7→ v(ξ) on T∗
x . There is a uniqueη = η(v) ∈ T∗

x such thatv(ξ) = 〈ξ, η〉
for all ξ. If v = vi ∂/∂xi (summation convention) the relation definingη(v) is∑

aij ξi ηj = vi ξi . Thusηi (v) = (a−1)ij v
j .

The isomorphismv 7→ η(v) induces a Riemannian metricgij dxi dxj on the
tangent bundleT(Rn) by

gij v
i vj ≡ 〈v, v〉 ≡ 〈η, η〉 = aij ηi ηj .

It follows that

(2.3) g(t , x) = a(t , x)−1 , that is gij = (a(t , x)−1)ij .

The correspondencev 7→ η(v) is the classical lowering of indices defined by the
metric g, and the inverse is raising indices. These operations preserve lengths.

The volume element of the Riemannian metric is equal to

dvol = (detgij )1/2dx = (deta)−1/2dx .

For a smooth functionf , the one formdf corresonds to the vector field gradf
by raising indices. One then has the Dirichlet integral

D(f ) ≡
∫

|gradf |2 dvol/2 =
∫

|df |2 dvol/2 =
∫

aij ∂i f ∂j f dvol/2 .

The Laplace-Beltrami operator for a Riemannian metric,g, is defined by

(2.4) Variation ofD(f ) in directionϕ ≡ −
∫
ϕ∆gf dvol .

The variation on the left is the Frechet derivative

(d/dε)D(f + εϕ)|ε=0 =
∫

〈gradϕ , gradf 〉dvol

=
∫

aij ∂i f ∂jϕ dvol .

The reader is warned that this is the analyst’s sign convention, the opposite sign
being the usual choice in geometry. The analyst’s choice yields

(2.5) ∆gv =
n∑

i , j =1

(detg)−1/2∂xi ((detg)1/2aij ∂xj v) .
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The principal part of this operator is equal to
∑

aij ∂i ∂j which is equal to the
principal part of the spatial part ofL. In the sequelgij will denote (g−1)ij = aij .
This underlines the connection betweenL and the geomtry defined by the metric
g induced bya.

So far we have observed that

(2.6) L = ∂t −∆g + lower order terms.

Under coordinate changest = t , x = x(t , x) which preserve the time variable,∆g

has invariant meaning as does the degree zero term inL which has coefficient
given bys(t , x) ≡ L1.

ThenL+∆g−s is a first order differential operator which annihilates constants.
Thus it is a vector field int , x. The coefficient of∂/∂t is equal to one. The latter
condition is preserved by the above changes of variables.

Proposition 2.1. If g = a−1 and s ≡ L1, then there is a unique time dependent
vector field V onR1+n

t,x

(2.7) V = ∂/∂t +
∑

vj (t , x)∂/∂j ,

such that

(2.8) L = V −∆g + s .

Note that neither∂t nor
∑
vj ∂j are well defined operators under the above

coordinate changes. For example

∂/∂t = ∂/∂t +
∑

(∂xj /∂t)∂/∂xj /= ∂/∂t

except if the change of variables is independent of time.

3. The symbol of the Neumann operator

Suppose thatΩ ⊂ R
n is an open set which together with its boundary is an

embedded submanifold with boundary. LetS denote the boundary ofΩ.
SinceR × S is noncharacteristic forL it follows that if t , x ∈ R × S and

u is a square integrable solution ofLu = 0 on Br (t , x) ∩ (R × Ω), then all the
derivatives ofu have well defined traces onBr (t , x) ∩ (R × S) (Br (t , x) is the
ball of radiusr centered at point (t , x)).

For t , x ∈ R × S, let ν(t , x) be the unit outward pointing normal toΩ for
the metricgij (t , x). The normal derivative∂νu is then defined to bedu(ν) =
〈gradu, ν〉g. The previous paragraph shows that∂νu|S andu|S are well defined
distributions on a neighborhood oft , x in S. Standard regularity theorems for
the Dirichlet boundary condition onR× Ω̄ for the operatorL assert that ifLu is
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smooth onBr (t , x) ∩ (R× Ω̄) andu|S is smooth on a neighborhood oft , x, then
u is smooth on anR× Ω̄ neighborhood oft , x.

Consider the Dirichlet problem for the operatorL. For h ∈ C∞
0 (R × S), let

u be the unique solution of

(3.1) Lu = 0 in R×Ω , u|R×S = h , u ≡ 0 for t � 0 .

The mapN : h 7→ ∂νu|S is called theNeumann operatoror Dirichlet to Neumann
operator for the domainΩ. For emphasis we sometimes writeNΩ .

If h ≡ 0 for t < t0 then u and thereforeNh vanish for t < t0. Thus N is
causal in the sense thatthe values of Nh in t< T are determined by the values
of h in t < T.

The regularity theorem asserts that the operatorN is pseudolocal in the sense
that

(3.2) singsupp (Nu) ⊂ singsupp (u) .

Even more is true. The operatorN is a pseudodifferential operator with symbol

(3.3) N (t , x, τ, ξ) ∼
∞∑
0

N1−j (t , x, τ, ξ)

whereNk is homogeneous of degree k inτ1/2, ξ in the sense that

(3.4) Nk(t , x, λ2τ, λξ) = λkNk(t , x, τ, ξ) (∀(τ, ξ) /= 0 , λ > 0) .

Nk belongs to Hormander’s symbol classesSk
1/2,0 (see [16]). A more refined

symbol class adapted to heat equations is described at the end of Sect. 4.
To compute the symbolN , the key idea is to use geodesic normal coordi-

nates. Forp ∈ S, let γ(s, p) be the unique geodesic for the metricg such that
γ(0, p) = p andγ′(0, p) = ν(p). Let x′ ≡ (x1, . . . , xn−1) denote local coordinates
for a neighborhood ofp in S. The map (x′, xn) 7→ γ(xn, p(x′)) defines a local
coordinate system for a neighborhood ofp in Rn. Sinceν is an outward normal,
the interior ofΩ corresponds toxn < 0. The metricg has the form

(3.5) g =
n−1∑

α,β=1

gαβdxαdxβ + (dxn)2 .

Here we introduce the convention thatGreek indices run from1 to n − 1 and
Roman indices run from1 to n.

Sincegnj = 0 for j < n andgnn = 1 the Laplace-Beltrami operator takes the
form

(3.6) ∆gu ≡ ρ−1∂xn (ρ∂xn u) +
∑
αβ

ρ−1∂xα (ρgαβ∂xβ
u)

where
ρ ≡ (detgij )1/2 = (detgαβ)1/2
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so the volume element isρ(x)dx andgαβ = (g−1)αβ .
With the standard notationD ≡ −i∂ ≡ (D1, . . . ,Dn) ≡ (D ′,Dn), the operator

L takes the form

L = D2
n + i(−ρ−1∂nρ + vn)Dn + Q(t , x,D ′) + iDt ,

Q ≡ Q2 + Q1 + Q0 ,(3.7)

Q2 ≡
∑

gαβDαDβ ,

Q1 ≡
∑

β

{
vβ −

∑
α

ρ−1∂α(ρgαβ)

}
iDβ , Q0 = s .(3.8)

The calculation ofN proceeds by factoringL, a procedure which is now
standard (see [3, 11, 15, 16]).

Theorem 3.1. Suppose that geodesic normal coordinates are introduced as
above. Then there are tangential pseudodifferential operators A(t , x,Dt ,D ′),
B(t , x,Dt ,D ′) in

C∞
(

] − δ, δ[xn : OpS1
1/2,0(Rn

t,x′ × R
n
τ,ξ′ )

)
with symbols

(3.9)

A(t , x, τ, ξ′) ∼
∑
j ≥0

A1−j (t , x, τ, ξ
′) ,

B(t , x, τ, ξ′) ∼
∑
j ≥0

B1−j (t , x, τ, ξ
′)

with Ak ,Bk homogeneous of degree k inτ1/2, ξ satisfying

L = (Dn + A)(Dn + B) modC∞(] − δ, δ[: OpS−∞
1/2,0) .(3.10)

Im B1 > 0 .(3.11)

The homogeneous terms Ak and Bk are uniquely determined. For k= 1, 0 they
are given by formulas (3.12), (3.13), (3.15).

Proof.To show the uniqueness expand the right hand side of (3.10)

(Dn + A)(Dn + B) = D2
n + (A + B)Dn + C(t , x,Dt,x′ )

C = AB + [Dn,B] ∼ −i∂B/∂xn +
∑

(∂α
τ,ξ′A)(Dα

t,x′B)/α! .

The Ak andBk are determined by the conditions

A + B = i(−ρ−1∂nρ + vn) , and

C = Q + iDt modC∞(] − δ, δ[: OpS−∞
1/2,0) .

The first condition is satisfied if and only if
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(3.12) Ak + Bk = 0 if k /= 0 andA0 + B0 = i(−ρ−1∂nρ + vn) .

Computing the leading terms ofC ∼ C2 + C1 + . . . yields

C2 = A1B1

C1 = A0B1 + A1B0 + DnB1 +
∑

(∂ξαA1)(DxαB1) .

In making the second calculation recall that theτ derivative of a function ho-
mogeneous of degreek in τ1/2, ξ′ is homogeneous of degreek − 2 so the
(∂τ A1)(Dt B1) term is of order zero and does not contribute toC1.

The degree 2 term inC = Q + iDt combined with (3.12) fork = 1 yields

(3.13) −(B1)2 = iτ +
∑

gαβξαξβ so B1 = i(iτ + |ξ′|2)1/2

the square root being the one with positive real part so thatB1 satisfies (3.11).
Identities (3.12) fork = 0, 1 show that the degree one term inC is given in

terms ofB0 andB1 by

C1 = (−2B1)B0 + i(−ρ−1∂nρ + vn)B1 + DnB1

−
∑

(∂ξαB1)(DxαB1) .(3.14)

Setting this equal toQ1 yields

(3.15) B0 = i(−ρ−1∂nρ + vn)/2 +
−Q1 + DnB1 −∑(∂ξB1)(DxB1)

2B1

where division byB1 is justified sinceB1 is nowhere zero inτ, ξ′ /= 0.
Continuing in this fashion uniquely determinesAk andBk .
ChooseA,B ∈ C∞(] − δ, δ[: Sm

1/2,0) satisfying (3.9). The calculus of pseu-
dodifferential operators then implies that

σ(L − (Dn + A)(Dn + B)) ∈ C∞(] − ∞, 0] : S−∞
1/2,0)

which proves (3.10).

Remark. NeitherB0 nor B1 depends on the zeroth order terms(t , x).

Theorem 3.2 The Neumann operator NΩ is equal to−iB modulo a smoothing
operator.

Proof.Thanks to (3.11) the final vaue problem

(3.16) DnU + BU = 0 in xn ≤ 0 , U |xn=0 = h

has for anyh ∈ H s(Rn
t,x′ ) a unique solutionU ∈ C(] − δ,0]xn : H s(Rn

t,x′ )).
Thanks to (3.10), this solutionU satisfiesLU ∈ C∞(−δ < xn ≤ 0). Thus

L(U − u) ∈ C∞ andU − u vanishes atxn = 0. The Local Regularity Theorem
for the Dirichlet problem forL implies thatU − u ∈ C∞(−δ < xn ≤ 0).
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Since the metric has the form (3.5) the conormal derivative at the boundary
is ∂/∂xn . Therefore atxn = 0,

Nh ≡ ∂u/∂xn = ∂U /∂xn + C∞ = −iBU + C∞ = −iBh + C∞ .

An interesting special case occurs whens(t , x) and thevj (t , x) vanish and the
operatorL in geodesic normal coordinates has coefficients independent of time.
This is the heat equation∂t − ∆ where∆ is the Laplace-Beltrami operator on
the product Riemannian manifoldS×R+ with metric equal togS +gR = gS +dx2

n .
The heat operator has the form

(3.17) L = ∂t −∆S − ∂2
n .

The Neumann operator in this case is denotedN0.

Proposition 3.3.For the heat equation on the productRt ×(S×R+) the Neumann
operator N0 satisfies N2

0 = ∂t −∆S.

Proof.If u is a solution ofLu = 0 thenw ≡ ∂u/∂xn satisfiesLw = 0. Therefore
at xn = 0,

∂2
nu = ∂nw = N0(w|R×S) = N0(∂nu|R×S) = N0(N0(u|R×S)) .

On the other hand,∂2
nu = (∂t −∆S)u and the result is proved.

Proposition 3.3 motivates the following definition.

Definition. The operator(∂t − ∆S)1/2 is defined to be the Neumann operator
associated to heat equation onRt × (S × R+). It is denoted N0.

Then,

σ((∂t −∆S)1/2) = σ(N0) = −iB1 − iB0 + l.o.t.

= −iB1 +

∑
α ρ

−1∂α(ρgαβ)ξβ + i
∑

(∂ξαB1)(DxαB1)
2B1

+ l.o.t.(3.18)

whereB1 is given by (3.13).

Remark.The operator∂t −∆S onRt ×S has many square roots. The one singled
out above is characterized by the following three properties
i.) It commutes with operators that commute with∂t −∆S.
ii.) It is pseudodifferential with classical symbol expansion.
iii.) It has principal symbol with nonnegative real part.

Several of the terms in (3.15) have already been identified. WriteV − ∂/∂t
as a sum of its tangential and normal components

V − ∂/∂t = Vtan + Vnor , Vnor = 〈(V − ∂/∂t), ν〉ν ,
σ(Vtan) =

∑
vα(t , x)iξα .(3.19)
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In geodesic normal coordinates,Vnor = vn∂n. The next result summarizes the
information in Theorem 3.2 and equations (3.13), (3.15), (3.18).

Theorem 3.4. The Neumann operator NΩ satisfies

σ(NΩ) = σ((∂t −∆S)1/2) + i(σ(Vtan) − DnB1)/2B1

+ (−ρ−1∂nρ + vn)/2 modS−1/2
1/2,0 .(3.20)

Question.The operatorσ((∂t − ∆S)1/2) is determined by a calculation inside
Rt × S and does not depend on the embeddingS ↪→ R

n. The order 1 part of
this operator has a clear interpretation in terms of the first fundamental form of
S. We do not know a geometric interpretation of the zeroth order term in the
symbol of σ((∂t − ∆S)1/2). We are equally ignorant with regard to the zeroth
order term inσ((−∆S)1/2).

4. Geometric identification B1 + B0

The identity

(4.1) B1 = i(iτ + gαβξαξβ)1/2 = i(iτ + |ξ′|2)1/2

givesB1 in terms of the first fundamental form ofS. In this sense it is geometric.
In this section, we compute a geometric formula for the symbol ofB0 which
depends, in addition, on the second fundamental form andV . Put another way,
the goal of this section is to identify geometrically the two terms in equation
(3.20) which involve derivatives with respect toxn.

The formula forB0 involves no time derivatives. It is determined by the
geometry ofS ↪→ R

n, g andV (t , ·) for t fixed and not on the way the geometry
depends on time. We begin by recalling some of the basic notions concerning
the local Riemannian geometry of the embeddingS ↪→ R

n, g (see [9]).
In geodesic normal coordinates for a collar aboutS, the vectors∂/∂xj , 1 ≤

j ≤ n form a basis for the tangent space toRn, and∂/∂xn is orthogonal to the
others. The fistn − 1 vectors whenxn = 0 are a basis for the tangent space toS.

Denote byD̄ the Riemannian connection forRn, g. Then

(4.2) D̄∂i ∂j =
n∑

k=1

Γ̄ k
ji ∂k .

The time dependent Christoffel symbols̄Γ are given by

(4.3) Γ̄ k
ji =

1
2

n∑
m=1

gkm
(
∂gim/∂xj + ∂gjm/∂xi − ∂gji /∂xm

)
.

The metricg on Rn induces a metric onS which in turn determines a Rie-
mannian connection, denotedD , on S
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(4.4) D∂α∂β =
n−1∑
γ=1

Γ γ
βα∂γ

where the Christoffel symbolsΓ γ
βα are given by

(4.5) Γ γ
βα =

1
2

n−1∑
µ=1

gγµ
(
∂gαµ/∂xβ + ∂gβµ/∂xα − ∂gβα/∂xµ

)
.

In the geodesic normal coordinates,

g =

[
gαβ 0

0 1

]
and g−1 =

[
(gαβ)−1 0

0 1

]
=

[
gαβ 0

0 1

]
.

Note that∂n is a unit normal toS with respect to〈·, ·〉g so the Weingarten map
W : T(S) → T(S) is defined byWX = D̄X∂n. W is a symmetric linear operator
with respect to the scalar product〈·, ·〉g for T(S). The second fundamental form
of S is defined as the quadratic formII (X,Y) ≡ 〈WX,Y〉g on T(S).

The formula of Gauss reads

(4.6) D̄XY = DXY − 〈WX,Y〉g∂n ∀X,Y tangent toS .

This gives the orthogonal decomposition ofDXY into parts tangent toS and
orthogonal toS and also relates the connections onS, g andRn, g. TakingX = ∂α

andY = ∂β formula (4.2) also gives an orthogonal decomposition, so the normal
parts must be equal

(4.7) Γ̄ n
αβ = −〈W∂α, ∂β〉g = −II (∂α, ∂β) .

In the sum (4.2) defining the coefficients̄Γ n
ji , the termgnm vanishes unless

m = n in which case it is equal to one. In then = m summandgim = gjm ≡ 0
which yieldsΓ̄ n

αβ = −(∂gβα/∂xn)/2. Together with (4.7) this yields

(4.8) ∂gαβ/∂xn|xn=0 = 2〈W∂α, ∂β〉g = 2II (∂α, ∂β) .

Introduce the matrixWαγ of W in the basis∂α, W∂α ≡∑Wαγ∂γ . Then

(4.9) 〈W∂α, ∂β〉g =
∑

γ

Wαγ〈∂γ , ∂β〉g =
∑

γ

Wαγgγβ = (Wg)αβ ,

whereWg is the matrix product. Note that the matrixWαβ need not be symmetric.
The symmetry of the Weingarten map is equivalent to the symmetry of the matrix
(Wg)αβ . Identities (4.8) and (4.9) yield the matrix equation∂g/∂xn = 2Wg.

Now consider the termρ−1∂nρ in (3.15). Denote byg1, . . . , gn the columns
of the matrixgij . We have just shown that∂ngj = 2Wgj . To computeρ−1∂nρ
note that

(4.10) ∂nρ = ∂n(detg)1/2 =
1
2

(detg)−1/2∂n(detg) , and



Absorbing boundary conditions for diffusion equations 199

∂n(detg) =
n∑

j =1

det (g1, . . . , gj −1, ∂ngj , gj +1, . . . , gn)

= 2
n∑

j =1

det (g1, . . . , gj −1,Wgj , gj +1, . . . , gn) .(4.11)

The map sending thegk to the right hand side is an element ofΛn(Rn). Since
Λn(Rn) has dimension equal to 1, there is a constantc(W) such that the right
hand side is equal toc(W)det (g). Takingg = I , yields c(W) = 2Tr(W). Thus

(4.12) ρ−1∂nρ = (detg)−1/2 1
2

(detg)−1/2(2Tr(w))(detg) = Tr(W) .

The mean curvatureH of S is by definition equal to Tr(W)/ dim(S), so

(4.13) ρ−1∂nρ ≡ (n − 1)H (t , x) .

Examples.The mean curvature is defined by the outward pointing normal to
Ω. Thus if Ω is the interior (resp. exterior) of the ball of radiusr in Rn, then
H = 1/r (resp.−1/r ).

The computation for theDnB1 term in (3.15) is similar. One has

(4.14) ∂n(iτ + gαβξαξβ)1/2 =
1
2

(iτ + gαβξαξβ)−1/2∂n(gαβξαξβ) .

The derivative of the matrixgαβ of g−1 is computed as

∂ng
−1 = −g−1(∂ng)g−1 = −g−12Wgg−1 = −2g−1W

so

(4.15) ∂n(gαβξαξβ) = −2gαγWγβξαξβ .

When xn = 0, formula 4.15 has an elegant geometric interpretation. In the
right hand side insert the index lowering isomorphismξα = gµαv

µ from T(S) to
T∗(S) to find for ξ ∈ T∗(S)

∂n(gαβξαξβ) = −2gαγWγβgµαv
µgχβv

χ .

Sincegαγgµα = δγ
µ this yields

(4.16) ∂n(gαβξαξβ) = −2gβχWγβv
γvχ ≡ −2II (v, v) ≡ −2II (ξ, ξ) ,

where the second fundamental form is transported fromT(S) to T∗(S) by raising
indices.

Equations (4.14) and (4.16) yield

(4.17) iDnB1(t , x′, τ, ξ′)/B1 = −II (ξ′, ξ′)/(iτ + |ξ′|2) .

Combining (4.3), (4.13) and (4.17) proves the following formula.
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Theorem 4.1 In local coordinates x′ for S the symbol of the Neumann operator
NΩ is given, modulo S−1/2

1/2,0 (Rt × Rx′ ;Rτ × Rξ′ ), by

(4.18) σ((∂t −∆S)1/2) +
−(n − 1)H + 〈v − ∂/∂t , ν〉

2
+
σ(vtan)
2Ψ1/2

+
II (ξ′, ξ′)

2Ψ

whereΨ ≡ iτ + 〈ξ′, ξ′〉2
g.

The error estimate implicit in Theorem 4.1 is not optimal. For example,
operators with symbols inS−1/2

1/2,0 mapH s to H s+1/2 while the difference between
the Neumann operator and the operator with symbol given by (4.18) gains 1/2
a derivative int and a full derivative in x′. To get this more precise result it is
natural to introduce the weight function

(4.19) Φ(τ, η) ≡ (1 + |τ |2)1/4 + (1 + |η|2)1/2 , η ≡ ξ′

and the inhomogeneous Sobolev space

(4.20) H s
Heat = {u ∈ s′(Rn) : |û(τ, η)|Φs ∈ L2(Rn

τ,η)} .
Heres is a real number and not the zero order term inL. These spaces are natural
for the heat equation.

We use the Beals-Fefferman calculus of pseudodifferential operators with
dual weightϕ ≡ 1 [1]. The Beals-Fefferman symbol classsm ln(Φ)

Φ,ϕ is defined by
the estimates

|∂α
t,x∂

β
τ,ηp(t , x, τ, η)| ≤ cαβΦ

m−|β| .

For brevity we denote this symbol class asSm
Heat. A function homogeneous of

degreem in τ1/2, η for largeτ, η defines an element ofSm
Heat and the operators

in OpSm
Heat mapH s

Heat continuously toH s−m
Heat .

The difference between the Neumann operator and the operator with symbol
given by (4.18) belongs toOpS−1

Heat. These remarks suffice to justify the more
precise result indicated after the statement of Theorem 4.1. We summarize the
basic facts relating the Neumann operator and this calculus.

Theorem 4.2. The operator B(t , x,Dt ,Dx′ ) in Theorem 3.1 belongs to
C∞(] − δ, δ[: OpS1

Heat). For any m ≤ 1, the difference B− ∑k≥m Bk with Bk

from Theorem 3.1, belongs to C∞(] − δ, δ[: OpSm−1
Heat ). In particular, the symbol

of NΩ is equal to (4.18) modulo S−1
Heat.

5. First order absorbing conditions

Consider the numerical computation of a solutionu to Lu = 0 in all ofRn
x . Usually

one truncates the domain to a practical (hence bounded) domainΩ ⊂⊂ R
n.

The differential equation is then supplemented with boundary conditions at the
artificial boundaryS ≡ ∂Ω.
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The exact solutionu satisfiesLu = 0 on all of the exteriorR× Ω̃ so

(5.1) ∂u/∂νΩ̃ = NΩ̃(u|R×S) .

Since the outward normal to the exterior is opposite the normal toΩ it follows
that u in R× Ω̄ satisfies

(5.2) ∂u/∂νΩ = −NΩ̃(u|R×S) .

This is called thetransparent boundary conditionin R×Ω, since the exact full
space solution satisfies this condition.

The strategy is to impose boundary conditions at the artificial boundary which
approximate (5.2). That is solve

(5.3) Luappr = 0 in R+ ×Ω , and ∂uappr/∂νΩ = Buappr on R+ × S ,

whereB ≈ −NΩ̃ in some sense. Practical considerations suggest that the approx-
imate boundary condition must becausaland stable. Stability means that (5.3)
defines a well posed initial value problem.Causalitymeans that the values of
Bu in t < T depend only on the values ofu in t < T. This is needed so that a
marching scheme can be implemented. Note that we do not insist on locality in
x or t . Some standard approximations are nonlocal.

Recall that the principal symbol ofNΩ̃ is equal to (iτ + |ξ′|2)1/2 where the
length square is given by the metricgαβξαξβ induced by the spatial part ofL.
In this section two families of algorithms are proposed. Both are generated by
taking rational approximations to the function (iτ + |ξ′|2)1/2. Both methods have
the feature that their stability is proved directly by integration by parts as opposed
to verifying Lopatinski conditions.

Both families are generated by rational approximations toz1/2 of the form

F (z) ≡ z1/2 ≈ R(z) = αz + β +
m∑

k=1

αkz/(z + dk),

α ≥ 0 , β ≥ 0 , αk > 0 , dk > 0 .(5.4)

Note that one can equally well write

R(z) = αz + b +
m∑

k=1

ck/(z + dk)

but theck may be negative even whenβ andαk are positive.The special form
(5.4) is crucial in proving stability.

Section 7 is devoted to showing that approximations of this sort are generated
by rational interpolation of the functionF (z) by rational functions of exact type
(p, q) with q ≤ p ≤ q + 1 provided that the interpolation points lie in Re(z) ≥ 0
and are symmetric with respect to the real axis. If the number of interpolation
points is odd the approximant of type (q, q) satisfiesα = 0 and this yields a
somewhat simpler form for the algorithm which follows.
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The choice of the interpolation points is the subject of research, both theo-
retical and numerical, of E. Dubach [2].

The approximation (5.4) yields the formal identity

(∂t −∆S)1/2 ≈ α(∂t −∆S) + β +
∑

k

αk(∂t −∆S)(∂t −∆S + dk)−1 .

The operator on the right must be applied tou|R×S. There is a natural causal
realization of (∂t −∆S + dk)−1 given by solving auxiliary problems introduced
by Lindmann [12]. For 1≤ k ≤ m introduceϕk = (∂t −∆S + dk)−1u solution of

(5.5) (∂t −∆S + dk)ϕk = u for t ≥ 0 , ϕk |t=0 = 0 , k = 1, 2, . . . ,m .

Note that this is a parabolic initial value problem on [0,∞[×S, a lower dimen-
sional manifold without boundary. The absorbing boundary condition is given as
follows.

Absorbing boundary conditions I.Approximatez1/2 as in (5.4). Then foru0(x)
given, solve the system defined by (5.5) coupled to

(5.6) Lu = 0 in [0,∞[×Ω u|t=0 = u0 on Ω and

∂u/∂ν = − α(∂t −∆S)u − βu −
∑

k

αk(∂t −∆S)ϕk

≡ BIu on [0,∞[×S .(5.7)

The second family of absorbing conditions approximates (iτ + |ξ′|2)1/2 differ-
ently. This is the path proposed by P. Joly [10] for constant coefficient problems
in a half space. Forξ′ /= 0 one factors

(iτ + |ξ′|2)1/2 = |ξ′|(1 + iτ/|ξ′|2)1/2 .

Using an approximation of type (5.4) yields

f (z) ≡ (1 + z)1/2 ≈ α(1 + z) + β +
m∑

k=1

αk(1 + z)
(1 + z) + dk

,

β ≥ 0 , αk > 0 , dk > 0 .(5.8)

Plugging inz = iτ/|ξ′|2 yields

(1 + iτ/|ξ′|2)1/2 ≈ α|ξ′|−2(iτ + |ξ′|2) + β +
∑ αk(|ξ′|2 + iτ )

iτ + (1 + dk)|ξ′|2 .

Multiply by |ξ′| to obtain

(iτ + |ξ′|2)1/2 ≈ |ξ′|−1

(
α(iτ + |ξ′|2) + |ξ′|2

(
β +

∑ αk(|ξ′|2 + iτ )
iτ + (1 + dk)|ξ′|2

))
.

This generates the approximation
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(∂t −∆S)1/2 ≈ (−∆S)−1/2

×
[
α(∂t −∆S) −∆S

(
β +

∑
k

αk(∂t −∆S)(∂t − (1 + dk)∆S)−1

)]
.(5.9)

Introduce the auxiliary functionsψk(t , x) on R × S solutions of the parabolic
initial value problems

(5.10) (∂t − (1 + dk)∆S)ψk = u , ψk |t=0 = 0 , k = 1, 2, . . . ,m .

The boundary condition (5.2) is then approximated by
(5.11)

∂u/∂ν = −(−∆S)−1/2
[
α(∂t −∆S)u −∆S

(
βu +

∑
αk(∂t −∆S)ψk

)]
≡ BII u .

Absorbing boundary conditions II.Approximate (1 +z)1/2 as in (5.8) then for
u0(x) given solve the system defined by (5.6), (5.10), and (5.11).

In order to see that the conditions are at least well formulated, use the fol-
lowing simple continuity estimates for the approximations toNΩ̃ which are im-
mediate consequences of elementary regularity for the parabolic equations (5.12)
and (5.13).

Lemma 5.1. The operator BI defined by

BIh ≡ −α(∂t −∆S)h − βh −
∑

k

αk(∂t −∆S)ϕk

where theϕk solve

(5.12) (∂t −∆S + dk)ϕk = h for t ≥ 0 , ϕk |t=0 = 0 ,

is a causal and bounded operator from Hs([0,T] × S) to H s−2([0,T] × S) for
all s ∈ R.

Similarly the operatorBII defined by

BII h ≡ −(−∆S)−1/2
(
α(∂t −∆S)h −∆S

(
βh +

∑
αk(∂t −∆S)ψk

)]
where theψk are the solutions of

(5.13) (∂t − (1 + dk)∆S)ψk = h , ψk |t=0 = 0 ,

defines a causal and bounded operator fromH s([0,T] × S) to H s−1([0,T] × S)
for all s ∈ R.

The absorbing boundary conditions take the form∂u/∂νΩ = Bu with B = BI

or B = BII .

The boundary operator will be applied to solutions ofLu = 0 which satisfy
u ∈ L2([0,T] : H 1(Ω)). Consideringu as a function of 0≤ xn < ε in geodesic
normal coordinates, one has
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u ∈ H 1(xn : L2([0,T] × R
n−1))

∂u/∂xn ∈ L2(xn : L2([0,T] × R
n−1)) .

It follows that the trace ofu at xn = 0 satisfies

u|xn=0 ∈ L2([0,T] × R
n−1) .

In particular,Bu has a well defined sense for such solutions.
The absorbing strategies define well posed evolution equations foru, ϕ and

u, ψ respectively. We give a typically parabolic well-posedness result. Estimates
for higher derivatives are left to the reader.

Theorem 5.2. For any u0 ∈ L2(Ω) and T> 0, there is a unique

u ∈ C([0,T] : L2(Ω)) ∩ H 1([0,T] : H −1(Ω)) ∩ L2([0,T] : H 1(Ω))

ϕk ∈ C([0,T] : L2(S)) ∩ H 1([0,T] : H −1(S)) ∩ L2([0,T] : H 1(S))

satisfying(5.5), (5.6), (5.7).

The same conclusions are valid ifϕ is replaced byψ and (5.5) and (5.7) are
replaced by (5.10) and (5.11).

Proof.Multiply the equationLu = 0 by u and integrate dvolg over Ω. Two of
the terms simplify. First,

(5.14) −
∫

Ω

u∆gu dvol =
∫

Ω

|∇gu|2 dvol −
∫

S
u∂νu dσ .

Second, note that the volume element is smoothly time dependent so∫
uut dvol = ∂t

∫
u2/2 dvol +

∫
f (t , x)u2 dvol

whereDα
t,xf are bounded on [0,∞[×Ω̄. Summing we find

1
2

d
dt

‖u(t)‖2
L2(Ω) +

∫
Ω

|∇u|2 dvol −
∫

∂Ω

u∂νu dσ

+
∫

Ω

u
∑
j ≥1

vj ∂j u + su2

 dvol ≤ c‖u(t)‖2
L2(Ω) .(5.15)

Sincev(t , x) ands(t , x) are bounded the last integral on the left is dominated by

(5.16) ε‖∇u(t)‖2
L2(Ω) + cε−1‖u(t)‖2

L2(Ω) .

The first of these is absorbed in the gradient term on the left and the second is
passed to the right. The key is to analyse the boundary term− ∫ u∂νudσ on the
left of (5.15) when∂νu = Bu.

We derivea priori estimates from which the existence and uniqueness results
follow easily. Consider the case ofBI first. Then
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−
∫

u∂νudσ = −
∫

uBIu dσ = α
∫

u(∂t −∆S)udσ +
∫
βu2dσ

+
∑

k

αk

∫
u(∂t −∆S)ϕkdσ .

In the first term on the right use∫
u(∂t −∆S)udσ = ∂t

∫
u2/2dσ +

∫
|∇Su|2 dσ

+
∫

f (t , x)u2 dσ ,

where this newf satisfiesDγ f ∈ L∞([0,∞[×S) because of the smoothness of
the surface elementdσ. Use (5.5) in the final terms to write∫

u(∂t −∆S)ϕkdσ =
∫

[(∂t −∆S)ϕk ]2 dσ + dk

∫
ϕk(∂t −∆S)ϕkdσ∫

ϕk(∂t −∆S)ϕkdσ = ∂t

∫
ϕ2

k/2dσ +
∫

|∇Sϕk |2 dσ +
∫

f (t , x)ϕ2
kdσ .

Multiplying by α andαk and summing yields

1
2

d
dt

[
‖u(t)‖2

L2(Ω) + α‖u(t)‖2
L2(S) +

∑
αkdk‖ϕk(t)‖2

L2(S)

]
+ (1 − ε)‖∇u‖2

L2(Ω) + α‖∇Su‖2
L2(S) + β‖u‖2

L2(S) +
∑

αkdk‖∇Sϕk‖2
L2(S)

+
∑

αkdk‖(∂t −∆S)ϕk‖2
L2(Ω)

≤ c
(
‖u(t)‖2

L2(Ω) + ‖u(t)‖2
L2(S) +

∑
‖ϕk(t)‖2

L2(S)

)
.(5.17)

If α /= 0, Gronwall’s method yields

1
2

[
‖u(t)‖2

L2(Ω) + α‖u(t)‖2
L2(S) +

∑
αkdk‖ϕk(t)‖2

L2(S)

]
+
∫ t

0

[
(1 − ε)‖∇u‖2

L2(Ω) + α‖∇Su‖2
L2(S) + β‖u‖2

L2(S)

+
∑

αkdk

[
‖∇ϕk‖2

L2(S) + ‖(∂t −∆S)ϕk‖2
L2(Ω)

]]
dt

≤ ect‖u(0)‖2
L2(Ω) .(5.18)

If α = 0, theu|S term on the right of (5.17) is first estimated by

‖u(t)‖2
L2(S) ≤ c

(
η−1‖u(t)‖2

L2(Ω) + η‖∇u(t)‖2
L2(Ω)

)
and then use Gronwall.

Using the equationLu = 0 yields estimates forut in L2([0,T] : H −1(Ω)).
Turn next to the case ofBII . The boundary integral on the left hand side of

(5.15) is equal to
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−
∫

u∂νu dσ = −
∫

uBII udσ

=
∫ [

αu(−∆S)−1/2(∂t −∆S)u + u(−∆S)1/2

×
{
βu +

∑
αk(∂t −∆S)ψk

}]
dσ .

The terms on the right are analysed as follows.∫
u(−∆S)−1/2∂t u dσ = ∂t‖(−∆S)−1/4u‖2

L2(S)/2 +
∫

f (t , x)[(−∆S)−1/4u]2 dσ ,∫
u(−∆S)−1/2(−∆S)udσ =

∫
u(−∆S)1/2udσ = ‖(−∆S)1/4u‖2

L2(S) .

The last identity is also used for theβ
∫

u(−∆S)1/2udσ term.∫
u(−∆S)1/2(∂t −∆S)ψkdσ =

∫
(∂t − (1 + dk)∆S)ψk(−∆S)1/2(∂t −∆S)ψkdσ

=
∫

(∂t −∆S)ψk(−∆S)1/2(∂t −∆S)ψkdσ

+
∫

−dk∆Sψk(−∆S)1/2(∂t −∆S)ψkdσ

= ‖(−∆S)1/4(∂t −∆S)ψk‖2
L2(S) + dk‖(−∆S)5/4ψk‖2

L2(S)

+ (dk/2)∂t‖(−∆S)3/4ψk‖2
L2(S) + o(‖(−∆S)3/4ψk‖2

L2(S) .

This yields an estimate

1
2

[
‖u(t)‖2

L2(Ω) + α‖(−∆S)−1/4u‖2
L2(S) + αkdk‖(−∆S)3/4ψk(t)‖2

L2(S)

]
+
∫ t

0

[
‖∇u(t)‖2

L2(Ω) + α‖∇Su(t)‖2
L2(S) + (α + β)‖(−∆S)1/4u(t)‖2

L2(S)

+
∑

αk‖(−∆S)1/4(∂t −∆S)ψk(t)‖2
L2(S)

+
∑

αkdk‖(−∆S)5/4ψk(t)‖2
L2(S)

]
dt

≤ ect‖u(0)‖2
L2(Ω) .(5.19)

Remarks.1. In caseL = ∂t −∆g with coefficients independent of time the above
energy estimates are valid withc = 0. The resulting stability results are uniform
in t ≥ 0 in contrast to the general case where the bounds grow exponentially in
time.

2. The estimates for the functionsψ are stronger than those forϕ. We will
not state the corresponding strenghtening in Theorem 5.2.

3. A computation like the proof of energy estimates by this integration by parts
allows one to give a variational formulation of the boundary value problem which
can be used as the basis of a constructive existence proof by Galerkin’s method
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and as the foundation of finite element methods for the discretization of the
absorbing boundary value problems. In this way high order stable discretizations
are available.

6. Second order absorbing conditions

In the last section, absorbing conditions were constructed using only the principal
symbol of the first order operatorNΩ̃ . In this section we show how these can
be refined to take advantage of the terms of order zero in the symbol ofNΩ̃ .
Again, depending on the strategy for the rational approximation of (iτ + |ξ′|2)1/2,
there are two distinct approaches. The estimates of this section show that both
approaches yield stable approximations.

In the first approach, the approximation (5.4) generated

(6.1) (∂t −∆S)1/2 ≈ α(∂t −∆S) + β +
∑

k

αk(∂t −∆S)(∂t −∆S + dk)−1

We do note improve the approximation of the first term in (4.18). Rather, the
other terms are added to the algorithm. The second term in (4.18) is merely
multiplication by a smooth function so causes no problem. The action of the last
term onu is approximated by II(D ′,D ′)ϕ0/2 whereϕ0 is the solution of

(6.2) (∂t −∆S)ϕ0 = u , ϕ0|t=0 = 0 .

For the (1/2)Vtan(∂t −∆S)−1/2 term in (4.18) use (6.1) to get

(∂t −∆S)−1/2 = (∂t −∆S)−1(∂t −∆S)1/2

≈ α + β(∂t −∆S)−1 +
∑

k

αk(∂t −∆S + dk)−1 .(6.3)

The Vtan term is then approximated by

(6.4) Vtan(∂t −∆S)−1/2u/2 ≈ Vtan

[
αu + βϕ0 +

∑
αkϕk

]
/2

where the auxiliary functionsϕk are defined in (5.5). This yields the following
algorithm.

Absorbing boundary condition III.Approximatez1/2 as in (5.4) then foru0(x)
given solve the coupled system foru, ϕk 0 ≤ k ≤ m defined by (5.5), (5.6),
(6.2), and

∂u/∂ν = − α(∂t −∆S)u − βu −
∑
k≥1

αk(∂t −∆S)ϕk

− (n − 1)HΩ − 〈V − ∂/∂t , νΩ〉
2

u − Vtan

αu + βϕ0 +
∑
k≥1

αkϕk

 /2

+ II (D ′,D ′)ϕ0/2 ≡ BIII u on [0,∞[×S .(6.5)



208 L. Halpern and J. Rauch

Warning on signs.Theorem 4.1 gives the symbol for the Neumann operatorNΩ

to Ω. The right hand side of (6.5) is an approximation to−NΩ̃ . This explains
one change of sign relative to (4.18). In addition when (4.18) is applied toΩ̃, the
mean curvature and outward normal are those ofΩ̃. In (6.5) we have chosen the
normal toΩ and the mean curvature measured with that normal. For example,
if Ω is a ball of radiusR thenHΩ = 1/R. The mean curvature and normal with
respect toΩ differ by a minus sign from those of̃Ω.

The second strategy of the last section is based on the approximation

(∂t −∆S)1/2(6.6)

≈ (−∆S)−1/2

[
α(∂t −∆S) −∆S

(
β +

∑
k

αk(∂t −∆S)(∂t − (1 + dk)∆S)−1

)]
.

As in (6.3) we then have

(∂t −∆S)−1/2

≈ (−∆S)−1/2

[
α−∆S

(
β(∂t −∆S)−1 +

∑
k

αk(∂t − (1 + dk)∆S)−1

)]
.

Use this withψk defined in (5.10) to generate the approximation

Vtan(∂t −∆S)−1/2u

≈ Vtan(−∆S)−1/2
[
αu −∆S

(
βϕ0 +

∑
αkψk

)]
(6.7)

Absorbing condition IV.Approximate (1 +z)1/2 as in (5.8) then foru0(x) given
solve the coupled system foru, ϕ0, ψk 1 ≤ k ≤ m defined by (5.6), (5.10), (6.2),
with boundary condition

∂u/∂ν = − (−∆S)−1/2
[
α(∂t −∆S)u −∆S

(
βu +

∑
αk(∂t −∆S)ψk

)]
− (n − 1)HΩ − 〈V − ∂/∂t , νΩ〉

2
u − Vtan(−∆S)−1/2

×
[
αu −∆S

(
βϕ0 +

∑
αkψk

)]
/2 + II (D ′,D ′)ϕ0/2 ≡ BIV u(6.8)

on [0,∞[×S.

As in the last section, we must show that these boundary value problems are
well posed. The operatorsBIII and BIV are causal and bounded linear maps of
H s([0,T] × S) to H s−2([0,T] × S) for all s ∈ R (proof omitted). The key to
the well posedness is the analysis of the new terms introduced in the boundary
contribution− ∫ u∂νu dσ = − ∫ uBudσ on the left of (5.15).

Theorem 6.1. The absorbing conditions BIII and BIV define well posed evolution
equations.

Proof.For the first order approximation estimates (5.18) and (5.19) take the form
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(6.9) e(t) +
∫ t

0
E(t)dt ≤ ect‖u0(x)‖2

L2(Ω)

and were derived as consequences of differential inequalities

(6.10) de/dt + E ≤ ce

with nonnegative quadratic formse andE.
The boundary conditionsBIII and BIV are treated as perturbations ofBI and

BII respectively. One has

BIII = BI + α∂t + CI(6.11)

BIV = BII + ∂t (−∆S)−1/2
{
αu −∆

(
βϕ0 +

∑
αkψk

)}
/2 + CII(6.12)

where the operatorsC are bounded and causal fromL2([0,T] : L2(S)) to itself
(proof omitted).

Case 1, BIII . The basic inequality (6.10) is modified in two ways. First there are
two new terms on the left hand side, namely∫

S
αu∂t udσ +

∫
S

uCIudσ .

Second, multiply equation (6.2) byϕ0 and perform the standard integration
by parts. Add the result to (6.10).

Finally, estimate∣∣∣∣∫
S

uCudσ

∣∣∣∣ ≤ c‖u(t)‖L2(S)‖Cu‖L2(S)

≤ c‖u(t)‖2
L2(S) + c‖Cu(t)‖2

L2(S) .

The causality and continuity ofC imply that∫ t

0
‖Cu(t)‖2

L2(S)dt ≤ c
∫ t

0
‖u(t)‖2

L2(S)dt .

The next effect is to obtain an inequality of the same form as (6.10) where(
α‖u(t)‖2

L2(S) + ‖ϕ0(t)‖2
L2(S)

)
/2

is added toe and‖∇ϕ(t)‖2
L2(S)

is added toE. This suffices to prove stability.

Case 2, BIV . The same strategy as above works but is more complicated. The
new terms on the left hand side are

(1/2)
∫

S
u∂t (−∆S)−1/2

[
αu −∆S

(
βϕ0 +

∑
αkψk

)]
dσ

+
∫

S
uCII udσ .
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Theαu term is equal to

(1/4)(d/dt)‖(−∆S)−1/4u‖2
L2(S) .

For theβ term, write∫
S

u∂t (−∆S)−1/2(−∆Sβϕ0)dσ

= β
∫

S
(∂t −∆S)ϕ0((−∆S)1/2∂tϕ0)dσ

= β‖∂t (−∆S)1/4ϕ0‖2
L2(S) + (β/2)(d/dt)‖(−∆S)3/4ϕ0‖2

L2(S) .

In the same way,∫
S

u∂t (−∆S)−1/2(−∆S)ψkdσ

=
∫

S
(∂t − (1 + dk)∆S)ψk∂t (−∆S)1/2ψkdσ

= ‖∂t (−∆S)1/4ψk‖2
L2(S) + (1/2)(1 +dk)(d/dt)‖(−∆S)3/4ψk‖2

L2(S) .

The C term is estimated exactly as in Case 1. The net result is an estimate
of form (6.10) where

(β/2)‖∂t (−∆S)3/4ϕ0‖2
L2(S)

+
∑

(αk/2)(1 +dk)‖∂t (−∆S)1/4ψk‖2
L2(S)

is added toE and

(1/4)‖(−∆S)−1/4u‖2
L2(S) + (β/4)‖(−∆S)1/4ϕ0‖2

L2(S)

+
∑

(αk/4)‖(−∆S)1/4ψk‖2
L2(S)

is added toe. This suffices to prove stability.

7. Rational approximations to z1/2

Our absorbing boundary conditions are constructed with the aid of approxima-
tions to the functionz1/2. The approximants must have the form (5.4). Herez1/2

has nonnegative real part and is defined on the complex plane with the strictly
negative real axis removed.

In this section we show that such approximations can be constructed by
interpolation by rational functions of suitable order at a set of points symmetric
with respect to the real axis. The analysis falls into two parts. The first is to show
that under these conditions, the rational interpolant is uniquely determined. Then
we show that under suitable restrictions on the order, the interpolant has form
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(5.4) so leads to a well posed absorbing boundary condition. The interpolants of
form (5.4) are calledadmissible. The main result is Theorem 7.5.

Part I. Existence and uniqueness of interpolant

Symmetry hypothesis.We suppose thatz1, z2, . . . , zN areN distinct complex num-
bers inC\] −∞, 0[ which are closed under complex conjugation, that is for allj ,
z∗

j is also a member of the set. We say that such a set issymmetric with respect
to the real axis.

Definitions. A rational functionR = P/Q is of exact type(m, n) if P andQ are
relatively prime polynomials of exact degreem andn respectively. Without loss
of generality we may takeQ to be monic. The rational function isreal if R(z)
is real wheneverz is. In that case, the coefficients ofP andQ are real.

Theorem 7.1. If the zj satisfy the symmetry hypothesis, then for any nonnegative
integers m, n with m+n + 1 = N , there is a unique rational function R(z) of exact
type(m, n) such that

(7.1) R(zj ) = z1/2
j for j = 1, 2, . . . ,N .

In addition, the interpolant is real.

Remark. The symmetry is crucial. In contrast to the case of polynomial interpo-
lation, having the correct number of interpolation points is not sufficient. After
the proof we present an example withn = 1, m = 3, and a nonsymmetric set of
points for which interpolation fails.

Proof of Theorem.First we show that reality follows from uniqueness. LetT(z)
denote the rational function obtained fromR by taking the complex conjugate of
the coefficients. ThenR(z)∗ = T(z)∗ for all z. The symmetry hypothesis implies
that R(z∗) = R(z)∗ whenz is an interpolation point. Thus,R andT agree at the
N pointszj and therefore must be identical.

For j ≤ N let xj ≡ z1/2
j , Re (xj ) > 0. We must find polynomialsP,Q of

degreem andn respectively withQ monic and such that

(7.2) P(x2) − xQ(x2) = 0 at the pointsx1, x2, . . . , xN .

The condition (7.2) gives a system ofN linear equations for the undetermined
coefficients of the polynomialsP andQ. It suffices to show that the determinant
of the coefficient matrix does not vanish. Thej th row of the coefficient matrix is
equal to

rj ≡ (1, x2
j , x

4
j , . . . , x

2m
j , xj , x

3
j , . . . , x

2n−1
j ) .

The determinant is denotedD(x1, . . . , xN ).
If one of thexj ’s is zero, we may renumber so thatx1 = 0. Expanding the

determinant along the first row shows that
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D(x1, . . . , xN ) = x2 . . . xN D(x2, . . . , xN )

so it suffices to treat the cas of nonzeroxj ’s.
Next permute the columns ofD so that the exponents are decreasing. The

first k ≡ (|2n − 1− 2m| − 1)/2 exponents decrease by two. The rest decrease by
one. Thus, ifλi is the nonincreasing sequence defined by

(7.3) λ1 = k , λ2 = k − 1, . . . , λk = 1 , λk+1 = λk+2 = . . . = λN = 0

then still denoting byrj the rows after the permutation,

rJ = (xj )
λi −i +N i = 1, 2, . . . ,N .

Since xi − xj = 0 implies thatD = 0, andxi − xj is irreducible it follows
that D is divisible by xi − xj in Z(x1, . . . , xN ). Therefore,D is divisible by the
Vandermonde determinant

det
[
(xj )

N−i
1≤i , j ≤N

]
=

∏
1≤i <j ≤N

(xi − xj ) .

The quotient is called theSchur determinantassociated toλ and is denoted
χk(x1, . . . , xN ). From the definition note that permuting two of thexj ’s does not
change the value ofχ so χ is a symmetric function. It suffices to prove that
χk(x1, . . . , xn) /= 0. Sinceχ0 = 1 the casek = 0 is trivial.

Theorem 7.2. If {x1, . . . , xN} ⊂ {Re (z) > 0} is a set of distinct complex numbers
which is symmetric with respect to the real axis, thenχk(x1, . . . , xN ) /= 0.

Proof.Denote byσj the elementry symmetry function of degreej , that is

σj (x1, . . . , xN ) ≡
∑

1≤i1<i2...<ij ≤N

xi1 . . . xij .

Extend this definition by the conventionsσ0 ≡ 1 andσj ≡ 0 wheneverj < 0 or
j > N .

Order thexj ’s with the reals last as follows

(7.4) x1, . . . , xI , x̄1, . . . , x̄I , x2I +1, . . . , xN .

Let S be the monic polynomial with thexj as roots so

(7.5) S(z) =
∏
i ≤I

(z − xi )(z − x̄i )
∏
i >2I

(z − xi ) =
N∑

j =0

(−1)N−j σN−j z
j .

Since the quadratic and linear factors have real coefficients it follows that the
σj (x1, . . . , xN ) are real. The quadratic factorsz2 − 2Re (xi )z + |xi |2 and linear
factors both have nonvanishing coefficients of alternating signs. The same is
therefore true of the product so

(7.6) σJ (x1, . . . , xN ) > 0 .
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For a nonincreasing sequenceλj the dual sequenceλ′ is defined by

λ′
i ≡ #{j |λj ≥ i } .

The sequence defined by (7.3) is its own dual.
Jacobi’s identity[14, formula 3.5] applied to ourλ and withm = k reads

(7.7) χk(x1, . . . , xN ) = det
[
(σλ′

i −i +j )1≤i ,j ≤k

]
= det

[
(σk−2i +j +1)1≤i , j ≤k

]
.

The last equality follows sinceλ′
i = λi = (k−i +1)+ impliesλ′

i −i +j = k−2i +j +1
for i ≤ k.

To show thatχ is nonzero we show that the matrix appearing on the right of
(7.7) is nonsingular. The matrices fork = 1, 2, 3 are

σ1

[
σ2 σ3

σ0 σ1

] [ σ3 σ4 σ5

σ1 σ2 σ3

σ−1 σ0 σ1

]
.

Sinceσ1 =
∑

xi > 0, the k = 1 case is nonsingular. Note that the lower right
(k − 1) × (k − 1) minor is equal to the previous matrix and that all terms more
than one below the principal diagonal vanish.

A vector (−a0,+a1, . . . , (−1)j +1aj , . . . , (−1)kak−1) belongs to the nullspace
if and only if for 1 ≤ i ≤ k

(7.8) 0 =
k∑

j =1

(1)j aj −1σk−2i +j +1 =
k−1∑
j =0

(−1)j +1aj σk−2i +j +2 .

Let R(x) be the polynomial of degreed ≤ k − 1 defined byR(x) ≡∑ aj xj .
With S defined in (7.5) one has

(7.9) RS =
N+k−1∑

h=0

k−1∑
j =0

(−1)N−h+j σN−h+j aj

 xh

with the convention thatσj vanishes ifj < 0 or j > N . Thus (7.8) is equivalent
to the vanishing of the terms of orderh = N + 2i − k − 2 in RS for 1 ≤ i ≤ k.
These arek alternating terms beginning with the term of orderN + k − 2, which
is the next to leading order.

Sinced denotes the degree ofR, ad /= 0 andaj = 0 for j > d. Thanks to
(7.6) and the form of the matrix ofσ’s, d must be greater than or equal to 1 for
any element of the nullspace.

The productRS then has the formRS = adxN+d + lot so d andk must have
opposite parity, otherwise (7.8), (7.9) would show that this leading term would
vanish. ThusRS has the form

RS = adxN+d + bN+d−2xN+d−2 + bN+d−4xN−d−4 + . . .

+ bN−k+1xN−k+1 + 0(xN−k) + lower order.
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If N + d is even then the even part is of orderN + d and the first possible odd
term in xN−k−2 so the even and odd parts ofRS have degrees differing by at
leastd +k +2. If N +d is odd, the odd part has degreeN +d and the first possible
even term is inxN−k+2. The difference of degrees is again at leastd + k + 2.
Sinced ≤ k − 1, this shows that in both cases the even and odd parts ofRS
have degrees differing by at least 2d + 3.

Theorem 7.2 is an immediate consequence of the following Lemma which is
the main result of this section.

Lemma 7.3. Suppose that U(x) is a real polynomial whose even and odd parts
have degrees differing by2K + 1. Denote by M+(U ) (resp. M−(U )) the number
of roots of U with strictly positive (resp. negative) real parts. Then M+(U ) ≥ K
and M−(U ) ≥ K .

End of proof of Theorem 7.2 assuming Lemma 7.3.Apply the lemma to the
polynomialU = RS.

The remark before the Lemma shows thatK ≥ d +1. However, the only roots
of RS in the half plane Re (z) < 0 are roots ofR so M − ≤ d. This contradiction
shows that no nontrivial element of the nullspace exists.

Proof of Lemma.By hypothesisU (x) ≡ P(x2) − xQ(x2) with real polynomials
P andQ of exact degreesp andq respectively. The difference of degrees of the
even and odd parts ofU is then equal to|2p − (2q + 1)|. Thus K is given by
2K + 1 ≡ |2p − (2q + 1)|.

If the polynomialsP and Q are not relatively prime, then one can write
U = GŨ with Ũ = P̃(x2) − xQ̃(x2) with P̃ and Q̃ relatively prime. Then
M ±(U ) ≥ M ±(Ũ ) and K (U ) = K (Ũ ). Thus it suffices to prove the result for
Ũ . Thus we may suppose thatP andQ are relatively prime.

If P(0) = 0 thenQ(0) /= 0 for otherwisex would be a common factor.
FactorU = xŨ with Ũ = P̃(x2) − xQ̃(x2) whereP̃ = −Q and Q̃ = P/x. Then
2p̃ − 2q̃ − 1 = −(2p − 2q − 1) so K (Ũ ) = K (U ) Thus it suffices to prove the
lemma forŨ , so, we may suppose thatP(0) /= 0.

We split the proof according to the parity of deg(U ).

Case 1.deg(U ) is even, that is2p > 2q + 1. ThenK = p − q − 1. The strategy is
to deformQ to a polynomial of degree zero. IfQ is not of degree zero, denote
by α > 0 the largest integer such thatxα dividesQ. Then

Q(x) = aqxq + . . . + aαxα , aq /= 0 /= aα′

U (x) = P(x2) − x2α+1Q1(x2) ,

Q1(x) ≡ aqxq−α + . . . + aα .

Let
Qt (x) ≡ t(aqxq−α + . . . + aα+1xα+1) + aα , and

Ut (x) ≡ P(x2) − x2α+1Qt (x
2) .

If the roots ofUt are never purely imaginary thenU0 satisfies
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M ±(U0) = M ±(U ) , U0 = P(x2) + x2α+1Q0(x2) ,

degQ0 < degQ , K (U0) > K (U ) .

If on the other handt0 is the firstt < 1 such thatUt has roots on the imaginary
axis, write

Ut0(x) =
∏

(x2 + λ2
j )Ũ (x)

with λj real and the roots of̃U with nonzero real parts. Write

Ũt0(x) ≡ P̃(x2) − x2α+1Q̃(x2) .

Then
M ±(Ũ ) < M ±(U ) , deg(P̃) < deg(P) ,

deg(Q̃) < deg(Q) , 2p̃ > 2q̃ + 1 , K (Ũ ) = K (U ) .

Both cases lead to a new polynomial with 2˜p > 2q̃ + 1 and withM ± non-
increasing,K nondecreasing and the degree ofQ strictly decreasing. A finite
number of iterations leads to a polynomialQ of degree zero, thath is

Ũ (x) = P̃(x2) − cx2α+1 , c /= 0 , P̃(0) /= 0 ,

M ±(Ũ ) ≤ M ±(U ) , K (Ũ ) ≥ K (U ) .

On iR, the first term ofŨ is real and is nonzero at 0 while the second is imaginary
and nonzero onR \ 0. Thus, such a polynomial cannot have purely imaginary
roots. A deformation leavingM ± andK invariant reduces to the case

Ũ (x) = x2p ± 1 ± x2α+1 K = p − α− 1 .

We must show thatM ± ≥ K . Consider the deformations

x2p ± 1 ± εx2α+1

with ε decreasing from 1 to 0. The numbersM ± are independent ofε. For ε
equal to zero at most 2 of the 2p roots lie on the imaginary axis. Thus 2p − 2
roots are off axis and remain so forε small. At leastp − 1 of these lie in each
half space, so forε small one hasM ± ≥ p −1 ≥ p −α−1 = K . This completes
the proof for case 1.

Case 2.deg(U ) is odd, that is2p < 2q + 1. The strategy is to deformP to a
polynomial of degree zero. Witht decreasing from 1 to zero let

P(x) = bpxP + . . . + b1x + b0 ,

Pt (x) ≡ t(bpxp + . . . + b1x) + b0 , and

Ut (x) ≡ Pt (x
2) − xQ(x2) .

If complex roots appear one extracts factors ofx2 + λ2
j as in case 1. If not,

one setst equal to zero. Either way one gets a new polynomialŨ with M ±

nonincreasing,K nondecreasing, and the degree ofP strictly decreasing. A finite
number of iterations leads to
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Ũ (x) = b − xQ̃(x2) , b /= 0 .

Such polynomials cannot have purely imaginary roots so a deformation reduces
to the case

Ũ (x) = ±1 ± x2q+1 .

The reflectionx 7→ −x reduces to±1 + x2q+1. In this case there are no purely
imaginary roots and at leastq roots in each half space. ThusM ± ≥ q = K and
the proof is complete.

Nonsymmetric counterexample.We construct five pointsxj in the half-plane
Re (x) > 0 such that there does not exist an interpolating rational function
R = P/Q of type (3,1) withQ monic. The interpolation (7.1) holds if and only
if the coefficients (p3, p2, p1, p0, q1) satisfy the linear system whose coefficient
matrix has rows equal to(

1, x2
j , x

4
j , x

6
j , xj

)
j = 1, . . . , 5

and right hand side equal to (x3
j ). In order that matrix not be surjective one must

choose the points so that the determinant of the coefficient matrix vanishes, that
is

(7.10) χ2(x1, . . . , x5) = 0 .

We will choose the points so that in addition

(7.11) χ2(x1, . . . , x4) /= 0

which implies that the last four columns of the coefficient matrix are linearly
independent and therefore span the range. In that case, the vector (x3

j ) belongs
to the range if and only if

det (x3
i , x

2
i , x

4
i , x

6
i , xi ) = 0 iff χ1(x1, . . . , x5) =

∑
xj = 0 .

The last equality cannot hold since thexj have positive real parts. Thus it suffices
to find points satisfying (7.10), (7.11).

Our interest beingN = 5, compute

χ2(x1, . . . , xN ) =
∑
i /=j

x2
i xj + 2

∑
i <j <k

xj xj xk = [(Σxi )
3 −Σx3

i ]/3

=

(
N−1∑

1

xi

)
x2

N +

(
N−1∑

1

xi

)2

xN + χ2(x1, . . . , xN−1) .

Choose with the same imaginary parts,xj = α + βj with

(7.12)
N−1∑

1

βj = 0 .

Then
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(7.13)
χ2(x1, . . . , xN−1) = N (N − 1)(N − 2)α3/3 +α

N−1∑
1

β2
j + i

N−1∑
1

β3
j /3 .

χ2(x1, . . . , xN ) = (α + iβN )(N − 1)α(Nα + iβN ) + χ2(x1, . . . , xN−1) .

Theβj are chosen with

(7.14)
N−1∑

1

β3
j = 1

soχ2(x1, . . . , xN−1) /= 0 which yields (7.11).
Equation (7.13) shows thatχ2(x1, . . . , xN ) = 0 if and only if

(7.15)
N (N 2 − 1)α2 − 3(N − 1)β2

N + 3
N−1∑

1

β2
j = 0 , and

(N 2 − 1)α2βN + 1/3 = 0 .

Eliminatingα2 yields a cubic equation forβN

9(N − 1)β3
N −

(
9

N−1∑
1

β2
j

)
βN + N = 0 .

Chooseβ1, . . . , βN−1 so thatβN = −1 is a solution. That is

(7.16)
N−1∑

1

β2
j = (8N − 9)/9 .

Thenα > 0 is determined by (7.15).
To finish the construction it suffices to chooseβ1, . . . , βN−1 distinct inR\{1}

satisfying (7.12), (7.14), (7.16) which is possible sinceN − 1> 3.

Part II. Partial fraction decomposition of the interpolant

In order that the approximant generate an artificial boundary condition which
can be implemented by solving surface differential equations no worse than heat
equations we restrict attention to rational approximations of the form

(7.17) R(z) = αz + β +
∑

αi z/(z + di ) .

SinceR grows at most linearly at infinity this restricts to rational functions of
exact order (m, n) with m ≤ n + 1. In order that the resulting artificial boundary
conditions satisfy an energy identity which implies well posedness, we impose
the following admissibility condition.

Definition. A rational function R(z) is admissible if its partial fraction decompo-
sition has form (7.17) withα ≥ 0, β ≥ 0, αi > 0, and di > 0.
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Note that admissibility implies reality.

Proposition 7.4.An admissible rational function of exact type(m, n) must satisfy
n + 1 ≥ m ≥ n.

Proof.SinceR grows at most linearly at infinity one must haven + 1 ≥ m. It
remains to show thatm ≥ n.

If m ≤ n − 1, then asz tends to infinity,R(z) tends to zero. However, for
an admissible rational function,

R(z) = αz +
(
β +

∑
αi

)
+ O(1/z) .

Since theβ +
∑
αi > 0, this cannot tend to zero.

To study fractions of exact type (m, n) with n ≤ m ≤ n + 1 which interpolate
z1/2 at N = m + n + 1 pointsz1, . . . , zN symmetric with respect to the real axis
a crucial role is played byS ≡ SN (z) defined in (7.5). As abovexi ≡ z1/2

i are
ordered as in (7.4). Denote bỹP(z2) and zQ̃(z2) the even and odd parts ofS
defined by

P̃(z2) ≡ [S(z) + S(−z)]/2 .

zQ̃(z2) ≡ [S(z) − S(−z)]/2 .

Then P̃ and Q̃ are polynomials of exact degreebN/2c andb(N − 1)/2c where
b·c denotesfloor function, that is the largest integer less than or equal to.

We next study the negative real roots ofP̃(w) and Q̃(w). These correspond
to purely imaginary roots of the polynomials̃P(z2) andQ̃(z2). Writing

S(iy
S(−iy)

=
P̃(−y2) + iyQ̃(−y2)

P̃(−y2) − iyQ̃(−y2)

shows that this is equivalent to studying the real roots ofS(iy)/S(−iy) = ±1
respectively.

Thanks to the symmetry of thexk one has

S(iy)/S(−iy) =
∏

(iy − xk)/
∏

(−iy − xk) =
∏

(iy − xk)/
∏

(−iy − xk) .

This is a product ofN factors of modulus 1. We study its argument asy increases
from 0 to ∞. Each of the factors is

(xk − iy)/(xk + iy) = e2iθk (y)

where the argumentθk(y) decreases from arg(xk) to −π/2 asy increases from 0
to ∞. The branch of the argument is defined by−π/2< arg< π/2. In particular
arg(xk) + arg (xk) = 0. Thus

S(iy)/S(−iy) = eiθ(y) where θ(y) ≡ 2
∑

θk(y) ,

andθ decreases from 0 to−Nπ asy increases from 0 to∞.
S(iy)/S(−iy) is equal to +1 (resp.−1) whenθ is equal to−nπ with n an

odd (resp. even) integer in ]0,N [. This givesbN/2c (resp.b(N − 1)/2c) values
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of y such thatS(iy)/S(−iy) = −1 (resp. +1). Denote the values asy1, . . . , ybN/2c
(resp.Y1, . . . ,Yb(N−1)/2c). The roots are interlaced so that

y1 < Y1 < y2 < . . . < y(N/2)−1 < Y(N/2)−1 < yN/2 if N is even(7.18)

y1 < Y1 < y2 < . . . < y(N−1)/2 < Y(N−1)/2 if N is odd.(7.19)

This gives exactlybN/2c negative real zeros,−y2
j , of P̃ andb(N −1)/2c negative

real zeros,−Y2
j , of Q̃ with a root ofP̃ closest to the origin. The number of zeros

is equal to the order of the corresponding polynomial in all cases.
The signs ofP̃(Y2

j ) (resp.Q̃(y2
j )) alternate. The signs are determined by the

signs of the extreme elements which in turn are determined by the asymptotics
on the real axis.

The leading terms iñP andQ̃ in caseN = 2p is even are

(7.20) P̃(w) = wp + lower order, Q̃(w) = −σ1w
p−1 + lower order,

where as beforeσ1 ≡ ∑
xj . On ] − y2

1 ,∞[, P̃ is positive. The alternation then
shows that

(7.21) (−1) j P̃(−Y2
j ) > 0 whenN is even.

If N = 2p + 1 is odd, then

(7.22) P̃(w) = −σ1w
p + lower order, Q̃(w) = wp + lower order.

Reasoning as above shows thatP̃ < 0 on ]− y2
1 ,∞[ and

(7.23) (−1) j +1P̃(−Y2
j ) > 0 .

Theorem 7.5. Suppose that z1, . . . , zN are distinct points inC\]0,∞[ symmetric
with respect to the real axis and containing at least one nonzero point. Then, there
is exactly one admissible rational function interpolating z1/2 at these points. That
rational function is real and of type(m,m) when N = 2m + 1 is odd and of type
(m,m − 1) when N = 2m is even. In both cases the interpolant is given by the
formula R(z) = −P̃(z)/Q̃(z) whereP̃(z2) and zQ̃(z2) are the even and odd parts

of S(z) ≡∏(z − z1/2
j ).

Proof.The proof is a case by case analysis of rational interpolants of type (m, n)
with n ≤ m ≤ n + 1.

We seekP and monicQ of exact degreesm and n respectively such that
P(x2) − xQ(x2) vanishes at the pointsx1, . . . , xN . Recall thatN = m + n + 1 and
xj = z1/2

j . ThusS(x) dividesP(x2) − xQ(x2).

Case 1, m= n. Then N = 2n + 1 is odd and−P(x2) + xQ(x2) is a monic
polynomial of degree 2n + 1 which dividesS which is also monic and of degree
2n + 1. It follows that the two polynomials must be equal.

Thus−P andxQ are the even and odd parts ofS from the statement of the
theorem,
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P(z) = −P̃(z) , Q(z) = Q̃(z) .

Q is monic and the leading term ofP is σ1zn. Re (σ1) ≥ 0 since Re (xj ) ≥ 0. In
fact the real part ofσ1 is strictly positive unless the set ofzj is the singleton{0}
which is ruled out by hypothesis. Thus the exact degree is (n, n).

To prove admissibility, decomposeR into partial fractions. We have observed
that Q hasn distinct negative real rootsqj , so

P(z)/Q(z) ∼ σ1 +
∑

ρj /(z − qj ) .

Rewrite this in the form

P(z)/Q(z) ∼ β +
∑

αj z/(z − qj ) .

Then
β = P(0)/Q(0) = −P̃(0)/Q̃(0) = σ2n+1/σ2n .

the last equality following from (7.5) and the relation betweenP̃, Q̃ and the even
and odd parts ofS. Compute

σ2n+1 =
∏

xj =
∏
j ≤I

|xj |2
∏
j >2I

xj > 0 , and

σ2n =
N∑

i =1

∏
j /=i

xj

 = σ2n+1

∑
1/xj > 0 .

Thus,β > 0.
To find the sign ofαj use the formula

qjαj = −P̃(qj )/
∏
i /=j

> (qj − qi ) .

Then (7.16) implies thatαj > 0.
ThusR = P/Q is admissible.

Case 2, m= n + 1. In this caseN = 2m is even and (7.20) shows thatP(x2) −
xQ(x2) is a monic polynomial of degree 2m. As this polynomial dividesS which
is also monic of degree 2m, the two polynomials must be equal. Thus we must
have

P(z) = P̃(z) , and Q(z) = −Q̃(z) .

Decompose as in case 1,

P(z)/Q(z) = αz + β +
∑

αj z/(z − qj ) .

Then
α = 1/σ1 > 0 ,

β = −P̃(0)/Q̃(0) = σ2n/σ2n−1 > 0 , and

qjαj = −P̃(qj )/

σ1

∏
i /=j

(qj − qi )

 < 0 ,
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the last inequality relying on (7.23). It follows thatαj > 0 and we conclude that
R is admissible.

8. Estimates of the truncation error

In Theorems 5.2 and 6.1 it was shown that the absorbing boundary conditions
define parabolic time evolutions. This suggests that the errorv ≡ uex − uapprx be
considered as a solution of the boundary value problem

(8.1) Lv = 0 inR×Ω , v = 0 for t ≤ 0 , ∂v/∂ν = Bv + (B + NΩ̃)uex

where the equation∂uex/∂ν = −NΩ̃uex for the exact solutionuex is used in the
last equality. Recall thatB is constructed as an approximation to−NΩ̃ so it is
expected that (B + NΩ̃)uex will be small in some sense. The size of the error is
bounded by the size of this quantity.

Theorem 8.1. There is a constant c, independent of the absorbing boundary
condition∂uapprx/∂ν = Bu constructed in the last sections, such that

‖(uex − uapprx)(t)‖2
L2(Ω) +

∫ t

0
‖∇(uex − uapprx)(t)‖2

L2(Ω)dt

≤ ect
∫ t

0
‖(B + NΩ̃)uex‖2

L2(S)dt .(8.2)

Proof.Let v ≡ uex − uapprx,

e(t) ≡ ‖(uex − uapprx)(t)‖2
L2(Ω) ,

E(t) ≡ ‖∇(uex − uapprx)(t)‖2
L2(Ω) .

The standard parabolic estimate forv then reads

(8.3) de/dt + 2E ≤ ce+
∫

S
vBvdσ +

∫
S
v(B − NΩ̃)uexdσ .

The derivation of the stability estimates forB shows that∫ t

0

∫
S
vBv dσdt ≤ ε

∫ t

0
E(t)dt + cε−1

∫ t

0
e(t)dt .

The integral of the last term in (8.3) is estimated as follows.∫ t

0

∫
S
v(B − NΩ̃)uexdσdt ≤ c

∫ t

0
‖v(t)‖2

L2(S)dt

+
∫ t

0
‖(B − NΩ̃)uex(t)‖2

L2(S)dt

≤ ε

∫ t

0
E(t)dt + cε−1

∫ t

0
e(t)dt +

∫ t

0
‖(B − NΩ̃)uex(t)‖2

L2(S)dt .
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Therefore

(8.4) e(t) +
∫ t

0
E(t)dt ≤ c

∫ t

0
e(t)dt +

∫ t

0
‖(B − NΩ̃)uex(t)‖2

L2(S)dt

with constantc uniform for the absorbing conditions constructed in the previous
sections.

Gronwall’s method applied to (8.4) yields (8.2).

There is a second estimate which is relevant for our absorbing conditions.
This one is qualitative in nature. The boundary conditions are constructed by
approximating the symbol of the Neumann operatorNΩ̃ by suitable rational
functions. Only the terms of order zero and one in the symbol are used as these
are given in terms of simple geometric quantities associated withS. The error has
two sources. First there is the error committed by taking only one or two terms
from the symbol which approximates the Neumann operator byNapprx which
differs from N by an element ofOpSm

Heat with m = 0 or m = −1, depending on
whether the first order or second order approach is used. Second, there is the error
from approximatingNapprx by an operatorB which has symbol an appropriate
rational function. The next theorem considers the error upon replacingN by
Napprx. The result is that the error is smoother thanuex near tot = 0. If N −Napprx

is in OpS−1 the degree of smoothness is higher than ifN − Napprx is in OpS0.
Suppose that

Napprx is a causal member ofOpS1
Heat(R× S), and(8.5)

NΩ̃ − Napprx ∈ OpSm
Heat(R× S) , m = 0 or m = −1 .(8.6)

For u0 ∈ H m(Rn) with suppu0 ⊂ Ω let uex denote the solution ofLuex = 0 on
[0,∞[×Rn with initial datau0. Let u denote the solution in [0,∞[×Ω defined by
the same initial data and the absorbing boundary condition∂u/∂ν = −Napprxu.
It is not difficult to show that this boundary condition defines a stable parabolic
evolution.

The errorw ≡ uex − u, extended by zero fort < 0, is then a solution of

Lw = 0 in ] − ∞,∞[×Ω , w = 0 in t ≤ 0 ,(8.7)

∂νw = −Napprxw − (NΩ̃ − Napprx)uex on [0,∞[×S .(8.8)

The idea for estimatingw is that the difference of theN ’s belongs toOpSm
Heat

so is a lower order term. Whereas bothuex andu are continuous with values in
H m(Ω), the difference is continuous with values inH 1(Ω). In this senseu gives
a good approximation of the singular and most interesting behavior ofuex.

Theorem 8.2. If Napprx satisfies (8.5) and (8.6) then, the errorw is continuous
on [0,∞[ with values in Hm(Ω). In addition there is a constant c(T) such that

(8.9) ‖w(t)‖H 1(Ω) ≤ c‖u0‖H m(Ω) 0 ≤ t ≤ T .

The regularizing property of the heat equation implies that the H1(Ω) norm of
both uex and of u are finite for t> 0 but they usually grow like t−1+m times the
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H m(Ω) norm of u0 as t decreases to zero. Thus (8.9) shows that u is genuinely
an approximation to uex for t small.

Proof.We derive (8.9) for regular solutions. Standard techniques suffice from
there.

Multiply the equationLw = 0 byw and integrate overΩ to find that

(8.10)
d
dt

1
2

∫
Ω

|w(t)|2 dx +
∫

Ω

|∇w|2 dx =
∫

S
w∂νwdσ + l.o.t.

Write the boundary terms as

(8.11)
∫

S
w∂νw dσ =

∫
S
w(−NΩ̃)wdσ +

∫
S
wOpSmuexdσ .

If U is the solution ofLU = 0 in NΩ̃ , U = 0 for t � 0, andU = w on ∂Ω,
then ∫ t

0

∫
S
w(−NΩ̃)wdσ ≤ c

2
‖U (t)‖2

L2(Ω̃) + c
∫ t

0
‖∇U ‖2

L2(Ω̃)dt

≤ c
∫ t

0

∫
S

|w|2 dσdt .

This, along with the lower order terms can be absorbed by a combination of the
two terms on the left of (8.10) by an argument we have now used several times.

For the final boundary term in (8.11), observe thatuex extended by zero in
NΩ̃ belongs toH 1+m

Heat(] − ∞,T] × Ω̃) with norm bounded by theH m(Ω) norm
of u0. For m = 0, a standard trace inequality shows thatuex|[0,T]×S belongs to

H 1/2+m
Heat (]−∞,T]×S) with norm bounded by theH m norm ofu0. The same result

is true form = −1, though in that caseH 1+m
Heat does not have traces. The Sobolev

regularity must be combined with an expression for the second normal derivative
∂2

nuex in terms of tangential and lower order derivatives which is furnished by
the equationLu = 0. The steps, in normal coordinates, are as follows. With
I = {0< xn < η} soR× R

n−1 × I represents a part ofR× Ω̃

uex ∈ L2(I : H 0
Heat([−∞,T] × R

n−1
x′ ))

∂2uex/∂x2
n ∈ L2(I : H −2

Heat(] − ∞,T] × R
n−1
x′ ))

∂uex/∂xn ∈ L2(I : H −1
Heat(] − ∞,T] × R

n−1
x′ ))

uex ∈ C(Ī : H −1/2
Heat (] − ∞,T] × R

n−1
x′ )) .

The integral of the last term of (8.11) is estimated as follows,∫ t

0

∫
S
wOpSmuexdσ

≤ c‖w‖L2([0,t ]:H 1/2(S))‖OpSmuex‖L2([0,t ]:H −1/2(S)) .

Now,
‖OpSmuex‖L2([0,t ]:H −1/2(S)) ≤ ‖OpSmuex‖H

−1/2
Heat (]−∞,T]×S)

.
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The causality of the operatorOpSm
Heat yields

‖OpSmuex‖H
−1/2
Heat (]−∞,T]×S)

≤ c‖uex‖H
−1/2+m
Heat (]−∞,T]×S)

≤ c‖uex‖H m
Heat(]−∞,T]×Ω̃ ≤ c‖u0‖H m(Ω) .

Summarizing,∫ t

0

∫
S
wOpSmuexdσ ≤ c

∫ t

−∞

∫
Ω

|∇w|2 dx dt + c‖u0‖2
H m(Ω) .

This estimate together with (8.10), (8.11), and Gronwall’s inequality yields the
desired result.
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