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THE OPERATIONAL CALCULUS OF LEGENDRE TRANSFORMS*

1. Introduction., The sequence of numbers f(n) defined by the

equation
L _
(1) f(n) = d{;ﬁ(x)Pn(x)dx _ " (n'=0,1,2,°*%),

where Pp(x) denotes the Legendre polynomial of degree n, is the Legendre trans-
form of the function F(x). The integral transformation here will be represented
by the symbol T {F(x)} . For functions F(x) satisfying well-known conditions

on the interval -1S x S 1 the inverse of this transformation is represented by

the expansion of F(x) in series of the Legendre polynomials,

@

(2) Flx) = Z (6 +1/2) £()P(x) = T {e(@)] (-1<x<1).

Let R[F] denote the differential form

(3) R[F(x)] = % [<.1-x2>%F<x>1.

When the integral T {R[F]} is integrated successively by parts and
-n (n + 1) Py(x) is substituted for R[P,(x)] in accordance with Legendre's dif-

ferential equation, the following result is easily obtained.
THEOREM 1: Let F(x) denote a function that satisfies these conditionst
F'(x) is continuous and F''(x) is bounded and integrable over each interval in-

terior to the interval -1 < x<1; T {F(x)} exists and

*The research recorded here was conducted in part under a contract between the
Office of Ordnance Research of the Department of the Army and the University of
Michigan.
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lim (1-x?) F(x) = 1lim (1-x2) F'(x) = O.
x++1 x>+1
Then T {R[F(x)]] exists and
(.’-P) T {R[F(x)]]} = -n(n+ 1) f(n) | (n = 0,1,2,%**),

Formula (L) represents the basic operational property of the Legendre
transformation T under which the differential operation R[F] defiﬁed by equa-
tion (3) is replaced by the algebraic operation -n(n + 1) f(n). o

The established forms of operational calculus for solving problems
in differential equations are based on integral transformations of Fourier
type, transformations whose kernels are exponential functions or linear combi-
nations of suéh functions. These transformations consist of the varioﬁs Laplace
and Fourier integral transformations. Transforms of the other types, including
Legendre transforms [l], have been recognized as bases for other forms of oper-
ational calculus [2,3,4], but to date the operational methods have not been
developed beyond the stage of applying the basic operational property corre-
sponding to formula (4) and the application of the inverse transformstion. The
type of boundary value problem that can be reduced by an integral transforma-
tion is of course governed by the kernel and the interval of integration [5].

A convolution property, one that gives directly the image of the
operation of taking the product of the transforms of two functions, is now |
known for Legendre transforms [6]. Additional operational properties will be
noted here and a short table of Legendre transforms will be developed. The
operational calculus will then be illustrated by applying it to some classical
boundary value problems in partial differential equations.

- The application to the third boundary value problem for tﬁe potential

inside a sphere leads to a simple expression for the solution of that problem

2
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in terms of the solution of a corresponding Dirichlet problem. This formula,
together with the accompanying extension of the Poisson integral formula to the
problem of the third kind, should be known; but a search of the literature and

inquiry among colleagues has not yet revealed these formulas.

2. Operational Properties. If each of the functions R[F(x)] and

F(x) satisfy the sufficient conditions stated for the validity of formula (k4)
then the transform of the iterated differemtial form R[R[F]] can be written at

once as
(5) T {RE[F(x)]} = nP(n+ 1),

Similarly for iterations of higher order.
The substitution of (n + 1/2)2- 1/4 for n(n + 1) in formula (k) leads.

to this modification of that operational property:

(6) (n+1/2)%2 £(n) = T {1/% F(x) - RIF(x)]] .
Tt should be noted that under the substitution x = cos © (05 © S x)

our transformation

T {F(cosv Q)} = fﬂF(cos d) P (cos ®©) sin 0 a0 = f(n)
0

transforms the differential form

(7) R[F(cos )17 = _1 4 [sing & F(cos 9)]
sin @ de de
into -n(n + 1) f(n), according to formula (k).

Consider now the transform of the function R™1 [F], where r-1 is the

inverse of the differential operator R. ILet Y(x) denote the function R-1[F(x)];

3
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then Y(x) is a solution of the differential equation
(8) R[Y(x)] = F(x).

Suppose that F(x) is a function of bounded variation on each interval

|x|<[x1|<1, and that
1
(9) f F(x) &x = 0
-1

that is, £(0) = 0. The first integral of equation (8),

X

(1-22) Y'(x) = fl P(t) dt

is then a continuous function of x (/x| s 1) with limit zero as x + + 1, The

second integral

(10) (x) = j;x'l'_-lé?fi F(t)dtds + ¢ = R™YF],

where C is an arbitrary constant, is continuous when |x| <l and it is edsy to
show that (1 - x°) Y(x) vanishes as x - + 1; in fact [¥(x)| is of the order of
(1 - x2)K for each positive constant k < 1 as x - + 1 and hence T {Y] exists,

According te Theorem 1 and equation (8) then

T{RIY]] = -n(n+1) T{Y} = £(n);
thus
-1 _
(11) T {r7MFI} - ﬁ’(ﬁ‘(‘})‘ﬂ (n=1,2,).
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The value of the transform of R™L[F] at n=0 depends on the value

assigned to the constant C; if F(x) is an odd function the value is easily shown

to be 2C. The operational property concerning R-l can be stated as follows.
THEOREM 2: Let F(x) denote a function of bounded varistion in each

subinterval of the interval -1 < x < 1 and let £(0) = 0. Then f(n) exists and

for each constant C,

(12) Tt {ﬁi‘(—n)_ﬂ - RUr(x)] .= f%}%—;fl‘(t)d’cds +C

nin+1 0

(n=1,2,°").

The convolution property can be stated as follows [6].
THEOREM 3: Let F(x) and G(x) denote bounded integrable functions on
the interval -1 i X 51 Then the product f(n)g(n) of their Legendre trans-

forms is the transform of the function H(x); that is,
-1 -
(13) r{rem)} - HE)

where H(x) is described by any one of these formulas:

(1) Hcos ) = Z fF(‘cos ¢') sin @ f G(cos 1) af 4@
where
cos A\ = cos @ cos @' + sin @ sin @' cos ¢;

A

rof

(15) H(cose) = lf' sing f%['sinﬁb‘sin(s-g)]G’[sinﬁ sin(p+8)1dp af;
, , TJo ' o -j.,f 2 2

(16) H(x) = lff F(y) (z) (1 - 22 - 32 - 22 + 2xy2) Y2 gy az
T Ey- ‘ :
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where, for each fixed x (-1 < x < l),i Ex is the region interior to the ellipse

2

2 ’2~2xyz = 1= x°,

y + 2

Formuls - (14) has a geometrical interpretation. Let (r,$,6) denote
spherical polar coordinates. If P denotes any point (1,0,0) on the boundary of
a hemispherical surface of unit radius and P' any point (1, ¢, ©') on that suz’;fa.ce,i
then according to the cosine law for spherical triangles A is the arc PP' of a

great circle. If S denotes the hemisphere r = 1, O ot s nt, O §¢ S « then

formule (14) can be written

(17) H(cos @) = %ffs F(cos @') G(cos A) dS;

that is, H(cos @) is half the mean value of F(cos @') G(cos A) over the hemi-
sphere,
For ¢ = 0 and @ = n formula (14) reduces to

1 1
(18) EHQ1) = fl P(t) G(t) at,  E(-1) = fl F(t) G(-t) at,

respectively. In view of formula (2) and the fact that Pn(.l) = 1 the first of
equatiors (18) is seen to be the Parseval relation for the orthogonal set of
functions P,(x).

THECREM 4: If T {F(x)} and T {G(x)] exist then
(19) T{C) F(x) + Cp G(x)}] = ¢ £(n) + Cp gln),

where C; and C, are constants; also

(20) T{F(-x)} = (-1)"f(n).
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These are obvious properties of the transformation since T is clearly
n .
linear and since P (-x) = (-1) Py(x). When G(x) = 1 then g(n) = O
(n=1,2,°*) and g(0) = 2; according to equation (19) then, if C is a con-

stant,

T{F(x) + C]

f(n) whenn = 1,2,°°°,

= f(0) + 2¢ whenn = 0,

The images under T of the operations of differentiation and indefinite
integration involve finite differences. Let F(x) be a sectionally continuous
function on the interval -1 S x S 1 and let G(x) denote the continuous function

X

o(x) = \/“l P(t) dt.

Then

1 1
£(n) = L/“l G'(x) Py(x) ax = G(1) -\/“1 G(x) B! (x) ax

and it follows from a differential recurrence relation for Pp(x) that

1

(1) f(n-1) - f(n+1) f‘l G(x) [Phyy (x) - Ppg(x)] ax

It

(2n + 1) g(n) (n=1,2,°"");
also, £(0) = G(1) and since Pr(x) = %, £(1) = G(1) - g(0) so that

£(0) - f£(1) = g(0).

The solution of the difference equation (21) for g(n) and f(n) in

turn leads to these conclusions:
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THEGREM 5: If F(x) is sectionally continuous then

(22) T{f_l

where, for n = 0, £(n - 1) is to be replaced by £(0). If G(x) is continuous

F(t) dt} . f(n-1) - f(n+1)
2n + 1

and G'(x) sectionally continuous and if G(-1) = O then

(23) T {G'(X)} G(1) - (2n -~ 1) g(n = 1) - (2n - 5) g(n = 3) -+e.» g(0)

_ (n=1,3,),
= 6(1) - (n-1)gln-1) - (2n-5) gn - 3)
-veem 3g(1) (n =2,4,),

G(1) ’ (n =0).

Other recurrence formulas for Pn(x) lead to operational properties of the .

transforms, but none seem simple or promising,

3. 'Transforms of Particular Functions. A short table of Legendre

transforms is presented here. Some methods of computing transforms in the
table will now be indicated.
It follows at once from the orthogonality properties of the Legendre

polynomials that when F(x) = P (x) (m = 0,1,2,°**) then

f(n) = 0 (nfdm), f(m) = 1

Y

From the well-known representation of the function G(x) = x® in a
finite series of Legendre polynomials of degree m and lower it follows that
g(n) = Ovwhenn>m, The formila for g(n) when n S m is not simple (ef. [7]).

If F(x) is any polynomial of degree m then f(n) = O when n > m,
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The function F(x) = log (1 - x) satisfies the condition R[F] = -1,
where R is the differential operator involved in Theorem 1., But F'(x) does not
satisfy the limit condition at x = 1 in that theorem. Integration by parts,

however, gives the equation

+1 : 1
T{RIFI] = - (1 + x) Pn(x) 1 -(1 - x2) 1log (1 - x) P;l(x) ‘t.l -n(n + l)ft('nt
‘that is,
T{1] = -2-n(n+1)f@) = 0 (n=1,2°"").
2842

Direct integration gives £(0) = A ~2; hence

T{.log (1 -x)} = —_ﬁ,(_x_l_i_l_y(n>0),. = 21log?2 -2 (d=0),

The transform of log (1 + x) follows from Theorem k.

From the uniformly convergent expansion of the generating function
. 00 :
(1 - otx + $2)12 Z PP (x) ( 1tl<1)

n=0

it follows that

3

1

. - 2 -1/2 . = .tn
. (2) f_l (1 - 2tx + t<) .Pn(x)dx — (1t < 1).

When t > O the integrand here is a continuous function of t and x except at

X=1t= ?42 1 and it is dominated by the function (1 - xe)"l/ 2. Hence the inte-

gral is uniformly convergent with respect tot up to t = ; 1 and it represents

a continuous function of t there. Thus the transformation is valid when t = 1;

that is,
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-1/2 V2
T ]- - = ”
{( x) } n+1/2
-1/2
The transform of (1 + x) follows from Theorem k4,
Differentiation of both members of equation (24) with respect to the

parameter t followed by mu'ltip.‘licatio'n by t leads to the equation

~3/2 n _
1 pf@ - 2tx + t2 3/ Otx - 2t° = nt t] <1).
: f@ - 2tx + £2)7'" (etx )] o (Itl<1)

Since 2tx - 2t2 = (1 - 2tx + t2) + 1 - t° it follows with the aid of

formula (24) that
(25) R e R (It <1).

A continuation of the process leads to a slightly involved exp’ressioxi for
7-1 {ntn] when It| < 1. |

The transformation

T - x (n+1/2) (n+1) ‘
can be verified by integrating both members of equation (24) with respect to t.

From the partial fractions expansion of the coefficient of a®1 here and from

formula (24) with t = a (Ja| S1) it follows that

T[ 2a, - -loglc X+ (1 - 2ax + a2)1/2} - 2al*tl
(.1-2ax;a2)1/2 tox nr |
(lal $1).

“From equation (2l) it follows that

tn-.l

n+.172

(n - lyay'")

1 :
, f [t71 (1 - 2tx + £2)-1/2 - 1] B (x) ax
-1

]
o

(n = 0),

10
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TABLE OF LEGENDRE TRANSFCRMS

10, 8&*¢ c>0,lalS1
(n+1/2) (n+c) ( s la ')
Pp-1(0) - Pp41(0)

11. if n > 0;

2n+l
1 if n=0

n

T(n) n=0,1,2, " — F(xX) ((1<x<1l)
1. m& sifn=m Otfninm Py (x) (m = 0,1,2,°+*)
| 1
2. if n> 0; 1l-log 2 if n=0 - =. log (1-x)
' nin+l$ g ! €
3 (-1)" if n > 0; l-log 2 if n=0 - = log (1+x)
Z* n(n+l)
. -3/2
L, a (lal< 1) 1-2% (1.pax+a®) 3/
5. 8 4f n>0; 2 if n=0 (lalf 1) (1-2ax+32)-}/2 _ 2/
1 . = 2. 1og 1-ax+(1-2ax+a)
2" 3
«1/2
6, _a° (lalS 1) (1-2ax+a?) /
n+l72
-1/2
7. sl (JalS 1) a(1-2ax+82) 1/ |
n+l : 2 1/2
o1 1°g‘a-x+(l-2a.x+ )
2 l-x
1/2
8. altl (1a|< 1) log a-x+(1-2ax+e?)
(n+1/2) (n+l) 1-x
1/2
" 1-ax+(1-28x+82) <
. 8 _ifn>0; 0if n=0 ~1log Lmax+( 121< 1
9 m n 3 g 2 ( 8. )

& ge-lgg

fo (L-2txst?) /2

Of x<0; 1if x>0
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and the integration of this equation with respect to t leads to the transfor-

mation
2 n(n + 1/2) A x
= 0 (n=0; la]$1).

From the representation of the coefficient of aP here in partial fractions the
inverse transform of a?/n follows with the aid of formula (24).
Transform No. 10 in the table can be found by multiplying equation

“(24) by t°-1 and integrating with respect to t. Transforms of step functions,
illustrated by No. 1l in the table, are easily written with the aid of a well-
known integration formula for P,(x). Combinations and special cases of the
transforms in the table, as well as applications of the operational properties
of the preceding sections, lead to a considérable extension of the list of

transforms.

4. Applications, Dirichlet Problem for Sphere. Let V(r, cos ©)

denote the potential function interior to the unit sphere when the potential
on the surface r = 1 is a prescribed function F(cos ©) of the spherical co-
ordinate Qvonly (o 5'9‘5 n). The interior is free from sources so that V

satisfies Laplace's equation

VQ\(.'

e

r= sin ¢

when r < 1, If x = cos © this equation can be written

(26) r(r V). + 1-x®) v, = O (?<l)'

The function V is also bounded in the region and satisfies the boundary condition

12
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(27) V(1, x) = F(x) (-1 S$x$1).

To solve this boundary value problem formally by means of the opera-
tional calculus developed in the foregoing sections the problem is written in

terms of the transforms
v(r,n) = T {V(r,x)} , f(n) = T {F(x)} (n = 0,1,2,7°*)

with respect to the variable x. Let the operator T be applied to the _,members
of equations (26) and (27) Vand let the order of differentiating V with respect
to r and then integrating with respect to x be reversed. In view of the basic
operational property (Theorem 1) it féllaws that v(r, n) satisfies the con~ '

ditions

2
r % (rv) - nn+1)v = 0 v({,n) = £(n),
dar?
and v(r, n) is bounded when O Sr<i.

The solution of the simple problem in v here is
v(r, n) = £(n)r®

and the inversion formula (2) can be used to represent V(r, x) by an infinite
series in the functions r"Pn(x), the form of the solution that would be ob-
tained by separating variables in the boundary value problem (26), (27). The
function V(r, x) can be written in closed form, however, with the aid of the
convolution property (Theorem 3) and the inverse transform of r® (No. 4 of the
teble). According to formula (14) for the inverse transform of the product
of two trensforms the inverse transform of v(r, n) is

)

13
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(28) v(r,cos 0) = légg\/;ﬂF(cos e') sin O'L/;ﬂ(l+r2 - 2r cos x)'3/2 ag ae!

(r<1),

where
cos A = cos ©cos © + sin @ sin ©' cos f.

This is the well-known Poisson integral formula for the potential inside a
sphere in this special case in which the j@t&ntial is a function of r and ©
énly .

.When F(x) is a linear combination of any of the functions listed
among the first nine items of the table, then f(n)rn}can be written as a linear
combination of the transforms listed in the table and the function V can be
written in a sinple form free from integrals.

In the corresponding problem for the potential W(r, cos @) in the

region exterior to the sphere r = 1, the solution of the transformed problem

is
w(r, n) = %f@)% E (r 21).
Hence
(29) W (r, cos ) = _i. v(%, cos 6)

where V denotes the above potential function for the interior region, The
Poisson integral formula for the potential W follows at once from formulas (29)
and (28). |

When the potential is not independent of the spherical coordinate §

the Laplacian involves a differential ‘operator with respect to cos @ (x = cos9)

ST
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that is more involved than the operator R of equation (3) and the transforma-.

tion T does not eliminate derivatives with respect to x from the Laplacian.

5. Neumesnn Problem for ‘Sphere; Let U(r, cos ) denote the poten-

tial in the region interior to the sphere r = 1 when the normal derivative is

a prescribed function F(cos @), so that

(30) V% = 0 (rx l)} Up (1, x) = F(x),

where x = cos 0, and U is bounded when O E T : 1. Then u(r, n), the transform

of U(r, x), is bounded and formally satisfies the conditions
rlru) - nn+l)u = 0, w(l,n) = f(n)(n= 0;1,2,"')

where the primes denote differentiation with respect to r.
When n = O the bounded solution of the differential equation here is
u(ry, 0) = C, where C is a constant. Hence f(0) = O if the boundary condi-

tion is t0 e satisfied; thus

) |
f F(cos ©) sin © 40 = 0;
0

that is, the mean value of F(cos ) over the surface is zero, a well-known
necessary condition for the solution of the Neumann problem,

The transformed problem has the solution

(31) d(r, n) = f(n) ,1{_1. (n=1,2,°¢)

= C (n =0)

where C is an arbitrary constant. Thus the potential U(r, x) is determined up

to an additive constant. It can be expressed in a series of the functions

15



— ENGINEERING RESEARCH INSTITUTE - UNIVERSITY OF MICHIGAN —

rPP, (x) with the aid of the inversion formula (2); but it can be written in the

¢losed form

)-1/2

(1)

| ATt O pm,
- (32) U(r,cos @) - %f F(cos ©') sin ¢ f {(:l.-l-r2 - 2r cos A
0 0

-,‘% log [I-r cos N+ (l-+r2 =.2r cos k)’l/ 2]} agr de' + C,

i

where

cos A

]

cos © cos 8' + sin @ sin @' cos §',

with the aid of the convelution far.mlla: (14) and trensform No. 5 in the table.
Let Q denote any point (1, ¢?,"9') on the hemisphere S, r = 1,

0S @ Sx, 0S50S x, and let P denote any point (v, O, ©) of the region

bounded by the boundary circle of S. Then the above varieble A represents the

angle between the radii through P ‘and” Q &nd the length . of the line sege

ment PQ is
p = (1+12 - 2rcos )‘)1/2‘

With the aid of formula (17) for the convolution,an alternate form of equation

(32) now can be written as

(33) U(ryces ) = é}:?ff F(cos gr)[_f;_ - log(l+p - r cos A)} aS + C.
g :

This is a known form [8] of the Poisson integral solution of the Neumann prob-
lem for the sphere. |

From equation (31) it follows that

ru'(ry,n) = f£(n)r® = +v(r, n) (n = 1,2,"')}

16
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where v(r, n) is the transform of the Dirichlet problem (26), (27), with the

same function F(x) there as here. Thus

r . . .
u(rr n) = L/ﬁ V(r" n) é%; (n = 1’2,1..)’
0

& C ; : (n 0)
and the inverse transformation gives the expression
| . r L apt
(3h) U(r, cos ©) =L[V&5cm0)?r+,c
‘ 0
| L at
= f‘V(r’c, cos ) T
0
for the solution of the Neumann problem (30) in terms of the solution of the

Dirichlet problem (26), (27). This relationship between the solutions can be

verified directly and it is not necessary to assume that the potential fnnc- o]

tions and the function F are independent of the coordinate f.

6. Problem of Third Type for Sphere, Now let U(r, cos ©) represent
the bounded potential function for the region interior to the sphere r = 1

satisfying the mixed type of boundary condition at the surface . Specifically,
(35) VA =0 (r<1), Up(l,x) + (k+1)U1,x) = F(x)

where x = cos © and k + 1 is a positive constant. The function U can be inter-
preted as the steady-state temperatures at points in a solid sphere which is
subjected to linear heat transfer at its surface into surroundings whose |
temperature is proportienal to F(cos ©).

The transform U(r, n) of U(r, x) is the bounded function that satiss

fies the conditions

17
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r(ru)" - nn+1l)u = 0, u'(l, n) + (k+1)u(l,n) = £(n);
hence
(36) ulr, n) = f£(a) —To 0<r<1, k>-1),

It follows that
= f(n)r® = v(r, n),

where v(r, n) is the transform of the solution V(r, x) of the Dirichlet prob-
lem (26), (27)3ané therefore

u(r, n) = L/‘rQ(s, n) (%)k i.‘*).;_N = ;/"'lv(rt, n) t¥ at.
0 0

The inverse transformation then gives the fermula.
1
(37) U(r, cos ©) = f V(rt, cos @) t¥ at
0
for the solution of problem (35) of the third type in terms of -thev solution of
the Dirichlet problem (26), (27) with the same function F(x).
| . A generalization ¢f formula (37) can be verified easily. Let the
above functions U, V and F be replaced here by U(r, §, ), V(r, §, ) and .
F(§, ©). For the sake of simplicity assume that F is a continuous function
of -its two variables. | o
THEOREM 6: The potential function U(r, f, ©) of the third boundary

value problem for the sphere,

(38) VAU -

0 (r<1), Up1,8,6) + (k+l) U(1,8,0) = F(g,0)

18
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where k > -1 and constant and the function F is continuous, is given in terms

- of the solution V(r, @, ©) of the Dirichlet problem
(39) V& = 0 (r<1), V(1,40 = Fg, 0
by the formula

1
(40) Ur, g, 0) = f V(rt, 8, 0) t* at.
0 ‘

The verification that the function U given by formula (40) is har-
monic in the region r < 1 when V is harmonic there is sfraightforward. To
show that the function U satisfies the boundary condition in problem (38) let
rt = s and note that

I 1
r Uy(r, 8, 0) = f V (s, §, ) t** rat = f Vi (s, @, 0) th* at
0 0

when r < 1. Hence

(41) v Up(r, B, 0) + (k+1)U(r, §,0) =

1 | '
f [t5L vi(s,8,0) + (k+1) tXV(s,8,0)] at = V(r,4,0) (r<1).
O ‘v

It 1s known that the function V is continuous in the region r 5 1 and it:follows
from formula (40) that U is continuous there. According to equation (k1) then -

nUp is also continuous there. When r = 1 equation (41) reduces to the boundary

condition in problem (38).
A Poisson integral formula for the solution of the third boundary |
value problem (38) follows at once by substituting the known Poisson integral

that represents the solution V of the Dirichlet problem into formula (L40).

19
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Other forms of the Poisson integral formula for the special case (35) in which
U is independent of @ can be found from the formula (36) for u(r, n) with the
aid of the convolution property. For the inverse transform of (n+ k + 1)"l
can be found éither from transforms No. 10 and No. 6 in the table or by inte-. -
grating the transformation No. 4 after multiplying by ak.

The relation (40) between the solutions of the two types of pfbblems
for the sphere is so simple that it should be known. Neither that relation ner
a Poisson integral formula for the problem of the third kind for the sphefe nor
fhe corresponding results in logarithmic potential for the circle, whichvfollaw |
-similarly from finite Fouriler transformations, have been found yet in the
literature. | ,

If Y(r, cos 6) denotes the potential in the éxterior region r > 1 for|

the third problem

(h2) - - V2Y = 0 (r>1), Y.(1,x) - kY(1,x) = fg-F(x)'

where k > O here and constant and x = cos @, the transform of Y is easily found

to be
1 -0 1.1 oYY
= =7f —_— e = =u(= r>1
y(ry n) T (n) n+k+.1 r u(r’ n) (rzi)

where u(r, n) is the transform (36) of the solution of the third problem (35)

for the interior of the sphere, Hence

(43) Y(r, cos ) = %.U(%, cos 9) (r >1).

Moreover the procedure used to arrive at formula (37) is easily ap-

plied to the above formula for y(r, n) to arrive at the formula

20
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0

(b) Y(r, cos 0) = f W(rt, cos 0) t75°1 at
1

where W(r, cos ©) is the potential (29) in the Dirichlet problem for the'éxt.o:-.i',

rior region,

VEW = 0 (r>1), W(l, cos ®) = F(cos 9).

The verification of formulas (43) and (44) shows that the potentials

and the func_:tion F involved need not be independent of the coordinate ¢

‘T.. Distributed Sources in Sphere.: As a final illustrative appli-

cation of the transforms consider the problem

(45) VzV(r, x) = F(r,x) (r<1l), V(@I,x) = 0

where x = cos ©. The transformed problem is
r2 v"(r,n) + 2r v'(r,n) - n(n#l) v(ryn) = 12 £(r,n), v(l,m) = O,

Tts solution can be written by elementary methods in the form

1 n _— T
- (rs) 2 35 .1 [Ts8 R 2 ae
(46) v(r,n) f St f(s,n) s= ds = . T f(s,n) s€ ds

1
-f r’s°" £(s,n) s ds.
rentl :

According to transform No. 6 in the table,

Pl 01 - g (Jol S1)
where
G(a, x) = % (148 Eax)"'l/z .

21
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If H(a, s, x) denotes the convelution (Theorem 3) of the two functions G(e, X)
and F(s, x) as functions of x the formal inverse transformation of the members |

of equation (46) gives the formula
T

V(r,x) = f H(rs,s,x) s° ds - _.f H(%,,s,x) s< ds «f H‘(?Bl,s,x) s ds
‘ 0 o r

for the solution of problem (45).
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