Annual Report

THE EFFECT OF ANISOTROPIC SCATTERING ON RADIATIVE TRANSFER

AFSWP

by

STUART W. CHURCHILL
Professor of Chemical Engineering

CHIAO-MIN CHU
Associate Professor of Electrical Engineering

JAMES A. LEACOCK
JOHN CHEN
Assistants in Research

DEPARTMENT OF THE NAVY, OFFICE OF NAVAL RESEARCH
Contract No. Nonr-1224(17)
ONR Project No. NR 087-063

March, 1960

Reproduction in whole or in part is permitted for any purpose of the United States Government.
TABLE OF CONTENTS

FOREWARD..........................iii
LIST OF FIGURES..................iv
NOMENCLATURE......................v
ABSTRACT..........................viii
INTRODUCTION.......................1
PART I - THEORETICAL STUDIES........
A. The Transport Equation...........
1. The specific intensity.........
2. The distribution function $f_s(\vec{n}, \vec{n}')$...
3. Boundary conditions and virtual sources...
4. Green's function and the reciprocity theorem...
5. Density, current and the integral equations...
6. Expression of the transport equation in various coordinate systems...
7. General discussion of solutions of the transport equation...
B. Exact Solutions for Isotropic Scattering...
1. Infinite dispersion............
2. Semi-infinite dispersion.....
3. A dispersion bounded by parallel planes...
4. Some applications of exact solutions...
C. Exact Solutions for Anisotropic Scattering...
1. General.........................
2. Semi-infinite dispersion.....
3. A dispersion bounded by parallel planes...
4. Discussion of integral formulations...
PART II - NUMERICAL CALCULATIONS...
A. Mathematical Formulation for Half-space Problem...
1. Geometry and coordinate systems...
2. Ψ-functions..............
3. H-functions..................
4. Intensity of reflected radiation...
5. Integrated reflection........
6. The general numerical problem...
B. Specific Example

1. Representation of the phase function
2. The Ψ-functions
3. The intensity of the reflected radiation
4. The integrated reflectance

SUMMARY AND CONCLUSIONS
APPENDIX A - Tables of computed functions
Index to tables in Appendix A
APPENDIX B - Computer programs
Index of contents of Appendix B

REFERENCES
DISTRIBUTION LIST
FORWARD

This report was typed by Mrs. Marguerite Schaible. Dr. George C. Clark, now with the Continental Oil Company, James R. Street and Larry B. Evans assisted in the early phases of the research. The machine computations were carried out on the IBM-704 at the University of Michigan Computing Center.
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-1</td>
<td>Representation of geometry for virtual sources</td>
<td>6</td>
</tr>
<tr>
<td>I-2</td>
<td>Representation of geometry for Green's function</td>
<td>8</td>
</tr>
<tr>
<td>I-3</td>
<td>Representation of geometry used in integrating transport equation</td>
<td>10</td>
</tr>
<tr>
<td>I-4</td>
<td>Rectangular coordinates</td>
<td>13</td>
</tr>
<tr>
<td>I-5</td>
<td>Cylindrical coordinates</td>
<td>14</td>
</tr>
<tr>
<td>I-6</td>
<td>Spherical coordinates</td>
<td>16</td>
</tr>
<tr>
<td>I-7</td>
<td>Plane parallel source obliquely incident on a semi infinite dispersion</td>
<td>21</td>
</tr>
<tr>
<td>I-8</td>
<td>A point source above a perfect specularly reflecting boundary</td>
<td>36</td>
</tr>
<tr>
<td>II-1</td>
<td>Geometry of half-space problem</td>
<td>56</td>
</tr>
<tr>
<td>II-2</td>
<td>Coordinate system</td>
<td>57</td>
</tr>
<tr>
<td>II-3</td>
<td>Angular distribution of radiation scattered by a spherical particle for several phase functions</td>
<td>74</td>
</tr>
<tr>
<td>II-4</td>
<td>Intensity of reflection as function of azimuthal angle, I/I₀ vs φ, parameters of μ, N=4 and μ₀=0.4</td>
<td>77</td>
</tr>
<tr>
<td>II-5</td>
<td>Intensity of reflection as function of azimuthal angle, I/I₀ vs φ, parameters of μ₀, N=4 and μ=0.5</td>
<td>78</td>
</tr>
<tr>
<td>II-6</td>
<td>Intensity of reflection as function of incident angle, I/I₀ vs μ₀, parameters of μ, N=4 and φ=0°</td>
<td>79</td>
</tr>
<tr>
<td>II-7</td>
<td>Intensity of reflection as function of incident angle, I/I₀ vs μ₀, parameters of μ, N=4 and φ=180°</td>
<td>80</td>
</tr>
<tr>
<td>II-8</td>
<td>Intensity of reflection as function of emergent angle, I/I₀ vs φ, parameters of μ₀, N=4 and φ=0°</td>
<td>82</td>
</tr>
<tr>
<td>II-9</td>
<td>Intensity of reflection as function of emergent angle, I/I₀ vs φ, parameters of μ₀, N=4 and μ₀=0.4</td>
<td>83</td>
</tr>
<tr>
<td>II-10</td>
<td>Intensity of reflection as function of azimuthal angle, I/I₀ vs φ, parameters of N, μ₀=0.4, μ=0.5</td>
<td>84</td>
</tr>
<tr>
<td>II-11</td>
<td>Integrated reflectance (albedo of phase), R vs μ₀, parameters of N</td>
<td>85</td>
</tr>
</tbody>
</table>