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Abstract: We refine the Buchdahl 9/8ths stability theorem for stars by describing quan-
titatively the behavior of solutions to the Oppenheimer–Volkoff equations when the star
surface lies inside 9/8ths of the Schwarzschild radius. For such solutions we prove that
the density and pressure always have smooth profiles that decrease to zero as the ra-
diusr → 0, and this implies that the gravitational field becomesrepulsivenearr = 0
whenever the star surface lies within 9/8ths of its Schwarzschild radius.

1. Introduction

In General Relativity, the interior of a star is modeled by solutions of the Oppenheimer–
Volkoff (OV) equations which describe the pressure gradient inside a static fluid sphere.
In this paper we describe the global behavior of the density, pressure, and gravitational
field when the surface of the star lies within 9/8ths of its Schwarzschild radius. The
well-known Buchdahl stability theorem, [1], states, loosely speaking, that when the
surface of a star lies within 9/8ths of its Schwarzschild radius, then the star is unstable
to gravitational collapse, and this result is essentially independent of the equation of
state. This places a maximum red-shift factor of 2 on the possible emission spectrum
from the surface of a spherically symmetric, static stellar object. The precise statement
of Buchdahl’s theorem is as follows, ([2], p. 332). Letρ(r) andp(r) denote the density
and pressure, respectively, and letM (r) denote the mass function at radiusr < R, where
R denotes the surface of the star. (We callρ the density so thatρc2 is the energy-density
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of the fluid, andc denotes the speed of light.) Assume that these functions satisfy the
Oppenheimer–Volkoff equations, ((2.1), (2.2) below), and that the following conditions
hold:

(A) The radiusR > 0 of the star is fixed, and the densityρ(r) and pressurep(r)
are arbitrary bounded positive functions defined on 0≤ r < +∞, such thatρ(r) = 0 =
p(r) for r ≥ R. The metric is assumed to be attached smoothly to the empty space
Schwarzschild metric atr = R.

(B) The mass functionM (r) is given by

M (r) =
∫ r

0
4πρ(s)s2ds,

so that the total mass of the star is given by

M0 =
∫ R

0
4πρ(s)s2ds.

(C) The metric coefficientA, defined by

A(r) ≡ 1 − 2GM (r)
c2r

,

whereG denotes Newton’s gravitational constant, satisfies

A(r) > 0.

(D) The densityρ(r) does not increase outward:

ρ′(r) ≤ 0.

Then, assuming (A)–(D), the conclusion of the Buchdahl theorem is that, ifρ(r), p(r)
andM (r) satisfy the OV equations, the surfacer = R must satisfy

R >
9
8
Rs(M0),

whereRs(M0) = 2G
c2 M0 denotes the Schwarzschild radius of a star of total massM0.Here

G denotes Newton’s gravitational constant. The stability limit for stars is obtained from
this theorem by concluding that if the boundary surface of a star satisfiesR ≤ 9

8Rs(M0),
then one of the above assumptions must fail. However, no information is given about
exactly how (A)-(D) fail in this case. For example, canA → 0 for somer > 0? (This
would correspond to the formation of a black-hole.) Canp → ∞ for somer ≥ 0?
CanM (0) = 0 fail, or does the solution fail to exist on the entire interval [0, R] for
some other reason? In addition, what is the behavior of the solutions asA(R) → 0;
i.e., as the star surface tends to its Schwarzschild radius? In this paper we describe the
global behavior of solutions of the OV equations starting from initial data satisfying
Rs(M0) < R ≤ 9

8Rs(M0), and as a corollary we obtain a refinement of Buchdahl’s
theorem.

We have been led to study such solutions in detail because of our earlier work, [3, 4],
in which we constructed shock-wave solutions of the Einstein equations by attaching
a Friedmann-Robertson-Walker metric to the inside of an arbitrary static metric deter-
mined by the Oppenheimer–Volkoff equations, such that the interface between them
is an outward moving shock-wave. In the forthcoming paper [7] we study shock-wave
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solutions of the Einstein equations arbitrarily close to the Schwarzschild radius by plac-
ing an outgoing shock-wave inside the static solutions that we analyze here. In such a
construction the shock-wave stabilizes the solution by supplying the pressure required
to “hold the star up”even whenRs(M0) < R ≤ 9

8Rs(M0).
In order to make the exposition as simple as possible, we assume throughout that

a baryotropic equation of state of the formp = p(ρ) is given, where the functionp(ρ)
satisfies the conditions thatp

ρ andp′(ρ) are bounded above and below by positive con-

stants. Note that in this case
√

p′ is the sound speed, which for physical reasons should
be bounded byc. Our approach is to start with initial conditions atr = r0 > 0, and
in terms of this data we estimate the solution for 0< r < r0. This contrasts with the
standard approach which is to assume conditions atr = 0.

We prove that any solution of the OV equations starting from initial data atr = r0,
and satisfyingr0 ≤ 9

8Rs(M (r0)), will necessarily exist all the way intor = 0, and
A(r) > 0 for all r ≥ 0. Moreover, we show that the pressurep and densityρ nevertend
to∞, and actually are bounded and tend to zero smoothly asr → 0. (This contrasts with
the case whenr0 > 9

8Rs(M (r0)), in which case we can havep → ∞, cf. [4].) We prove
that what always happens is that the mass functionM hits zero at somer1 > 0, then goes
negative forr < r1, andM ′(r) remains positive for allr ≥ 0. Moreover,M (r) → M (0)
asr → 0, where−∞ < M (0) < 0. Indeed, we show that the densityρ and pressure
p increase asr decreases until they reach a critical valuer = r2, 0 < r2 < r1, (so that
M (r2) < 0), and thenρ andp decrease to zero asr → 0. Moreover, we also prove that
limr→0 ρ′(r) = limr→0 p′(r) = 0, which implies thatρ andp have smooth profiles at
r = 0. Thus we conclude that in the presence of positive density and pressure, arepulsive
gravitational effect appears, (i.e.,p′ > 0 nearr = 0), due to a negative mass function
insider = r1.

In light of the above, our results show that hypotheses (C) and (D) are actually
consequences of the other assumptions in Buchdahl’s theorem because (B) implies that
M (r) ≥ 0 for all r ≥ 0. Moreover, whenM0 ≡ M (r0) ≤ 9

8Rs(M (r0)), we show that
the region of the solution whereM (r) ≥ 0 accumulates in a thin layer that tends to
r = r0 asr0 tends to its Schwarzschild radiusRs(M (r0)), and we obtain sharp estimates
for the width of this layer. Note finally that the hypotheses of the Buchdahl theorem do
not explicitly assume the existence of an equation of state. Although in our treatment
here we assume the equation of state is of the formp = p(ρ), we could be more general
by assuming only thatµ(r) = p

ρ andσ(r) = p′

ρ′ are any given positive functions that are
bounded above and below by positive constants; c.f. [6].

The main results of this paper are summarized in the following theorem which gives
a refinement of Buchdahl’s result. In what follows we utilize the variablez defined by

z ≡ ρ

ρ̄
, (1.1)

where ¯ρ(r) is the average density inside radiusr, defined by

ρ̄ ≡ 3
4π

M (r)
r3

. (1.2)

Theorem 1. Let(r1, r0], 0 ≤ r1 ≤ r0, be the maximal interval of existence of a positive
smooth solution,ρ(r) > 0, p(r) > 0, andM (r) > 0, of the OV system, (given in (2.1),
(2.2) below), starting from positive initial data atr = r0 which satisfies
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0 < A(r0) ≡ 1 − 2GM (r0)
c2r0

< 1.

ThenM ′(r) > 0 andA(r) > 0 throughout(r1, r0], M (r1) = 0, and the following hold:
(i) If r1 = 0, thenA(r0) > 1

9, or equivalentlyr0 > 9
8Rs(M (r0)).

(ii) If r1 > 0, then the functionsρ(r), p(r) andM (r) can be continued to the interval
[0, r1] as bounded smooth solutions of the OV system, such thatρ, p, A andM ′ remain
positive, butM (r) is negative on[0, r1). Moreover, there exists a unique pointr2 ∈ (0, r1)
such that the densityρ and pressurep increase on the interval[0, r2) and decrease on
the interval(r2, r0], and the following equalities hold:

lim
r→0

ρ(r) = lim
r→0

p(r) = lim
r→0

ρ′(r) = lim
r→0

p′(r) = 0, (1.3)

and

lim
r→0

M (r) = M (0), (1.4)

whereM (0) is a finite negative number.
(iii) Assume that the initial values satisfy the further conditions that

0 < z0 < 1, (1.5)

0 < A0 ≤ 1
9
. (1.6)

Thenr1 > 0, and there exists a unique pointr∗, r1 < r∗ < r0, such thatz(r∗) = 1,
z(r) < 1 for r > r∗, z(r) > 1 for r < r∗, and the following inequalities hold:

1 >
r∗
r0

>

√
1 − 9A(r0)
1 − A(r0)

, (1.7)

and

ρ(r) < ρ(r∗) ≤ 3
8πGr2

0

(
1 − A0

1 − 9A0

)
, (1.8)

for all r in the intervalr∗ ≤ r < r0.
(iv) For fixedr0 > 0 andz0 > 0, r1 → r0 asA0 → 0.

Note that wheneverM (r) tends to a finite negative number atr = 0, the metric
must have a singularity atr = 0 becauseA(r) = 1 − 2GM (r)

r . We will show below that
such singularities in solutions of the OV equations are non-removable, and we will use
the results in [3] to show that this singularity corresponds to a delta fuction source of
negative mass atr = 0.

As a consequence of this theorem, it follows that for any solution of the OV system,
the pressure can tend to∞ only at the originr = 0; i.e., by (ii),p is uniformly bounded
if r1 > 0, sop can tend to∞ only atr = 0.

Note that part (i) refines the Buchdahl result because it implies that if the massM (r)
ever gets within 9/8ths of the Schwarzschild radiusRs(M (r)), thenr1 > 0, soM must
go negative beforer = 0, thereby violating the definition ofM given in (B). Also, since
ρ′(r) > 0 for r near zero, we see that (D) is also violated. Note too that in our theorem,
the critical 9/8′ths limit applies at any radius interior to the star, while in Buchdahl’s
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argument the 9/8′ths limit applies only atr = R, the surface of the star. Moreover,
the fact thatA stays positive is atheoremin our treatment, not an assumption, and we
demonstrate the failure of (D) whenr0 ≤ 9

8Rs(M (r0)), in which case (ii) and (iii) give
the global behavior of solutions that start inside 9/8ths of the Schwarzschild radius.
Theorem 1 also rules out the possibility thatp → ∞ asr → 0 in the critical case when
r0 is exactly 9

8Rs(M (r0)), because whenr0 = 9
8Rs(M (r0)), Theorem 1 implies that

r1 > 0. (See [2], p. 334, wherep → ∞ asr → 0 andr0 = 9
8Rs(M (r0)), but in this case

ρ ≡ const, and so this example violates our assumption thatp/ρ remains bounded.)
Note also that sincer1 → r0 asA0 → 0, andM (r1) = 0, it follows that the entire
portion of the solution in which the massM is positive, accumulates in a thin layer
that tends tor = r0 asA0 tends to zero. In [7] we use our detailed description of this
layer to analyze dynamical solutions in which a shock-wave inside the layer supplies
the pressure required to hold the layer up whenA0 is arbitrarily close to zero.

Statement (1.3) implies that the densityρ(r) and pressurep(r) are everywhere pos-
itive and have smooth profiles that tend to zero asr → 0, and this implies that the
gravitational field becomesrepulsivenearr = 0 (whenM (r) is negative). Note that
M (r) < 0 for r > 0 is not ruled out in general relativity, (so long as the density and
pressure are positive), becauseM (r) is not an invariant quantity. This issue is discussed
in the final section of this paper.

2. Statement of Results

Theorem 1 is a consequence of the results stated in this section; in the next section we
will supply the proofs of the theorems in the order that they are presented here.

The Oppenheimer–Volkoff (OV) system is, (cf. [2]),

− r2 dp

dr
= GMρ

(
1 +

p

ρc2

) (
1 +

4πr3p

Mc2

)
A−1, (2.1)

dM

dr
= 4πρr2, (2.2)

where

A ≡ A(r) = 1− 2
G
c2

M (r)
r

. (2.3)

Equations (2.1), (2.2) form a system of two ODE’s in the unknown functionsp = p(r),
ρ = ρ(r), andM = M (r), wherep denotes the pressure,ρc2 denotes the mass-energy
density,c denotes the speed of light,M (r) denotes the total mass inside radiusr, andG
denotes Newton’s gravitational constant. The last three factors in (2.1) are the general-
relativistic corrections to the Newtonian theory, [2].

Solutions of (2.1) and (2.2) determine a Lorentzian metric tensorg of the form

ds2 = −B(r)d(ct)2 + A(r)−1dr2 + r2
(
dθ2 + sin2(θ)dφ2

)
, (2.4)

that solves the Einstein equations

G =
8πG
c4

T , (2.5)

whenG is the Einstein tensor, andT is the stress-energy tensor for a perfect fluid,
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Tij = (p + ρc2)uiuj + pgij . (2.6)

Herei andj are indices that run from 0 to 3, A(r) is defined by (2.3), and the function
B satisfies the equation

B′

B
= −2

p′

p + ρc2
. (2.7)

The metric (2.4) is spherically symmetric, time independent, and the fluid 4-velocity is
given byut =

√
B andur = uθ = uφ = 0, so that the fluid is fixed in the (t, r, θ, φ)-

coordinate system, [2].
We assume that, (cf. [6]),

µ =
p

ρ
, (2.8)

and

σ =
dp/dr

dρ/dr
, (2.9)

satisfy the apriori bounds

0 ≤ µ < µ+ < ∞, (2.10)

and

0 < σ− < σ < σ+ < ∞. (2.11)

Note that if an equation of state of the formp = p(ρ) is given, then the bounds (2.10)
and (2.11) are implied by the usual physical requirements on the functionp(ρ), (cf. [6]).

Our results rely on a regularity theorem, (Theorem 2 below), for solutions of (2.1),
(2.2) that satisfy (2.10) and (2.11). The results are stated in terms of the variablesz and
A, wherez is defined above in (1.1). That is, in [6] we showed that on the maximal
interval (r1, r0] over whichM (r) > 0, the OV system (2.1), (2.2) is equivalent to the
system

dz

dr
= −C

z

A

(
1 − A

r

)
, (2.12)

dA

dr
= (1− 3z)

(
1 − A

r

)
, (2.13)

where

C ≡
(1 + µ

c2 )(1 + 3µz
c2 )

2 σ
c2

− 3(1− z)
A

(1 − A)
. (2.14)

In terms ofz andA, Eq. (2.7) becomes

B′

B
=

1
r

(
1 + 3

µz

c2

) (
1 − A

A

)
. (2.15)

The regularity theorem that we need is the following theorem proved in [6].
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Theorem 2. Let (z(r), A(r)) denote the smooth, (i.e.,C1), solution of (2.12), (2.13),
defined on a maximal interval(r1, r0], 0 ≤ r1 < r0 < ∞, satisfying the initial conditions
z(r0) = z0, A(r0) = A0, where

0 < z0 < ∞, 0 < A0 < 1. (2.16)

Assume that (2.10) and (2.11) hold. Then(z(r), A(r)) satisfies the following inequalities
for all r ∈ (r1, r0] :

0 < z(r) < ∞, (2.17)

0 < A(r) < 1, (2.18)

B(r) > 0, (2.19)

0 < M (r) < M (r0), M ′(r) > 0, (2.20)

and

lim
r→r1+

M (r) = 0. (2.21)

Moreover, ifr1 > 0, then

lim
r→r1+

z(r) = +∞, (2.22)

lim
r→r1+

A(r) = 1, (2.23)

lim
r→r1+

B(r) = B(r1) > 0. (2.24)

If r1 = 0, then

0 ≤ z(r) ≤ 1, (2.25)

for all r ∈ (0, r0], and if ρ(r) has a finite limit atr1 = 0, then (2.23) and (2.24) also
hold.

The original variablesρ andp of the OV system (2.1), (2.2) satisfy the inequalities

0 < ρ(r0) < ρ(r) < ρ(r1) < ∞, ρ′(r) < 0, (2.26)

and

0 < p(r0) < p(r) < p(r1) < ∞, p′(r) < 0, (2.27)

for all r, r1 < r < r0.
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We remark that (2.21) and (2.22) show thatz can only tend to infinity at a value
r1 > 0 whereM (r1) = 0. Furthermore, it follows that whenr1 > 0, the values ofρ(r)
andp(r) are bounded on the closed intervalr1 ≤ r ≤ r0. Thus, solutions of the OV
system (2.1),(2.2), actually exist on a larger interval containing [r1, r0], but M ≥ 0 is
violated.

Our first result is given in the following theorem which describes the continuation
of an OV solution to values 0≤ r ≤ r1 in the case whenr1 > 0. We then show thatr1
is always positive whenr0 ≤ 9

8Rs(M (r0)); that is,r1 > 0 if r0 is within 9/8ths of the
Schwarzschild radius.

Theorem 3. Let (z(r), A(r)) denote the smooth, (i.e.,C1), solution of (2.12), (2.13),
defined on a maximal interval(r1, r0], 0 ≤ r1 < r0 < ∞, satisfying the initial conditions
(2.16), and assume that (2.10) and (2.11) hold, so that the hypotheses of Theorem 2 hold.
Assume thatr1 > 0. Then the functionsρ(r), p(r) andM (r) can be extended as a smooth
solution of the OV system (2.1), (2.2), to valuesr satisfying0 ≤ r < r0. Moreover, for
r < r1,

− ∞ < M (0) < M (r) < 0, (2.28)

where

lim
r→0

M (r) = M (0), (2.29)

A(r) > 0, M ′(r) > 0, andp(r) andρ(r) are positive and bounded for allr ∈ [0, r0].
Furthermore, there exists a unique valuer2, 0 < r2 < r1, such that the functionsp(r)
andρ(r) assume their maximum values atr = r2, and

lim
r→0

p(r) = lim
r→0

ρ(r) = lim
r→0

p′(r) = lim
r→0

ρ′(r) = 0. (2.30)

Finally, the componentB in the metric (2.4) satisfies

B(r) = O(r−1) as r → 0, (2.31)

and the tensor invariantR ≡ RijklR
ijkl of the Riemann curvature tensor determined

by the metric (2.4) satisfies

R ≥ const.

r6
as r → 0, (2.32)

so that there is a non-removable singularity in the metric (2.4) atr = 0 whenr1 > 0.

The next theorem will be used to show thatr1 tends tor0 as the initial condition
A(r0) = A0 tends to zero. That is, as the initial condition is taken closer and closer to
the Schwarzschild radius, the pointr1 at whichM (r1) = 0 tends tor0. Since by (2.21),
M = 0 atr = r1, andM (r0) tends toc2r0

2G asA0 tends to zero, we conclude that all of
the mass accumulates in a surface layer nearr = r0 asA0 tends to zero. Our analysis is
based on estimating, explicitly in terms ofA0, the positionr = r∗ of the unique point
whereM (r)

r3 assumes its maximum. A calculation (below) shows that atr = r∗, we also
haveρ(r∗) = ρ̄(r∗), soz(r∗) = 1, and moreover,ρ > ρ̄ for r∗ < r < r0, andρ < ρ̄ for
r1 < r < r∗.3

3 The pointr∗ also plays an important role in the shock-wave matching problem set out in, [3, 4, 5]. Indeed,
we showed in [5] that outgoing shocks, modeling explosions, can be constructed from any outer OV solution
so long asρ > ρ̄. We will use these results in a future paper to study shock-waves near the Schwarzschild
radius.
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Theorem 4. Let (z(r), A(r)) be a smooth solution of (2.12),(2.13) starting from initial
values(z0, A0) and defined on a maximal interval(r1, r0]. Assume that the initial values
satisfy

0 < z0 < 1, (2.33)

0 < A0 ≤ 1
9
. (2.34)

Thenr1 > 0, and there is a unique pointr∗, r1 < r∗ < r0, such thatz(r∗) = 1, z(r) < 1
for r > r∗, z(r) > 1 for r < r∗, and the following inequalities hold:

1 >
r∗
r0

>

√
1 − 9A(r0)
1 − A(r0)

, (2.35)

and

ρ(r) < ρ(r∗) ≤ 3
8πGr2

0

1 − A0

1 − 9A0
, (2.36)

for all r, r∗ ≤ r < r0.

The estimate (2.35) gives a rate at whichr∗
r0

→ 1 asA0 → 0, and we will use this
to demonstrate thatr1

r0
→ 1, asA0 → 0.

Note that the hypothesis 0< A0 ≤ 1
9 implies thatr0 is outside the Schwarzschild

radiusRs(M0), but inside 9/8ths of Rs(M0).
Theorem 1 of the introduction follows directly from Theorems 2-4, together with

the following corollary which generalizes the Buchdahl theorem:

Corollary 1. If r1 = 0, thenA0 > 1
9, or equivalently

r0 >
9
8
Rs(M (r0)).

To see this, note that ifr1 = 0, thenM (0) = 0, and soM (r) =
∫ r

0 4πρ(s)s2ds. Now
suppose thatA0 ≤ 1

9. Then by (2.35),r∗ > 0. But if r1 = 0, thenρ′ < 0 impliesρ ≤ ρ̄
soz ≤ 1 whenr1 = 0. (Theorem 3). Thusr1 = 0 is impossible whenr∗ > 0 because
the latter impliesz > 1 for r < r∗, a contradiction.

The next corollary shows thatr1 → r0 asA0 → 0, thereby demonstrating that all of
the mass accumulates in a layer that tends tor0 asr0 tends to the Schwarzschild radius.

Corollary 2. If r0 andz0 are fixed, then

lim
A0→0

r1

r0
= 1. (2.37)

The final theorem estimates the size of the surface layerr∗ < r < r0, (wherez < 1),
from above in terms of the initial data (z0, A0). Our estimate for the width of the layer
depends on the valueB(r∗), but this value depends on the initial condition forB(R)
at the surface of the starr = R. Thus in this case we shall assume that the solution is
defined forr1 < r ≤ R, and thatlimr→Rz(r) = 0, andB(R) = A(R). (Note here that
the OV solution will not go continuously to a vacuum atr = R, (z(R) = 0, ρ(R) = 0),
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unlessσ → 0 asr → R. This follows directly from (2.12) because, ifσ is bounded away
from zero, then the system (2.12), (2.13) is regular, and has a unique solution through
r = R, namely, the Schwarzschild solution. Allowingσ → 0 asr → R, is not a problem
in the arguments to follow.)

Theorem 5. Let (z(r), A(r) be a smooth solution of (2.12),(2.13) starting from initial
values(z0, A0) and defined on a maximal interval(r1, R], 0 < r1 < r0 < R, where we
assume the initial values satisfy (2.33), (2.34), together with

limr→Rz(r) = 0, (2.38)

and

z(r) = 0 and B(r) = A(r) for r ≥ R. (2.39)

Then the following inequality holds:

r∗
r0

≤ 1 − A0

1 − B(r∗)
. (2.40)

Moreover, ifA is sufficiently small so thatC in (2.12) satisfiesC > 0 for r ∈ (r∗, r0),
(for exampleA < 1

9 andσ < 2 will suffice), thenB(r∗) satisfies

B(r∗) = B(R)e
−

∫ 1

z0

1+3µz
Cz dz

. (2.41)

Note that to estimateB(r∗) by using (2.41), (which by (2.40) yields an estimate forr∗
r0

from below), we need to estimate the functionC in (2.14) and this essentially requires
knowledge of the equation of state.

3. Proofs of Theorems

In this section we supply the proofs of Theorems 3–5 stated in Sect. 3. From here on we
always assume that the speed of lightc is unity.

Proof of Theorem 3:Assumer1 > 0. By Theorem 2,

lim
r→r1

M (r) = 0,

andρ andp have finite positive limitsρ(r1), p(r1), at r = r1, respectively. Thus by
definingM (r1) = 0, we have a continuous extension of the OV solution tor = r1.
Moreover,

M ′(r1) = 4πρ(r1)r2
1 > 0;

thus there is an extension of the OV solution to a neighborhood (r1 − ε, r1], and we
chooseε sufficiently small so that, on this neighborhood,p(r) > 0 andρ(r) > 0 but
M (r) < 0. Now let I ≡ (r3, r1] denote the largest interval over which the solution of
the OV equations starting from initial data atr = r1, exists, is smooth, and bothρ andp
are positive. The OV equation (2.1) can be rewritten in the form

− ρ′ =
G(1 +µ)

r2σ
ρ(M + 4πµr3)

1

1 − 2GM
r

. (3.1)
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Let
D(r) ≡ M (r) + 4πp(r)r3. (3.2)

Claim 1. ρ andM are bounded on [r3, r1].

Proof of Claim 1.Using (3.1) we have that forr ∈ I,

− ρ′ ≤ K1
ρ

r2
(4πpr3)

r

2G|M | ≤ K2ρ
2r2 1

|M | , (3.3)

for some positive constantsK1 andK2. ButMε ≡ M (r−ε) < 0. Thus, sinceM ′(r) > 0
on Iε ≡ (r3, r1 − ε], we have

−ρ′ ≤ K2

|Mε|
ρ2r2 ≤ Kρ2r2,

for some positive constantK. Then integrating fromr > r3 to r1 − ε gives

ρ(r) ≤ 1

ρ(r1 − ε) + K
3 [r3 − (r1 − ε)3]

< Const,

and this proves Claim 1.
Using the claim we conclude thatD(r2) = 0 for somer2 ∈ I. Indeed, ifD(r) 6= 0

for all r ∈ I, then sinceρ′ < 0 andρ is bounded, it follows thatρ, p andM would
have finite positive limits atr = r3 if r3 6= 0, so we must haver3 = 0 in order not to
contradict the maximality of the intervalI. But if r3 = 0, then clearlyD(r) = M +4πpr3

is negative forr sufficiently close tor = 0.
Now let r2 be any point inI for whichD(r2) = 0. Then

d

dr
D(r2) = M ′(r2) + 4πp′(r2)r3

2 + 12πp(r2)r2
2 > 0,

sincep′(r2) = 0. It follows from this that there exists a uniquer2 ∈ I at whichD(r2) = 0.
For r < r2, note thatρ′(r) > 0 andp′(r) > 0.

Claim 2. r3 = 0.

Proof of Claim 2.Using (3.1) we can write

ρ′ =
G(1 +µ)

σr2
ρ(−M − 4πµρr3)

1
A

< K
1
r2

ρ(−M )
r

−M
< K+

ρ

r
,

for some positive constantsK andK+. Integrating fromr < r2 to r2 gives

ρ(r) > ρ(r2)

(
r

r2

)K+

,

so thatρ(r) ≥ 0 for all r ≥ r3. We conclude that eitherr3 = 0 or else we contradict the
maximality ofI. This proves Claim 2.

Claim 3. limr→0 ρ(r) = 0.
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Proof of Claim 3.Note first that

D′(r) = M ′(r) + 4πp′(r)r3 + 12πp(r)r2 ≥ 0,

for all r ∈ (0, r2]. It follows that

−D(r) > −D(r2 − ε) ≡ Kε,

0 < r < r2 − ε, for some small positive numberε. Thus from (3.1) we obtain for
0 < r < r2 − ε,

ρ′ ≥ K

r2
ρKε

1

1 + G|M |
r

,

so that
ρ′ ≥ K−

ρ

r
,

whereK− > 0. Thus for suchr we have

ρ(r) < ρ(r2 − ε)

(
r

r2 − ε

)K−

,

and this shows thatρ(r) → 0 asr → 0, which proves Claim 3.
Next we show that

lim
r→0

ρ′(r) = 0. (3.4)

To see this, note that forr nearr = 0, we obtain from (3.1) that

ρ′ =
G(1 +µ)

σr2
ρ(|M | + O(r))

r

2G|M | (1 +O(r)),

which we can rewrite as

ρ′(r) =
(1 +µ)

2σ

ρ

r
(1 +O(r)).

Since limr→0 ρ(r) = limr→0 p(r) = 0, we may write this last equation as

ρ′(r) =
(1 +µ(0))

2σ(0)
ρ

r
(1 +O(r)) as r → 0. (3.5)

Now integrating fromr < ε to r = ε, (whereε is near zero), we obtain

ρ(r) = ρ(ε)
(r

ε

)K0

e−K0O(ε),

where

K0 =
1 +µ(0)
2σ(0)

.

But, µ(0) = limρ→0
p(ρ)
ρ = p′(0) = σ(0). Thus,

K0 =
1 +σ(0)
2σ(0)

> 1,

becauseσ, the sound speed squared, is less than unity. We conclude that
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lim
r→0

ρ(r)
r

= 0,

and hence

ρ′(0) = lim
r→0

ρ(r) − ρ(0)
r − 0

= 0.

Finally we verify (2.31) and (2.32). For (2.31) note that we have

B′

B
= − 2p′

p + ρ
, (3.6)

and using an argument similar to the derivation of (3.5), we obtain that nearr = 0,

p′ =
1 +µ

2
ρ

(
1
r

− 1
2G|M (0)| + O(r)

)
. (3.7)

Substituting this forp′ in (3.6), we see that forr near zero,

B′

B
= − ρ

p + ρ

(
1
r

+ O(1)

)
. (3.8)

Now integrating fromr < ε to r = ε yields

B(r) = B(ε)
( ε

r

)
(1 +O(ε)) . (3.9)

This shows thatB(r) = O
(

1
r

)
nearr = 0.

To verify (2.32), a calculation using MAPLE yields

R =
[2ABB′′ − A(B′)2 + BA′B′]2

4B4
+

2A2(B′)2

r2B2
+

2(A′)2

r2
+

4(1− A)2

r4
.

Thus

R ≥ 4(1− A)2

r4
= 16G2 M (r)2

r6
→ ∞ as r → 0,

sinceM (0) 6= 0. This completes the proof of Theorem 3.

We can use the shock-wave matching techniques developed in [3] to show that the
non-removable singularity that appears in the metric atr = 0 in the case whenr1 > 0
really does represent a delta function source of negative density. Indeed, a Friedmann-
Robertson-Walker (FRW) metric can only be matched Lipschitz continuously to a metric
of type (2.4) if the following condition holds, (cf. [3]):

M (r) =
3

4π
ρ̄r3, (3.10)

where ¯ρ denotes the FRW density behind the interface between an FRW metric inside
radiusr and a metric of type (2.4) outside radiusr. Thus ifM (r) < 0, then only FRW
metrics with negative density can be matched to (2.4) at radiusr. In the limit thatr → 0,
M (r) → M (0) < 0, and thus by (3.10) FRW density ¯ρ tends to a negative delta function
source of magnitudeM (0) centered atr = 0. In other words, replacing the ball of radius
r = ε by an FRW space at fixed time has the effect of regularizing the singularity atr = 0
at that time. But by (3.10), the FRW solution inside radiusr = ε determines a sequence
whose density converges to a delta-function of negative massM (0) asε → 0.
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We now show that a solution of the OV equation starting from initial valuesM (r0) <
0 andp(r0) > 0, cannot reachp = 0 for someR > r0 without havingM (R) ≥ 0. To
see this note that iflimr→Rp(r) = 0, we must havep′(rk) < 0 on a sequencerk → R,
so long asp > 0 for r < R. But if M < 0, thenA > 1, and so the OV equation (2.1)
implies that

0 ≤ limrk→R

(
M (rk) + 4πp(rk)r3

k

)
= limrk→RM (rk),

and so in fact, sinceM ′(r) > 0 whenp > 0, we must haveM (R) ≥ 0. Thus negative
total masses willneverbe observed at the surface of a starr = R, (or beyond), ifρ(r) > 0
at anyr < R outside the Schwarzschild radius (i.e., the solution is not the empty space
Schwarzschild solution with negative mass).

Proof of Theorem 4.We begin by proving the following:

Lemma 1. Let (z(r), A(r)) denote the solution of (2.12), (2.13) defined on the maximal
interval (r1, r0], starting from initial dataz(r0) = z0, A(r0) = A0, where

0 < z0, A0 < 1,

(so that the hypotheses of Theorem 2 hold). Assume thatr1 > 0. Then there exists a
unique pointr∗, r1 < r∗ < r0, such thatz(r∗) = 1.

Proof of Lemma.Sincez(r0) < 1, and by Theorem 2,z(r) → +∞ asr → r1, we see
that there exists anr∗ for which z(r∗) = 1. On the other hand, by (2.12),z′(r) < 0 if
z ≥ 1, so we see thatr∗ is unique. This completes the proof of the lemma. �

Now differentiating the average density,

ρ̄ =
3

4π

M (r)
r3

,

we obtain

ρ̄′ =
3
r

(ρ − ρ̄) =
3ρ̄

r
(z − 1), (3.11)

so we see that ¯ρ takes a unique maximum atr = r∗, and thus

ρ̄′(r) < 0 if r∗ < r < r0, (3.12)

ρ̄′(r) > 0 if r1 < r < r∗. (3.13)

We now estimater∗
r0

whenA0 < 1
9. As a first step, we prove the following lemma,

which implies (2.35) in the special case whenr0 is the boundary surface of the star, and
the Schwarzschild solution is attached to the OV solution atr = r0. (Note here that the
OV solution will not go continuously to a vacuum atr = R, namely,z(R) = 0, ρ(R) = 0,
unlessσ → 0 asr → R. This follows directly from (2.12) because, ifσ is bounded away
from zero, then the system (2.12), (2.13) is regular, and has a unique solution through
r = R, namely, the Schwarzschild solution. Allowingσ → 0 asr → R, is not a problem
in the arguments to follow because, for any ˜r < R, ρ(r̃) 6= 0, σ > 0, and our regularity
results Theorems 2 and 3 are valid forr ≤ r̃.)
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Lemma 2. Assume the hypotheses of Theorem 4, and in addition assume that

ρ(r) = 0 = p(r),

and
B(r) = A(r),

for all r ≥ r0. Then inequality (2.35) holds.

Proof of Lemma 2.From Weinberg, [2], p. 333, we have the following identity that holds
on solutions of the OV system:(

1
r

√
A(

√
B)′

)′
= G B

A

(
M

r3

)′
, (3.14)

where prime denotes differentiation with respect tor. (Note that by Theorem 2,A(r) and
B(r) are both positive on (r1, r0].) Now from (3.11) and (3.12),

(
M
r3

)′
< 0 for r > r∗,

(and this holds whenr∗ = 0 because in this caser1 = 0, and thus from (3.11), ¯ρ′ < 0
for all r > 0), so that, from (3.14),(

1
r

√
A

[√
B

]′)′
< 0,

holds forr∗ < r < r0. Integrating we obtain for suchr

0 >

∫ r0

r

(
1
s

√
A(

√
B)′

)′
ds =

1
r0

√
A(r0)

[√
B(r0)

]′
− 1

r

√
A(r)

[√
B(r)

]′
,

or

r√
A(R)

1
r0

√
A(r0)
B(r0)

B′(r0)
2

<
[√

B(r)
]′

. (3.15)

But note that by assumptionB(r0) = A(r0), and moreover,

B′(r0) = A′(r0) =
2GM (r0)

r2
0

. (3.16)

Indeed, for the second equality we useM ′(r0) = 4πρ(r0)r2 andρ(r0) = 0. For the first
equality, we substitute the expression forp′ given in the OV equation (2.1) into (2.7)
and again use the fact thatρ(r0) = p(r0) = 0, andA(r0) = B(r0).

Integrating (3.15) fromr∗ to r0 and using the fact thatB′(r0) = A′(r0), gives

√
B(r0) −

√
B(r∗) >

GM (r0)

r3
0

∫ r0

r∗

rdr√
1 − 2GM (r)

r

≥ GM0

r3
0

∫ r

r∗

rdr√
1 − 2GM0

r3
0

r2
,

because

M (r) =
2π

3
ρ̄(r)r3 ≥ 4π

3
ρ̄(r0)r3 =

M0

r3
0

r3.

Now making the substitutionu = 1− 2GM0

r3
0

r2, in the last integral, gives
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3
√

A(r0) >

√
1 − 2GM0

r3
0

r2∗. (3.17)

In particular, this implies thatr∗ > 0 becauser∗ = 0 would imply thatA0 > 1
9, in

violation of our hypothesis. But, ifr∗ > 0, thenz(r) > 1 for r < r∗ by (2.12). Now
using Theorem 2, we see that ifr1 = 0, thenz(0) ≤ 1, and this is a contradiction. Thus
r1 > 0. Now simplifying (3.17) yields (2.35) in the case whenr = r0 is attached to the
empty space Schwarzschild solution. This completes the proof of Lemma 2.�

To complete the proof of (2.35) it remains only to extend Lemma 2 to the case
when the initial conditions atr = r0 are the general conditions (2.33), (2.34); that is,
this is the case when we do not assume that the solution is attached to the empty space
Schwarzschild metric atr = r0; i.e., we assume thatρ(r0) > 0. To accomplish this, we
will extend the definition of the equation of state functionp(ρ) to values ofρ smaller
than the valueρ(r0) in such a way that the extension of the solution tor > r0, (r near
r0), hits ρ = 0 at an arbitrarily small distance fromr = r0. The extension ofp(ρ) to
values ofρ < ρ(r0) ≡ ρ0 does not affect the solution forr ∈ (r1, r0] because in this
range,ρ′(r) < 0, and henceρ > ρ(r0). Thus (2.35) will follow in full generality by
passing to the limit.

To carry out this program, let 0< δ < ρ0 be given and letpδ(ρ) be an extension of
p(ρ) to values ofρ < ρ0 such that the following conditions hold:

pδ(ρ) = p(ρ), for ρ ≥ ρ0,

pδ(ρ) = δρ, for 0 ≤ ρ ≤ ρ0 − δ, (3.18)

and we letpδ be a smooth interpolation ofp between the valuesρ = ρ0 andρ = ρ0 − δ.
For this extensionpδ of p, we now show that the extension of the solution by the OV
equation to values ofr > r0, satisfiesρ′(r) < 0, andρ(r) = 0 for somer ∈ (r0, r0 + ε)
for ε = ε(δ) → 0 asδ → 0. To this end, note that forr sufficiently close tor = r0,
it is not difficult to see that using the OV equation (2.1), we can obtain the following
estimate:

ρ′(r) ≤ −K
ρ(r)

p′
δ(ρ(r))

, (3.19)

whereK is a constant independent ofδ, (uniform over a fixedr-interval aboutr0, and
depending only on values of the solution nearr = r0). Now fix ε << 1; we show that
there exists aδ such that the solution of the OV system starting from initial data at
r = r0 to valuesr > r0, (using equation of statepδ), must satisfyρ(r) = 0 for somer,
r0 < r < r0 + ε. To this end, assumeρ(r) > 0 on this interval for allδ << 1. We show
that this is impossible. Indeed, integrating (3.19) fromr0 to r0 + ε gives∫ ρ(r0+ε)

ρ0

p′
δ

ρ
dρ ≤ −K

∫ r0+ε

r0

dr = −Kε.

But ∫ ρ(r0+ε)

ρ0

p′
δ(ρ)
ρ

dρ +
∫ ρ0−δ

ρ0

p′
δ(ρ)
ρ

dρ +
∫ ρ(r0+ε)

ρ0−δ

p′
δ(ρ)
ρ

dρ

= O(δ) + δρ(r0 + ε).
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Thus we get

O(δ) + δρ(r0 + ε) ≤ −Kε. (3.20)

Sinceε is fixed, we see from (3.20) thatρ(r0 + ε) cannot be positive forδ sufficiently
small. This proves that for everyε > 0 there exists aδ > 0 such thatρ(rε) = 0 for
r0 < rε < r0 + ε, whenpδ(ρ) is taken as the equation of state. Thus for eachε << 1,
we can match the (extended) OV solution determined from initial data (2.33), (2.34), to
the empty space Schwarzschild solution, atr = rε. Thus, by applying the last lemma we
conclude that

1 >

(
r∗
r0

)
>

√
1 − 9Aε

1 − Aε
,

where

Aε = A(rε) = 1− 2GM (rε)
rε

.

SinceM (rε) → M (r0) asε → 0 because

M (rε) − M (r0) =
∫ rε

r0

4πρ(r)r2dr → 0,

asε → 0, we conclude that indeed estimate (2.35) must hold in full generality.
To complete the proof of Theorem 4 it remains only to prove (2.36). To this end, we

have

M (r∗) =
4π

3
ρ̄(r∗)r3

∗ =
4π

3
ρ(r∗)r3

∗,

so that

A(r∗) = 1− 2GM (r∗)
r∗

= 1− 8πG
3

ρ(r∗)r2
∗,

and hence

1 − A(r∗) =
8πG

3
ρ(r∗)r2

∗ >
8πG

3
ρ(r∗)r2

0

(
1 − 9A0

1 − A0

)
,

where we have used (2.35). Thus

0 < A(r∗) < 1 − 8πG
3

ρ(r∗)r2
0

(
1 − 9A0

1 − A0

)
,

and simplifying yields (2.36) becauseρ′(r) < 0 on r∗ < r < r0. This completes the
proof of Theorem 4.

We now give the proof of Corollary 2. For this, consider a solution of (2.12), (2.13)
defined on the maximal interval (r1, r0), starting from initial data (z0, A0) that satisfies
0 < z0, A0 < 1. Now fix z0 andr0 and letA0 → 0. Then we know from Theorem 4 that
r∗ → r0 asA0 → 0. We also show thatr1 → r0 asA0 → 0. To this end, assume not.
Then (at least for some subsequence ofA0’s), there exists an interval ( ˜r1, r0) such that
r1 ≤ r̃1 for all A0 → 0 in this subsequence. We show that this implies thatz(r) → ∞
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for all r ∈ (r̃1, r0) asA tends to zero along this subsequence. This would give the desired
contradiction becausez = ρ/ρ̄, and

ρ̄(r) =
3

4π

M (r)
r3

is bounded away from zero asA0 → 0, soz → ∞ implies thatρ(r) → ∞ asA0 → 0.
The contradiction then is that

M (r0) =
∫ r0

r1

4πρ(r)r2dr >

∫ r0

r̃1

4πρ(r)r2dr → ∞,

asA0 → 0, butM (r0) < ∞. (We use the fact that the integral of a sequence of positive
functions tends to infinity if the sequence tends to infinity pointwise.) Thus we need only
show thatz(r) → ∞ asA0 → 0. To see this, note first thatz > 1 for all A0 sufficiently
small because forA0 sufficiently small,r∗ > r and hencez(r) > 1 becausez′ < 0 for
r < r∗. Thus (2.14) implies that

C ≥ C̄

for some positive constant̄C that is independent ofA0. Moreover, solving for1−A
r in

(2.13) and substituting into (2.12), and using the fact thatz > 1 and that∣∣∣∣ z

1 − 3z

∣∣∣∣ ≥ 1
3
,

we obtain the inequality

z′ ≤ C̄

3
A′

A
,

which holds for allr ∈ (r̃1, r∗). Integrating betweenr andr∗ yields

z(r) ≥ 1 +
C̄

3
ln

(
A(r)
A(r∗)

)
. (3.21)

Notice now that

M (r∗) = M (r0) −
∫ r0

r∗
4πρ(r)r2dr.

But since (2.36) shows thatρ(r) is uniformly bounded on the interval (r∗, r0), we see
that this latter integral tends to zero asA0 → 0 becauser∗ → 0. ThusM (r∗) → M (r0)
asA0 → 0 which impliesA(r∗) → 0 asA0 → 0. But A(r) is uniformly bounded away
from zero becauseA′ = (1−3z)(1−A)

r is bounded above by a nonzero negative constant
whenz > 1. In light of this, (3.21) shows thatz(r) → ∞ asA0 → 0 for all r ∈ (r̃, r0),
the condition we sought. This proves Corollary 2.

Proof of Theorem 5.We first verify (2.41). From (2.15), (2.12) and (2.14), if the function
C given in (2.14) satisfiesC > 0, thenz is a monotone function ofr, so we have

d ln(B)
dz

=
1
B

dB

dz
=

1
B

dB

dr

dr

dz
= −1 + 3µz)

C

1
z
.

Thus integrating fromz0 to z = 1 gives (2.41).
We also shall need the following lemma:
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Lemma 3. The metric coefficientsB(r) andA(r) determined by a solution of the OV
equations satisfy

d

dr

[
ln

(
A

B

)]
= − (1 +µ)

A
8πGρr < 0. (3.22)

Proof of Lemma.First write

d

dr

[
ln

(
A

B

)]
=

A′

A
− B′

B
,

and use (2.13) together with the OV equation (2.1) to write

A′

A
− B′

B
=

(1 − 3z)(1 − A)
rA

− (1 − A)
rA

(
1 +

4πpr3

M

)
,

from which (3.22) follows upon noticing that

3z =
4πρr3

M
.

This completes the proof of the lemma. �
To prove Theorem 5, we see from (3.14) together with the last lemma, (which implies

that A
B > 1 sinceB(R) = A(R)), that we may write(

1
r

√
A(r)(

√
B(r))′

)′
≥ G

(
M (r)

r3

)′
,

for all r ∈ (r∗, R). Integrating this expression fromr ∈ (r∗, R) to R yields

1
R

√
A(R)

B′

2
√

A(R)
−

√
A(r)
r

√
B(r)

′
≥ G

(
M (R)

R3
− M (r)

r3

)
.

Using (3.16) and simplifying gives√
B(r)

′
≤ GM (r)

r2
√

A(r)
,

so integrating fromr∗ to R gives∫ R

r∗

(√
B(r)

)′
dr ≤

∫ R

r∗

GM (r)

r2
√

A(r)
dr,

or

√
B(R) −

√
B(r∗) ≤

∫ R

r∗

GM (r)
r2

1√
1 − 2GM (r)

r

dr. (3.23)

Now to estimate the integral on the right hand side of (3.23), use the fact that

M (r) ≤ M (R),

and
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1√
1 − 2GM (r)

r

≤ 1√
1 − 2GM (R)

r

,

to obtain

∫ R

r∗

GM (r)
r2

1√
1 − 2GM (r)

r

dr ≤
∫ R

r∗

GM (R)
r2

1√
1 − 2GM (R)

r

dr. (3.24)

Using the substitution

u = 1− 2GM (R)
r

, du =
2GM (R)

r2
dr

we obtain from (3.24) the estimate

√
B(R) −

√
B(r∗) ≤

√
A(R) −

√
1 − 2GM (R)

r∗
.

Finally, sinceB(R) = A(R), a straightforward calculation gives (2.40). This completes
the proof of Theorem 5. �

4. Concluding Remarks

The issue of negative mass functions raises an interesting question. Recall that, for
spherically symmetric solutions, it is only the total massM (R), which is the total mass
measured in the far field, that has an intrinsic physical meaning in general relativity. That
is, in the Newtonian theory,M (r) =

∫ r

0 4πρ(s)s2ds must be interpreted as the total mass
inside radiusr because the underlying space is Euclidean; but in general relativity, the
mass function enters indirectly through the metric coefficientA(r)−1, the coefficient of
thedr2 term in the gravitational metric tensor, via the formulaM (r) = rc2

2G (1−A(r)). In
general relativity, only the equationM ′(r) = 4πρr2 follows from the Einstein equations,
and the integration constant is not specified. Said differently, in general relativity, there
is no intrinsic physical interpretation for the functionM (r) whenr < R because the
spacetime inside radiusr is not fixed apriori as in the Newtonian theory.

Since the density and pressure are everywhere positive but the massM (r) is negative
for 0 < r < r1 in the solutions constructed here, we pose the question as to whether a
region 0≤ r < r̃ < r1 in an OV solution can be replaced by a perfect fluid solution
that is singularity free inside radius ˜r, such that the density and pressure are everywhere
positive. This introduces the following dichotomy. Namely, if such a matching is possi-
ble, then the gravitational field can have a repulsive effect, in light of the fact thatp′ > 0
nearr = 0. If such a matching cannot be made, then the following conjecture must hold:
Conjecture: No singularity free metric that solves the Einstein equations for a perfect
fluid can be matched Lipschitz continuously to the negative mass portion of an OV metric
in such a way that the interface between the metrics describes a fluid dynamical shock-
wave, and such that the matched solution is singularity free, and has everywhere positive
density and pressure.

We showed above (before the proof of Theorem 4) that the conjecture is correct for
matching to a Friedmann-Robertson-Walker metric; cf. [3].
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In light of this dichotomy, we find it interesting that, as we proved above, theinvariant
quantity limr→∞ M (r) = M (R) must satisfyM (R) ≥ 0 at the surface of the starr = R,
even whenM (r) is negative at some interior pointr < R. Therefore we conclude that
negative massM < 0 would never be seen by an observer beyond the surface of the
star, (consistent with the positive mass theorem, [8]).
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