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Abstract: In this paper we consider the geometry of Hamiltonian flows on the cotangent
bundle of coadjoint orbits of compact Lie groups and on symmetric spaces. A key idea
here is the use of the normal metric to define the kinetic energy. This leads to Hamiltonian
flows of the double bracket type. We analyze the integrability of geodesic flows according
to the method of Thimm. We obtain via the double bracket formalism a quite explicit form
of the relevant commuting flows and a correspondingly transparent proof of involutivity.
We demonstrate for example integrability of the geodesic flow on the real and complex
Grassmannians. We also consider right invariant systems and the generalized rigid body
equations in this setting.

1. Introduction

In this paper we consider the geometry of Hamiltonian flows, and, in particular, geodesic
flows, on the cotangent bundle of coadjoint orbits of compact Lie groups and on sym-
metric spaces. The key idea here is to study Hamiltonians formed from the normal metric
on orbits of the group action. This yields Hamiltonian flows in a symmetrical coupled
double (or double double) bracket form (the bracket being the Lie algebra bracket).
In contrast to the work of Bloch, Flaschka and Ratiu [1990] and Bloch, Brockett and
Ratiu [1992] for example, where the double bracket flow is a gradient flow and coin-
cides in certain cases with the restriction of a Hamiltonian flow to a submanifold, here
the equations are Hamiltonian with no restriction involved. This double bracket form
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turns out to be particularly useful for analyzing integrabilty according to the method of
Thimm [1983] and as formalized by Guillemin and Sternberg [1983, 1984]. One gets a
quite explicit form for the relevant commuting flows and a particularly transparent proof
of involutivity. We demonstrate for example integrability of the geodesic flow on the
real and complex Grassmannians. Extending the analysis to right invariant metrics, we
also show the full (unreduced) generalized rigid body equations onSO(n) may also be
written in a dynamically symmetric form. Further, we show that this gives a method of
deducing the canonical symplectic form onT ∗SO(n) from the symplectic form on the
cotangent bundle of a coadjoint orbit. We remark also that this formalism turns out to
be useful in optimal control problems and indeed these ideas were originally inspired
by the work in Brockett [1994]. We discuss the optimal control aspects in related work,
Bloch and Crouch [1995], and in forthcoming work on higher order variational problems
(with Leite).

The structure of the paper is as follows: in Sect. 2 we consider the symplectic
structure on the cotangent bundles of coadjoint orbits and derive the geodesic flow
equations with kinetic energy given by the normal metric, in Sect. 3 we extend the
analysis to Grassmannians, in Sect. 4 we consider the generalized rigid body problem,
and in Sect. 5 we consider integrability according to the method of Thimm.

2. Geodesic Flows

In this section we shall derive an explicit formula for the geodesic flow on an orbit
of a compact Lie group. We begin however by considering the flow with respect to
a particular Hamiltonian on a linear space, the cotangent bundle of the corresponding
compact Lie algebra.

Let g be a complex semisimple Lie algebra,gu its compact real form, andGu the
corresponding compact group. Letgn be its normal real form.

Let || · || =< ·, · >1/2 be the norm induced ongu by the negative of the Killing form
κ(·, ·) ong and let V be a smooth function ongu.

We have

Theorem 2.1. Letω be the standard symplectic structure onT ∗gu. Consider the Hamil-
tonian

H(x, p) = 1/2||[p, x]||2 + V (x), (2.1)

where V(x) is any smooth function ong andp is a momentum variable viewed as lying
in g by indentifyingg with its dual. The Hamiltonian equations of motion are

ẋ = [x, [p, x]] = −[x, [x, p]] ,

ṗ = [p, [p, x]] − ∂V

∂x
. (2.2)

Proof. Let ξ = (δx, δp) denote an arbitrary tangent vector toT ∗gu and denote the
Hamiltonian vector field corresponding toH by XH = (ζx, ζp). We need to solve for
XH from the equationdH.ξ = ω(XH , ξ). Now

dH.ξ =< [p, x], [δp, x] > + < [p, x], [p, δx] > + <
∂V

∂x
, δx >

and
ω(XH , ξ) =< ζx, δp > − < ζp, δx > .

Equating these expressions gives the result.�
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Observe that forV = 0 the Eqs. 2.2 are remarkably symmetric. Their symmetry
with respect tox andp may in fact be expressed as follows: the equations (and the
Hamiltonian) are invariant under the canonical transformation to new variablesXi and
Pi whereXi = pi andPi = −xi. This transformation is generated by the generating
functionS =

∑
xkXk (see, for example, Goldstein [1980] or Abraham and Marsden

[1978].) The high degree of symmetry of these equations is of course reflected in the
geometric and integrability properties of the equations discussed below. (See also Howe
[1984] for a discussion of symmetrical systems.)

We now consider flows of the above type on the cotangent bundle of an orbit. We
have

Lemma 2.2. The natural cotangent bundle symplectic structure onT ∗O for tangent
vectorsX1, X2 ∈ TT ∗O given by

X1 = (x, ad∗
xξ, [x, η1], ad∗

xζ1 + ad∗
[x,η1]ξ) ,

X2 = (x, ad∗
xξ, [x, η2], ad∗

xζ2 + ad∗
[x,η2]ξ) ,

is

ω(X1, X2) =< [x, η1], [x, ζ2] > − < [x, η2], [x, ζ1] > +2 < [ξ, [x, η1]] , [x, η2] > .
(2.3)

Proof. Note that the symplectic structure here is on the cotangent bundle of the orbit,
in contrast to the orbit form which is defined on the orbit itself (see e.g. Abraham and
Marsden [1978] or Arnold [1978]).

We recall that for any manifoldM the canonical symplectic form onT ∗M is defined
as follows (see e.g. Arnold [1978] or Abraham and Marsden [1978]). LetX ∈ T (T ∗M )p
be a vector tangent toT ∗M at the pointp ∈ T ∗Mx. The derivativeπ∗ : T (T ∗M ) → TM
of the natural projectionπ : T ∗M → M takesX to a vectorπ∗X tangent toM at x.
Define the one-formθ on T ∗M by θ(X) = p(π∗X). Define the symplectic formω by
ω = dθ.

Now letM = O ⊂ g. Let <, > be the natural pairing between elements ofg andg∗
given by the Killing form. Elements ofTxO are given by [x, η], x, η ∈ g and elements
of T ∗

x O are thus determined by the form< ξ, [x, η] >. Or, if we set< ξ, [x, η] >=
< ad∗

xξ, η >, we may denote points ofT ∗O by pairs (x, ad∗
xξ), x ∈ g, ξ ∈ g∗.

To obtain points ofTT ∗O consider

d

dt
|t=0(e

−ηtxeηt, < ξ(t), [e−ηtxeηt, ·] >) = ([x, η], < ζ, [x, ·] > + < ξ, [[x, η], ·] >

∼ ([x, η], ad∗
xζ + ad∗

[x,η]ξ),

whereζ = ξ′(0) andx, η ∈ g, ζ, ξ ∈ g∗.
Hence elements ofT (T ∗O) may be written

(x, ad∗
xξ, [x, η], ad∗

xζ + ad∗
[x,η]ξ) . (2.4)

Now we have
π : T ∗O → O : (x, ad∗

xξ) → x

and

π∗ : T (T ∗O) → TO : ([x, η], ad∗
xζ + ad∗

[x,η]ξ) → [x, η] .
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Hence for an arbitrary elementX of T (T ∗O) we have

θ(π∗X) = ad∗
xξ([x, η])

∼ < ad∗
xξ, [x, η] >

= < [ξ, x], [x, η] > . (2.5)

Now the canonical symplectic form is given by

ω = dθ = d < [ξ, x], · > .

Computing the exterior derivatived in local cordinates, forX1, X2 ∈ TT ∗O, where

X1 = (x, ad∗
xξ, [x, η1], ad∗

xζ1 + ad∗
[x,η1]ξ) ,

X2 = (x, ad∗
xξ, [x, η2], ad∗

xζ2 + ad∗
[x,η2]ξ) ,

we have

ω(X1, X2) = (ad∗
xζ1 + ad∗

[x,η1]ξ)([x, η2]) − (ad∗
xζ2 + ad∗

[x,η2]ξ)([x, η1])

= < [ζ1, x], [x, η2] > + < [ξ, [x, η1]] , [x, η2] >

− < [ζ2, x], [x, η1] > − < [ξ, [x, η2]] , [x, η1] >

= < [x, η1], [x, ζ2] >−< [x, η2], [x, ζ1] > +2 < [ξ, [x, η1]] , [x, η2] > ,

(2.6)

as required.
We now have

Theorem 2.3. The equations

ẋ = [x, [p, x]]

ṗ = [p, [p, x]] . (2.7)

are the Hamiltonian form of the geodesic equations on an adjoint orbit ofgu.

The structure of the proof is as follows: first we consider the structure of the Hamiltonian
and then we derive the explicit form of the Hamiltonian flow using the lemma above.

ForV = 0 in (2.1) we shall show that the Hamiltonian is just the norm of the velocity
in the so-called normal metric (see e.g. Bloch, Brockett and Ratiu [1992]). This metric is
defined as follows: Letx andl lie in gu. Then x may be decomposed asx = xl +xl where
xl ∈ Ker(adl) andxl ∈ Im(adl) and where adx(y) = [x, y]. Further, given anyl ∈ gu

we may decomposegu orthogonally relative to−κ(, ) asgl
u ⊕ gul wheregl

u = Im(adl)
andgul = Ker(adl). Now if ξ = [x, a] andη = [x, b] are tangent vectors to the orbit atx
then the normal metric is given bygn(ξ, η) = −κ(ax, bx).

Now any velocity vector is tangent to the orbit of the adjoint action and hence is of
the formẋ = [x, a] for somex ∈ gu. Hence ˙x ∈ Im(adl). The inverse of operator adx,
we will denote by ad−1

x , is well defined on Im(adx) and hence on ˙x.
The kinetic energy may thus be written:

L(x, ẋ) = 1/2 < ẋx, ẋx >= 1/2(||[ad−1
x ẋ||2). (2.8)

Then, since 1/2||ad−1
x ẋ||2 = −1/2 < ad−2

x ẋ, ẋ > we have, applying the Legendre
transform,
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p =
∂L

∂ẋ
= −ad−2

x ẋ.

Substituting this expression forp into (2.8) gives the required expression for the
kinetic energy.

It remains to show that while these equation are Hamiltonian with respect to the
standard symplectic structure onT ∗gu, they are in fact Hamiltonian on the cotangent
bundle of an adjoint orbit ofGu. That is, even though the Hamiltonian structure on the
orbit is complicated and is not the restriction of the structure on the Lie algebra, the
equations themselves do restrict.

We remark that the Eqs. 2.7 may be viewed intrinsically as equations evolving in a
Lie bialgebra – see e.g. Lu and Weinstein [1990]. We shall discuss this and related ideas
further in a forthcoming publication.

For ease of exposition we now identifyT (T ∗O) with T (TO) via the metric induced
by the Killing form.

Elements ofTTx,[x,ξ]O are thus of the form

(x, [x, ξ], [x, η], [[x, η], ξ] + [x, ζ]) (2.9)

for ξ, η, ζ ∈ gu, and for any two such elementsX1, X2, ω(X1, X2) is given by (2.3).
We now wish to compute the Hamiltonian flow of the Hamiltonian

H =
1
2
||[p, x]||2 =

1
2

< ad−1
x ẋ, ad−1

x ẋ >=
1
2

< ẋx, ẋx > (2.10)

– the kinetic energy in the normal metric. For this we need to solve forXH from the
expression

dH.δX = ω(XH , δX) (2.11)

for δX an arbitrary element ofTTO. Setting

δX = (x, [x, ξ], [x, η1], [[x, η1], ξ] + [x, ζ1] ),

XH = (x, [x, ξ], [x, η2], [[x, η2], ξ] + [x, ζ2]) ,

ω(XH , δX) is given by the expression 2.3.
We now need to computedH.δX employing variations inTx,[x,ξ]TO. We observe

firstly that
δad−1

x ẋ = −ad−1
x [δx, ad−1

x ẋ] + ad−1
x δẋ . (2.12)

This follows from setting
adx(ad−1

x (c)) = c (2.13)

for c a constant. For then

[δx, ad−1
x (c)] + [x, δad−1

x (c)] = 0

or
δad−1

x (c) = −ad−1
x [δx, ad−1

x (c)] .

Replacingc by ẋ gives the result.
Now
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dH.δX = < ad−1
x ẋ, −ad−1

x [δx, ad−1
x ẋ] + ad−1

x δẋ >

= < ad−1
x ẋ, −ad−1

x [[x, η1], ad−1
x ẋ] + ad−1

x ([[x, η1], ξ] + [x, ζ1]) >

= < [x, ad−2
x ẋ], −ad−1

x [[x, η1], ad−1
x ẋ] + ad−1

x ([[x, η1], ξ] + [x, ζ1]) >

= < ad−2
x ẋ, [[x, η1], ad−1

x ẋ] − [[x, η1], ξ] + [x, ζ1] >

= < ad−1
x ẋ, ad−2

x ẋ], [x, η1] > − < [ξ, ad−2
x ẋ], [x, η1] >

− < ad−2
x ẋ, [x, ζ1] >

= − < ad−2
x ẋ, [x, ζ1] > , (2.14)

the last inequality holding sinceξ = ad−1
x ẋ, and thus the first two terms cancel.

Now equating the coefficients of [x, η1] and [x, ζ1] in (2.14) and (2.3) we get

2[ξ, [x, η2]] − [x, ζ2] = 0,

[x, η2] = ad−2
x ẋ = −p . (2.15)

Note also that sinceξ = ad−1
x ẋ or ξ = [x, ad−2

x ẋ] we have

ξ = [p, x] . (2.16)

The final term in the equation forXH is thus

[[x, η2], ξ] + [x, ζ2] = [[x, η2], ξ] + 2[ξ, [x, η2]]

= −[p, [p, x]] + 2[[p, x], −p]

= [p, [p, x]] .

Hence the full expression forXH is

(x, [x, [p, x]] , −p, [p, [p, x]]) .

�
We also have

Theorem 2.4. The Hamiltonian flows off ([p, x]) = f (ξ), wheref is an invariant poly-
nomial ongu are given by:

ẋ = [x, [p, x]]

ṗ = [−ad−1
x f ′([p, x]), [p, x]] . (2.17)

Proof. In this case we have, using the same notation as in the previous theorem,

df (ξ).δX = < f ′(ξ), δX >

= < f ′(ξ), δX > .

Computing as in the previous theorem we obtain

[x, η2] = ad−1
x f ′(ξ)

and

[[x, η2], ξ] + [x, ζ2] = [ξ, [x, η2]]

= [ξ, ad−1
x f ′(ξ)]

so
Xf = (x, [x, [p, x]] , ad−1

x (f ′([p, x]), [[p, x], ad−1
x f ′([p, x])]) .

�
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We may also endow any orbit with the left invariant metric

gnl([x, a], [x, b]) = −κ(ax, Jbx), (2.18)

where J is a positive self-adjoint operator on the algebra. Then we have

Corollary 2.5. The geodesic equations on an adjoint orbit endowed with the left invari-
ant metric (2.18) are

ẋ = [x, J−1[p, x]] = −[x, J−1[x, p]] ,

ṗ = [p, J−1[p, x] . (2.19)

Proof. The kinetic energy in this case is given by

L(x, ẋ) = 1/2 < ẋx, ẋx >

= 1/2(− < ad−2
x ẋ, [x, Jad−1

x ẋ] >

= −1/2 < ẋ, ad−1
x Jad−1

x ẋ > .

Hence

p = −ad−1
x Jad−1

x ẋ , (2.20)

and

[p, x] = Jad−1
x ẋ.

Thus the kinetic energy may be reexpressed as

1
2

< J−1[p, x], [p, x] > . (2.21)

�

From now on however unless otherwise stated we shall consider the biinvariant
case. We shall in fact consider left (or right) invariant metrics only when we study the
generalized rigid body flows below.

We remark also that if we definez = x + ip, then Eqs. 2.7 may also be written

ż = [z, [z,
iz

2
]] , (2.22)

the form of an interesting class of Hamiltonian flows discussed in Brockett [1993].
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3. Flows on Symmetric Spaces

The equations discussed above are not only well defined on adjoint orbits but also on
general symmetric spaces where the tangent vectors to the space are given in the form
a suitable bracket – this includes the complex and real Grassmannians of q-planes in
n + 1-spaceGq,n+1(C) or Gq,n+1(R) and in particular the spheres.

This may be seen as follows:
The complex Grassmannian is given by

U (n + 1)/U (q) × U (p), q + p = n + 1, q ≤ p (3.23)

and the real Grassmannian by

SO(n + 1)/SO(q) × SO(p), q + p = n + 1, q ≤ p, (3.24)

whereU (n) is the unitary group andSO(n) the special orthogonal group. In either case
let g = k ⊕ m be the Lie algebra decomposition corresponding toG/K. We may thus
represent a point in the complex (real) Grassmannian by a matrix

Q̂ =

[
0 Q
−Q∗ 0

]
(3.25)

in m whereQ is a complex (real)p × q matrix of full rank andQ∗ is its Hermitian
conjugate (transpose). A point ink may be represented by the matrix

K̂ =

[
K1 O
O K2

]
, (3.26)

whereK1 ∈ u(p)(so(p)) andK2 ∈ u(q)(so(q)). DefineP̂ to be a similarly partitioned
matrix. Then we have

Proposition 3.1. Tangent vectors to the Grassmannian may be represented by matrices
of the form

[Q̂, K̂]

.

Proof. A curve in the Grassmannian through the pointQ̂ may be given by

e−K̂tQ̂eK̂t.

Note that the given curve simply provides an orthogonal (or unitary) transformation
of the rows and columns ofQ.

Differentiating att = 0 gives the result. �
Now since tangent vectors are given by brackets, just as in the case of orbits, a normal

metric may be defined. Repeating the proof of Theorem 2.2 gives

Proposition 3.2. The geodesic equations on the real or complex Grassmannian are
given by

˙̂Q = [Q̂, [P̂ , Q̂]] ,
˙̂P = [P̂ , [P̂ , Q̂]] , (3.27)

whereQ̂ is given by (3.25) and similarly for̂P .
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Note also that for a symmetric space [k, k] ⊂ k, [k, m] ⊂ m and [m, m] ⊂ k and since
Q, P ∈ m the equations are naturally well defined.

Further, we have

Corollary 3.3. For a right invariant “normal” metric on the Grassmannian the geodesic
flow is given by the double double bracket equations

˙̂Q = [Q̂, J−1[P̂ , Q̂]] ,
˙̂P = [P̂ , J−1[P̂ , Q̂]] , (3.28)

whereJ = [JU , JL] is a symmetric positive definite operator partioned in accordance
with Q̂ andP̂ .

The proof is a computation.
We also have

Corollary 3.4. Equations 3.28 are Hamiltonian onT ∗su(n + 1) (T ∗so(n + 1)) and on
T ∗Gq,n+1(C) (T ∗Gq,n+1(R)) with respect to the standard cotangent bundle symplectic
form in each case and with Hamiltonian

H =
1
4

< [P̂ , Q̂], J−1[P̂ , Q̂] > . (3.29)

As an example in the current setting we write explicitly the geodesic flow on the sphere
Sn.

Recall (see e.g. Moser [1980]) that the geodesic motion onSn may be written as
follows:

Let q = [q1, · · · , qn+1]T ∈ Rn+1 with Euclidean norm||q|| = 1 represent an element
of Sn. Then the geodesic flow can be found by settingq̈ = λq whereλ is chosen so that
||q|| is compatible with the flow. This implies< q, q̇ >= 0 and< q, q̈ > +||q̇||2 = 0.
Thusλ = −||q̇||2 and the geodesic flow is given by

q̈ = −||q̇||2q. (3.30)

Letting p = [p1, · · · , pn+1]T ∈ Rn+1 this may be viewed as a Hamiltonian system
restricted to||q|| = 1 , < q, p >= 0. With HamiltonianH = 1/2||q||2||p||2 we get the
flow

q̇ =

(
∂H

∂p

)T

= p ṗ = −
(

∂H

∂q

)T

= −||p||2q. (3.31)

In our current setting we have

Proposition 3.5. Let

P̂ =


0 · · · 0 p1
...

...
...

...
0 · · · 0 pn+1
−p1 · · · −pn+1 0

 , Q̂ =


0 · · · 0 q1
...

...
...

...
0 · · · 0 qn+1
−q1 · · · −qn+1 0

 . (3.32)

Then the flow (3.27) restricts to the geodesic flow (3.30).
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Proof. The proof is essentially a computation. Computing the brackets gives

q̇ = p(qT q) − (qT p)q,

ṗ = (qT p)p − q(pT p) . (3.33)

It is easy to check that the time derivatives ofqT q andqT p are conserved along the
flow. Normalizing||q|| = 1 and< q, p >= 0 we indeed remain on the sphere. �

Note that in this case (3.29) gives

H =
1
2

(< p, p >< q, q > − < q, p >2>) . (3.34)

This gives rise to Eq. 3.33 via the standard symplectic structure onR2n+2 and restricts
to the geodesic flow on the sphere when we impose the constraints||q|| = 1 and
< q, p >= 0.

4. The Rigid Body Equations

We show here how the generalized rigid body equations, another well known integrable
system, may be written in double double bracket form.

We recall the rigid body equations onSO(n) (or generally on any compact Lie group
– see e.g. Abraham and Marsden [1978], Ratiu [1980]) may be written as

Q̇ = �Q,

Ṁ = [�, M ], (4.35)

whereQ ∈ SO(n) denotes the configuration space variables,� ∈ so(n) is the angular
velocity, andM = J� = 3� + �3 is the angular momentum. HereJ is a symmetric
positive definite operator defined by the diagonal positive definite matrix3. We remark
that the rigid body equations here are written in right-invariant as opposed to the com-
monly used left-invariant form in order to be consistent with the conventions used in the
remainder of the paper. This results in a sign change in the second of Eqs. 4.35.

The classical rigid body Eqs. 4.35 are of course Hamiltonian onT ∗SO(n) with
respect to the canonical symplectic structure.

We now consider the following equations:

Q̇ = �Q,

Ṗ = �P, (4.36)

where� = J−1M andM = PQT − QPT , whereQ andP are inSO(n).
We then can easily check that

Proposition 4.1. Equations 4.36 reduce to the rigid body Eqs. 4.35.

Proof. DifferentiatingM = PQT − QPT and using the Eqs. 4.36 gives the second of
Eqs. 4.35. �
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Conversely, given the rigid body Eqs. 4.35 we may solve for the variableP in the
expression

M = PQT − QPT

in a neighborhood ofM = 0. Locally

P =
(
esinh−1 M/2

)
Q . (4.37)

This follows from the observation that

M = esinh−1 M/2 − e− sinh−1 M/2 .

For so(n) however sinh is many to one, so the two representations are not entirely
equivalent. Note that the generalized rigid body flow naturally reduces to a flow in
the variablesM on an adjoint orbit ofso(n) and we can view the map which takes
PQT − QPT to M as reduction. In fact, the map (Q, P ) → (Q, M ) given above is a
canonical transformation from the symplectic structure onT ∗gl(n) to that onT ∗SO(n)
which intertwines the Hamiltonian equations 4.36 onT ∗gl(n) with the Hamiltonian Eqs.
4.35 onT ∗SO(n).

While the classical rigid body Eqs. 4.35 are Hamiltonian onT ∗SO(n) with respect
to the canonical symplectic structure on the group in contrast here we have

Proposition 4.2. The generalized rigid body equations in the form (4.36) are Hamilto-
nian onT ∗gl(n) with respect to the canonical symplectic structure and the Hamiltonian

H = 1/4 < J−1(PQT − QPT ), PQT − QPT > . (4.38)

We remark that hereP andQ are natural coordinates forT ∗gl(n) and, forP (0),
Q(0) ∈ SO(n), P (t) andQ(t) evolve inSO(n) under the flow ofH. HenceSO(n) ×
SO(n) is an invariant manifold for the flow ofH. Note also that this Hamiltonian is
equivalent toH = 1/4 < J−1M, M > as in Ratiu [1980].

However, the canonical symplectic structure for the rigid body may in fact be recov-
ered as a special case of our symplectic form (2.3) as we shall show below.

We first make the following observation: the rigid body equations may be given as
a singular case of the double double bracket equations discussed earlier.

Let

Q̂ =

[
0 Q
−QT 0

]
(4.39)

as before and similarly for̂P . Note that these matrices now lie inso(2n) and each block
lies inSO(n).

Corollary 4.3. The generalized rigid body equations onSO(n) are given by the double
double bracket Eqs. 3.28 in the caseQ andP lie in SO(n), JU = J , and the operator
J−1

L = 0.

With the above in mind, for an arbitrary element ofso(n), µ say, define the following
embedding into sl(2n):

µ̃ =

[
0 µ
0 0

]
. (4.40)

Then we have
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Lemma 4.4. An element ofTTSO(n) may be represented by

X = (Q̂, [ξ̃, Q̂], [�̃, Q̂], [ξ̃, [�̃, Q̂]] + [ ζ̃, Q̂]) . (4.41)

Proof. A (right invariant) element ofTSO(n) at the pointQ ∈ SO(n) may be written as
(Q, ξQ). Differentiating a suitable one-parameter curve gives an element ofTTSO(n)
as

(Q, ξQ,�Q, ζQ + ξ�Q) .

A matrix computation with the above embedding then gives the result.
�

Now identify T ∗SO(n) with TSO(n) via the Killing form and use the following
multiple of the Killing form as the inner product on elements ofso(2n): < ·, · >=
−1/2Tr(·, ·), where Tr is the trace.

We have

Theorem 4.5. Let two vectors inTTSO(n) be given by

X1 = (Q̂, [ξ̃, Q̂], [�̃1, Q̂], [ξ̃, [�̃1, Q̂]] + [ ζ̃1, Q̂]) ,

X2 = (Q̂, [ξ̃, Q̂], [�̃2, Q̂], [ξ̃, [�̃2, Q̂]] + [ ζ̃2, Q̂]) .

Then the canonical symplectic form onT ∗SO(n) ∼ TSO(n) is given byω(X1, X2)
with ω defined by (2.3).

Proof. From (2.3) we have in this case

ω(X1, X2) =< [Q̂, �̃1], [Q̂, ζ̃2] >−< [Q̂, �̃2], [Q̂, ζ̃1] >+2 < [ζ̃, [Q̂, �̃1]] , [Q̂, �̃2] > .
(4.42)

.
Now, compute each term of this expression using the Trace and define the inner

product onso(n) to be given by< ·, · >= −Tr(·, ·). We find

< [Q̂, �̃1], [Q̂, ζ̃2] > = −Tr�1ζ2 =< �1, ζ2 > ,

< [Q̂, �̃2], [Q̂, ζ̃1] > = −Tr�2ζ1 =< �2, ζ1 > ,

< [ζ̃, [Q̂, �̃1]] , [Q̂, �̃2] > =
1
2

< ξ, [�1, �2] > .

Thus

ω(X1, X2) =< �1, ζ2 > − < �2, ζ1 > + < ξ, [�1, �2] > . (4.43)

This is precisely the canonical form onT ∗SO(n) (see e.g. Abraham and Marsden
[1978]).

�

Note that the reduced generalized rigid body equations (the dynamics, or second of
Eqs. 4.35 are completely integrable (see e.g. Ratiu [1980] and references therein). In
fact the full system is integrable in the sense that the reduced phase space is a point, see
Abraham and Marsden [1978], and hence also in the sense of commutative integrability
discussed in the next section (see Mischenko and Fomenko [1978]). The full phase space
is M = T ∗SO(n), on which we have a natural action of the groupG = SO(n). The
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reduced phase space corresponding to this isMµ = J−1(µ)/Gµ, whereJ here is the
momentum map corresponding to the action ofG onM andGµ is the stabilizer of the
coadjoint action ofG on its Lie algeba.Mµ has dimension dimM − dimG − dimGµ

and is symplectic. OnMµ the system is then Liouville or commutatively completely
integrable.

5. Integrability of the Geodesic Flow on Grassmannians

To prove (commutative) complete integrability of a Hamiltonian system on a symplectic
manifold of dimension 2n one needs of course to show that there aren independent
integrals in involution on the manifold. Thimm [1981] showed there were sufficiently
many independent integrals in involution for the geodesic flows on the real and complex
Grassmannians to be integrable.

In fact one can make a very general argument regarding integrability as follows: see
Guillemin and Sternberg [1983,84] (and Paternain and Spatzier [1994]) for an account
of this work. Suppose one has the Hamiltonian action of a Lie groupG on a a symplectic
manifoldM . The action is said to be multiplicity free if all G-invariant functions onM
commute under the Poisson bracket. Consider an ascending chain of Lie algebrasgi

g1 ⊂ g2 · · · ⊂ gn+1 = gu (5.44)

with corresponding Lie GroupsGi. Each subgroupGi acts via a Hamiltonian action on
coadjoint orbits ofGi1 in gi (equipped with the orbit symplectic structure). The chain
Gi is said to be multiplicity free if all such actions are multiplicity-free. For compact
groups this forces theGi to be locally isomorphic to the special orthogonal or unitary
groups, tori or products of these. If one has such a chain and a multiplicity free action
onM then anyG-invariant Hamiltonian system onN is integrable.

Particular cases to which this applies are the real and complex Grassmannians. Here
we construct an explicit proof of integrability via the formalism developed above.

We remark that the terminology arises from the representation theory of Lie groups.
If G is a Lie group, then a unitary representation ofG on a Hilbert spaceH is called
multiplicity free if every representation ofG acts onH with multiplicity zero or one. This
is the case if and only if the ring of boundedG-invariant functions onH is commutative.

Guillemin and Sternberg were led to the symplectic analogue of the representation
theoretic ideas by studying so called collective completely integrable systems, i.e. sys-
tems where the integrals are of the formf ◦ 8 where8 : M → g∗ is the moment
mapping andf is a function ong∗. They noticed that a necessary condition forM to
admit such system is that the action ofG on M be multiplicity free. Our integrals are
also of this type (see below).

We need first some preliminary results:
Let πk denote the projection of an element ofg onto an element ofgk, as defined

above. We consider the following sequence of integrals:

f (πk[p, x]) , (5.45)

wheref ∈ C∞ is an invariant polynomial ongi.
We note that such integrals are also in fact functions of the momentum map arising

from the lifted action of the algebra on the underlying manifoldM (orbit or symmetric
space) to the cotangent bundle.
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For, letξM denote the infinitesimal vector field corresponding to the action ofetξ

on the manfold via conjugation. This is given byξM = [x, ξ]. Then the momentum map
of the lifted action is given by (see e.g. Marsden and Ratiu [1994])

< 8(αx), ξ >=< αx, ξM >,

whereαx is a point in the cotangent bundle at the pointx.
In our setting this equation becomes

− < [x, [x, α], ξ> =< [x, α], [x, ξ] >,

where< [x, α], · > represents a cotangent vector. Hence the lifted momentum map is
indeed of the [x, p], wherep is a momentum vector.

Now letg beso(n) or su(n). Then we have

Proposition 5.1. The Hamiltonian flow of the integrals 5.45 onT ∗g is given by

ẋ = [x, f ′ (πk[p, x])] ṗ = [p, f ′ (πk[p, x])]. (5.46)

Firstly we note the following lemma:

Lemma 5.2. For a andb ∈ g we have

< πka, b >=< a, πkb >, (5.47)

and
< πkb, [f (πja), a] >= 0, k ≥ j, (5.48)

wheref is an invariant polynomial ongu.

Proof. This follows by elementary matrix computation. �

Proof of Proposition. Let ξ = (δx, δp) denote an arbitrary tangent vector toT ∗g and
denote the Hamiltonian vector field corresponding tof by Xf = (ζx, ζp).

We have:

dH.δξ = < f ′ (πk[p, x]) , δπk[p, x] >

= < πk

(
f ′ (πk[p, x])

)
, [δp, x] + [p, δx] >

(by the lemma)

= ω(Xf , δξ) =< ζx, δp > − < ζp, δx > .

But πk(f ′(πk[p, x])) = f ′(πk[p, x]). Hence the result. �
Now consider the real GrassmannianGq,n+1(R) viewed as before as the symmetric

space

Gq,n+1(R) = SO(n + 1)/SO(q) × SO(p) q + p = n + 1 , q ≤ p. (5.49)

In this case we can write down the integrals quite explicitly. There are of coursepq
integrals required. We take a somewhat different approach from Thimm.

As we did in Sect. 3 we represent elements ofGq,n+1(R) by 2 by 2 block matrices
in so(n + 1) with zero diagonal blocks and nonzero off diagonal blocks, the upper right
hand block beingp by q. We denote the matricesp andx in this case byP̂ andQ̂ as
before. Then the geodesic flow is given as before by the double bracket equations (3.27).
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Now we consider the following sequence of projections:πk
U , 0 ≤ k ≤ p andπk

L, 0 ≤
k ≤ q are the projections which eliminate the first k rows and columns of a matrix, and
the rows and columnsq+1, · · · , q+k of a matrix, respectively. In particularπp

U eliminates
the upperp by p block andπq

L the lowerq by q block. For example

π1
U


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
...

an1 an2 · · · ann

 =


0 0 · · · 0
0 a22 · · · a2n

...
...

...
...

0 an2 · · · ann

 . (5.50)

We shall use this sequence of projections below to construct a chain of the type
(5.44).

We begin by analyzing commutativity of flows on the Lie algebra. We then have

Theorem 5.3. The Hamiltonians

1
2k

Tr
(
πk

Uπj
L[P̂ , Q̂]

)2k

(5.51)

are all in involution onT ∗g, whereg = su(n + 1) or so(n + 1).

Proof. As before, the Hamiltonian flow of the integrals (5.51) is

˙̂Q = [Q̂, (πk
Uπj

L[P̂ , Q̂])2l−1] ˙̂P = [P̂ , (πk
Uπj

L[P̂ , Q̂])2l−1]. (5.52)

Then the Poisson bracket of any two flows with Hamiltoniansf andg is of the form

{f, g} = ω(f, g)

= < [Q̂, (πk
Uπj

L[P̂ , Q̂])2l−1], [P̂ , (πa
Uπb

L[P̂ , Q̂])2m−1] >

− < [P̂ , (πk
Uπj

L[P̂ , Q̂])2l−1], [Q̂, (πa
Uπb

L[P̂ , Q̂])2m−1] >

= < (πk
Uπj

L[P̂ , Q̂])2l−1, [[ P̂ , Q̂], (πa
Uπb

L[P̂ , Q̂])2m−1] >

by the Jacobi identity as before (the pairing here is the trace). Now choosej ≥ b. Note
that the upper blocks are paired with upper blocks and lower with lower under the pairing.
Then if k ≥ a, by repeated application of the lemma of Sect. 3 we get zero. Ifk < a,
note that the pairing of the lower 2×2 block is of the form< Bk, [B, Ba] >, where the
superscripts denote the projected matrices. We can rewrite this< Ba, [Bk, B] > which
again vanishes by the lemma. �

This proves involution on the cotangent bundle of the algebra. However since the
cotangent bundles of the Grassmannians are reduced submanifolds of the algebra and
the integrals are invariants we obtain immediately involution on the Grassmannians.

To prove independence we need to findpq independent integrals.
One method of seeing we have a sufficient number of integrals is to follow the se-

quence of projections onto to the descending chain of algebrasso(n+1) ⊃ so(n) · · · so(2)
as discussed at the beginning of this section. In our setting this is implemented by pro-
jecting from upper left to lower right of the matrix [P̂ , Q̂] by a combination of upper
and lower projections.

We then make the following observations:
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Independent integrals will come from invariant polynomials on the Lie algebra of
so(n + 1), then from those onso(n) and so on. The number of independent invariant
polynomials onso(k) is equal to the dimension of the center of the enveloping algebra
of so(k). Forso(k) the dimension of the center is the integer part ofk/2. Restricted to
the symmetric spaceGq,n+1(R), this gives a maximum ofq, the rank of the symmetric
space, independent functions at any point. We obtainq such independent functions until
we project toso(2q − 1) and below, in which case we obtain a maximal number of
independent functions forso(k).

This gives us a total ofq(p− q + 1) + (q − 1) + (q − 1) + (q − 2) + (q − 2) · · · + 1 + 1 =
q(p − q + 1) + 2(q − 1) + 2(q − 2) · · · + 2 = pq integrals.

Note also that we are entitled to apply this argument to the functions arising from
the bracket [p, x] since forso(n) the derived algebra is equal to the algebra itself.

This proves complete integrability.
Example: Forso(10) the dimensions of the centers of the enveloping algebra and its

projections are: 5 4 4 3 3 2 2 1 1. ForG3,10(R) the corresponding count of independent
invariant polynomials is: 3 3 3 3 3 2 2 1 1.This gives us 21 functions as required.

We may also argue as follows:
Consider the two by two block structure of the matrices and recall thatq ≤ p. We

consider the projectionsπk
U until k = q, leaving us with a square 2q by 2q matrix.

Taking the invariant polynomials at each stage we obtainq independent first integrals.
Continuing with the upper projections we now getq − 1 first integrals and thenq − 2
and so on. But by introducing now the lower projections at each stage we can double
this.

Thus again we get a total ofq(p−q+1)+2(q−1)+2(q−2) · · ·+1+1 =pq integrals.
A similar argument works for the complex Grassmannian – one obtains 2pq inte-

grals since there are double the number of invariant polynomials. (In particular in the
polynomials in (5.51) we can replace 2k by k.) Observe that this projection method in
our setting provides a somewhat more direct method for obtaining all the integrals than
the permutations invoked by Thimm, that the integrals are quite explicit, and give rise
to explicit equations in the double double bracket form. Of course their existence may
be deduced from the muliplicity free argument mentioned above.

Example: Observe also that for the particular case ofSn (RPn) discussed above we
obtain the standard integrals for the geodesic flow as discussed in Thimm [1981], but
quite directly:

In this case the integrals are

−1
4

Tr(πj [P̂ , Q̂])2 =
1
4

∑
k,l≥n+2−j

(qkpl − qlpk)2, j = 2, · · · , n + 1 ,

whereπjso(n + 1) = so(j) is implemented by projection from the upper left. This
implements the moment map discussed in Thimm directly.

Putting the involution and independence computations together we obtain the theo-
rem of Thimm:

Theorem 5.4. The geodesic flow on the real and complex Grassmannians with respect
to the “normal” metric is completely integrable.
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