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Abstract: Inthis paperwe consider the geometry of Hamiltonian flows on the cotangent
bundle of coadjoint orbits of compact Lie groups and on symmetric spaces. A key idea
here is the use of the normal metric to define the kinetic energy. This leads to Hamiltonian
flows of the double bracket type. We analyze the integrability of geodesic flows according
to the method of Thimm. We obtain via the double bracket formalism a quite explicit form

of the relevant commuting flows and a correspondingly transparent proof of involutivity.
We demonstrate for example integrability of the geodesic flow on the real and complex
Grassmannians. We also consider right invariant systems and the generalized rigid body
equations in this setting.

1. Introduction

In this paper we consider the geometry of Hamiltonian flows, and, in particular, geodesic
flows, on the cotangent bundle of coadjoint orbits of compact Lie groups and on sym-
metric spaces. The key idea here is to study Hamiltonians formed from the normal metric
on orbits of the group action. This yields Hamiltonian flows in a symmetrical coupled
double (or double double) bracket form (the bracket being the Lie algebra bracket).
In contrast to the work of Bloch, Flaschka and Ratiu [1990] and Bloch, Brockett and
Ratiu [1992] for example, where the double bracket flow is a gradient flow and coin-
cides in certain cases with the restriction of a Hamiltonian flow to a submanifold, here
the equations are Hamiltonian with no restriction involved. This double bracket form
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turns out to be particularly useful for analyzing integrabilty according to the method of
Thimm [1983] and as formalized by Guillemin and Sternberg [1983, 1984]. One gets a
quite explicit form for the relevant commuting flows and a particularly transparent proof
of involutivity. We demonstrate for example integrability of the geodesic flow on the
real and complex Grassmannians. Extending the analysis to right invariant metrics, we
also show the full (unreduced) generalized rigid body equatiorfs(@fm) may also be
written in a dynamically symmetric form. Further, we show that this gives a method of
deducing the canonical symplectic form ®1.SO(n) from the symplectic form on the
cotangent bundle of a coadjoint orbit. We remark also that this formalism turns out to
be useful in optimal control problems and indeed these ideas were originally inspired
by the work in Brockett [1994]. We discuss the optimal control aspects in related work,
Bloch and Crouch [1995], and in forthcoming work on higher order variational problems
(with Leite).

The structure of the paper is as follows: in Sect. 2 we consider the symplectic
structure on the cotangent bundles of coadjoint orbits and derive the geodesic flow
equations with kinetic energy given by the normal metric, in Sect. 3 we extend the
analysis to Grassmannians, in Sect. 4 we consider the generalized rigid body problem,
and in Sect. 5 we consider integrability according to the method of Thimm.

2. Geodesic Flows

In this section we shall derive an explicit formula for the geodesic flow on an orbit
of a compact Lie group. We begin however by considering the flow with respect to
a particular Hamiltonian on a linear space, the cotangent bundle of the corresponding
compact Lie algebra.

Let g be a complex semisimple Lie algebrg, its compact real form, an@’,, the
corresponding compact group. Lggt be its normal real form.

Let||- || =< -,- >*/2 be the norm induced ag, by the negative of the Killing form
k(-,-) ong and let V be a smooth function g .
We have

Theorem 2.1. Letw be the standard symplectic structure’Bhg,,. Consider the Hamil-
tonian
H(z,p) = 1/2||[p, ]| + V (x), (2.1)

where V(x) is any smooth function grandp is a momentum variable viewed as lying
in g by indentifyingg with its dual. The Hamiltonian equations of motion are
'Ix = [J?, [pa LU]] = —[LU, [xap]]a
) oV
p=Mpp,2ll = 5 (2.2)
X

Proof. Let £ = (dz,dp) denote an arbitrary tangent vector T g, and denote the
Hamiltonian vector field corresponding 16 by Xy = ((;,¢p). We need to solve for
Xy from the equatiorl H.£ = w(Xg, £). Now

ov
ng =< [p,m],[ép,x] >+ < [p,m],[p,5l‘] >+ < 87751‘ >
and
wW(Xw,8) =< (o, 0p > — < G, 0 > .
Equating these expressions gives the result.[]
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Observe that fol” = 0 the Eqgs. 2.2 are remarkably symmetric. Their symmetry
with respect tax andp may in fact be expressed as follows: the equations (and the
Hamiltonian) are invariant under the canonical transformation to new variahlaad
P; whereX; = p; and P, = —z;. This transformation is generated by the generating
function S = > 2 X}, (see, for example, Goldstein [1980] or Abraham and Marsden
[1978].) The high degree of symmetry of these equations is of course reflected in the
geometric and integrability properties of the equations discussed below. (See also Howe
[1984] for a discussion of symmetrical systems.)

We now consider flows of the above type on the cotangent bundle of an orbit. We
have

Lemma 2.2. The natural cotangent bundle symplectic structurel6© for tangent
vectorsXy, X, € TT*O given by

Xl = (.TJ, ad;g» [xv 771]7 ad;ﬁ +al 93,7]1]5) )
Xo= (il', a-d;f? [(E, 772]7 ad;CZ + aq«xmﬂé—) s

is

W(Xl,Xz) =< [.’L’,’l]]_],[x,(z] > =< [x7772]7[m7§l] >+2< [57 [£C7771]],[£U,772] ?23

Proof. Note that the symplectic structure here is on the cotangent bundle of the orbit,
in contrast to the orbit form which is defined on the orbit itself (see e.g. Abraham and
Marsden [1978] or Arnold [1978]).
We recall that for any manifold/ the canonical symplectic form & M is defined
as follows (see e.g. Arnold [1978] or Abraham and Marsden [1978])XL etT'(1* M),,
be a vectortangent i6* M atthe poinp € T*M,. The derivativer, : T(T*M) — TM
of the natural projectiomr : T*M — M takesX to a vectorr, X tangent toM at x.
Define the one-fornd on 7* M by 6(X) = p(7. X). Define the symplectic forrw by
w =d#.
Now let M = O C g. Let <, > be the natural pairing between elementg ehdg*
given by the Killing form. Elements df,, O are given by {, 7], z,n € g and elements
of T O are thus determined by the foraa &, [x,n] >. Or, if we set< &, [x,n] >=
< ad:¢,n >, we may denote points @O by pairs @, ad;¢),z € g,£ € g*.
To obtain points of"T*O consider

%‘FO(e_ntxenta < g(t)a [e—ntxe'nt’ ] >) = ([.’E, 77]7 < C7 [.I', ] >+ < 67 [[xan]a ] >

~ ([LL', 77]7 ad;(: + ac{;,n]g)a

where¢ = ¢/(0) andz,n € g, (, € € g*.
Hence elements &f (7* O) may be written

(I, ad;€7 [I7 n]v ad;( + aqu,n]g) : (24)

Now we have
7:T°0 — O (z,adf) - x

and

T T(T0) - TO : ([z,1],ad,¢ + ad, 1€) — [z,7] .
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Hence for an arbitrary elemest of T'(7T*O) we have

0(m* X) = ad,{([=, 7))
~ <ad§, [z, ] >
= <[], [z,n] > . (2.5)

Now the canonical symplectic form is given by
w=dl=d <[], > .
Computing the exterior derivativéin local cordinates, foX;, X, € TT*0O, where
X1 = (il', a-d;é-v [(E, 771]7 a(ﬁgl + aqkz,nl]g) )
Xz = (xv ad;é.v [lL‘, 7]2]’ ad;CZ + aqkz,nz]f) )
we have
W(XL X2) = (a®cl + ac{kx,nl]g)([xv 772]) - (ad;(z + aqu,nz]g)([xv 771])
= <[Cual,[z,m2] >+ <[& [z, mll], [z, n2] >

—< [C2795]7[9U7771] >—< [fa [%772]]»[37»771] >
=< [337771]7[957@] >—< [1’7772]7[1“7(1] >+2 < [57 [xvnl]]a[xanﬂ >,

(2.6)
as required.
We now have
Theorem 2.3. The equations
z = [z, [p,z]]
p=I[p,[p, =]l . 2.7)

are the Hamiltonian form of the geodesic equations on an adjoint orly of

The structure of the proofis as follows: first we consider the structure of the Hamiltonian
and then we derive the explicit form of the Hamiltonian flow using the lemma above.
ForV = 0in (2.1) we shall show that the Hamiltonian is just the norm of the velocity
in the so-called normal metric (see e.g. Bloch, Brockett and Ratiu [1992]). This metric is
defined as follows: Let and! lie in g,.. Then x may be decomposedas ! +x; where
x; € Ker(ad) andz! € Im(ad;) and where ag(y) = [z, y]. Further, given any € g,
we may decomposg, orthogonally relative te-x(,) asg', @ gur Whereg!, = Im(ad)
andg, = Ker(ad). Now if £ = [z, a] andn = [z, b] are tangent vectors to the orbitat
then the normal metric is given hy, (£, ) = —k(a®, b%).
Now any velocity vector is tangent to the orbit of the adjoint action and hence is of
the formz = [z, a] for somez € g,,. Hencex € Im(ad)). The inverse of operator agd
we will denote by agl, is well defined on Im(ag) and hence on:.’
The kinetic energy may thus be written:

Lz, ) =1/2 < &%, 2% >= 1/2(||[[ad; *z||?). (2.8)

Then, since 12||ad; *i||> = —1/2 < ad; %z, & > we have, applying the Legendre
transform,
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_ 0L _ 2.
P % ad, “z.

Substituting this expression forinto (2.8) gives the required expression for the
kinetic energy.

It remains to show that while these equation are Hamiltonian with respect to the
standard symplectic structure @rig,, they are in fact Hamiltonian on the cotangent
bundle of an adjoint orbit of7,,. That is, even though the Hamiltonian structure on the
orbit is complicated and is not the restriction of the structure on the Lie algebra, the
equations themselves do restrict.

We remark that the Egs. 2.7 may be viewed intrinsically as equations evolving in a
Lie bialgebra — see e.g. Lu and Weinstein [1990]. We shall discuss this and related ideas
further in a forthcoming publication.

For ease of exposition we now identify(7™* O) with T'(T°O) via the metric induced
by the Killing form.

Elements ofl'T}, [, 4O are thus of the form

(@, [z, €], [z,m], [[x,n], €] + [, C]) (2.9)

for &, m, ¢ € gy, and for any two such elemeni§;, X,, w(X1, X?) is given by (2.3).
We now wish to compute the Hamiltonian flow of the Hamiltonian

1 1 _ R R
H = E|\[p,gg]||2 =5< ad, 'z, ad; t: >= 5 <atit > (2.10)

— the kinetic energy in the normal metric. For this we need to solvegrfrom the
expression
dH.0X = w(Xpy,0X) (2.11)

for § X an arbitrary element &f T'O. Setting

0X = (CL‘, [Cb‘,f], [1‘77’]1], [[l’, 771]75] + [xvgl])7
Xg= (‘T> [‘T>§]7 [.27,772], [[LL’, 772]?5] + [$7 CZ]) )

w(X g, dX) is given by the expression 2.3.
We now need to compui@H .0 X employing variations il [, ¢ 7'O. We observe
firstly that

sad;': = —ad, [0z, ad; 'z] + ad, 1o . (2.12)

This follows from setting
ad,(ad, () = ¢ (2.13)

for c a constant. For then

[z, ad; ()] + [, 6ad; *(c)] = 0

or
bad; () = —ad; "[éz, ad, ()]

Replacinge by z gives the result.
Now
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dH.0X = < ad; 'z, —ad; [0z, ad; *i] + ad, *6: >
= < ad, ', —ad, Y[z, m], ad, *z] + ad, *([[z, m], & + [, (1)) >
= < [z,ad, %], —ad, {[=,m], ad, *z] + ad, *([[z, m], ] + [, C1]) >
= < ad, %z, [[,m],ad, *2] — [z, m], ] + [2, (1] >
= < ad; '#, ad; %1, [z, m] > — < [¢,ad; %), [, m] >
— < ad; %z, [z, ¢] >
= — < ad; %, [z, 6] >, (2.14)

the last inequality holding since= ad;ls'c, and thus the first two terms cancel.
Now equating the coefficients af[#:1] and [z, (1] in (2.14) and (2.3) we get

2[57 [.’1?, 772]] - [1‘, <2] = 07
[z,m2] = ad; %2 = —p. (2.15)
Note also that sincg = ad, *i: or ¢ = [z, ad, %] we have
§=1[p,]. (2.16)
The final term in the equation foX is thus
[z, n2], &1 + [z, G = [, ma], €] + 2[€, [, mel]
= _[pa [p7 {E]] + 2[[29, (E], _p]
=[p,[p, 2]l
Hence the full expression foX is

(.13, [.13, [pa J)]], -bp, [pa [pa .’L‘]]) .
g
We also have

Theorem 2.4. The Hamiltonian flows of ([p, z]) = f(£), wheref is an invariant poly-
nomial ong, are given by:

z =[x, [p,z]]
p=[-ad,*f'([p, 2]), [p,z]]. (2.17)
Proof. In this case we have, using the same notation as in the previous theorem,
df(€)-0X =< f(€),0X >
=< f1(€),6X > .
Computing as in the previous theorem we obtain
[z, n2] = ad, ' f(¢)
and
[[.T, 772]7 5] + [iC, 42] = [ga [iL', 772]]
=[¢,ad,  f'(€)]

SO

Xy = (@, [, [p. 2]l ad; (' ([p, 2]), [Ip, 21, ad; ' ([p, 2])]) -



Double Bracket Equations and Geodesic Flows 363
We may also endow any orbit with the left invariant metric
gn([z, a], [z, 0]) = —~r(a®, Jb®), (2.18)

where J is a positive self-adjoint operator on the algebra. Then we have

Corollary 2.5. The geodesic equations on an adjoint orbit endowed with the left invari-
ant metric (2.18) are

T = [‘ra Jﬁl[pv I]] = 7[I, Jﬁl[x7p]]7
p=1Ip,J p,a] . (2.19)

Proof. The kinetic energy in this case is given by

Lz, &) =1/2 < &%, & >
=1/2(- < ad, %, [z, Jad, *i] >
= -1/2 < &,ad; *Jad; 'z > .

Hence
p=—ad;*Jad; i, (2.20)

and

[p,z] = Jad, i.
Thus the kinetic energy may be reexpressed as

S < T Mpal pa] > (2:21)
d

From now on however unless otherwise stated we shall consider the biinvariant
case. We shall in fact consider left (or right) invariant metrics only when we study the
generalized rigid body flows below.

We remark also that if we define= x +ip, then Eqgs. 2.7 may also be written
¥

z = [z, [7, 5 1. (2.22)

the form of an interesting class of Hamiltonian flows discussed in Brockett [1993].
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3. Flows on Symmetric Spaces

The equations discussed above are not only well defined on adjoint orbits but also on
general symmetric spaces where the tangent vectors to the space are given in the form
a suitable bracket — this includes the complex and real Grassmannians of g-planes in
n + 1-space7, ,+1(C) or G4 »+1(R) and in particular the spheres.

This may be seen as follows:

The complex Grassmannian is given by

Un+1)/U(@ xUp), q+p=n+lqg<p (3.23)
and the real Grassmannian by
SO(n+1)/SO(g) x SO(p),  g+p=n+1lg=<p, (3.24)

whereU (n) is the unitary group an80O(n) the special orthogonal group. In either case
let g = ¢ @ m be the Lie algebra decomposition corresponding-{d<. We may thus
represent a point in the complex (real) Grassmannian by a matrix

A 0 Q

in m where@ is a complex (realp x ¢ matrix of full rank and@* is its Hermitian
conjugate (transpose). A pointimmay be represented by the matrix

~ [Ki0
K= {011(2] , (3.26)

whereK; € u(p)(so(p)) and K, € u(q)(so(q)). Define P to be a similarly partitioned
matrix. Then we have

Proposition 3.1. Tangent vectors to the Grassmannian may be represented by matrices
of the form o
[Q, K]

Proof. A curve in the Grassmannian through the puiimway be given by
eff(téekt'

Note that the given curve simply provides an orthogonal (or unitary) transformation
of the rows and columns @.
Differentiating att = O gives the result. [

Now since tangent vectors are given by brackets, just as in the case of orbits, a normal
metric may be defined. Repeating the proof of Theorem 2.2 gives

Proposition 3.2. The geodesic equations on the real or complex Grassmannian are
given by

Q=10,1P,QN,
P=[P,[P,Q]], (3.27)
whereQ is given by (3.25) and similarly faP.
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Note also that for a symmetric spac¢et] C ¢, [¢, m] C mand m, m] C £ and since
@, P € m the equations are naturally well defined.
Further, we have

Corollary 3.3. Forarightinvariant“normal” metric on the Grassmannian the geodesic
flow is given by the double double bracket equations

Q=1Q,J 7P, QI.
P=[P,J7YP,Q]]. (3.28)

whereJ = [Jy, Jr] is a symmetric positive definite operator partioned in accordance
with @ and P.

The proof is a computation.
We also have

Corollary 3.4. Equations 3.28 are Hamiltonian dfi*su(n + 1) (T*so(n + 1)) and on
T*G g.n+1(C) (T G4 n+1(R)) with respect to the standard cotangent bundle symplectic
form in each case and with Hamiltonian

H= 211 <[P,Q),JYP,0] > . (3.29)

As an example in the current setting we write explicitly the geodesic flow on the sphere
S™.

Recall (see e.g. Moser [1980]) that the geodesic motios’6may be written as
follows:

Letq =[q1,---,qn+1]” € R™1 with Euclidean normi|q|| = 1 represent an element
of S™. Then the geodesic flow can be found by settinrg A\q where) is chosen so that
||q|| is compatible with the flow. This implies g,§ >= 0 and< q,q > +||g||> = 0.
Thus\ = —||g||? and the geodesic flow is given by

g = —/gll*a. (3:30)

Letting p = [p1,---,pn+1]” € R™71 this may be viewed as a Hamiltonian system
restricted to|q|| = 1, < q,p >= 0. With HamiltonianH = 1/2||q||?||p||?> we get the

flow
. (0H\" _ . (oH\" _ )
a=(%) = b=-(5) =-lbia (331

In our current setting we have

Proposition 3.5. Let

0 ...0 P1 0 ...0 Q

poli i il sl i @3y
0 ...0 D+l 0 ...0 Qn+1
_pl"'_pn+lo —Q1"'—Qn+10

Then the flow (3.27) restricts to the geodesic flow (3.30).
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Proof. The proof is essentially a computation. Computing the brackets gives

a=p"q) - (@ p)g
p=(q"pp—a(p’p). (3.33)

It is easy to check that the time derivativesgdfq andq”p are conserved along the
flow. Normalizing||q|| = 1 and< g, p >= 0 we indeed remain on the sphere. O

Note that in this case (3.29) gives
1 2
H:§(<p,p><q7q>—<q,p> >). (3.34)

This gives rise to Eq. 3.33 via the standard symplectic structuf@’®i? and restricts
to the geodesic flow on the sphere when we impose the consttafits= 1 and
<q,p>=0.

4. The Rigid Body Equations

We show here how the generalized rigid body equations, another well known integrable
system, may be written in double double bracket form.

We recall the rigid body equations &0 (n) (or generally on any compact Lie group
—see e.g. Abraham and Marsden [1978], Ratiu [1980]) may be written as

Q=9Q,
M=[Q, M], (4.35)

where@ € SO(n) denotes the configuration space variabfes so(n) is the angular
velocity, andM = JQ = AQ + QA is the angular momentum. Hereis a symmetric
positive definite operator defined by the diagonal positive definite matri¥e remark
that the rigid body equations here are written in right-invariant as opposed to the com-
monly used left-invariant form in order to be consistent with the conventions used in the
remainder of the paper. This results in a sign change in the second of Egs. 4.35.

The classical rigid body Egs. 4.35 are of course Hamiltonia'680(n) with
respect to the canonical symplectic structure.

We now consider the following equations:

Q=9Q,
P=QP, (4.36)

whereQ = J~1M andM = PQT — QPT, whereQ andP are inSO(n).
We then can easily check that

Proposition 4.1. Equations 4.36 reduce to the rigid body Egs. 4.35.

Proof. Differentiatingd = PQT — QPT and using the Egs. 4.36 gives the second of
Egs. 4.35. U
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Conversely, given the rigid body Egs. 4.35 we may solve for the variBlilethe
expression
M = PQT —QPT

in a neighborhood o/ = 0. Locally
Pz (eS/2) . (4.37)

This follows from the observation that

M = esinh’1 M/2 e—sinh’1 M/2

For so(n) however sinh is many to one, so the two representations are not entirely
equivalent. Note that the generalized rigid body flow naturally reduces to a flow in
the variablesM on an adjoint orbit ofso(n) and we can view the map which takes
PQT — QPT to M as reduction. In fact, the ma®)(P) — (Q, M) given above is a
canonical transformation from the symplectic structurd ¢pnl(n) to that on7™*.SO(n)
which intertwines the Hamiltonian equations 4.36I&1y(n) with the Hamiltonian Egs.
4.35 onT*S0O(n).

While the classical rigid body Eqgs. 4.35 are HamiltoniarZ&15'O(n) with respect
to the canonical symplectic structure on the group in contrast here we have

Proposition 4.2. The generalized rigid body equations in the form (4.36) are Hamilto-
nian onT™*gl(n) with respect to the canonical symplectic structure and the Hamiltonian

H=1/4<JYPQT — QPT), PQT — QPT > . (4.38)

We remark that heré” and @ are natural coordinates fa@r*gi(n) and, for P(0),
Q(0) € SO(n), P(t) andQ(t) evolve inSO(n) under the flow ofH. HenceSO(n) x
SO(n) is an invariant manifold for the flow off. Note also that this Hamiltonian is
equivalenttoH = 1/4 < J~*M, M > as in Ratiu [1980].

However, the canonical symplectic structure for the rigid body may in fact be recov-
ered as a special case of our symplectic form (2.3) as we shall show below.

We first make the following observation: the rigid body equations may be given as
a singular case of the double double bracket equations discussed earlier.

Let

A 0 Q
as before and similarly faP. Note that these matrices now liedn(2r) and each block
lies in SO(n).

Corollary 4.3. The generalized rigid body equations 8@ (n) are given by the double
dOLib|e bracket Egs. 3.28 in the caQeand P lie in SO(n), Jy = J, and the operator
J.-=0.

With the above in mind, for an arbitrary elemento{n), 1 say, define the following
embedding into sl(2n):

= [8‘6]. (4.40)

Then we have
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Lemma 4.4. An element of T'SO(n) may be represented by

X =(Q,[,01,1%, QLIE L QN+, Q) - (4.41)

Proof. A (rightinvariant) element of’'SO(n) at the point) € SO(n) may be written as
(Q, £Q). Differentiating a suitable one-parameter curve gives an elemeéfit' 6fO(n)

as
(Q,£Q,2Q,¢Q +£QQ).
A matrix computation with the above embedding then gives the result.
O

Now identify 7*SO(n) with T'SO(n) via the Killing form and use the following
multiple of the Killing form as the inner product on elementssof2n): < -,- >=
—1/2Tr(, -), where Tr is the trace.

We have

Theorem 4.5. Let two vectors irf"7'SO(n) be given by

Xl = (C?v [f:v Q]v [Sgla Q:]v [é:v [ggla @]] + [é:lv Q:]) )
XZ = (Qv [fv Q]v [927 Q]v [ga [QZ, Q]] + [CZv Q]) .

Then the canonical symplectic form @if.SO(n) ~ T'SO(n) is given byw(X;, X>)
with w defined by (2.3).

Proof. From (2.3) we have in this case

w(X1, X2) =< [Q, 211, [Q, & >—< [Q, %), [Q, &) >+ < [(,[Q, @411, [Q, si(zél1 4>2.)

Now, compute each term of this expression using the Trace and define the inner
product onso(n) to be given by< -, - >= —Tr(-, -). We find

< [Qa S?l]? [Q7 C:Z] > = _TrQICZ =< S.217 CZ >,
< [Qa QZ]) [Qa Cl] > = _TrQZCI =< 921 Cl >,

<[E1Q B 5] > =5 < 190,21 >
Thus
W(XlaXZ) =< Qla CZ > =< QZ?Cl >+ < Ea [Qla QZ] > . (443)

This is precisely the canonical form @r*,SO(n) (see e.g. Abraham and Marsden
[1978]).
O

Note that the reduced generalized rigid body equations (the dynamics, or second of
Egs. 4.35 are completely integrable (see e.g. Ratiu [1980] and references therein). In
fact the full system is integrable in the sense that the reduced phase space is a point, see
Abraham and Marsden [1978], and hence also in the sense of commutative integrability
discussed in the next section (see Mischenko and Fomenko [1978]). The full phase space
is M = T*SO(n), on which we have a natural action of the gratip= SO(n). The
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reduced phase space corresponding to thigljs= J~1(1)/G,., whereJ here is the
momentum map corresponding to the actioriobn M andG , is the stabilizer of the
coadjoint action of5 on its Lie algeba)M,, has dimension did/ — dimG — dimG,
and is symplectic. O/, the system is then Liouville or commutatively completely
integrable.

5. Integrability of the Geodesic Flow on Grassmannians

To prove (commutative) complete integrability of a Hamiltonian system on a symplectic
manifold of dimension 2 one needs of course to show that thereraiadependent
integrals in involution on the manifold. Thimm [1981] showed there were sufficiently
many independent integrals in involution for the geodesic flows on the real and complex
Grassmannians to be integrable.

In fact one can make a very general argument regarding integrability as follows: see
Guillemin and Sternberg [1983,84] (and Paternain and Spatzier [1994]) for an account
of this work. Suppose one has the Hamiltonian action of a Lie gééop a a symplectic
manifold M. The action is said to be multiplicity free if all G-invariant functions iah
commute under the Poisson bracket. Consider an ascending chain of Lie algebras

g1 C g2 CGn+r = Gu (5.44)

with corresponding Lie Groups;. Each subgroufr; acts via a Hamiltonian action on
coadjoint orbits oi7;, in g; (equipped with the orbit symplectic structure). The chain
G, is said to be multiplicity free if all such actions are multiplicity-free. For compact
groups this forces thé&'; to be locally isomorphic to the special orthogonal or unitary
groups, tori or products of these. If one has such a chain and a multiplicity free action
on M then anyG-invariant Hamiltonian system aN is integrable.

Particular cases to which this applies are the real and complex Grassmannians. Here
we construct an explicit proof of integrability via the formalism developed above.

We remark that the terminology arises from the representation theory of Lie groups.
If G is a Lie group, then a unitary representationtbbn a Hilbert spacéd is called
multiplicity free if every representation 6f acts onH with multiplicity zero or one. This
is the case if and only if the ring of boundéginvariant functions orff is commutative.

Guillemin and Sternberg were led to the symplectic analogue of the representation
theoretic ideas by studying so called collective completely integrable systems, i.e. sys-
tems where the integrals are of the fofo ® where® : M — g* is the moment
mapping andf is a function ong*. They noticed that a necessary condition #drto
admit such system is that the action@fon M be multiplicity free. Our integrals are
also of this type (see below).

We need first some preliminary results:

Let 7, denote the projection of an elementgbnto an element of;, as defined
above. We consider the following sequence of integrals:

[ (milp, z]) (5.45)

wheref € C*° is an invariant polynomial op;.

We note that such integrals are also in fact functions of the momentum map arising
from the lifted action of the algebra on the underlying manifdld/orbit or symmetric
space) to the cotangent bundle.
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For, let¢), denote the infinitesimal vector field corresponding to the actiogt‘f
on the manfold via conjugation. This is given gy = [z, £]. Then the momentum map
of the lifted action is given by (see e.g. Marsden and Ratiu [1994])

< d)(ou),f >=< O‘wagh] >,

whereq, is a point in the cotangent bundle at the paint
In our setting this equation becomes
- < [LU, [LU, a]7 E> =< [.T, Oé], [.I’, 5] >,

where< [z, a],- > represents a cotangent vector. Hence the lifted momentum map is
indeed of the f, p], wherep is a momentum vector.
Now letg be so(n) or su(n). Then we have

Proposition 5.1. The Hamiltonian flow of the integrals 5.45 @it g is given by
@ = [z, f' (mlp. 2Dl p = [p, [’ (mrlp, 2])]. (5.46)

Firstly we note the following lemma:
Lemma 5.2. For a andb € g we have
< mgpa,b >=< a,mpb >, (5.47)
and
< meb,[f(7ja),a] >=0, k > j, (5.48)
wheref is an invariant polynomial of,,.

Proof. This follows by elementary matrix computation. [

Proof of Proposition. Let ¢ = (dx, dp) denote an arbitrary tangent vectorfég and
denote the Hamiltonian vector field corresponding toy X r = (¢z, {p).
We have:

dH5§ =< f, (ﬂ—k[pv :L]) ’ 57Tk[p7 :1’] >

= < m, (f' (milp, 21)) , [6p, 2] + [p, 6] >
(by the lemma)
=w(Xy,08) =< (g, 0p > — < (p, 0 > .

But mx (' (mx[p, 2])) = f'(7x[p, z]). Hence the result. O
Now consider the real Grassmanniap ,.1(R) viewed as before as the symmetric
space

Gynr1(R) = SO(n+1)/SO(q) x SO(p) q+p=n+1,q<p. (5.49)

In this case we can write down the integrals quite explicitly. There are of cpyrse
integrals required. We take a somewhat different approach from Thimm.

As we did in Sect. 3 we represent elementggf,+1(R) by 2 by 2 block matrices
in so(n + 1) with zero diagonal blocks and nonzero off diagonal blocks, the upper right
hand block being by q. We denote the matricgsandz in this case byl5 and@ as
before. Then the geodesic flow is given as before by the double bracket equations (3.27).
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Now we consider the following sequence of projectiorfs;0 < k < pandr},0 <
k < g are the projections which eliminate the first k rows and columns of a matrix, and
the rows and columngt1, - - -, g+k of a matrix, respectively. In particulat, eliminates
the uppemp by p block andr{ the lowerg by ¢ block. For example

ai1 a1z - Q1p 00 ---0

, |21 a22 - a2 Oazs ---az,

e N I B I (5.50)
Apl Qp2 *** App OanZ"'ann

We shall use this sequence of projections below to construct a chain of the type
(5.44).
We begin by analyzing commutativity of flows on the Lie algebra. We then have

Theorem 5.3. The Hamiltonians

1 k_31p O 2
ST (WUWL[P, Q]) (5.51)
are all in involution onT™g, whereg = su(n + 1) or so(n + 1).

Proof. As before, the Hamiltonian flow of the integrals (5.51) is

Q=1Q, (rymi [P,QD* ™1 P =[P, (xfmy [P, QD? ). (5.52)
Then the Poisson bracket of any two flows with Hamiltonigrsdg is of the form
{f.g} =w(f,9)

< [Q7 (Tr{k}ﬂ'i[p, Q])Zl—lL [ﬁ), (Wgﬂ%[p’ Q])Zm—l] >
— <[P, () [P, QNP Y, [0, (rfmh [P, QD? Y >
< (W@?Ti[p’ QNZL (1P, Ql, (rgxl [P, Q])?" Y] >

by the Jacobi identity as before (the pairing here is the trace). Now choade Note
thatthe upper blocks are paired with upper blocks and lower with lower under the pairing.
Then ifk > a, by repeated application of the lemma of Sect. 3 we get zerodfa,

note that the pairing of the lowenr22 block is of the formx B*,[B, B*] >, where the
superscripts denote the projected matrices. We can rewrite thi$, [ B*, B] > which

again vanishes by the lemma. O

This proves involution on the cotangent bundle of the algebra. However since the
cotangent bundles of the Grassmannians are reduced submanifolds of the algebra and
the integrals are invariants we obtain immediately involution on the Grassmannians.

To prove independence we need to firdindependent integrals.

One method of seeing we have a sufficient number of integrals is to follow the se-
guence of projections onto to the descending chain of algebfas1) O so(n) - - - so(2)
as discussed at the beginning of this section. In our setting this is implemented by pro-
jecting from upper left to lower right of the matrixd’ Q] by a combination of upper
and lower projections.

We then make the following observations:
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Independent integrals will come from invariant polynomials on the Lie algebra of
so(n + 1), then from those oro(n) and so on. The number of independent invariant
polynomials orso(k) is equal to the dimension of the center of the enveloping algebra
of so(k). For so(k) the dimension of the center is the integer park 2. Restricted to
the symmetric spac€é, ,+1(R), this gives a maximum af, the rank of the symmetric
space, independent functions at any point. We olastainch independent functions until
we project toso(2¢q — 1) and below, in which case we obtain a maximal humber of
independent functions fawo(k).

Thisgivesusatotalaf(p —¢g+1)+(@—1)+(@—1D)+(@g—2)+(g—2)---+1+1=
qglp—q+1)+2(g—1)+2@G— 2)---+ 2 =pqintegrals.

Note also that we are entitled to apply this argument to the functions arising from
the bracketj, =] since forso(n) the derived algebra is equal to the algebra itself.

This proves complete integrability.

Example: Foro(10) the dimensions of the centers of the enveloping algebra and its
projections are5 4 4 33 2 2 1 1. Fo€'3 10(R) the corresponding count of independent
invariant polynomials is3 3 33 32 2 1 1This gives us 21 functions as required.

We may also argue as follows:

Consider the two by two block structure of the matrices and recallgtkatp. We
consider the projections?. until k& = ¢, leaving us with a squareg2oy 2g matrix.
Taking the invariant polynomials at each stage we objdimdependent first integrals.
Continuing with the upper projections we now get 1 first integrals and theq — 2
and so on. But by introducing now the lower projections at each stage we can double
this.

Thus again we getatotal gfp — g+ 1) +2(g—1)+2( —2)- - - +1+1 =pq integrals.

A similar argument works for the complex Grassmannian — one obtaipnge-
grals since there are double the number of invariant polynomials. (In particular in the
polynomials in (5.51) we can replacé By k.) Observe that this projection method in
our setting provides a somewhat more direct method for obtaining all the integrals than
the permutations invoked by Thimm, that the integrals are quite explicit, and give rise
to explicit equations in the double double bracket form. Of course their existence may
be deduced from the muliplicity free argument mentioned above.

Example: Observe also that for the particular cas€’ofRP™) discussed above we
obtain the standard integrals for the geodesic flow as discussed in Thimm [1981], but
quite directly:

In this case the integrals are

1 A A 1 ,
=IT@IP.Q)? =5 Y (o —apw)’ j=20n+ L
k,I>n+2—j

wherem;so(n + 1) = so(j) is implemented by projection from the upper left. This
implements the moment map discussed in Thimm directly.

Putting the involution and independence computations together we obtain the theo-
rem of Thimm:

Theorem 5.4. The geodesic flow on the real and complex Grassmannians with respect
to the “normal” metric is completely integrable.
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