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Abstract: We prove that any solution to the spherically symmetricSU (2) Einstein–
Yang/Mills equations that is defined in the far field and is asymptotically flat, is globally
defined. This result applies in particular to the interior of colored black holes.

1. Introduction

In this paper we prove the following surprising property of spherically symmetric solu-
tions to theSU (2) Einstein–Yang/Mills equations: Any solution to the EYM equations
which is defined in the far field (r >> 1) and has finite (ADM) mass, is defined for all
r > 0. We note that this is not true in the “other direction"; i.e., if a solution is defined
nearr = 0 with particle-like boundary conditions, a singularity can develop at some
ρ > 0, and the solution cannot be extended forr > ρ, (see [8, Thm. 4.1]). Moreover, in
general for nonlinear equations, existence theorems are usually only local, with perhaps
global existence only for special parameter values . However for these equations we
prove here a global existence result for all solutions defined in a neighborhood of infin-
ity. Furthermore, we know (see [9]), that given any event horizonρ > 0, there are an
infinite number of black-hole solutions having event horizonρ. Our results in this paper
imply that all of these solutions can be continued back tor = 0. In particular, this gives
information as to the behavior of the Einstein metric and the Yang–Mills field inside a
black hole, a subject of recent interest; see [4,5]. In the papers [10, 14], we have studied
solutions defined in a neighborhood ofr = ∞, and we proved that either the solution is
defined up to somer = ρ > 0, in which case it is a black-hole solution of radiusρ

(as discussed in [9], and therefore continues through the event horizon; i.e., toρ−ε ≤
r ≤ ρ) or else the solution is defined all the way tor = 0, and is particle-like or is
Reissner–Nordström-like. In this paper, we complete our investigations by analyzing
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the behavior inside the black hole; i.e., on the interval 0< r < ρ, see [4,5] for a
discussion of the behavior nearr = 0.

In order to describe our results, we recall that for the spherically symmetric EYM
equations, the Einstein metric is of the form

ds2 = −AC2dt2 + A−1dr2 + r2(dθ2 + sin2 θdφ2), (1.1)

and theSU (2) Yang–Mills curvature 2-form is

F = w′τ1dr ∧ dθ + w′τ2dr ∧ (sinθdφ) − (1 − w2)τ3dθ ∧ (sinθdφ). (1.2)

HereA, C andw are functions ofr, and (τ1, τ2, τ3) form a basis for the Lie algebra
su(2). Using (1.1) and (1.2), the spherically symmetricSU (2) EYM equations are (cf.
[1–14]):

rA′ + (1 + 2w′2)A = 1− (1 − w2)2

r2
, (1.3)

r2Aw′′ +

[
r(1 − A) − (1 − w2)2

r

]
w′ + w(1 − w2) = 0, (1.4)

and
C ′

C
=

2w′2

r
. (1.5)

Notice that (1.3) and (1.4) do not involveC so that the major part of our effort is to study
the coupled system (1.3), (1.4).

We define the “mass function”µ(r) by

µ(r) = r(1 − A(r)).

If
lim

r→∞ µ(r) ≡ µ̄ < ∞, (1.6)

the solution is said to have finite (ADM) mass. Our main result in this paper can be
stated as

Theorem 1.1. Any solution to the spherically symmetricSU (2) EYM equations defined
in the far field and having finite (ADM) mass, is defined for allr > 0.

Equivalently, (see Proposition 4.1), we can restate our result as

Theorem 1.2. Any solution to the spherically symmetricSU (2) EYM equations defined
in the far field and havingA(r̄) > 0 for somer̄ > 1, is defined for allr > 0.

We now give an outline of the proof. Assume that the solution is defined for allr >
r0 > 0; we then prove that the solution can be continued throughr0; i.e., on an interval
of the formr0 − ε < r < ∞, for someε > 0. In order to get a handle on the solution we
first prove thatA(r) has at most a finite number of zeros on the intervalr0 ≤ r < ∞;
this is the main content of Sect. 3. ThusA(r) must be of one sign forr nearr0, r > r0,
and so there are two cases to consider in the proof:A > 0 nearr0 or A < 0 nearr0.

WhenA > 0 nearr0, there are certain simplifying features of the problem; for
example,µ′(r) > 0 soµ(r) has a limit atr0, and thus limr↘r0 A(r) exists. IfA(r0) ≥ 1
then (A, w) is a Reissner–Nordström-like (RNL) solution, and it was proved in [14] that
such solutions are defined on 0< r ≤ r0. If A(r0) > 0, w2(r0) > 1, and (ww′)(r0) ≥ 0,
this contradicts our assumption that the solution is defined in the far field, [10]. If
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A(r0) > 0, w2(r0) > 1, and (ww′)(r0) < 0, then it was proved in [14] that again the
solution is an RNL solution. Thus, in the case whereA > 0 nearr0, we may assume
that 1> A(r) > 0 andw2(r) < 1 for r nearr0. In this case, the results in [10] show that
the solution can be continued beyondr0; see Theorem 4.2.

The main thrust of this paper is to consider the case whenA(r) < 0 for r nearr0
(r > r0), and to prove that in this case too the solution can be continued beyondr0.

If A < 0 nearr0, there are two cases to consider: (I) Nearr0, A is bounded away
from zero, and (II),A is not bounded away from zero; i.e., there is a sequencern ↘ r0
such thatA(rn) → 0. In Case (I), we prove that the equations are non-singular atr0, and
thus the solution can be continued beyondr0. In Case (II), the equations are singular at
r0. However, we prove in this case that these solutions are exactly solutions of the type
considered in [9], and the existence and uniqueness theorems proved in [10] imply that
the solution can be continued beyondr0. These cases form the subject of Sect. 5.

In Sect. 2 we introduce some auxiliary functions which will be used in the paper,
and we also recall some known results. The reader is advised to consult this section as
needed.

The final section consists of a list of miscellaneous results, open questions and
conjectures.

2. Preliminaries

The static, spherically symmetric EYM equations, with gauge groupSU (2), can be
written in the form (cf. [1, 3, 7]):

rA′ + (1 + 2w′2) = 1− u2

r2
, (2.1)

r2Aw′′ +

[
r(1 − A) − u2

r

]
w′ + uw = 0, (2.2)

C ′

C
=

2w′2

r
, (2.3)

where
u = 1− w2. (2.4)

Herew(r) is the connection coefficient which determines the Yang/Mills field, andA
andC are the metric coefficients in (1.1).

If we define the function8 by

8(A, w, r) = r(1 − A) − u2

r
, (2.5)

then (2.1) and (2.2) can be written in the compact form

rA′ + 2Aw′2 = 8/r, (2.6)

r2Aw′′ + 8w′ + uw = 0. (2.7)

If (A(r), w(r)) is a given solution of (2.1), (2.2), then we write

8(r) = 8 (A(r), w(r), r) . (2.8)
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We note that (cf. [8]) the function8 satisfies the equation

8′ =
2u2

r2
+ 2Aw′2 +

4uww′

r
. (2.9)

We shall have occasion to analyse the behavior of the functionsv, f andµ defined
by

v = Aw′ , (2.10)

f = Aw′2, (2.11)

and
µ = r(1 − A). (2.12)

These satisfy the respective equations ([8, 9])

v′ +
2w′2

r
+

uw

r2
= 0, (2.13)

r2f ′ + (2rf + 8)w′2 + 2uww′ = 0, (2.14)

and

µ′ = 2Aw′2 +
u2

r2
. (2.15)

We now shall recall some results from the papers ([8-10, 12-14]); these will be
needed in our development.

The first theorem gives us control on orbits which leave the regionw2 < 1.

Theorem 2.1 ([10, 14]). Let (A(r), w(r)) be a solution of (2.1), (2.2), and assume that
for somer0 > 0, w2(r0) > 1 andA(r0) > 0,

i) If (ww′)(r0) > 0, then there is anr1 > r0 such thatlimr↗r1 A(r) = 0, andw′ is
unbounded nearr1.

ii) If (ww′)(r0) < 0, then there is anr1, 0 < r1 < r0 such thatA(r1) = 1, A(r) > 0 if
0 < r ≤ r0, andlimr↘0(A(r), w(r), w′(r)) = (∞, w̄, 0), for somew̄.

A solution which satisfiesA(r) > 1 for somer > 0, is called aReissner–Nordström-
like (RNL) solution; see [14] for a discussion of these RNL solutions.

The next two theorems disallow degenerate behavior of the functionA(r).

Theorem 2.2 ([12, 13]). Suppose that(A(r), w(r)) is a solution of (2.1), (2.2), and
limr↘r̄ A(r) = 0 = limr↘r̄ A′(r). Assume too thatA(r1) > 0 for somer1 > max(r̄, 1).

Then(A, w) is the extreme Reissner–Nordström (ERN) solution:A(r) =
(

r−1
r

)2
,

w(r) ≡ 0.

Theorem 2.3. Suppose(A(r), w(r)) is any solution of (2.1), (2.2), defined on an interval
r1 ≤ r ≤ r2, and setw1 = w(r1), w2 = w(r2), andM = sup|Aw′2(r)| for r1 ≤ r ≤ r2.
Supposew1 ≤ w(r) ≤ w2 for r1 ≤ r ≤ r2, and suppose further that there is a constant
δ > 0 such that|8(r)| ≥ δ on thisr-interval. Then there exists a constantη > 0,
depending only onδ, M, and|w1 − w2| such that|r1 − r2| ≥ η.

We next recall the notions of particle-like and black hole solutions of the EYM
equations.

A (Bartnik–McKinnon)particle-likesolution of (2.1), (2.2) is a solution defined for
all r ≥ 0, A(0) = 1, (w2(0), w′(0)) = (1, 0), andw′′(0) = −λ < 0 is a free parameter;
particle-like solutions are parametrized by (a discrete set of)λ: (A(r, λ), w(r, λ)).
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Theorem 2.4 ([8, 9, 3]). There is an increasing sequenceλn ↗ λ̄ ≤ 2, where
w′′(0, λn) = −λn, such that the corresponding solutions(A(r, λn), w(r, λn)) are
particle-like and
limr→∞ (A(r, λn), C(r1, λn)) , w2(r, λn), w′(r, λn) = (1, 1, 1, 0), andµn ≡
limr→∞ r (1 − A(r, λn)) < ∞. Moreover,w(r, λn) has precisely n-zeros.

A black-holesolution of radiusρ > 0 of (2.1), (2.2) is a solution defined for all
r > ρ, limr↘ρ A(r) = 0, A(r) > 0 if r > ρ. It was shown in [9] that the functionsA
andw are analytic atρ, and that (w(ρ), w′(ρ)) lies on the curveCρ in thew − w′ plane
given by

Cρ = {(w, w′) : 8(0, w, ρ)w′ + uw = 0}.

The curvesCρ differ depending on whetherρ < 1, ρ = 1, or ρ > 1; these are
depicted in Figs. 1–3, below.

On each of these figures we have indicated the sign of8(ρ) in the relevant regions
by + or− signs. The components ofCρ for which8 > 0 correspond to (local) solutions
for which A′(ρ) > 0, and (some) yield black-hole solutions. The other components
correspond to (local) solutions withA′(ρ) < 0. Black-hole solutions can only emanate
from the component of the curve containingQ (cf. Figs. 1–3). The orbits throughP and
R haveA(r) < 0 for somer > ρ. Finally, we showed in [14] that the orbits throughR
correspond to RNL solutions.

W = -1 W = 1W'

+  ––  +

Q

S

W = –  1+ρ W =  1+ρ

R

RNL

R
RNL

W

W = –  1–ρ W =  1–ρ

+  – –  +

P

P

S

Q

  Fig. 1.Cp(ρ < 1)

Black hole solutions are parametrized byw(ρ), and the relevant theorem for black-
hole solutions is:

Theorem 2.5 ([9]). Given anyρ > 0, there is a sequence(αn, βn) ∈ Cρ, where
8(αn, ρ, 0)) 6= 0, such that the corresponding solution(A(r, αn), w(r, αn), w′(r, αn)) of
(2.1),(2.2) is defined for allr > ρ satisfiesA(r, αn) > 0, andw2(r, αn) < 1. Moreover,
limr→∞(A(r, αn),
w2(r, αn), w′(r, αn)) = (1, 1, 0), limr→∞ r(1 − A(r, αn)) < ∞ andw(r, αn) has pre-
ciselyn-zeros.

Our final result classifies solutions which are well-behaved in the far-field. It doesnot
describe the behavior of either the gravitational field or the YM field, inside a black hole
– this is the subject dealt with in this paper.
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W = -1 W = 1W'

+  ––  +

W = –  2 W =  2

R
RNL

R
RNL

W

Q

S

–  +

S

Q

Fig. 2.Cp(ρ = 1)

W = -1 W = 1W'

+  ––  +
Q

Q

S

S

W = –  1+ρ W =  1+ρ

R
RNL

R
RNL

W

Fig. 3.Cp(ρ > 1)

Theorem 2.6 ([14]). Let (A(r), w(r)) be a solution of (2.1), (2.2) which is defined and
smooth forr > r̄ > 0 and satisfiesA(r) > 0 if r > r̄. Then every such solution must be
in one of the following classes:

(i) A(r) > 1 for all r > 0;
(ii) Schwarzschild Solution: A(r) = 1− 2m

r , w2 ≡ 1, (m = const.);
(iii) Reissner–Nordstr̈om Solution: A(r) = 1− c

r + 1
r2 , w(r) ≡ 0, (c = const.);

(iv) Bartnik–McKinnon Particle-like Solution ;
(v) Black-Hole Solution;
(vi) RNL Solution.

In each case, limr→∞ w2(r) = 1 or 0 (0 only for RN solutions), limr→∞ rw′(r) = 0 and
limr→∞ A(r) = 1. The solution also has finite (ADM) mass; i.e. limr→∞ r(1−A(r)) <
∞.
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3. The zeros of A

In this section we shall prove that the zeros ofA(r) are discrete, except possibly for an
accumulation point atr = 0. We shall also show thatA can have at most two zeros in
the regionr ≥ 1. In proving these, we shall make use of Figs. 1–3.

In the remainder of this paper we shall always assume that the following hypothesis
(H) holds for a given solution (A(r), w(r)) of (1.3) and (1.4):

Hypothesis. There is anr1 > 1 such that the solution(A(r), w(r)) is defined for all
r > r1, andA(r2) > 0 for somer2 ≥ r1.

Theorem 3.1. If the hypothesis(H) holds, thenA has at most a finite number of zeros
in any interval of the formε ≤ r < ∞, for anyε > 0. Furthermore, all the zeros ofA,
with at most two exceptions, lie in the setr < 1.

Note that from [12], ifA(r̄) = 0 = A′(r̄), for some ¯r > 0, then the solution is the
extreme Reissner–Nordström (ERN) solution

A(r) =

(
r − 1

r

)2

, w(r) ≡ 0.

For this solution, Theorem 3.1 clearly is valid. Thus, in this section we shall as-
sume that ifA(r̄) = 0, thenA′(r̄) 6= 0. In this case from1 ([10]), limr↘r̄ A(r) = 0,
limr↘r̄(w(r), w′(r)) = (w̄, w̄′) exists, and ( ¯w, w̄′) ∈ Cr̄; (cf. Figs. 1–3).

Proposition 3.2. A cannot have more than two zeros in the regionr ≥ 1.

r r

η
ρ

or

ρ
η

A(r)A(r)

Fig. 4.

Proof. Suppose thatA has 3 zeros in the regionr ≥ 1. Then there must existρ, η, 1 ≤
ρ < η withA(ρ) = 0 = A(η) andA′(η) < 0 < A′(ρ); cf. Fig. 4. Since (w(η), w′(η)) ∈ Cη

andη > 1, we see from Fig. 3 thatw2(η) > 1. Then from Theorem 2.1,(ii),A cannot
have any zeros ifr < η. This contradiction establishes the result. �

We next prove

Proposition 3.3. If 0 < r0 < 1, thenr0 cannot be a limit point of the zeros ofA.

Notice that Theorem 3.1 follows at once from Propositions 3.2 and 3.3.

1 In ([10]), the result was demonstrated for the case whereA(r) > 0 for r near ¯r, r > r̄, but the same
proof holds ifA(r) < 0 for r near ¯r, r > r̄.
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Proof. We shall show that there is a neighborhood ofr0 in whichA 6= 0.
Chooseε > 0 such thatr0+ε < 1. We will show, using Theorem 2.3, that there exists

anη > 0 such that ifz1 andz2 are two consecutive zeros ofA, r0 < z1 < z2 < r0+ε < 1,

A(z1) = 0 = A(z2), A′(z1) > 0 > A′(z2), (3.1)

then
z2 − z1 > η. (3.2)

This implies that there can be at most a finite number of zeros ofA in the interval
(r0, r0 + ε).

Now A(z2) = 0 implies that (w(z2), w′(z2)) lies onCz2, andA′(z2) < 0 implies that
(w(z2), w′(z2)) lies on the middle curve in Fig. 1, (whereρ is replaced byz2). Without
loss of generality, assumew′(z2) > 0, w(z2) > 0.

Now defineδ by

(r0 + ε) − 1
(r0 + ε)

= −2δ < 0.

Then there exists a constantc > 0 such that

(r0 + ε) − u2

(r0 + ε)
≤ −δ < 0, if |w| < c.

Hence

r − u2

r
≤ −δ, if r0 ≤ r ≤ r0 + ε,

and thus

8(r) = r − u2

r
− rA < −δ , z1 ≤ r ≤ z2 , (3.3)

sinceA(r) > 0 if z1 < r < z2. Letw1 = −c, w2 = 0; then there existr1, r2, z1 < r1 <
r2 < z2 such thatw(r1) = −c, w(r2) = 0. (This is becauseA cannot change sign in the
interval−c ≤ w ≤ 0; cf. Fig. 1, and Fig. 5.)

W

W = -1 W '

W=-C=W1 W=0=W2

CZ1
CZ2

A = 0
f = 0

r = a
f (a) = 0

r1

r2

(W(Z
2
), W'(Z2))

Fig. 5.

Now in view of (3.3), if we can show that there is anM > 0, M independent of
z1, z2 for which

|Aw′2| ≤ M, r1 ≤ r ≤ r2 (equivalently, w1 ≤ w(r) ≤ w2), (3.4)
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then on the intervalw1 ≤ w ≤ w2, we may apply Theorem 2.3 to conclude that (3.2)
holds. Thus the proof of Proposition 3.3 will be complete once we prove (3.4); this is
the content of the following lemma.

Lemma 3.4. If −c ≤ w(r) ≤ 0, then

f (r) ≡ (Aw′2)(r) <
2
r2

0

. (3.5)

Proof of Lemma 3.4.Recall thatf satisfies

r2f ′ + (2rf + 8)w′2 + 2uww′ = 0. (3.6)

We first claim that there is a valuea < r1, with f (a) = 0, and fora ≤ r < r1,
−1 ≤ w(r) ≤ −c, andw′(r) ≥ 0. Indeed, note that the orbit cannot exit the region
w2 < 1 throughw = −1, for r > z1, because by Theorem 2.1 (ii), there would
be no zero ofA smaller thanr1. Therefore, either the point

(
w(z1), w′(z1)

)
lies in

−1 ≤ w ≤ −c, w′ > 0, in which case we takea = z1, or else the orbit crosses the
segment−1 ≤ w ≤ −c, w′ = 0 at somer = a, and againf (a) = 0.

We now prove

if f (r) =
2
r2

0

, then f ′(r) < 0, (3.7)

for r in the interval (a, r2). Sincef (a) = 0, then if (3.7) holds, there can be no first value
of r for whichf (r) = 2

r2
0
, and hence (3.5) holds. Thus it suffices to prove (3.7).

To do this, we first note that

8(r) ≥ − 1
r0

, if a < r < r2. (3.8)

Indeed

8(r) = r(1 − A) − u2

r
≥ −u2

r
≥ −1

r
≥ − 1

r0
.

Now from (2.14), we have, whenf = 2
r2

0
,

r2f ′(r) =
[−(2rf + 8)w′ − 2uw

]
w′

=

[
−
(

2r
2
r2

0

+ 8

)
w′ − 2uw

]
w′

≤
[(

−4r

r0

1
r0

+
1
r0

)
w′ + 2

]
w′ (3.9)

=

[
2 +

w′

r0

(
1 − 4r

r0

)]
w′

≤
[
2 − 3w′

r0

]
w′,

where we have used (3.8). Now whenf = 2
r2

0
, w′2 = 2

r2
0A

> 2
r2

0
, orw′ >

√
2

r0
. Using this

in (3.9) gives

r2f ′ ≤
(

2 − 3
√

2
r2

0

)
w′ < (2 − 3

√
2)w′ < 0,
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and this gives (3.7). Thus the proof of Lemma 3.4 is complete, and as we have seen, this
proves Proposition 3.3. �

4. The CaseA > 0 Nearr0

In this section we shall first prove the equivalence of Theorems 1.1 and 1.2. Then we
shall prove Theorem 1.2 in the case whereA(r) > 0 for r nearr0, r > r0. In view of
Theorem 3.1, we know thatA can have at most a finite number of zeros on the interval
(r0, ∞). HenceA(r) is of one sign forr > r0. In this section we shall prove that if
A(r) > 0 for r nearr0, the solution can be extended. The far more difficult case where
A(r) < 0 for r nearr0, will be considered in Sect. 5.

Proposition 4.1. Theorems 1.1 and 1.2 are equivalent.

Proof. Assume that Theorem 1.1 holds, and thatA(r̄) > 0, where ¯r is as given in the
statement of Theorem 1.2. Consider

(
w(r̄), w′(r̄)

)
. If w2(r̄) ≥ 1 and (ww′)(r̄) > 0, then

from Theorem 2.1, i), the solution cannot exist for allr > r̄, and this contradicts our
assumptions. Ifw2(r̄) ≥ 1 and (ww′)(r̄) < 0, then from Theorem 2.1, ii), the solution
is an RNL solution and is thus defined for allr, 0 < r < r̄. Thus, we may assume that
w2(r̄) < 1. If w2(r̃) > 1 for some ˜r > r̄, then (ww′)(r̃) > 0, so again Theorem 2.1, i)
implies that the solution is not defined in the far-field. Hence we may assume that the
orbit stays in the regionw2(r) < 1 for all r > r̄. MoreoverA(r) > 0 for all r > r̄
becauseA(r) = 0 for somer > r̄ > 1 cannot occur. (Inw2 < 1, “crash" can occur only
if r < 1; see [7].) Thus from [14, Proposition 6.2], limr→∞ µ(r) < ∞, hence Theorem
1.2 holds.

Conversely, if Theorem 1.2 holds, then (1.6) implies that limr→∞ r(1−A(r)) < ∞
soA(r) → 1 asr → ∞; in particularA(r) > 0 for r large. This implies that Theorem
1.1 holds. �

This last result justifies our assumption that in the remainder of this paper that the
following hypothesis (H) holds for a given solution (A(r), w(r) of (1.3) and (1.4):

Hypothesis. There is anr1 > 1 such that the solution(A(r), w(r)) is defined for all
r > r1, andA(r2) > 0 for somer2 ≥ r1.

We now letr0 be any given positive number, and assume that the solution (A(r), w(r)),
of (1.3), (1.4) is defined for allr > r0. We then have the following theorem:

Theorem 4.2. Assume that hypothesis (H) holds, and thatA(r) > 0 for r nearr0 , r >
r0. Then the solution can be extended to an interval of the formr0 − ε < r ≤ r0.

Proof. It follows from Theorem 2.1 that eitherw2(r) < 1 for allr nearr0 , or else (A, w)
is an RNL solution and is thus defined for 0< r ≤ r0. In the casew2(r) < 1 for all r
nearr0 then ifA(r) is bounded away from zero forr nearr0 the solution must continue
into a region of the form (r0 − ε, r0], for someε > 0. (The proof of this fact is the
same ifA > 0 or A < 0 nearr0. In (5.6) below we give the proof forA < 0, so we
omit the proof here). If, on the other hand,A is not bounded away from zero nearr0,
thenA(rn) → 0 for some sequencern ↘ r0. In [10], we have shown that this implies
limr↘r0 A(r) = 0, and limr↘r0(w(r), w′(r)) ∈ Cr0, so the solution (A, w) is analytic at
r0 and thus again continues pastr0; i.e., to an interval of the formr0 − ε ≤ r ≤ r0. This
completes the proof of Theorem 4.2. �

In the next section we shall consider the case whereA(r) < 0 for r nearr0, r > r0.
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5. The CaseA < 0 Nearr0

In this section we assume that the solution (A, w) of (1.3), (1.4) is defined for allr > r0,
and thatA(r) < 0 for r nearr0 , r > r0. We shall prove that the solution can be
continued pastr0 . This is the content of the following theorem.

Theorem 5.1. Assume that hypothesis (H) holds and thatA(r) < 0 for r nearr0 , r >
r0. Then the solution can be continued to an interval of the formr0 − ε < r ≤ r0.

Notice that Theorems 4.1 and 5.1 imply Theorem 1.2.

Proof. There are two cases to consider:

Case 1.There are positive numbersδ and1 such that

A(r) < −δ , if 0 < r0 < r < r0 + 1 ; (5.1)

Case 2.There is a1 > 0 such that

A(r) < 0 , if 0 < r0 < r < r0 + 1 ; (5.2)

and for some sequencern ↘ r0,

A(rn) → 0. (5.3)

We begin the proof of Theorem 5.1 by first considering Case 1. We shall need a few
preliminary results, the first of which is

Lemma 5.2. If (5.1) holds, andw(r) is bounded nearr0 (r > r0), thenw′(r) is bounded
nearr0.

Proof. From (2.7), we can write

w′′ +
8

r2A
w′ = − uw

r2A
. (5.4)

Since
8

r2A
=

1
rA

− 1
r

− u2

r3A
,

we see that both8/r2A anduw/r2A are bounded nearr0. Thus the coefficients in (5.4)
as well as the rhs are bounded, sow′ too is bounded nearr0. �

Lemma 5.3. If w′ is bounded nearr0, thenA is bounded nearr0.

Proof. From (2.1), we have

rA′ + (1 + 2w′2)A = 1− u2

r2
. (5.5)

The hypothesis implies thatw is bounded nearr0 so the coefficients of (5.5) are bounded
nearr0. ThusA too is bounded nearr0. �
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These last two results enable us to dispose of the case where (5.1) holds, and also

w(r) is bounded nearr0(r > r0). (5.6)

Since (5.6) holds, thenA, w, andw′ are bounded nearr0, and by (5.1),A(r) < −δ, we see
from (1.3), and (1.4), thatA′, w′ andw′′ are bounded. Thus limr↘r0(A(r), w(r), w′(r), r)
= (Ā, w̄, w̄′, r0) ≡ P exists whereĀ < 0. Hence the orbit throughP is thus defined on
an interval ,r0 − ε < r < r0 + ε, for someε > 0.

Remark.We did not use the fact thatA < 0 to obtain this conclusion; all we needed
wasA bounded away from 0 andw bounded nearr0.

We shall now show that in Case 1,w mustbe bounded nearr0. To do this, we will assume
thatw is unbounded nearr0, r > r0, and we shall arrive at a contradiction.

Thus, assume that for someε > 0,

w(r) is unbounded on (r0 , r0 + ε). (5.7)

Lemma 5.4. If A(r) < 0 for r nearr0, and (5.7) holds, then the projection of the orbit
(w(r), w′(r)) has finite rotation about(0, 0), and about(±1, 0) for r nearr0.

Remark.Note that we do not assume (5.1) but only thatA < 0 nearr0. In Case 2, we
use the contrapositive of Lemma 5.4; i.e., ifA < 0 for r nearr0, and if the orbit has
infinite rotation about either (0, 0) or (±1, 0), thenw is bounded nearr0.

Proof. Assume that the orbit has infinite rotation about either (0, 0), or (±1, 0); we will
show that this leads to a contradiction.

Since (5.7) holds, the orbit must rotate infinitely many times outside the regionw2 ≤
1, asr ↘ r0. We may also assume without loss of generality that limr↘r0

w(r) = −∞.
It follows that there exists sequences{rn}, {sn}, rr+1 < sn+1 < rn, with w′(rn) = 0,
w(sn) = −2, lim w(rn) = −∞, andw(rn) < w(r) < w(sn), for rn < r < sn; cf. Fig. 6

W

W = -2 W '

Sn

rn

Fig. 6.

We first show that forw(r) ≤ −2,w′ is bounded; i.e, (as in the proof of Lemma 3.4,
(cf. (3.7)),

if w′(r) =
2
3

(r0 + ε), then w′′(r) < 0. (5.8)

To prove (5.8), we use (2.7):

w′′ =
−uw

r2A
− (r − rA)w′

−r2A
+

u2w′

r3A
<

u

r3A
[−rw + uw′]. (5.9)
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Thus, if for somer > r0, andw(r) ≤ −2, we hadw′(r) = 2
3(r0 + ε), then sincew

u ≤ 2
3,

it follows that

w′(r) =
2
3

(r0 + ε) >
w

u
r ,

so that (5.9) implies (5.8). Thus, ifw(r) ≤ −2, thenw′(r) < 2
3(r0+ε). Sincesn−rn < ε,

we have, for largen

−2 − w(rn+1) <
2ε

3
(r0 + ε);

this violates (5.7).qed

Corollary 5.5. If (5.1) and (5.7) hold, thenlimr↘r0 |w(r)| = ∞.

Proof. For r nearr0, the lemma implies that the orbit has finite rotation nearr0. Thus
the orbit must lie in one of the four strips,w < −1, −1 < w < 0, 0 < w < 1, w > 1.
Since in each stripw′′ is of fixed sign whenw′ = 0 it follows then thatw′ is of one sign
nearr0, so thatw has a limit atr0; sincew(r) is not bounded nearr0, the result follows.
�

(1) (2) (3) (4)

(8) (7) (6) (5)

W

W = 1W = -1 W '

Fig. 7.

It follows from the last result that ifw is unbounded nearr0, then the orbit must lie
in either region (1) or region (5), as depicted in Fig. 7. We will assume that the orbit lies
in region (5) forr nearr0; the proof for region (1) is similar, and will be omitted. Thus,
assuming (5.1), and (5.7) we havew′(r) < 0 nearr0, and

lim
r↘r0

w(r) = +∞. (5.10)

Sincer0 is finite, (5.10) implies

w′(r) is unbounded forr nearr0 (r > r0). (5.11)

Lemma 5.6. If A(r) < 0 for r nearr0 (r > r0), and (5.10) holds, then

lim
r↘r0

w′(r) = −∞. (5.12)

Remark.We do not use hypothesis (5.1) in this lemma, but we only assumeA < 0 near
r0. This result will be used in Case 2.
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Proof. If w′ does not have a limit atr0, then in view of (5.11), we can find sequences
rn ↘ r0, sn ↘ r0, rn < sn < rn+1, such that

w′(sn) = −n, w′(rn) = −n

2
, (5.13)

and
if rn ≤ r ≤ sn, w′(r) ≤ −n

2
. (5.14)

Then if rn ≤ r ≤ sn andn is large, (2.2) gives

−w′′(r) =
(r − rA − u2

r )w′ + uw

r2A

=
(−r2A − u2

2 )w′ + (ruw + r2w′ − u2

2 w′)
r3A

<
−w′(−r2A − u2

2 )

−r3A

< −w′
(−r2A

−r3A

)
=

−w′

r
<

−w′

r0
.

Thus −w′′

−w′ <
1
r0

, (5.15)

and so integrating fromrn to sn, gives

`n2 = `n

(−w′(sn)
−w(rn)

)
<

1
r0

(sn − rn),

so that
sn − rn > r0`n2. (5.16)

But for largen, rn < 1 + r0, so that (5.16) implies

1 = (1 +r0) − r0 ≥ 6(sn − rn) = ∞.

This contradiction establishes (5.12) and the proof of the lemma is complete.�

Thus to dispense with Case 1, and obtain the desired contradiction (assuming that
w is unbounded nearr0), we shall prove the following proposition.

Proposition 5.7. It is impossible for (5.1) and (5.7) to hold.

To prove this proposition, we shall obtain an estimate of the form

w′′(r) ≤ k(−w′(r)) (5.17)

for r nearr0. Integrating fromr > r0 to r1 > r, gives

`n

( −w′(r)
−w′(r1)

)
≤ k(r1 − r),

and this shows thatw′ is bounded nearr0, thereby violating (5.12).
In order to prove (5.17), we need two lemmas, the first of which is
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Lemma 5.8. If A(r) < 0 for r nearr0, (r > r0), and both (5.10) and (5.12) hold, then
writing Aw′2 = f , we have

− f (r) > w(r)5, if r is near r0. (5.18)

Remark.We do not assume that (5.1) holds, but only thatA < 0 nearr0. This result too
will be used in Case 2.

Proof of Lemma 5.8..We write (2.14) in the form (cf. (2.5))

r2f ′ + rfw′2 + (rf + r − rA)w′2 +

(−u2

r
w′2 + 2uww′

)
= 0. (5.19)

Now for r nearr0,

rf + r − rA = rAw′2 + r − rA = rA(w′2 − 1) + r ≤ 0, (5.20)

in view of (5.12). Furthermore, ifr is nearr0,

−u2

r
w′2 + 2uww′ < 0 (5.21)

because of (5.10), and (5.12). Thus (5.19)-(5.21) implyr2f ′ + rfw′2 > 0, so that forr
nearr0

f ′ > −f

(−w′

r

)
(−w′) > fw′,

or f ′/f < w′. Integrating fromr to r1, wherer0 < r < r1, andr1 is close tor0, gives

`n(−f )

∣∣∣∣r1

r

< w(r1) − w(r),

so that
`n(−f (r)) > w(r) − k1 ,

wherek1 = w(r1) − `n(−f (r1)). Exponentiating gives

−f (r) > k2e
w(r) > w(r)5,

for r nearr0, in view of Corollary 5.5. �
We shall use this last lemma for proving the following result.

Lemma 5.9. Assume that (5.1) and (5.10) hold. Then there is a constantk > 0 such
that

− A(r) > kw(r)4, for r nearr0. (5.22)

Proof. From (2.1), ifr is nearr0,

A′ =
8

r2
− 2

r
f ≥

(−u2

r3
− f

r

)
− f

r
>

−f

r
,

where we have used (5.18). Thus, using (5.12),

A′ >
−Aw′2

r
= k3Aw′,

for somek3 > 0. It follows that for some constantk > 0,

−A(r) > ek3w > kw4 ,

if r is nearr0. �
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We can now complete the proof of Proposition 5.7. As we have seen earlier, it suffices
to prove (5.17). Now since we are in region (5) (cf. Fig. 7),uw < 0, so that forr near
r0, (2.2) gives

w′′ <
(r − rA)w′ − u2

r w′

−r2A
<

u2w′

r3A
<

u2w′

r3
0A

< c1
w4w′

A
,

wherec1 is a positive constant. Thus,

w′′ <
c1w

4(−w′)
−A

<
c1

k
(−w′) ≡ c(−w′),

where we have used (5.22). This proves (5.17), and as we have seen, completes the proof
of Proposition 5.7. �

We now consider Case 2, where (5.2) and (5.3) hold; we will show that:

lim
r↘r0

A(r) = 0, (5.23)

and
lim

r↘r0

(w(r), w′(r)) = (w̄, w̄′) ∈ Cr0. (5.24)

Remark.If (5.23) and (5.24) hold, then by the uniqueness theorem of [10], the solution
is analytic atr0 and hence continues pastr0.

We begin with the following result.

Proposition 5.10. If (5.2) and (5.3) hold, then the orbit has finite rotation� about (0,0)
in the(w − w′)-plane; i.e.� < ∞.

The proof will follow from a series of lemmas, the first of which is

Lemma 5.11. Assume that (5.2) and (5.3) hold. If the rotation� = ∞, or if w is bounded
nearr0, then

lim
r↘r0

A(r) = 0. (5.25)

Proof. If � = ∞, thenw is bounded nearr0, by Lemma 5.4 and the remark following.
Thus we will prove that ifw is bounded nearr0, then (5.25) holds, or equivalently, that

lim
r↘r0

µ(r) ≡ lim
r↘r0

r(1 − A(r)) = r0. (5.26)

SinceA(r) < 0 for r nearr0,

µ(r) = r(1 − A(r)) ≥ r > r0, if r > r0 ,

so sinceA(rn) → 0,
lim

r↘r0

µ(r) = r0. (5.27)

We shall next prove
limr↘r0 µ(r) ≤ r0, (5.28)

and this together with (5.27) will prove (5.26).
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If limr↘r0 µ(r) > r0, then we can find numbersb andc, b > c > r0, and sequences
{sn}, {tn}, r0 < tn+1 < sn < tn, with µ(sn) = c, µ(tn) = b. Thus

b − c = µ(tn) − µ(sn) = µ′(ξ)(tn − sn),

whereξ is an intermediate point. Now from (2.15) forr nearr0,

µ′(r) = 2Aw′2 +
u2

r2
≤ u2

r2
≤ k,

sincew is assumed to be bounded. Hence (b−c) < k(tn−sn), ortn−sn > (b−c)/k > 0.
This is a contradiction since

∑
n(tn − sn) is finite. Thus (5.28) holds and the proof is

complete.

Combining Lemmas 5.4 and 5.11, we get as an immediate corollary,

Corollary 5.12. If (5.2) and (5.3) hold, and� = ∞, then8(r) is bounded forr near
r0.

We next have

Lemma 5.13. If (5.2) and (5.3) hold, andw is bounded nearr0, then eitherAw′2 is
bounded nearr0, or limr↘r0(Aw′2)(r) = −∞.

Proof. We writef = Aw′2, and again use (2.14):

r2f ′ + (2rf + 8)w′2 + 2uww′ = 0. (5.29)

If f is not bounded nearr0, then (Lemma 5.11) since8 andw are bounded, (5.29) shows
thatf ′ > 0 if f is sufficiently large, and the result follows. �

Lemma 5.14. If (5.2) holds, andAw′2 is bounded nearr0, then the rotation number�
is finite.

Proof. We are going to apply Theorem 2.3 withw1 = −1, w2 = −1 + ε, for some
ε > 0. Thus assume� = ∞; then there exists a sequencern

0 ↘ r0 with w(rn
0 ) = 0,

w′(rn
0 ) > 0. SinceA < 0 nearr0, the orbit cannot cross the segmentw′ = 0,−1 ≤ w ≤ 0

for r < rn
0 . Thus we can findε > 0 and numbersrn

−1, andrn
−1+ε, such thatw(rn

−1) = −1,
w(rn

−1+ε) = −1 + ε, and forrn
−1 ≤ r ≤ rn

−1+ε, we have−1 < w(r) < −1 + ε, and
for rn

−1+ε ≤ r ≤ rn
0 , −1 + ε < w(r) < 0. By hypothesis,Aw′2 is bounded nearr0, so

in particular onrn
−1 ≤ r ≤ rn

−1+ε, for largen. In order to apply Theorem 2.3, it only
remains to show that8(r) is bounded away from 0 on this interval ifε is small.

Chooseε > 0 so small that

(1 − w2)2 <
1
10

r2
0, if − 1 ≤ w ≤ −1 + ε. (5.30)

On this interval,

8 = r − rA − u2

r
> r − u2

r
> r0 − .1r2

0

r0
= .9r0. (5.31)

Now by Theorem 2.3, there exists anη > 0, such that for eachn,

rn
−1+ε − rn

−1 ≥ η.
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But asrn
−1+ε andrn

−1 both lie in (r0, r0 + 1) for largen, we have

1 = (r0 + 1)− r0 ≥ 6
(
rn
−1+ε − rn

−1

)
= ∞,

and this is a contradiction. �

Our final lemma in the proof of Proposition 5.10 is the following

Lemma 5.15. If (5.2) and (5.3) hold, and� = ∞, Aw′2 is bounded nearr0.

Proof. By Corollary 5.12,8 is bounded. From (2.6), ifAw′2 → −∞, then asr ↘ r0,

rA′ = −2Aw′2 +
8

r
−→ +∞,

and this contradicts (5.3). �

Note that Lemmas 5.14, and 5.15 prove Proposition 5.10.

Corollary 5.16. If (5.2) and (5.3) hold, thenw(r) is of one sign forr nearr0.

We next show that forr nearr0,

either w2(r) > 1 or w2(r) < 1; (5.32)

that is, eitherw < −1, or−1 < w < 0, or 0< w < 1, orw > 1. To prove this we need
two lemmas, the first of which is:

Lemma 5.17. If (5.2) and (5.3) hold thenlimr↘r0 w2(r) = 1 is not possible.

Proof. Suppose (for definiteness) that limr↘r0 w(r) = −1. With ε defined by (5.30),
we see that forr nearr0, −1 − ε ≤ w(r) ≤ −1 + ε. On this interval, (5.31) implies
8(r) > .9r0. Then from (2.6),

rA′ = −2Aw′2 +
8

r
>

.9r0

r
> 0,

and this contradicts (5.3). �

We next show that the orbit has finite rotation about (1, 0) in the casew > 0 nearr0,
or about (−1, 0) in casew < 0.

Lemma 5.18. If (5.2) and (5.3) hold andw > 0 for r nearr0, then the projection of the
orbit in thew − w′ plane has finite rotation about(1, 0). Similarly if w < 0 for r near
r0, then the projection of the orbit in thew − w′ plane has finite rotation about(−1, 0).

Proof. Supposew > 0 nearr0 (the proof forw < 0 is similar, and will be omitted), and
the orbit has infinite rotation about (1,0). Since limr↘r0 w(r) 6= 1, we must have either
limr↘r0w(r) > 1 orlimr↘r0w(r) < 1. In either case we repeat the argument of Lemma
5.10 using thew-interval [1, 1 +ε] or [1 − ε, 1]. We have that8 is bounded away from
0 by (5.31). By Lemma 5.13, either (Aw′2)(r) → −∞ asr ↘ r0, or Aw′2 is bounded
nearr0. We rule out the caseAw′2 → −∞ becausew′ is of one sign; henceAw′2 is
bounded nearr0. Using Theorem 2.3 exactly as in Lemma 5.14, we have that the orbit
can cross the linew = 1 a finite number of times. Thusw > 1 or w < 1 for r nearr0.
�
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Summarizing, we have

Corollary 5.19. For r nearr0, precisely one of the following holds:w(r) < −1, −1 <
w(r) < 0, 0 < w(r) < 1, or w(r) > 1.

Sincew′′, whenw′ = 0, has a fixed sign in each of the four strips, we see thatw′
must have a fixed sign forr for r0; i.e., the projection of the orbit in thew − w′ plane
must lie in one of the 8 regions depicted in Fig. 7. Since we now have the orbit confined
to one of these 8 regions, without loss of generality we will consider the case where
w′ < 0.

We will first show that orbit cannot lie in regions (6) or (8) forr nearr0. Then
we will show that if the orbit is in regions (5) or (7), andw′ is bounded nearr0, then
limr↘r0 A(r) = 0 and limr↘r0(w(r), w′(r)) exists and lies onCr0; hence the orbit
continues pastr0. We complete the proof of Theorem 5.1 by showing that the case
wherew′ is unbounded nearr0 cannot occur.

Lemma 5.20. If (5.2) and (5.3) hold, then the orbit cannot lie in regions (6), or (8) for
r nearr0.

Proof. In regions (6) and (8),w is bounded nearr0. Thus from Lemma 5.11,

lim
r↘r0

A(r) = 0. (5.33)

If v = Aw′, then from (2.13) we seev′ ≤ 0 so limr↘r0 v(r) = L > 0 exists. Thus

writing Aw′2 = v2

A , we see that

lim
r↘r0

(Aw′2)(r) = −∞. (5.34)

Sincew is bounded nearr0 (5.33) implies that8 is bounded nearr0. Thus, from (2.6),

rA′ =
8

r
− 2Aw′2 −→ +∞

asr ↘ r0. However, this contradicts (5.3). �

We now consider the case where (5.2) and (5.3) hold, and the orbit lies in one of the
regions (5) or (7) forr nearr0, r > r0.

We first consider the case wherew′ is bounded.

Lemma 5.21. Suppose that (5.2) and (5.3) hold, and that the orbit lies in either region
(5) or (7) for r near r0. If w′(r) is bounded nearr0 then limr↘r0 A(r) = 0, limr↘r0

(w(r), w′(r)) = (w̄, w̄′) exists, and(w̄, w̄′) lies onCr0.

Note that in view of our remark preceding Proposition 5.10, Lemma 5.21 implies
that Theorem 5.1 holds in this case.

Proof. First note that sincew′ is bounded, this impliesw is bounded, and hence Lemma
5.11 implies that

lim
r↘r0

A(r) = 0. (5.35)

Now asA → 0, andw has a limit, we see that8 = r − rA − u2/r has a limit; call this
limit 80; i.e.
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80 = lim
r↘r0

= 8(r). (5.36)

If 80 6= 0, then as limr↘r0 v(r) = 0 we may apply L’Hospital’s rule to obtain

lim
r↘r0

w′(r) = lim
r↘r0

v(r)
A(r)

= lim
r↘r0

v′(r)
A′(r)

= lim
r↘r0

−2w′2v
r − uw

r2

8
r2 − 2Aw′2

r

= lim
r↘r0

[−uw

8

]
,

where we have used (2.6) and (2.13). Thus

lim
r↘r0

w′(r) = lim
r↘r0

[−uw

8

]
. (5.37)

We claim that
80 6= 0. (5.38)

Note that if (5.38) holds, then sincew has a finite limit atr0, (5.37) implies that
limr↘r0 w′(r) exists and is finite, and

lim
r↘r0

(w(r), w′(r)) ∈ Cr0.

So, to complete the proof Lemma 5.21, it suffices to prove (5.38).
Thus, assume80 = 0; we show this leads to a contradiction. If (uw)(r0) 6= 0, then

(5.37) implies thatw′(r) is unbounded nearr0, and this is a contradiction. Hence we
may assume (uw)(r0) = 0. If u(r0) = 0, then

0 = 80 = r0 − u2
0

r0
= r0 ,

and this is a contradiction sincer0 > 0. Thus we may assumew(r0) = 0. In this case

0 = 80 = r0 − 1
r0

,

so that
r0 = 1.

Note too that ifw(r0) = 0, the orbit lies in region (7) forr nearr0. We now have

A(rn+1) − A(rn) = (rn+1 − rn)A′(ξ), (5.39)

wherern > ξ > rn+1 > 1. From (2.6)

ξA′(ξ) = 1− A(ξ) − u2(ξ)
ξ2

− 2(Aw′2)(ξ). (5.40)

Sinceξ > 1, 1− u2(ξ)
ξ > 0, so for largen, (5.40) impliesA′(ξ) > 0. Using this in (5.39)

gives 0> A(rn) > A(rn+1), and this violates (4.3). Thus (5.38) holds and the proof is
complete. �
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We now consider the case where (5.2) and (5.3) hold, and the orbit is in region (5)
or (7), andw′(r) is unbounded forr nearr0, r > r0. We shall show that this case is
impossible.

First note that ifw is bounded nearr0, it follows from Lemma 5.11 that

lim
r↘r0

A(r) = 0. (5.41)

Sincew′ < 0, limr↘r0 w(r) exists. Thus ifw is bounded nearr0, limr↘r0 8(r) exists
and is finite; say

lim
r↘r0

8(r) = 80. (5.42)

We now have

Proposition 5.22. If (5.2) and (5.3) hold, andw′ is unbounded nearr0, thenw cannot
be bounded nearr0; in particular that orbit cannot lie in region (7).

Proof. Suppose thatw(r) is bounded forr nearr0; we will show that this leads to a
contradiction.

Thus, in this case (5.41) holds and80 is finite. We consider 3 cases80 > 0,
80 < 0, 80 = 0, and we will obtain contradictions in all cases.

Case 1.80 > 0. From (2.6), forr nearr0,

A′(r) =
8

r2
− 2Aw′2

r
> 0,

and this violates (5.3); thus Case 1 cannot occur.

Case 2.80 < 0. We first show

lim
r↘r0

w′(r) = −∞. (5.43)

To see this, note that if (5.43) were false, then asw′ is unbounded nearr0, there would
exist a sequencesn ↘ r0 such that

w′(sn) < −n and w′′(sn) = 0.

Then from (2.7)

0 = s2
n(Aw′′)(sn) + 8(sn)w′(sn) + (uw)(sn)

= 8(sn)w′(sn) + (uw)(sn) −→ ∞
asn → ∞. This contradiction implies that (5.43) holds.

Now if f = Aw′2, then from (2.14),

r2f ′ + (2rf + 8)w′2 + 2uww′ = 0, (5.44)

and since (2rf +8) is strictly negative nearr0 andw is bounded nearr0 it follows from
(5. 43) thatf ′(r) > 0 if r is nearr0). Thus

lim
r↘r0

f (r) = L < 0

exists; whereL ≥ −∞. We claim that

L = −∞. (5.45)
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To see this, we note first that

(w′2v)(r) = w′(r)f (r) → +∞, (v = Aw′), (5.46)

so that (cf. (2.13)),

v′ =
−2w′2v

r
− uw

r2
→ −∞,

sincew is bounded nearr0. Hence, ifr0 < r < r1, andr1 is nearr0, v(r1) < v(r) so

(Aw′2)(r) = v(r)w′(r) < v(r1)w′(r),

and asv(r1)w′(r) → −∞, we see that (Aw′2)(r) → −∞, asr ↘ r0; thus (5.45) holds.
Now again using (2.6),

rA′(r) = −2(Aw′2)(r) +
8

r
→ +∞,

asr ↘ r0. But this violates (5.3); hence Case 2 cannot occur. We now turn to the final
case,

Case 3.80 = 0. The proof in this case relies on Theorem 2.2. Indeed, we will show
that limr↘r0 A′(r) = 0, and from (5.41), limr↘r0 A(r) = 0. This is enough to invoke
Theorem 2.2, to conclude thatw(r) ≡ 0 and thusw′(r) ≡ 0; this violates the assumption
thatw′ is unbounded.

We first show
lim

r↘r0

A′(r) ≤ 0. (5.47)

Indeed, if limr↘r0A
′(r) > 0 then forr > r0, r nearr0,

0 > A(r) = A(r) − A(r0) = (r − r0)A′(ξ) > 0,

whereξ is an intermediate point. This contradiction establishes (5.47).
Next, since

rA′ =
8

r
− 2Aw′2 , (5.48)

it follows from (5.47) that limr↘r0
(8

r − 2Aw′2) ≤ 0, so limr↘r0
(80

r0
− 2Aw′2) ≤ 0, or

0 ≥ limr↘r02Aw′2 ≥ 80

r0
= 0,

thus
limr↘r0 Aw′2 = 0. (5.49)

We next show
lim

r↘r0

Aw′2 = limr↘r0 Aw′2. (5.50)

(Note that if (5.50) holds, then limr↘r0 Aw′2 = 0, so from (5.48)A′(r0) = 0. Thus the
proof of Proposition 5.22 will be complete once we prove (5.50).)

So suppose that there is anη > 0 such that

lim
r↘r0

Aw′2 ≤ −2η . (5.51)
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Then in view of (5.49), iff = Aw′2, we can find a sequencesn ↘ r0 such that
f (sn) = −η, f ′(sn) < 0. Since (5.41) holds, we haveA(sn) → 0 so thatw′(sn) → −∞.
From (5.44),

s2f ′(sn) + (−2snη + 8(sn))w′2(sn) + 2(uww′)(sn) = 0. (5.52)

But asf ′(sn) < 0 andw′2(sn) → ∞, we see that (5.52) cannot hold for largen. Thus
(5.50) holds and this implies limr↘r0 Aw′(r) = 0, and thus by Theorem 2.2, we have a
contradiction. �

We now consider the final case in the proof of Theorem 5.1, namely in regions (5)
or (7),

w andw′ are unbounded nearr0. (5.53)

(Of course, this implies that we are in region (5).) Note too that in this case we have

lim
r↘r0

w(r) = +∞. (5.54)

Proposition 5.23. If (2.2) and (2.3) hold, and the orbit lies in region (5), then (5.54)
cannot hold.

Note that once Proposition 5.23 is established this will complete the proof of Theorem
5.1.

Proof. From our remark following the statement of Lemma 5.6, we have

lim
r↘r0

w′(r) = −∞. (5.55)

Then as we have remarked earlier (5.18) holds; i.e.Aw′2 > w5, for r nearr0. Thus,
from (5.48) forr nearr0,

rA′(r) = −2f +
8

r
> 2w(r)5 +

(
1 − A − u2

r

)
> 0,

sinceu2 is of orderw4, and this contradicts (5.3). �

6. Miscellaneous Results and Open questions

In Sect. 3, we proved that the zeros ofA are discrete, except possibly atr = 0. This
leads to the first question.

1. Canr = 0 be a limit point of zeros ofA?

We conjecture that the answer is no. In a recent paper [4, p. 8,` 7], the authors assume
that the answer is no. A rigorous proof of this would be welcome.

A related question is

2. Do there exist solutions of the EYM equations for whichA has more than two zeros?

A negative answer obviously implies a negative answer to question 1. In [5], the authors
have numerically obtained a solution having two zeros. This leads to the next Problem.

3. Give a rigorous proof of the existence of a global solution of the EYM equations,
(other than the classical Reissner–Nordström solution), whereA has two zeros.
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4. A subject of much current interest is the study of solutions nearr = 0 [4,5]. If,
as we suspect, Question 1 has a negative answer, then every solution nearr = 0, has
eitherA > 0 or A < 0. If A > 0 nearr = 0, then we have proved in [10], that either
limr↘0 A(r) = 1, in which case the solution is particle-like, or else limr↘0 A(r) = +∞,
in which case the solution is a Reissner–Nordström-like (RNL) solution [14]; this case
is re-discussed in [4].

If A < 0 nearr = 0, much less is known. In [14], we proved the following theorem:

Theorem 6.1. Given any triple of the formq = (1, b, c), there exists a unique local RNL
solution (Aq(r), wq(r)), satisfyinglimr↘0 rA(r) = b, wq(0) = 1, w′′

q (0) = c, and the
solution depends continuously on these values.

If b < 0, then limr↘0 A(r) = −∞, and limr↘0(w2(r), w′(r)) = (1, 0). These so-
lutions have been termed Schwarzschild-like [5]. In [5], the authors also investigated
RNL solutions but they mistakenly omitted the 2-parameter family of solutions that have
w(0) = 0. These solutions have the following asymptotic form nearr = 0 :

A(r) =
1
r2

+
b

r
+ h.o.t. ,

w(r) = cr3 + h.o.t. .

These solutions are interesting since they give rise to asymptotically flat solutions with
half-integral rotation numbers, see [14]. In addition there are solutions which have
w2(0) = 1; these solutions have the following asymptotic form nearr = 0 :

A(r) =
b

r
+ h.o.t. ,

w(r) = ±1 + cr2 + h.o.t. .

There is still another type of local solution (discussed in [5]), havingA < 0 nearr = 0,
but these do not appear to give rise to asymptotically flat global solutions, [5]. We are
thus lead to the following “trichotomy conjecture”:

Conjecture.If (A(r), w(r)) is a globally defined solution of the EYM equations (1.3),
(1.4), then

lim
r↘0

A(r) =

−∞, or
+1, or
+∞.

In view of our above remarks concerning the behavior of solutions ifA(r) > 0 near
r = 0, this conjecture can be rephrased as:

Conjecture.If (A(r), w(r)) is a globally defined solution to the EYM equations (1.3),
(1.4), andA(r) < 0 for r near 0, then limr↘0 A(r) = −∞.

5. Another interesting question is the following:
Does there exist a solution to the EYM equations (1.3), (1.4), whereA(r) < 0 in a

neighborhood ofr = ∞?
We conjecture that the answer to this question is negative. If our conjecture is true,

this would enable us to drop the hypothesisA(r̄) > 0 in Theorem 1.2. If, on the other
hand the conjecture is true, then we can show that the orbit must have infinite rotation
in the (w, w′)-plane andw must be unbounded.
6. Using the methods in [7–9], we have proved the following theorem
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Theorem 6.2. There is a continuous 2-parameter family of solutions
(
Aα,β(r), wα,β(r)

)
to the EYM equations (1.3), (1.4), defined in the far-field, which are analytic functions
of s = 1

r . That is, if(A(r), w(r)) is a solution to the EYM equations (1.3), (1.4) which is
asymptotically flat, and is analytic ins = 1

r , then(A(r), w(r)) =
(
Aα,β(r), wα,β(r)

)
for

some pair of parameter values(α, β).

(We omit the details of the proof as they are similar to those in [7].)
In the above theorem, one parameter is the (ADM) massβ, and in fact,A(s = 0) = 1,

and dA
ds |s=0 = −β. The other parameter isα = dw

ds |s=0, andw2(s = 0) = 1; cf. [10].
It follows from the results in [10 or 14], that the (ADM) massβ is finite for any

solution which is defined in the far-field. Moreover, for such solutions limr→∞ rw′(r) =
0, cf. [9]. We do not know whether limr→∞ r2w′(r) ≡ lims→0

dw(s)
ds exists. This leads

to the next question:
Is every asymptotically flat solution to the EYM equations (1.3), (1.4) analytic in

s = 1
r ats = 0?
If the answer is affirmative, then we may consider the (α, β)-plane as representing

those solutions having the following asymptotic form nears = 0:

A(s) = 1− βs + h.o.t. ,

w(s) = 1− αs + h.o.t. ,

and all such solutions are described by a point in the (α, β)-plane (or in the corresponding
plane corresponding tow(s = 0) = −1), or they correspond to the 1-parameter family
of classical Reissner–Nordström solutions:A(r) = 1− c

r + 1
r2 , w(r) ≡ 0.

R N L

R N L R N L

β

α

Schwarzschild
Solutions

β = 2 Ω = 1 Ω = 2 Ω = n •  •  •

P1
P2

Pn

Fig. 8.

We consider the (α, β)-plane as depicted in Fig. 8. In this plane, certain regions
are easy to identify. Thus, ifα < 0, these correspond to RNL-solutions. Similarly, the
regionα > 0, β < 0, also correspond to RNL-solutions. The lineα = 0 corresponds to
Schwarzschild solutions with massβ. Particle-like and black-hole solutions must lie in
the 1st quadrantα > 0, β > 0. Presumably, there are a countable number of curves in
the 1st quadrant distinguished by the number of zeros ofw, parametrized byρ, the event
horizon. (These are schematically depicted in Fig. 8, where the pointsPn correspond to
particle-like solutions and theβ coordinate ofPn tends to 2 asn → ∞; cf. [11].) There
are also a countable number of points in this quadrant which correspond to particle-like
solutions. All other solutions in this quadrant are RNL solutions.
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Thus, near any particular black-hole solution, there are global solutions which are
neither black-hole or particle-like solutions; i.e., they must be RNL solutions. This
follows since any point in this plane represents a global solution (from our results in this
paper, cf. Theorem 1.2). Thus for any such global solution (A, w), eitherA has a zero, in
which case the corresponding point (α, β) lies on one of the above-mentioned countable
number of curves, or it is one of the countable number of particle-like solutions, or it is
an RNL solution [10, 14].

It follows that in any neighborhood of a black-hole solution (A0(r), w0(r)) there are
RNL solutions. In particular, ifA0(r1) = −η < 0, then arbitrarily close to this solution,
there are solutions (A(r), w(r)) havingA(r1) > 0. This is a spectacular example of
non-continuous dependence on initial conditions.
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