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Abstract: We prove that any solution to the spherically symmeti¢(2) Einstein—
Yang/Mills equations that is defined in the far field and is asymptotically flat, is globally
defined. This result applies in particular to the interior of colored black holes.

1. Introduction

In this paper we prove the following surprising property of spherically symmetric solu-
tions to theSU (2) Einstein—Yang/Mills equations: Any solution to the EYM equations
which is defined in the far field-(>> 1) and has finite (ADM) mass, is defined for all
r > 0. We note that this is not true in the “other direction”; i.e., if a solution is defined
nearr = 0 with particle-like boundary conditions, a singularity can develop at some
p > 0, and the solution cannot be extendedifor p, (see [8, Thm. 4.1]). Moreover, in
general for nonlinear equations, existence theorems are usually only local, with perhaps
global existence only for special parameter values . However for these equations we
prove here a global existence result for all solutions defined in a neighborhood of infin-
ity. Furthermore, we know (see [9]), that given any event horizan 0, there are an
infinite number of black-hole solutions having event horizo®ur results in this paper
imply that all of these solutions can be continued back +00. In particular, this gives
information as to the behavior of the Einstein metric and the Yang—Mills field inside a
black hole, a subject of recent interest; see [4,5]. In the papers [10, 14], we have studied
solutions defined in a neighborhoodrof co, and we proved that either the solution is
defined up to some = p > 0, in which case it is a black-hole solution of radjus
(asdiscussedin[9], and therefore continues through the event horizon;jp-e5 t@
r < p) or else the solution is defined all the way+to= 0, and is particle-like or is
Reissner—Nordsbm-like. In this paper, we complete our investigations by analyzing
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the behavior inside the black hole; i.e., on the intervakOr < p, see [4,5] for a
discussion of the behavior near 0.

In order to describe our results, we recall that for the spherically symmetric EYM
equations, the Einstein metric is of the form

ds? = —AC?dt? + A7 Ydr? + 1r2(d6? + sirf 0d¢?), (1.1)
and theSU(2) Yang—Mills curvature 2-form is
F = w'mydr A df +w'radr A (sinBd¢) — (1 — w?)r3df A (sinfdo). (1.2)

Here A, C' andw are functions of-, and (1, 72, 73) form a basis for the Lie algebra
su(2). Using (1.1) and (1.2), the spherically symmesic(2) EYM equations are (cf.
[1-14)):

1— 2\2
FA +(L+20)A=1— % , (1.3)
T

22
2aw’ + |r@— 4y - L2 s — w?) =0, (1.4)

and ’ 12

C 2w

el (1.5)

Notice that (1.3) and (1.4) do not invol¢eso that the major part of our effort is to study
the coupled system (1.3), (1.4).
We define the “mass functioni(r) by

pu(r) = (1 — A(r)).

lim p(r) = ji < oo, (1.6)

the solution is said to have finite (ADM) mass. Our main result in this paper can be
stated as

Theorem 1.1. Any solution to the spherically symmetf€/(2) EYM equations defined
in the far field and having finite (ADM) mass, is defined for-alt 0.

Equivalently, (see Proposition 4.1), we can restate our result as

Theorem 1.2. Any solution to the spherically symmetf€/(2) EYM equations defined
in the far field and havingi(r) > O for somer > 1, is defined for all- > 0.

We now give an outline of the proof. Assume that the solution is defined for all
ro > 0; we then prove that the solution can be continued throyghe., on an interval
of the formrg — e < r < oo, for some= > 0. In order to get a handle on the solution we
first prove thatA(r) has at most a finite number of zeros on the interyak r < oo;
this is the main content of Sect. 3. Thdér) must be of one sign for nearrg, r > ro,
and so there are two cases to consider in the ptdaf: O nearrg or A < 0 nearryg.
When A > 0 nearrg, there are certain simplifying features of the problem; for
exampley/(r) > 0 sou(r) has a limit atrg, and thus lim_,,, A(r) exists. IfA(rg) > 1
then (4, w) is a Reissner—Nordgtm-like (RNL) solution, and it was proved in [14] that
such solutions are defined on0r < rq. If A(rg) > 0, w?(ro) > 1, and (uw’)(ro) > O,
this contradicts our assumption that the solution is defined in the far field, [10]. If
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A(ro) > 0, w?(ro) > 1, and (uw')(ro) < 0, then it was proved in [14] that again the
solution is an RNL solution. Thus, in the case whdre> 0 nearrg, we may assume
that 1> A(r) > 0 andw?(r) < 1 forr nearrg. In this case, the results in [10] show that
the solution can be continued beyong see Theorem 4.2.

The main thrust of this paper is to consider the case whf < 0 for » nearrg
(r > ro), and to prove that in this case too the solution can be continued beyond

If A < 0 nearrg, there are two cases to consider: (I) Ne@rA is bounded away
from zero, and (l1),A is not bounded away from zero; i.e., there is a sequepce,
such thatd(r,,) — 0. In Case (I), we prove that the equations are non-singulgr ahd
thus the solution can be continued beyegdin Case (1), the equations are singular at
ro. However, we prove in this case that these solutions are exactly solutions of the type
considered in [9], and the existence and uniqueness theorems proved in [10] imply that
the solution can be continued beyonrd These cases form the subject of Sect. 5.

In Sect. 2 we introduce some auxiliary functions which will be used in the paper,
and we also recall some known results. The reader is advised to consult this section as
needed.

The final section consists of a list of miscellaneous results, open questions and
conjectures.

2. Preliminaries
The static, spherically symmetric EYM equations, with gauge gr8Uf§2), can be
written in the form (cf. [1, 3, 7]):

11,2

rA +(1+2w?)=1— 7 (2.2)
2 41 u? / —

rcAw” + |r(l— A) — — | w +uw =0, (2.2)

T

C' 2uw'”?

— = 2.
C r’ (2.3)
where

uw=1-—w? (2.4)

Herew(r) is the connection coefficient which determines the Yang/Mills field, And
andC are the metric coefficients in (1.1).
If we define the functiorb by

d(A,w,r)=r(1— A) — %27 (2.5)

then (2.1) and (2.2) can be written in the compact form
rA +2Aw'? = @ /r, (2.6)
r?Aw” + dw' +uw = 0. 2.7

If (A(r), w(r)) is a given solution of (2.1), (2.2), then we write
D(r) = @ (A(r), w(r),r) . (2.8)
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We note that (cf. [8]) the functio® satisfies the equation

2 2 4 /
o' = iz + 2402 + X (2.9)
T T
We shall have occasion to analyse the behavior of the functiofisndy defined
by

v=Auw', (2.10)
f=Auw", (2.11)
and
uw=r(l-A). (2.12)
These satisfy the respective equations ([8, 9])
2w?  uww
v+ 7= 0, (2.13)
r2f + (2rf + ®)w'? + 2uww’ =0, (2.14)
and
u2
i = 2Aw"? + = (2.15)

We now shall recall some results from the papers ([8-10, 12-14]); these will be
needed in our development.
The first theorem gives us control on orbits which leave the regtor 1.

Theorem 2.1 (10, 14). Let(A(r),w(r)) be a solution of (2.1), (2.2), and assume that
for somerg > 0, w?(rg) > 1and A(rp) > 0,

i) If (ww')(ro) > O, then there is amy > 7 such thatim,. ~., A(r) =0, andw’ is
unbounded near;.

i) If (ww')(rg) < 0, then there is amy, 0 < r1 < ro such thatA(ri) = 1, A(r) > Oif
0 < r < g, andlim .~ o(A(r), w(r), w’(r)) = (o0, w, 0), for somew.

A solution which satisfiegl(r) > 1 for some- > 0, is called &Reissner—Nordstim-
like (RNL) solution; see [14] for a discussion of these RNL solutions.
The next two theorems disallow degenerate behavior of the fundtfen

Theorem 2.2 (12, 13)). Suppose thafA(r), w(r)) is a solution of (2.1), (2.2), and
lim,~ +A(r) = 0 = lim, 7+ A’(r). Assume too that(r1) > 0 for somer; > max(, 1).
Then(A, w) is the extreme Reissner—Nordstr (ERN) solutionA(r) = (%1)2,

w(r) = 0.

Theorem 2.3. Supposé€A(r), w(r)) is any solution of (2.1), (2.2), defined on aninterval
ry < r < rp, and setwy = w(ry), wz = w(rz), and M = sup|Aw'?(r)| for ry < r < rp.
Supposer; < w(r) < w, forry < r < rp, and suppose further that there is a constant
d > 0 such that|®(r)| > § on thisr-interval. Then there exists a constapt> O,
depending only on, M, and |w; — wy| such thatry — 2| > 7.

We next recall the notions of particle-like and black hole solutions of the EYM
equations.

A (Bartnik—McKinnon)particle-likesolution of (2.1), (2.2) is a solution defined for
all > 0, A(0) = 1, @?(0),w’(0)) = (1 0), andw”(0) = —\ < 0 is a free parameter;
particle-like solutions are parametrized by (a discrete sex:dfi(r, \), w(r, \)).
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Theorem 2.4 (8, 9, 3]). There is an increasing sequencg, ~ A < 2, where
w”(0,\,) = —M\,, such that the corresponding solutiofd(r, \,,), w(r, \,,)) are
particle-like and

im, — oo (A(r, A\p), C(r1, An)) s w?(r, An), w'(r, A\n) = (1,1,1,0), andp,, =

lim, 7 (1— A(r, \n)) < co. Moreoverw(r, A,,) has precisely n-zeros.

A black-holesolution of radiusp > 0 of (2.1), (2.2) is a solution defined for all
r > p, lim, A(r) = 0, A(r) > O if » > p. It was shown in [9] that the functiond
andw are analytic ap, and that {v(p), w’(p)) lies on the curveZ, in thew — v’ plane
given by
C, = {(w,w') : ®(0,w, p)w’ +uw = 0}.

The curvesC, differ depending on whethegr < 1, p = 1, orp > 1; these are
depicted in Figs. 1-3, below.

On each of these figures we have indicated the sigh(pj in the relevant regions
by + or — signs. The components 6f, for which® > 0 correspond to (local) solutions
for which A’(p) > 0, and (some) yield black-hole solutions. The other components
correspond to (local) solutions with'(p) < 0. Black-hole solutions can only emanate
from the component of the curve containif)gcf. Figs. 1-3). The orbits through and
R haveA(r) < 0 for somer > p. Finally, we showed in [14] that the orbits through
correspond to RNL solutions.

W=-1 w' w=1
Q

+ +1 —+ +1—

P
RNL
R

W=-/1 W=-/1-p W=/1-p W =/1+p

Fig. 1.Cp(p < 1)

Black hole solutions are parametrizeddbfp), and the relevant theorem for black-
hole solutions is:

Theorem 2.5 (9]). Given anyp > 0, there is a sequencéx,, 5,) € C,, where
®(ay, p, 0)) 7 0, such that the corresponding soluti@a(r, a,), w(r, ay), w'(r, o)) of
(2.1),(2.2) is defined for alt > p satisfiesA(r, a,,) > 0, andw?(r, a,) < 1. Moreover,
iMoo (A(r, ),

w?(r, o), W (r, o)) = (1,1,0), lim,._ o (1 — A(r, o)) < oo andw(r, v,) has pre-
ciselyn-zeros.

Our final result classifies solutions which are well-behaved in the far-field. It woes

describe the behavior of either the gravitational field or the YM field, inside a black hole
— this is the subject dealt with in this paper.
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Theorem 2.6 (14]). Let(A(r), w(r)) be a solution of (2.1), (2.2) which is defined and
smooth for > r > 0 and satisfiesi(r) > 0if » > r. Then every such solution must be
in one of the following classes:

(i) A(r) > 1forallr >0

(i) Schwarzschild Solution A(r) =1— 22 w? =1, (m = const);

(iii) Reissner—Nordstom Solution: A(r) =1— =+ T—lz, w(r) =0, (c= const);
(iv) Bartnik—McKinnon Particle-like Solution ;

(v) Black-Hole Solution;

(vi) RNL Solution.

In each case, lim., .. w?(r) = 1 or 0 (0 only for RN solutions), lig_, o, 7w’(r) = 0 and
lim,_ . A(r) = 1. The solution also has finite (ADM) mass; i.e. jim,, r(1— A(r)) <

Q.
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3. The zeros of A

In this section we shall prove that the zerosAdf-) are discrete, except possibly for an
accumulation point at = 0. We shall also show that can have at most two zeros in
the regionr > 1. In proving these, we shall make use of Figs. 1-3.

In the remainder of this paper we shall always assume that the following hypothesis
(H) holds for a given solutionA4(r), w(r)) of (1.3) and (1.4):

Hypothesis. There is anr; > 1 such that the solutioQA(r), w(r)) is defined for all
r > r1, and A(r,) > O for somer, > ri.

Theorem 3.1. If the hypothesi§¢H) holds, thend has at most a finite number of zeros
in any interval of the forme < r < oo, for anye > 0. Furthermore, all the zeros of,
with at most two exceptions, lie in the set: 1.

Note that from [12], ifA(r) = 0 = A’(r), for somer > 0, then the solution is the
extreme Reissner—Nordstm (ERN) solution

r—1

A(r) = ( )2, w(r) = 0.

For this solution, Theorem 3.1 clearly is valid. Thus, in this section we shall as-
sume that ifA(r) = 0, thenA/(r) # 0. In this case from([10]), lim,~ +A(r) = 0,
lim,~_~(w(r), w'(r)) = (w, w’) exists, and, w’) € Cr; (cf. Figs. 1-3).

Proposition 3.2. A cannot have more than two zeros in the region 1.

AN A(n)

or

\ n n
p r /p r

Fig. 4.

Proof. Suppose thatl has 3 zeros in the region> 1. Then there must exigt n, 1 <
p < nwith A(p) = 0 = A(n)andA’(n) < 0 < A’(p); cf. Fig. 4. Sinceqv(n), w'(n)) € C),
andn > 1, we see from Fig. 3 that?(n) > 1. Then from Theorem 2.1,(ii}4 cannot
have any zeros if < . This contradiction establishes the result. O

We next prove
Proposition 3.3. If 0 < rg < 1, thenrg cannot be a limit point of the zeros df
Notice that Theorem 3.1 follows at once from Propositions 3.2 and 3.3.

11n ([20]), the result was demonstrated for the case whig > O for r nearr, r > 7, but the same
proof holds ifA(r) < 0 forr nearr,r > r.
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Proof. We shall show that there is a neighborhood®in which A # 0.
Choose: > 0suchthatg+e < 1. We will show, using Theorem 2.3, that there exists
ann > Osuchthatit; andz; are two consecutive zeroséf ro < z1 < 22 < ro+e < 1,

A(z) =0=A(2), A'(z) > 0> A'(2), (3.1)

then
Z2 — 21> 1. 3.2

This implies that there can be at most a finite humber of zerad of the interval
(ro, 70 +¢€).

Now A(zz) = 0 implies that (v(z2), w’(z2)) lies onC,,, andA’(z2) < 0 implies that
(w(z2), w'(22)) lies on the middle curve in Fig. 1, (whepas replaced by:,). Without
loss of generality, assumé(z;) > 0, w(zz) > 0.

Now defines by
——=-2/<0.

(ro +¢) =
Then there exists a constant- 0 such that
2

(ro+e)—

<-5<0, if |w<e

(ro+e)— ro¥e) =

Hence
2

U .
r——<-=94, if rg<r<rg+e,
r

and thus 5

CI>(7“)=7"—U——TA<—57 z21<r <z, (3.3)
T
sinceA(r) > 0if z; < r < 2. Letw;y = —¢, wp = 0;then there existy, rp, 21 <711 <
ro < zp such thatw(ri) = —¢, w(ry) = 0. (This is becausd cannot change sign in the
interval —c < w < 0; cf. Fig. 1, and Fig. 5.)

W=-

1]
SN
O

N
=

Cz,

W(Z,), W(Z,)

W=-C=W; W=0=W,
Fig. 5.

Now in view of (3.3), if we can show that there is & > 0, M independent of
21, z for which

|Aw?| < M, ri <7 <1 (equivalently wy < w(r) < wy), (3.4)
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then on the intervaly; < w < wy, we may apply Theorem 2.3 to conclude that (3.2)
holds. Thus the proof of Proposition 3.3 will be complete once we prove (3.4); this is
the content of the following lemma.

Lemma 3.4. If —¢ < w(r) <0, then

f(r) = (Aw')(r) < 32 (3.5)
o

Proof of Lemma 3.4Recall thatf satisfies
r2f + 2rf + ®)w'? + 2uww’ = 0. (3.6)

We first claim that there is a value < r;, with f(a) = 0, and fora < r < ry,
-1 < w(r) < —¢, andw’(r) > 0. Indeed, note that the orbit cannot exit the region
w? < 1 throughw = —1, for r > 2z, because by Theorem 2.1 (i), there would
be no zero ofA smaller thanr;. Therefore, either the poir(tw(zl),w’(zl)) lies in
—1 < w < —¢,w > 0, in which case we take = z1, or else the orbit crosses the
segment-1 < w < —¢, w’ =0 at some- = a, and againf(a) = 0.

We now prove

if f(r)= 32, then f'(r) <0, 3.7)
"o

for r in the interval ¢, r2). Sincef(a) = 0, then if (3.7) holds, there can be no first value
of r for which f(r) = % and hence (3.5) holds. Thus it suffices to prove (3.7).
0

To do this, we first note that
d(r) > 1 , i a<r<r. (3.8)

To
Indeed ) )
o) =r@—A)— L w1
T T T
Now from (2.14), we have, whefi= 3,

2
o

r2f(r) = [~(2rf + @) — 2uw] w’

[ 2
= |- (27’2 + <I>) w' — 2uw} w'
L ro

< (_4r1+1> w’+2} w’ (3.9)
ToTo To

- /
= 2+“’(14r>}w'
L 7o o

!
<2z 3w } o
To

where we have used (3.8). Now whgr 5, w2 = 2. > % orw' > TLOZ Using this
0 0 0
in (3.9) gives

0

rf < <2_3;?> w' < (2-3V2u' <0,
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and this gives (3.7). Thus the proof of Lemma 3.4 is complete, and as we have seen, this
proves Proposition 3.3. [

4. The Cased > 0 Nearrg

In this section we shall first prove the equivalence of Theorems 1.1 and 1.2. Then we
shall prove Theorem 1.2 in the case whdie) > O for r nearrg, r > ro. In view of
Theorem 3.1, we know that can have at most a finite number of zeros on the interval
(ro, 00). HenceA(r) is of one sign forr > . In this section we shall prove that if
A(r) > 0 for r nearry, the solution can be extended. The far more difficult case where
A(r) < 0 for r nearrg, will be considered in Sect. 5.

Proposition 4.1. Theorems 1.1 and 1.2 are equivalent.

Proof. Assume that Theorem 1.1 holds, and tH&t) > 0, wherer’is as given in the
statement of Theorem 1.2. Consider(r), w'(r)). If w?(r) > 1and (w’)(r) > 0, then
from Theorem 2.1, i), the solution cannot exist forall> r, and this contradicts our
assumptions. Ifv?(r) > 1 and @w’)(r) < 0, then from Theorem 2.1, ii), the solution
is an RNL solution and is thus defined for all0 < r < 7. Thus, we may assume that
w?(r) < 1. If w?(7) > 1 for somer™ 7, then (ww’)(¥) > 0, so again Theorem 2.1, i)
implies that the solution is not defined in the far-field. Hence we may assume that the
orbit stays in the regiom?(r) < 1 for all » > 7. MoreoverA(r) > 0 for allr >
becaused(r) = 0 for somer > r > 1 cannot occur. (In? < 1, “crash” can occur only
if » < 1; see [7].) Thus from [14, Proposition 6.2], lim ., u(r) < oo, hence Theorem
1.2 holds.

Conversely, if Theorem 1.2 holds, then (1.6) implies that.lim, (1 — A(r)) < oo
S0 A(r) — 1 asr — oo; in particularA(r) > 0 for r large. This implies that Theorem
1.1 holds. O

This last result justifies our assumption that in the remainder of this paper that the
following hypothesis (H) holds for a given solutiod (i), w(r) of (1.3) and (1.4):

Hypothesis. There is anr; > 1 such that the solutioQA(r), w(r)) is defined for all
r > ry, and A(rp) > 0 for somery > rg.

We now letrg be any given positive number, and assume that the soluti@n,(w(r)),
of (1.3), (1.4) is defined for ait > ro. We then have the following theorem:

Theorem 4.2. Assume that hypothesis (H) holds, and th&t) > Ofor r nearrg , r >
ro. Then the solution can be extended to an interval of the forme < r < rq.

Proof. Itfollows from Theorem 2.1 that either?(r) < 1 for allr nearrq, or else @, w)

is an RNL solution and is thus defined for0r < 7q. In the casev?(r) < 1 for all
nearrqg then if A(r) is bounded away from zero fomearry the solution must continue
into a region of the form — ¢, ro], for somee > 0. (The proof of this fact is the
same ifA > 0 or A < 0 nearrp. In (5.6) below we give the proof fod < 0, so we
omit the proof here). If, on the other hand,is not bounded away from zero negy;
then A(r,,) — 0O for some sequenas, \, ro. In [10], we have shown that this implies
lim~_ry A(r) = 0, and lim_, (w(r), w'(r)) € C,,, so the solution4, w) is analytic at
ro and thus again continues pasgti.e., to an interval of the formy — e < r < r¢. This
completes the proof of Theorem 4.2. O

In the next section we shall consider the case whrg < 0 for r nearrg, r > ro.
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5. The CaseA < 0 Nearrg

In this section we assume that the solutidn«) of (1.3), (1.4) is defined for all > rg,
and thatA(r) < O for r nearrg, r > ro. We shall prove that the solution can be
continued pastg . This is the content of the following theorem.

Theorem 5.1. Assume that hypothesis (H) holds and tH&t) < O for » nearrg, r >
ro. Then the solution can be continued to an interval of the fagm ¢ < r < rg.

Notice that Theorems 4.1 and 5.1 imply Theorem 1.2.

Proof. There are two cases to consider:
Case 1.There are positive numbefsand A such that

Afry <=6, if O<ro<r<ry+Aj; (5.1)

Case 2There is aA > 0 such that
Afr) <0, if O<ro<r<rg+A; (5.2)
and for some sequeneg \ 7o,
A(ry) — 0. (5.3)

We begin the proof of Theorem 5.1 by first considering Case 1. We shall need a few
preliminary results, the first of which is

Lemma 5.2. If (5.1) holds, andu(r) is bounded neary (r > rg), thenw’(r) is bounded
nearro.

Proof. From (2.7), we can write

(5.4)

Since

A A 7 BA
we see that bottb /2 A anduw /r2 A are bounded neap. Thus the coefficients in (5.4)
as well as the rhs are bounded,s0too is bounded neat,. O

Lemma 5.3. If w’ is bounded neary, thenA is bounded near,.

Proof. From (2.1), we have

U2

rA'+(l+20H)A=1—- —

5. (5.5)

The hypothesis implies thatis bounded near, so the coefficients of (5.5) are bounded
nearrg. ThusA too is bounded neat. O
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These last two results enable us to dispose of the case where (5.1) holds, and also
w(r) is bounded nearo(r > rg). (5.6)

Since (5.6) holds, theA, w, andw’ are bounded neas, and by (5.1)A(r) < —4, we see
from (1.3), and (1.4), that’, v’ andw” are bounded. Thuslim_,,(A(r), w(r), w'(r),r)
= (A, w,w’,rg) = P exists whered < 0. Hence the orbit througR is thus defined on
aninterval g — e < r < rg +¢, for somes > 0.

Remark.We did not use the fact that < 0 to obtain this conclusion; all we needed
was A bounded away from 0 and bounded near.

We shall now show that in Casext mustbe bounded neag. To do this, we will assume
thatw is unbounded neaty, r > rg, and we shall arrive at a contradiction.
Thus, assume that for some> 0,

w(r) is unbounded onrg , rg +¢). (5.7)

Lemma 5.4. If A(r) < Ofor r nearrg, and (5.7) holds, then the projection of the orbit
(w(r), w’(r)) has finite rotation abouf0, 0), and aboui4-1, 0) for r nearry.

Remark.Note that we do not assume (5.1) but only tHat: 0 nearrg. In Case 2, we
use the contrapositive of Lemma 5.4; i.e. Aif< 0 for r nearrg, and if the orbit has
infinite rotation about either (@) or (+-1, 0), thenw is bounded neary.

Proof. Assume that the orbit has infinite rotation about eithe®fpor (+1, 0); we will
show that this leads to a contradiction.

Since (5.7) holds, the orbit must rotate infinitely many times outside the redien
1, asr \ 0. We may also assume without loss of generality thatlimw(r) = —oc.
It follows that there exists sequencps, }, {sn}, 7r+1 < Sp+1 < T, With w'(r,) = 0,
w(sy) = =2, limw(r,) = —oo, andw(r,) < w(r) < w(sy), forr, <r < s,; cf. Fig. 6

W =-2 w'

el

n

Fig. 6.

We first show that fotw(r) < —2,w’ is bounded; i.e, (as in the proof of Lemma 3.4,
(cf. (3.7)),

if w'(r)= %(ro +¢), then w’(r) < 0. (5.8)
To prove (5.8), we use (2.7):

g —uw  (r—rAw’ | uu’

Y T2 —r24 34

u
< @[—rw +uw']. (5.9)
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Thus, if for some* > o, andw(r) < —2, we hadw’(r) = 3(ro +¢), then since < 2,
it follows that

2
w'(r) = 5(ro+e) > —r,

3 U
sothat (5.9) implies (5.8). Thus.if(r) < —2,thenw’(r) < %(ro+5). Sinces,, —r, < ¢,
we have, for large:

2
2 —w(ra) < S o+ e);

this violates (5.7).ged
Corollary 5.5. If (5.1) and (5.7) hold, thetim~_, |w(r)| = cc.

Proof. Forr nearrg, the lemma implies that the orbit has finite rotation ngarThus
the orbit must lie in one of the four stripg, < -1, -1 < w < 0,0< w < 1,w > 1.

Since in each strip)” is of fixed sign wheny’ = 0 it follows then that’ is of one sign
nearro, so thatw has a limit at-o; sincew(r) is not bounded neag, the result follows.
O

w=-1 w' w=1
@ ) 3 4
w
® ™ (6) ®)
Fig. 7.

It follows from the last result that ifv is unbounded neag, then the orbit must lie
in either region (1) or region (5), as depicted in Fig. 7. We will assume that the orbit lies
in region (5) forr nearrq; the proof for region (1) is similar, and will be omitted. Thus,
assuming (5.1), and (5.7) we han&(r) < 0 nearrg, and

lim w(r) = +oo. (5.10)
7\\T0
Sincery is finite, (5.10) implies
w'(r) is unbounded forr nearry  (r > o). (5.11)

Lemma 5.6. If A(r) < Oforr nearrg (r > rg), and (5.10) holds, then
lim w'(r) = —oc0. (5.12)

\\T0

Remark.We do not use hypothesis (5.1) in this lemma, but we only asstiraed near
rg. This result will be used in Case 2.
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Proof. If w’ does not have a limit afy, then in view of (5.11), we can find sequences
Tn \ T0, Sn \ ro, Thn < Sp < Tn+l, such that

w(sn) = —n, w(ra) = —3, (5.13)
and n
if r, <7 <8, w(r)< -5 (5.14)
Thenifr, <r < s, andn is large, (2.2) gives
_(r—rA- “72)11}' + uw
—w'(r) = r2A
(=124 — LYy’ + (ruw + r2w’ — % w')
_ 2 2
B r3A
—w'(—12A — “72)
—3A
< ,(—T?A\ _ —w' < —w'
Y\TEa) T ro
Thus Y 1
<=, (5.15)
—w 70
and so integrating from, to s,,, gives
Y 1
2= (220 —(8n — 7)),
—w(ry) 70
so that
Sp — Tn > Tofn2. (5.16)

But for largen, r,, < 1 +rg, so that (5.16) implies
1=(1+7r0) — 710 > X(sn — T) = 0.
This contradiction establishes (5.12) and the proof of the lemma is complet&]

Thus to dispense with Case 1, and obtain the desired contradiction (assuming that
w is unbounded neat), we shall prove the following proposition.

Proposition 5.7. It is impossible for (5.1) and (5.7) to hold.
To prove this proposition, we shall obtain an estimate of the form
w’(r) < k(—w'(r)) (5.17)

for r nearrq. Integrating fromr > ro tory > r, gives

o (220N
(S50 < kra =),

—w'(r1)

and this shows that’ is bounded neaty, thereby violating (5.12).
In order to prove (5.17), we need two lemmas, the first of which is
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Lemma 5.8. If A(r) < Ofor r nearrg, (r > rp), and both (5.10) and (5.12) hold, then
writing Aw’? = f, we have

— f(r) > w(r)®, if r isnearro. (5.18)
Remark.We do not assume that (5.1) holds, but only that. 0 nearrq. This result too
will be used in Case 2.

Proof of Lemma 5.8\We write (2.14) in the form (cf. (2.5))
)
r2f +rfw?+ (rf +r —rAw? + (u w'? + Zuww’) =0. (5.19)
T

Now for r nearry,
rf+r—rA=rAw?+r —rA=rA@w? - 1)+r <0, (5.20)

in view of (5.12). Furthermore, if is nearrg,

2
Tuw’z + 2uww’ < 0 (5.21)

because of (5.10), and (5.12). Thus (5.19)-(5.21) imlf/ + r fw'?> > 0, so that for-

nearrg

fr> —f( . ) (—w') > fu',
or f'/f < w'. Integrating fromy to r1, whererg < r < r1, andr; is close torg, gives
1

< w(ry) —w(r),

tn(—f)

so that
In(=f(r)) > w(r) — k1,
wherek; = w(r1) — ¢n(—f(r1)). Exponentiating gives
—f(r) > k2e®™ > w(r)®,
for r nearrg, in view of Corollary 5.5. [
We shall use this last lemma for proving the following result.

Lemma 5.9. Assume that (5.1) and (5.10) hold. Then there is a congtantO such
that
— A(r) > kw(r)*, for r nearry. (5.22)

Proof. From (2.1), ifr is nearro,
— 2 _
w=® P (LN L
rZ rt =
where we have used (5.18). Thus, using (5.12),

—AU)/Z

A > = 114331411}/7

for someks > 0. It follows that for some constakt> 0,
—A(r) > e > kuw*

if r is nearrg. O
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We can now complete the proof of Proposition 5.7. As we have seen earlier, it suffices
to prove (5.17). Now since we are in region (5) (cf. Fig.#); < 0, so that for- near
ro, (2.2) gives

/ 4, 1

2
> (r—rAw — “w wlw' - wlw' - wrw
w C1
—r2A r3A r3A A’

wherec; is a positive constant. Thus,
4 /
" cw*(—w’)
w' < ————=
—A

where we have used (5.22). This proves (5.17), and as we have seen, completes the proof
of Proposition 5.7. [

< %(—w’) = c(—w'),

We now consider Case 2, where (5.2) and (5.3) hold; we will show that:

lim A(r)=0 5.23
lim () =0, (5.23)

and
Ii\m (w(r), w'(r)) = (w,w’) € Cp,. (5.24)

Remark.If (5.23) and (5.24) hold, then by the unigueness theorem of [10], the solution
is analytic atg and hence continues past

We begin with the following result.

Proposition 5.10. If (5.2) and (5.3) hold, then the orbit has finite rotati@about (0,0)
in the (w — w’)-plane;i.e.Q < co.

The proof will follow from a series of lemmas, the first of which is

Lemma 5.11. Assume that (5.2) and (5.3) hold. If the rotati@r= oo, or if w is bounded
nearrg, then
Ii\m A(r) =0. (5.25)

Proof. If Q = oo, thenw is bounded neary, by Lemma 5.4 and the remark following.
Thus we will prove that ifw is bounded neaty, then (5.25) holds, or equivalently, that

lim p(r) = lim r(1— A() = ro. (5.26)

SinceA(r) < 0 for r nearro,
w(r) =r(L— A(r)) > r > ro, if 7> 1o,

so sinceA(r,) — 0,

lim p(r) =ro. (5.27)
1"\7‘0
We shall next prove L
limr\ro ,U/(T) < ro, (528)

and this together with (5.27) will prove (5.26).
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If im,~_,, 14(7) > ro, then we can find numbebsandc, b > ¢ > rq, and sequences
{sn}, {tn}, 0 < tne1 < Sp < ty, With u(s,) = ¢, u(t,) = b. Thus

b—c= M(tn) - M(Sn) = ,u/(g)(tn - Sn)a
where¢ is an intermediate point. Now from (2.15) femearro,

2 2
u? wu
p(r) = 24w’ + 2z < o <k,

sincew isassumed to be bounded. Henlge ) < k(t,—sy), ort,—s, > (b—c)/k > 0.
This is a contradiction sincg_, (¢, — s,) is finite. Thus (5.28) holds and the proof is
complete.

Combining Lemmas 5.4 and 5.11, we get as an immediate corollary,

Corollary 5.12. If (5.2) and (5.3) hold, and2 = oo, then®(r) is bounded for- near

To.-
We next have

Lemma 5.13. If (5.2) and (5.3) hold, andv is bounded neary, then eitherdw’? is
bounded nearg, or lim,_,,(Aw?)(r) = —oc.

Proof. We write f = Aw'?, and again use (2.14):
r2f" + (2rf + ®)w'? + 2uww’ = 0. (5.29)

If fis notbounded neag, then (Lemma5.11) sinek andw are bounded, (5.29) shows
that f/ > Qif f is sufficiently large, and the result follows. [

Lemma 5.14. If (5.2) holds, anddw’? is bounded neary, then the rotation numbeg
is finite.
Proof. We are going to apply Theorem 2.3 withhy = —1, wp, = —1 +¢, for some
¢ > 0. Thus assum& = oo; then there exists a sequengk \, o with w(rg) = 0,
w'(rg) > 0.Sinced < 0nearry, the orbit cannot cross the segment 0,—-1 < w <0
forr < rg. Thus we can find > 0 and numbers”,, andr” ,,_, such thatv(r",) = -1,
w(r?y,.) = —1+¢, and forr™; < r <7, , we have-1 < w(r) < —1 +¢, and
forrm,,. <r <rp, —1+e < w(r) < 0. By hypothesisAw'? is bounded neary, SO
in particular onr™; < r < ¢",,_, for largen. In order to apply Theorem 2.3, it only
remains to show thab(r) is bounded away from 0 on this intervakifs small.
Chooses > 0 so small that

1 .
(1-w?? < Eré, if —1<w<—1+e. (5.30)
On this interval,

b=r—rA——>r— — >rg— = .9rp. (5.31)
r r

To

Now by Theorem 2.3, there exists an> 0, such that for each,

n n
Tl g4e =721 20)
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But asr™,,. andr™, both lie in (o, 7o + 1) for largen, we have
1=(ro+1)—ro> % (r"g,. —r"y) = 00,
and this is a contradiction. O
Our final lemma in the proof of Proposition 5.10 is the following
Lemma 5.15. If (5.2) and (5.3) hold, an@ = oo, Aw'? is bounded neary.
Proof. By Corollary 5.12,® is bounded. From (2.6), ilw’> — —oo, then as- \, ro,

rA’ = —2Aw'? + hd — +00,
r

and this contradicts (5.3). O
Note that Lemmas 5.14, and 5.15 prove Proposition 5.10.
Corollary 5.16. If (5.2) and (5.3) hold, them(r) is of one sign for nearry.
We next show that for nearryg,
either w?(r) > 1 or w?(r) < 1; (5.32)

thatis, eitherw < —1,0r—1 < w < 0,0r0< w < 1, orw > 1. To prove this we need
two lemmas, the first of which is:

Lemma 5.17. If (5.2) and (5.3) hold thetim,~_,,, w?(r) = 1is not possible.

Proof. Suppose (for definiteness) that ling,, w(r) = —1. With ¢ defined by (5.30),
we see that for nearrg, —1 — ¢ < w(r) < —1 +e¢. On this interval, (5.31) implies
®(r) > .9r. Then from (2.6),

® 9
2520,
T T

rA’ = —2Aw’? +

and this contradicts (5.3). O

We next show that the orbit has finite rotation aboyjlin the casev > 0 nearrg,
or about ¢1,0) in casew < O.

Lemma 5.18. If (5.2) and (5.3) hold anay > O for r nearrg, then the projection of the
orbit in thew — w’ plane has finite rotation aboyf, 0). Similarly if w < 0 for r near
o, then the projection of the orbit in the — w’ plane has finite rotation aboit-1, 0).

Proof. Supposev > 0 nearrg (the proof forw < 0 is similar, and will be omitted), and
the orbit has infinite rotation about (1,0). Since Jiqy, w(r) Z 1, we must have either
lim,~_,w(r) > 1 orlim,~_,w(r) < 1.In either case we repeat the argument of Lemma
5.10 using thev-interval [1, 1 +&] or [1 — ¢, 1]. We have thatd is bounded away from

0 by (5.31). By Lemma 5.13, eitheA{'?)(r) — —oo asr \, ro, or Aw'? is bounded
nearro. We rule out the casdw’? — —oo becauser’ is of one sign; hencelw'? is
bounded neary. Using Theorem 2.3 exactly as in Lemma 5.14, we have that the orbit
can cross the line = 1 a finite number of times. Thus > 1 orw < 1 for r nearrg.

([l
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Summarizing, we have

Corollary 5.19. For r nearrg, precisely one of the following holdsi(r) < —1, —1 <
w(r) <0, 0 < w(r) <1 orw(r)>1

Sincew”, whenw’ = 0, has a fixed sign in each of the four strips, we see1Hat
must have a fixed sign forfor r; i.e., the projection of the orbit in the — w’ plane
must lie in one of the 8 regions depicted in Fig. 7. Since we now have the orbit confined
to one of these 8 regions, without loss of generality we will consider the case where
w’ < 0.

We will first show that orbit cannot lie in regions (6) or (8) femearry. Then
we will show that if the orbit is in regions (5) or (7), and is bounded neary, then
lim,~_ro A(r) = 0 and lim._,(w(r), w’(r)) exists and lies orC,,; hence the orbit
continues pasto. We complete the proof of Theorem 5.1 by showing that the case
wherew’ is unbounded neat cannot occur.

Lemma 5.20. If (5.2) and (5.3) hold, then the orbit cannot lie in regions (6), or (8) for
r nearro.

Proof. In regions (6) and (8w is bounded neafy. Thus from Lemma 5.11,

lim A(r) = 0. (5.33)
\T0
If v = Aw’, then from (2.13) we se& < 0 so lim~_,, v(r) = L > 0 exists. Thus
writing Aw'? = %, we see that

Tli\nlo(Aw’z)(r) = —0. (5.34)

Sincew is bounded neary (5.33) implies thatb is bounded neary. Thus, from (2.6),

O
rA' = — — 2Aw'"? — +00
r

asr \, ro. However, this contradicts (5.3). O

We now consider the case where (5.2) and (5.3) hold, and the orbit lies in one of the
regions (5) or (7) for nearrg, > ro.
We first consider the case wheréis bounded.

Lemma 5.21. Suppose that (5.2) and (5.3) hold, and that the orbit lies in either region
(5) or (7) for r nearro. If w/(r) is bounded neary thenlim,~ ,, A(r) = 0, lim,~_,,
(w(r), w'(r)) = (w, w') exists, andw, w’) lies onC,,.

Note that in view of our remark preceding Proposition 5.10, Lemma 5.21 implies
that Theorem 5.1 holds in this case.

Proof. First note that since’ is bounded, this implies is bounded, and hence Lemma
5.11 implies that
Ii\m A(r)=0. (5.35)
\,T0

Now asA4 — 0, andw has a limit, we see thab = — r A — u?/r has a limit; call this
limit ®g; i.e.
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®p = lim = &(r). 5.36
0= lim =) (5.36)
If &¢ 70, then as lim_,, v(r) = 0 we may apply L'Hospital’s rule to obtain
!
o) _ o V0

lim w'(r) = lim

\T0 \.T0 A(’r‘) - \.T0 A'(T’)
—2w'%v _ uw —uw
= lim —"——2=1lm |——
\\T0 ° Lu)/z \\T0 ’
r2 T

where we have used (2.6) and (2.13). Thus

lim () = lim _“w] : 5.37
\\T0 w (T) \.T0 |: () ( )
We claim that

®g # 0. (5.38)

Note that if (5.38) holds, then since has a finite limit atrg, (5.37) implies that
lim,~_r, w’(r) exists and is finite, and

Tli\nlo(w(r), w'(r)) € Chy.

So, to complete the proof Lemma 5.21, it suffices to prove (5.38).

Thus, assumeéq = 0; we show this leads to a contradiction. dfu)(ro) # 0, then
(5.37) implies thatv'(r) is unbounded near, and this is a contradiction. Hence we
may assumeuw)(ro) = 0. If u(rp) = 0, then

2
0=¢0=7’0*@=7’o,
To
and this is a contradiction sineg > 0. Thus we may assume(ro) = 0. In this case
1
0= <I)O =70 — —,
o

so that
ro =1

Note too that ifw(rg) = 0, the orbit lies in region (7) for nearry. We now have
A(rna1) — A(rn) = (rpes — 70) A (6), (5.39)
wherer,, > £ > r,+1 > 1. From (2.6)
u?(€)
52

Since > 1, 1— @ > 0, so for largen, (5.40) impliesd’(£) > 0. Using this in (5.39)
gives 0> A(r,) > A(r,+1), and this violates (4.3). Thus (5.38) holds and the proof is
complete. O

EA(§) =1-A(©) - — 2(Auw)(©). (5.40)
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We now consider the case where (5.2) and (5.3) hold, and the orbit is in region (5)
or (7), andw’(r) is unbounded for nearrq, r > ro. We shall show that this case is

impossible.
First note that ifw is bounded neary, it follows from Lemma 5.11 that
lim A(r) =0. 5.41
Jim A@) (5.41)

Sincew’ < 0, lim,~_,, w(r) exists. Thus ifw is bounded neary, lim,_,, ®(r) exists
and is finite; say
Ii\m ®(r) = dg. (5.42)
\.T0

We now have

Proposition 5.22. If (5.2) and (5.3) hold, and’ is unbounded neaf,, thenw cannot
be bounded neaty; in particular that orbit cannot lie in region (7).

Proof. Suppose thatv(r) is bounded for nearrg; we will show that this leads to a
contradiction.

Thus, in this case (5.41) holds adg} is finite. We consider 3 caseby > 0,
®g < 0, &g = 0, and we will obtain contradictions in all cases.

Case 19y > 0. From (2.6), for nearro,

o 24Aw7?
A/(’I") = ﬁ _

> 0,
and this violates (5.3); thus Case 1 cannot occur.
Case 29 < 0. We first show

lim w'(r) = —oo. 5.43
lim /(1) = —o0 (5.43)

To see this, note that if (5.43) were false, thenvass unbounded neap, there would
exist a sequence, \, ro such that

w'(sp) < —n and w”(s,) = 0.
Then from (2.7)

0 = 57, (Aw")(sn) + P(sn)w'(sp) + (uw)(sn)
= O(sp)w'(sn) + (uw)(sn) — o0

asn — oo. This contradiction implies that (5.43) holds.
Now if f = Aw'?, then from (2.14),

r2f + 2rf + ®)w'? + 2uww’ = 0, (5.44)

and since (2f + ®) is strictly negative neafy andw is bounded near it follows from
(5. 43) thatf’(r) > 0 if r is nearrg). Thus

lim =L<0
Jim f(r)
exists; wherel > —oo. We claim that

L=—00. (5.45)
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To see this, we note first that
(W?)(r) = w'(r) f(r) — +o0, (v = Auw'), (5.46)
so that (cf. (2.13)),

, —2w'?v ww
v = —_

r r2
sincew is bounded neaty. Hence, ifrg < r < r1, andry is nearrg, v(ry) < v(r) so

(Aw)(r) = v(r)w'(r) < v(rdw'(r),

and asu(ri)w’(r) — —oo, we see thatfw'?)(r) — —oo, asr \, ro; thus (5.45) holds.
Now again using (2.6),

rA'(r) = —2(Aw"?)(r) + % — 400,

asr \, ro. But this violates (5.3); hence Case 2 cannot occur. We now turn to the final
case,

Case 3.9y = 0. The proof in this case relies on Theorem 2.2. Indeed, we will show
that lim,~_,, A’(r) = 0, and from (5.41), lim_,, A(r) = 0. This is enough to invoke
Theorem 2.2, to conclude thafr) = 0 and thusv’(r) = 0; this violates the assumption
thatw’ is unbounded.
We first show
lim A'(r) <O. (5.47)
T\\T0

Indeed, if lim~_,A’(r) > O then forr > 7o, r nearro,
0> A(r) = A(r) — A(ro) = (r — r0)A'(€) > 0,

where¢ is an intermediate point. This contradiction establishes (5.47).

Next, since

rA = ®_ 2Aw'? (5.48)
T

it follows from (5.47) thatlim._, (% — 24w'?) < 0, solim._,, (%¢ — 24w?) <0, or

S )
0> lim,_,,24w? > =2 =0,
0
thus o
im,~_, Aw’® = 0. (5.49)
We next show o
Ii\m Aw'? =Tim ., Aw'’. (5.50)
7 \.T0

(Note that if (5.50) holds, then lim_,,, Aw'2 = 0, so from (5.48)4'(ro) = 0. Thus the
proof of Proposition 5.22 will be complete once we prove (5.50).)
So suppose that there is an> 0 such that

lim Aw? < —27. (5.51)
"0
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Then in view of (5.49), iff = Aw'?, we can find a sequencg, \, ro such that
f(sn) = —n, f'(sn) < 0.Since (5.41) holds, we havKs,,) — 0sothatv'(s,) — —oc.
From (5.44),

21 (s0) + (=281 + B(s,))w(s) + 2(uww’)(s,) = 0. (5.52)

But asf’(s,) < 0 andw’?(s,,) — oo, we see that (5.52) cannot hold for largeThus
(5.50) holds and this implies lim_,,, Aw’(r) = 0, and thus by Theorem 2.2, we have a
contradiction. I

We now consider the final case in the proof of Theorem 5.1, namely in regions (5)
or (7),
w andw’ are unbounded neas. (5.53)

(Of course, this implies that we are in region (5).) Note too that in this case we have

lim w(r) = +oo. (5.54)

™\\To

Proposition 5.23. If (2.2) and (2.3) hold, and the orbit lies in region (5), then (5.54)
cannot hold.

Note that once Proposition 5.23 is established this will complete the proof of Theorem
5.1.

Proof. From our remark following the statement of Lemma 5.6, we have

lim w'(r) = —oo. 5.55
lim /(1) = —o0 (5.55)

Then as we have remarked earlier (5.18) holds;A@’?> > w®, for r nearrq. Thus,
from (5.48) forr nearry,

I @ 5 u2
TA(T):fo+?>2w(r) + 1—A—7 >0,

sincew? is of orderw?, and this contradicts (5.3). O

6. Miscellaneous Results and Open questions

In Sect. 3, we proved that the zeros #fare discrete, except possiblyrat= 0. This
leads to the first question.

1. Canr = 0 be a limit point of zeros ofi?

We conjecture that the answer is no. In a recent paper [4,4/8the authors assume
that the answer is no. A rigorous proof of this would be welcome.
A related question is

2. Do there exist solutions of the EYM equations for whic¢lhas more than two zeros?

A negative answer obviously implies a negative answer to question 1. In [5], the authors
have numerically obtained a solution having two zeros. This leads to the next Problem.

3. Give a rigorous proof of the existence of a global solution of the EYM equations,
(other than the classical Reissner—Nordistrsolution), whered has two zeros.
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4. A subject of much current interest is the study of solutions mear0 [4,5]. If,
as we suspect, Question 1 has a negative answer, then every solution=n@ihas
eitherA > 0orA < 0. If A > 0 nearr = 0, then we have proved in [10], that either
lim,~ 0 A(r) = 1, in which case the solution is particle-like, or else,ligg A(r) = +oo,
in which case the solution is a Reissner—Noiidsilike (RNL) solution [14]; this case
is re-discussed in [4].

If A < 0nearr =0, much less is known. In [14], we proved the following theorem:
Theorem 6.1. Given any triple of the form = (1, b, ¢), there exists a unique local RNL

solution (A4(r), w,(r)), satisfyinglim, o7 A(r) = b, wy(0) = 1, w;/(0) = ¢, and the
solution depends continuously on these values.

If b < 0, then lim.\ o A(r) = —oc0, and Iim\o(w2(7'),w’(r)) = (1,0). These so-
lutions have been termed Schwarzschild-like [5]. In [5], the authors also investigated
RNL solutions but they mistakenly omitted the 2-parameter family of solutions that have
w(0) = 0. These solutions have the following asymptotic form nea0 :

1 b

A(r)= 5 +-+hodt.,
reor

w(r) = er®+hot..

These solutions are interesting since they give rise to asymptotically flat solutions with
half-integral rotation numbers, see [14]. In addition there are solutions which have
w?(0) = 1; these solutions have the following asymptotic form neaO :

A(r) = b +h.ot.,
r

w(r) = 1 +cer? + ho.t..

There is still another type of local solution (discussed in [5]), having 0 nearr = 0,
but these do not appear to give rise to asymptotically flat global solutions, [5]. We are
thus lead to the following “trichotomy conjecture”:

Conjecture.If (A(r),w(r)) is a globally defined solution of the EYM equations (1.3),
(1.4), then

—o0, of
lim A(r)=<¢ +1, or
r\0 +00.

In view of our above remarks concerning the behavior of solution(ii) > 0 near
r = 0, this conjecture can be rephrased as:

Conjecture.If (A(r), w(r)) is a globally defined solution to the EYM equations (1.3),
(1.4), andA(r) < O for r near 0, then lim\ o A(r) = —oo.

5. Another interesting question is the following:

Does there exist a solution to the EYM equations (1.3), (1.4), wHérg < Oin a
neighborhood of = co?

We conjecture that the answer to this question is negative. If our conjecture is true,
this would enable us to drop the hypothedig) > 0 in Theorem 1.2. If, on the other
hand the conjecture is true, then we can show that the orbit must have infinite rotation
in the @, w’)-plane andv must be unbounded.

6. Using the methods in [7-9], we have proved the following theorem
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Theorem 6.2. Thereis a continuous 2-parameter family ofsoluti()Agﬂ(r), wa,ﬁ(r))

to the EYM equations (1.3), (1.4), defined in the far-field, which are analytic functions
ofs = % That s, if(A(r), w(r)) is a solution to the EYM equations (1.3), (1.4) which is
asymptotically flat, and is analytic in= 2, then(A(r), w(r)) = (Aa,5(r), wa,5(r)) for
some pair of parameter valués, j3).

(We omit the details of the proof as they are similar to those in [7].)

In the above theorem, one parameter is the (ADM) ngassid in fact A(s = 0) = 1,
and%4| _ = —p. The other parameteris= 42| _., andw?(s = 0) = 1; cf. [10].

It follows from the results in [10 or 14], that the (ADM) magsis finite for any
solution which is defined in the far-field. Moreover, for such solutions lim rw’(r) =
0, cf. [9]. We do not know whether lim ., 72w’(r) = lim,_o 2% exists. This leads
to the next question: ‘

If every asymptotically flat solution to the EYM equations (1.3), (1.4) analytic in
s==-ats=07

If the answer is affirmative, then we may consider thed)-plane as representing
those solutions having the following asymptotic form nearO:

A(s)=1—fBs+h.ot.,
w(s) =1— as+h.o.t.,

and all such solutions are described by a point inth¢lj-plane (or in the corresponding
plane corresponding t@(s = 0) = —1), or they correspond to the 1-parameter family
of classical Reissner—Nord8tn solutions:/A(r) =1 — = + L w(r)=0.

r2»

[3 Schwarzschild
Solutions

RNL
B=2:-1

RNL RNL

Fig. 8.

We consider thed, 5)-plane as depicted in Fig. 8. In this plane, certain regions
are easy to identify. Thus, if < 0, these correspond to RNL-solutions. Similarly, the
regiona > 0, 8 < 0, also correspond to RNL-solutions. The lime= 0 corresponds to
Schwarzschild solutions with mags Particle-like and black-hole solutions must lie in
the 1st quadrant > 0, 8 > 0. Presumably, there are a countable number of curves in
the 1st quadrant distinguished by the number of zeras plirametrized by, the event
horizon. (These are schematically depicted in Fig. 8, where the pBinterrespond to
particle-like solutions and thé coordinate ofP, tends to 2 as — oo; cf. [11].) There
are also a countable number of points in this quadrant which correspond to particle-like
solutions. All other solutions in this quadrant are RNL solutions.



732 J. A. Smoller, A. G. Wasserman

Thus, near any particular black-hole solution, there are global solutions which are
neither black-hole or particle-like solutions; i.e., they must be RNL solutions. This
follows since any point in this plane represents a global solution (from our results in this
paper, cf. Theorem 1.2). Thus for any such global solutibni), eitherA has a zero, in
which case the corresponding point (3) lies on one of the above-mentioned countable
number of curves, or it is one of the countable number of particle-like solutions, or it is
an RNL solution [10, 14].

It follows that in any neighborhood of a black-hole solutioty(r), wo(r)) there are
RNL solutions. In particular, ifig(r1) = —n < 0, then arbitrarily close to this solution,
there are solutionsA(r), w(r)) having A(r;) > 0. This is a spectacular example of
non-continuous dependence on initial conditions.
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