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Abstract: We prove the existence of a countable family of globally regular solutions
of spherically symmetric Einstein—Klein—Gordon equations. These solutions, known as
mini-boson stars, were discovered numerically many years ago.

1. Introduction

Boson stars are compact gravitationally bound soliton-like equilibrium configurations
of bosonic fields. The simplest kind of boson star, which is made up of a self-gravitating
free complex massive scalar field, was conceived over thirty years ago by Kaup [1]
and Ruffini and Bonazzola [2] who found numerically the ground state solution to
the spherically symmetric Einstein—Klein—Gordon (EKG) equations. A decade later the
systematic numerical analysis of these equations was performed by Friedberg, Lee, and
Pang [3] who rediscovered and extended the results of [1,2], in particular they found a
countable sequence of excited states.

The aim of this paper is to give a rigorous proof of existence of solutions found
in [1-3]. In the physics literature these solutions are usually referred to as mini-boson
stars (“mini” because they are tiny objects with massGlW, wherem is the boson
mass). What are the motivations for studying such objects? Let us mention three possible
reasons varying from physical to purely mathematical. First, most theories of elementary
particles predict the existence of massive bosons which interact weakly with baryonic
matter. To the extent one believes in these models, one should accept their consequences
like boson stars. From this standpoint, the recent surge of interest in boson stars is largely
due to the suggestion that the dark matter could be bosonic since then some fraction of
the missing mass of the universe would float around in the form of boson stars. Second,
even if massive scalar fields do not exist in nature, they provide one of the simplest
fundamental matter sources for the Einstein equations and, as such, are ideal theoretical
“laboratories” for studying the dynamics of gravitational collapse. Mathematically, these
studies amount to the analysis of the Cauchy problem for the EKG equations. Boson stars
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play an important role in this context as candidates for intermediate or final attractors of
dynamical evolution. Finally, and admittedly most interestingly for us, mini-boson stars
arenon-perturbativesolutions of the EKG equations in the sense that they have no regular
flat-spacetime limit (one manifestation of this property is the fact mentioned above that
the total mass of a mini-boson star is inversely proportional to the gravitational constant
G). In this respect mini-boson stars are similar to the Bartnik—McKinnon solutions of
the Einstein—Yang—Mills equations [4]. However, in contrast to the Bartnik—McKinnon
solutions, the mini-boson stars are not static: although the metric and the stress-energy
tensor of the scalar field are time-independent, the scalar field iself has the form of a
standing wavep (r, t) = €' ¢(r). This fact has an important consequence at the ode
level, namely the lapse function does not decouple from the Klein—Gordon equation
and the hamiltonian constraint which means that we have to deal with a 4-dimensional
(nonautonomous) dynamical systerBelow we analyze this system using a shooting
method which is similar in spirit (but quite different in implementation) to the proof of
existence of the Bartnik—McKinnon solutions [5].

The paper is organized as follows. In Sect. 2 we derive the field equations together
with the boundary conditions and discuss some basic properties of solutions. We also
formulate the main theorem and sketch the heuristic idea of its proof. In Sect. 3 we prove
the local existence of solutions near the origin. In Sects. 4 and 5 we discuss the limiting
behavior of solutions for small and large values of the shooting parameter, respectively.
In Sect. 6 we derive the asymptotics of globally regular solutions. Sect. 7 contains some
technical results concerning the behavior of singular solutions. Finally, in Sect. 8, using
the results of Sects. 4-7, we complete the proof of the main theorem by a shooting
argument.

2. Preliminaries
The action for the EKG system is given by

R

1 1
S= / d*x/—g ( T6G 50?00 — §m2¢*¢) : (2.1)

whereR is the scalar curvature of the spacetime megtig, ¢ is the complex scalar
field, andm is a real constant called the boson mass. The associated field equations are
the Einstein equations

1
Rap — EgabR =81GTawp (2.2)
with the stress-energy tensor of the scalar field
1 * * 1 cd * 2 4%
Tap = E(Baqﬁ ¢ + agp ™) — Egab(g 0cp”dap +m=9" ), (2.3)
and the Klein—Gordon equation

@O —-m?¢ =0, (2.4)

1 For comparison, the static spherically symmetric Einstein—Yang—Mills equations reduce (within the purely
magnetic ansatz) to a 3-dimensional (nonautonomous) dynamical system.
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whereld is the d’Alembertian operator associated with the megyic Now, we assume
that the fields are spherically symmetric. We write the metric using areal radial coordinate
and polar slicing

ds? = —e P Adr® + A7Ydr? 4 r2dQ?, (2.5)
wheredQ? is the standard metric on the unit two-sphere, arahds are functions of

(z, r). In this parametrization the (relevent components of) Einstein equations have the
particularly simple form

1-A

0,A = — 81 Gr Too, (2.6)
r

88 = —ArGrA Y (Too + T11), (2.7)

&A= —8rGre ATy, (2.8)

where the components of stress-energy terggrare expressed in the orthonormal
frame determined by the metric (2.3p(= ¢’ A=Y29,, e1 = AY?3,). From (2.3) we
obtain

1

Too = §<A|ar¢|2+A—1e2‘3|at¢|2+m2|¢|2), (2.9)
1

Ty = §<A|ar¢|z+mle2§|a,¢|2—m2|¢>|2>, (2.10)
1

Tor = §e5<ar¢*at¢ + 0r¢ 3,0™). (2.11)

The remaining components of Einstein’s equations are equivalent to the Klein—Gordon
equation.

For the scalar fielgp we assume the standing wave angatz t) = exp(iwt)¢(r),
wherew is a real constant. Then, due to th€l) symmetry of the action, the stress-
energy tensor and the metric are time-independent. Mor@yer—= 0 so Eq. (2.8) is
trivially satisfied. In terms of the dimensionless variables

x = mr, f(x) = VA4nG ¢(r) (2.12)
and the auxiliary variable
Cx) = 2 a1, (2.13)
m

Egs. (2.4),(2.6) and (2.7) reduce to the following system of ordinary differential equations
(hereafter prime denote{%):

x2f/ / x2 )
( - ) = e ACH T, (2.14a)
Al = 1;—A — x(Af?+ ACZf2 + f?), (2.14b)

c
C' = —(A-1+ x2f2). (2.14c)
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Instead ofA, it is sometimes convenient to use the “mass” functléor) defined by
A(x) =1—2M(x)/x. From (2.14b) we have

M(x) = %/Oxsz(Af/z + AC%f2 + £?)ds. (2.15)

A spacetime is said to be asymptotically fla {bo) is finite and

lim M(x) =My < oo. (2.16)
X—>00

The limiting valueM is interpreted as the total mass of a solution (in our case it is
measured in unit%%). In Sect. 6 we will show that the finiteness of mass implies that
C has a finite limit andf decays exponentially as— oo.

Besides the singularity at infinity, the field equations (2.14) have the fixed singular
point atx = 0 and a moving singularity at, whereA(x) = 0. Regularity of solutions
atx = 0 requires the following behavior:

f@)=a+0x?, Ax)=1+0x>, Cx)=a+ 0(xd), (2.17)

wherea = f(0) anda = C(0) are arbitrary parameters (assumed positive without
loss of generality). In Sect. 3 we will show that these parameters determine uniquely a
smooth local solution to Eqgs. (2.14).

Definition 2.1. The solution of Egs. (2.14) starting at x = 0 with the behavior (2.17) is
called the a-orbit.

In the following whenever we write “a solution” we always mean dherbit. Also
when we write that some property holds for.allve always mean for all > 0. We will
frequently refer to the behavior aforbits in the( f, f’)-plane; when we write, say, that
thea-orbit enters the first quadrant (Q1 for brevity), we mean that the projection of the
a-orbit in the(f, f')-plane does so.

Definition 2.2. The a-orbits which exist for all x and are asymptotically flat are called
globally regular.

Now, we are ready to formulate our main result;

Theorem 2.1.For each @ > 1, there is a decreasing sequence of parametersa, (n =
0,1,2,...) such that the corresponding a,-orbits are globally regular. The index n
labels the number of nodes of the function f (x).

This theorem makes rigorous the numerical results obtained in [1-3]. Notice that al-
though thez-orbits are determined by two parameters, only the parametes to be
fine-tuned so the shooting is essentially one-dimensional.

In order to prepare the ground for the proof of Theorem 2.1 we discuss now some
elementary global properties @forbits.

Lemma 2.2.A(x) < 1forall x > Ounless f(x) = 0.

Proof. From (2.14b),A’(xg) < O if A(xg) = 1 soA cannot cross 1 from below. Since
A(x) < 1 for smallx, the lemma follows. O

Lemma 2.3.An a-orbit existsaslong as A(x) > O.
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Proof. If A(x) > Oforx < x < oo, then lim,_z M(x) exists (becaus#?’ > 0 and
M(x) < x < x)solim,_, ; A exists as well. We will show that the orbit can be continued
beyondx provided that lim_. 3z A(x) > 0. Since O< A < 1, the only obstruction to
extending the solution is the possibility thatf, or f” might be unbounded. To see that

is bounded we note that A)’ < 1 — x2A f/2. Choose > 0 such thatd (x) > A(¥)/2

for ¥ —e < x < ¥ then(xA) < 1— (¥ — €)2A(¥) f'?/2 and integrating from

X —€ < x gives thatf;_e f'(x)? < oo and hence, by the Cauchy—Schwarz inequality,
J=_ 1f'(x)| < oo. Thus, f is bounded. This implies by Eq. (2.14c) tht €)' is also
bounded so botly' and I/ C are bounded. Now, (2.14a) says thé’/C is bounded so
f’is bounded. O

Remark. It follows from Lemma 2.3 that the only possible obstruction to extendability
of a-orbits to arbitrarily largex is lim,_.z A = 0 for somex. If that happens we will
say that the solutioorashes at x.

Let us define the functiog = 1— ACZ. The following two properties of this function
will play an important role in our discussion.

Lemma 2.4.\\e have

(@) If g(x) <0, theng’(x) > O;
(b) If g(x0) = 0, then g(x) > Ofor all x > xp.

Proof. A simple calculation yields
1-A
g =C? <— +xAf? —ng2>. (2.18)
X

Part (a) follows immediately from (2.18). To prove Part (b) note at;) > O if
g(x1) = 0, sog cannot cross zero from aboven

The restrictione > 1 in Theorem 2.1 can be easily seen as follows. Suppose that
there is a globally regular solution with < 1. Sinceg(0) = 1 — &2, it follows from
Lemma 2.4 thag (x) is positive for allx. Multiplying Eq. (2.14a) byf and integrating
by parts we get thaff’ > 0 for all x, hencef? is monotone increasing which is
obviously impossible for globally regular solutions (in fact such solutions crash at finite
x as follows easily from Eg. (2.14b)). Thus we have

Lemma 2.5.There are no (nontrivial) globally regular solutions for o < 1.

Note that Lemma 2.5 implies in particular that there are no statie: (0) globally
regular solutions. In view of Lemma 2.5 from now on we always assumextbal.

Definition 2.3. The rotation function 6 (x, a) of an a-orbit is defined by 6(0, a) = 0O,
tand(x,a) = —f'(x)/f(x) and 9(x, a) is continuous in x. We will drop the second
argument of 6 if there is no danger of confusion.

Now we list the basic properties of the rotation functioruedrbits which we will
need below.
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Lemma 2.6.For any honnegative integer n we have:

(@) If0(x1) > (n + 1/2)7 for some x1, thenO(x) > (n + 1/2)x for all x > x3.
(b) If 6(x1) < nx for some x1 and g(x1) > 0, then 6(x) < nx for all x > x1.
(c) There are at most two values of x with (x) = nr.

Proof. (a) We note that'(x) = (f'2 — ff")/(f2 + f'?), s00'(x) = 1if 0(x) =
n+1/2)x.

(b) If x > x3 andg(x1) > 0, theng(x) > 0 by Lemma 2.4. Next, we note that
0'(x) = —g(x)/A(x) < 0if 8(x) = nmw andg(x) > 0. If g(x) = 0 thend’(x) = 0 but
0" (x) = —g'(x)/A(x) < 0sinceg’(x) > 0 wheng(x) = 0 by Eq. (2.18).

(c) The functiond(x) — nr changes sign at each zero for whigkx) # 0. From
Lemma 2.4,g changes sign at most once. Thus, #for= 0, 0(0) — nm < 0 and at
x1, the first zero 0B (x) — nx, if g(x1) > 0 then by part bp(x) — nt < 0 for all
x > x1. If g(x1) < 0 thend(x) — nm changes sign at1, and hence, at,, the next
zero of6(x) — nm, g(x2) > 0 and henc®(x) — nwr < 0 forallx > x2. Forn = 0,
0(0) —nm = 0,0(x) > O0nearr = 0 and ifé(x1) = 0 theng(x1) > 0, henced(x) <0
forallx > x1. O

Before going into details of Sects. 3-8, let us outline the main idea of the proof of
Theorem 2.1. According to this theorem there exists a countable family of globally
regular solutions distinguished by nodal class. We first show (Sect. 3) that there is a
continuous one-parameter family of local solutions depending ea f(0); we all
these solutions-orbits. In Sect. 6 we show that arorbit that has bounded rotation and
that is defined for alk is a globally regular solution, that is, it has the correct asymptotic
behavior agz — oo. The existence af-orbits with bounded rotation that are defined for
all x is proven in each nodal class by an inductive application of a shooting argument.
The zeroth solution we construct h@éx, ag) < 7/2 for all x; the first solution has
0(x,a1) < 3m/2 (and greater than/2 for largex), etc. This is shown in Fig. 1. The
crucial step of our argument is the control of behavioradrbits for large and small
values of the parameter In Sect. 4 we show that for sufficiently smalthea-orbit has
arbitrarily large rotation; more precisely, there is a numesuch that (x, a) > nx
for somex if a < b,. In contrast, we show in Sect. 5 that for>> 1 thea-orbit exits
Q4 directly to Q1 (see Fig. 1).

Now, to prove the existence of a globally regular solution in the zeroth nodal class
we letag = inf{a| 6(x, a) < 7/2 for all x for which thea-orbit is defined}. Note that
ap > b1 > 0. We then prove that thg-orbit is the globally regular solution in the zeroth
nodal class. It is clear that thg-orbit has rotatiorf (x, ag) < 7/2 for otherwise all
nearby orbits would have rotation 7 /2 which contradicts the definition a§. It is also
easy to see that the-orbit cannot exit Q4 to Q1 because again, nearby orbits would
also do so which contradicts the definitionagf Hence, theig-orbit must stay in Q4; it
either crashes or is defined for aland is a globally regular solution in the zeroth nodal
class. Thus, it remains to show that xgorbit does not crash. The (technical) crash
lemma of Sect. 7 shows that if an orbit crashes in Q4 then nearby orbits either crash in
Q4 or exit Q4 to Q1. Thus they-orbit cannot crash because nearby orbits would all be
in {alf(x, a) < m/2 for all x for which thea-orbit is defined} and:g would not be the
infimum of that set.

To show the existence of globally regular solutions in higher nodal classes we proceed
as above. We let,, = inf{a|0(x,a) < (n + 1/2)x for all x for which thea-orbit is
defined}. We then show tha@t(x, a,) < (n + 1/2). We again use the crash lemma as
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we did in then = 0 case to show the,-orbit is defined for alk. The only difference is
that we must show tha&t(x, a,) > nx. That fact follows easily from Lemmas 2.6b and
6.3.

- a=a,=0.4404104 a=0.42

- a=a,=0.3486769

 a=a,=0.3196460 f a=0.31

Fig. 1. The projection ofa-orbits on the(f, f’) phase plane for several selected values of the shooting
paramete

3. Local Existence

Proposition 3.1. There exists a two-parameter family of local solutions of Egs. (2.14)
near x = 0 satisfying theinitial conditions (2.17).

Proof. The proof is standard so we just outline it. We introduce new variables f”,
z=1In(C), B =(1—- A)/x, and rewrite Egs. (2.14) as the first order system

f=w, (3.1a)
)CZ
() = = <(xf2 —Bw+ f(1— AC2)> : (3.1b)
(x°B) = x’(Aw? + f?AC? + f?), (3.1c)
2 _
=B (3.1d)

A



364 P. Bizai, A. Wasserman

We will use the sup norm throughout this discussifij means the sypi(x)| : 0 <
x <r}.

Consider the spac& of quadruples of functionsf, y, B, z), where| f —al <
1wl < 1,|B|l < M, and|z—In(x)|| < 1 and each of the four functions is in
C9([0, r1), the space of continuous functions defined on the intervahO< r with the
sup norm.X is a complete metric space if we take as metric the maximum of the four
components. We define amdp: X — X by T(f, w, B, z) = (T1, T2, T3, T4) where

Th=a —l—/ w ds, (3.2a)
0
nzi.xf@g@4quu—Aﬁgw (3.2b)
x2 0 A ’ '
=L f 2 (4w + F2AC% + 1) ds, (3.20)
X 0

X

Ts=Ina —}—/ l(sf2 — B)ds. (3.2d)
o A

One verifies easily thaf does in fact take&X to X and thatT is a contracting map if
is sufficiently small, and that a fixed point ©fis a solution to our equations. The proof
that the solution depends continuously®is also routine. O

4. Behavior of Solutions for Smalla

In this section we show that the rotatiéix, a) of thea-orbit is arbitrarily large ifa is
sufficiently small and: is sufficiently large.

Proposition 4.1.For anyn > 0, thereexistsa b,, suchthat for a < b, thereisan x with
6(x,a) > nr.

Proof. Let f = f/a. Then, Egs. (2.14) become

xzf/ /_ x2 o0 =
W= aa s act e ), (@.10)
C = £(A—1+a2x2f2) (4.1¢)
xA

with the behavior at the origin
fO=1 A0 =1 C(0) =o. (4.2)
Fora = 0 (decoupling of gravity) Egs. (4.1bc) with conditions (4.2) have constant flat-

spactime solutiongl = 1, C = «. Inserting these solutions into Eq. (4.1a) gives the
Bessel equation

2 +x2@? -1 f =0, (4.3)
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whose unique solution satisfying (4.2) is

sinva? —1x
Va? —1x

H 1 1 T 1 nim
This solution has infinite rotation as— oco. If x > a1 thené(x, 0) > nm so for

a close to 0, say: < b,, we haved(x,a) > nm because solutions of Eqgs. (4.1) are
continuous iz andx. This concludes the proof of Proposition 4.10

fx) = (4.4)

5. Behavior of Solutions for Largea
Proposition 5.1. The a-orbits with sufficiently large a exit Q4 directly to Q1.
We define new variables
y=ax, i) =a(f)—a), A =Ax, CH=Cx. (6.1)

Then, Egs. (2.14) become (where now the prime denotes the derivative with respect to
y)

2.7 2 n
yev y ) v
V) = L a-AcHa+ 2, 5.2a
( - ) o A+ ) (5.2a)
. 1-A 1 - - 5\
A/=__y<_2Au’2+(1+AC2) <1+ %) ) (5.2b)
y a a
¢= 5 (A-1eras 57). (5.20)
yA a

The initial conditions ay = 0 are
A0)=1, CO =a>1 0 =0, (0 =0. (5.3)

As a — oo, the solutions of Egs.(5.2) tend uniformly on compact intervals to the
solutions of the following limiting system:

y2v/ / y2 )
== (1- AC?), 5.4a
(Pe) = 4za-ach (5.42)
1-A
A = - y(1+ AC?), (5.4b)
C
Cc' = y—A(A —1+y?), (5.4c)

satisfying the same initial conditions as in (5.3). The rest of this section is devoted to
the analysis of Egs. (5.4). Our goal is to show thay) becomes positive at a point
y1 < y. This would imply thatv(y) is bounded below, i.e., there és > 0 such that
v(y) > —d for y < y1, and thereford(y) > —d — 1 if a is sufficiently large. Then
f(x)>a—(d+1)/aandf'(x) > 0forx = yi1/a, hence, ifa > </d + 1, thea-orbit
exits Q4 to Q1 directly without entering Q3.

Note that the functiom decouples from Egs. (5.4bc) for the metric coefficients — this
fact considerably simplifies the analysis.
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Lemma 5.2.The solution of Eqgs. (5.4) crashes at some y, that is, A(y) = limy_,
A(y) = 0. Moreover, 1 < < /3.

Proof. Note that(yA) < 1 — y?, so integrating givest < 1 — y?/3. Therefore,
s 2

A(3) = 0 for j < +/3. To show thaf > 1 assume < 1. Then(&) = 1;—% > 0,

soif0 <7 <y < ywehavey/C(y) > t/C(t) or C(y) < C(t)/t,soC is

bounded. SincéAC) = —yAC3, (In(AC)) = —yC? is bounded below. Thus, by

integrating one concludes that lim 3 AC(y) > 0. But(AC)2 A(AC?); AC? < o?

and lim,_,5; A(y) =0, so |Il”ﬂy_>)(AC(y))2 0. This contradicts lim_.; AC(y) > 0,
sowe musthave > 1. O

Proof of Proposition 5.1. In order to prove that’(y) becomes positive at some point
2
y1 < y, we will show that’(y) > 0. By Eq. (5.4a) we havé (y) = fy S ( C LA i,

so we must show thaff) %dy > 0.
The proof of this fact is divided into two cases:¥f) > 3/2, and (ii)j2 < 3/2. Before
considering these cases we list some useful properties of the fugctioh— AC2.

Lemma 5.3.We have:

(@ g =@1—A=y%)C?y;
(b) if g(yo) > 0, then g(y) > Ofor all y > yp;
(c) g > 0ifg < 1/3.

Proof. Part (a) is a calculation. For (b) note thgtg = 0) > 0 sog cannot cross zero
from above. For (c) we haveA)’ < 1 — y2, so integrating gives + A > y2/3 and
henceg’ > y(1/3—g)C2. O

We return now to the proof th@fg’ %dy > 0. We first consider the case §i¥ > 3/2.

A calculation shows thatg = (2y3/3+yA—y)', hencefy y2gdy = 253/3—5 > 0
if 2 > 3/2. Sinceg(0) = 1 — «? < 0, this implies thag (o) = 0 for somes < j
and thereforeg(y) > O for y > o. Note thatAC is monotone decreasing because
(AC) = —yAC® < 0. Thus

2 2
yg(y) > Y g(y) for 0<y<j. (5.5)
A(Y)C(y) ~ A(0)C(o)

and therefore

/ v 1o )/ ey >0 0

Now we consider the case (i} < 3/2.

Lemma 5.4. Define the function p = 1+ y%g — y2. If y? < 3/2, then p(y) > O.

Proof. Notethatp(0) = 1. Lety; bethefirstzero g, thatis,p(y1) = Oandp’(y1) < 0.

If g(y1) > 2/3 thenp = y2g+1—y2 > y2/3+1— y2 = 1—2y2/3. Thusp can have
a zero fory; < 3/2 only if g(y1) < 1/3. Then, from Lemma (5.3%’(y) > 0 for all

y < y1. Define a functiork(y) = 2 — 34 — y2. A calculation gives3g’ = (y(k + p))’,

so by integrating we géi(y1) > 0. On the other hand we hayé = yC2%(k — p), so
k(y1) < 0O; contradiction. O
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v v2 o
To show thatfy 4£&dy > 0, we rewrite it as

V2 yp—1 2 y y1—y2
/ Y&y 2/ Pt o [ Py _/ Y day.  (5.7)
o AC 0 AC o AC o AC

The first term on the right hand side of (5.7) is positive becauisgositive. To compute
the second term, note that

Yy _1-)?
(c) - AC (5-8)
henceL = lim,_,;(y/C) exists and is finite sincé > 1 by Lemma 5.2. IfL. > 0 then
limy,_5 C(y) =y/L < oo, s0oC is bounded. Since lim., ; A(y) = 0 we conclude that
limy,—5 AC(y) = 0. But(In AC)" = yC? is bounded, so IAC is bounded below and
hence limAC # 0. This contradiction shows that= 0. Thus, the second term on the
right-hand side of (5.7) is zero. This concludes the proof of Proposition &1.

6. Asymptotics of Globally Regular Solutions

In this section we derive the leading asymptotic behavior of globally regular solutions.
We use lim to denote lig, .

Proposition 6.1.An a-orbit which exists for all x and has bounded rotation is asymp-
totically flat. The leading asymptotic behavior for x — oo is

AG) ~1- ZMTOO Cx) ~ Cove 5, f(x) ~ fooe ™, (6.1)

where0 < Moy < 00,0 < Coo < 1,andb = /1 — C3..
To prove this proposition we need several partial results.

Lemma 6.2.An a-orbit which exists for all x and has bounded rotation is ultimately in
the second (Q2) or fourth (Q4) quadrant.

Proof. If 6(x) is bounded above then there is an integer 0 such thatd(x) <

(n + 1/2)7 for all x buté(x1) > (n — 1/2)x for somex; and hence, by Lemma 2.6a
forallx > x1,(n —1/2)7 < 0(x) < (n+1/2)7r. We next show that there is ap such
that for allx > x2, nw < 6(x) < (n + 1/2)x (that is, the orbit is ultimately in Q2 or
Q4). Note that, by Lemma 2.6c the orbit must satisfy either< 6(x) < (n + 1/2)nw
or(mn —1/2)r < 6(x) < nm, that is the orbit must lie in Q3 or Q2 if is odd and
in Q1 or Q4 ifn is even. We must rule out the possibility that the orbit is in Q1 or
Q3. Assume that the orbit lies in Q1 or Q3 for all> x1. Then f(x) f'(x) > 0 for
all x > x1, S0 f2(x) > f2(x1) for all x > x1. From Eq. (2.15b) we haverA) =
1—x2Af% —x2f24C2 — x2f2, s0(xA) < 1—x2f2 < 1— x2f2(x1), and hencet
goes to zero in finite. This contradiction concludes the proofo

Lemma 6.3.Under the assumptions of Proposition 6.1 the function g = 1 — AC? is
eventually positive.
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Proof. Suppose thag(x) < O for all x. We claim that this implies limt = 1. To see
this, suppose that lim ind = 1 — 4¢ for somee > 0. Let—pg = lim g < 0 which exists
becausg’ > 0.Notethag(x) < —pforallx. Choose ami suchthag(x;) > —B—e.If
A(x2) < 1—3e for somex, > x1, thenby (2.18%'(x) > C2(1—A)/x > (1—A)/x =
x(1— A)/x%2 > x2(1 — A(x2))/x% > 3exp/x? for x > x», where the last but one
inequality follows from the fact that(1 — A(x)) is monotone increasing. Integrating
thisinequality fromxo to 2x, say, we geg (2x2) > g(x2)+3¢/2 > —B—e+3¢/2 > —B;
contradiction. Thus, liminfA = 1 and hence limt = 1. Since limg = lim(1 — AC?)
exists, limC also exists and is finite. Next, from Lemma 6.2 we know thattloebit is
ultimately in Q2 or in Q4. For concreteness we consider the case of Q4 (the proof of the
Q2-case is identical), that j§(x) > 0 andf’(x) < 0 for sufficiently largec. Then, from
(2.14a), limx2 '/ C) exists, so linix? f') = —t < 0 exists as well (where might be
infinite; the point is that # 0). Now, by L'Hépital’s rule, limxf = — lim(x2f’) = .
But (2.14c) say$In C)’ > t2/4x which implies limC = oo, a contradiction. o

Proof of Proposition 6.2. From the previous lemma we know that there existscan
such thatg(x) > O forx > x1. Letu = ACf/g for x > x1. A calculation shows
thaty’' = —AC(fC2(1 — A)/x — f'g +xf %) /g% sou’ < 0if g > 0. Multiplying
Eq. (2.14a) by: we obtain

(PAff'[g) = x2f2+x%f/C. (6.2)

The right-hand side is positive far > x1, sox2Aff’/g is negative and increasing,
hence it has a finite non-positive limit. This implies th&tf? is integrable. Similarly,
multiplying Eq. (2.14a) byf we obtain

X2ff/C = (X f2g + Ax2f'%)/(AC). (6.3)

The right-hand side is positive far> x1, sox2 ff’/C is negative and increasing, hence
it has a finite non-positive limit. This implies th:s\txzf’2 is integrable (recall thad C

is monotone decreasing). The integrabilityxdff2 and Ax2 f'? implies via Eq. (2.15)
that limM = M., < oo exists. This concludes the proof thaéfx) ~ 1 — 2M/x.

Having imA = 1 we can strengthen Lemma 6.3 by showing thatdirs goc >
0 exists. To see this choose ansuch thatg(x1) > 0. ThenAC?(x1) < 1, hence
AC(x1) < 1. SinceAC is monotone decreasing, we hat€'(x) < AC(x1) forx > x3
and thus limAC < 1. Hence, limAC? = (lim AC)%/lim A < 1. Sinceg = 1 — AC?,
lim g exists and ling > O.

Now we have all we need to derive the asymptoticsfofLet » = f’/f. Then
r'=f"f—r?=—r(1+ A—x%f?)/(xA)+ g/A = goo —r2+€(x), where lime = 0.
Leto (x2) = max(Je(x)]) forx > x and assume thap is sufficiently large so that,, >
o(x2). If r(x2) > —/goo — 0 (x2), then clearlyr becomes eventually positive which
contradicts that the orbit is eventually in Q2 or Q4r{k2) < —+/goo + o (x2), then
lim r = —o0; this is impossible because then by L'Hopital's rule kre= lim f”/f' =
lim g/r = 0. Thereforer(x2) must be sandwiched in the interval/goo + o (x2) <
r(x2) < —+/g00 — 0 (x2). Sincexaz is arbitrarily large and line = 0, we conclude that
limr = — /g0 The asymptotics of given in (6.1) follows immediately from this.

Finally, inserting the derived leading asymptotic behaviot ahd f into Eq. (2.14c),
we obtainC’/C ~ —2M,/x, from which the asymptotics af follows trivially. O
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7. Solutions that Crash
Proposition 7.1.1f the b-orbit crashes at some x then g(x) > Ofor x near x.

Proof. Suppose thag(x) < 0 for all x < X, SOAC?(x) > 1 for all x < X. We have
from (2.18) thate’ > AC2x f'2 > x f'2. Integrating this inequality from soma > 0
to somexs < x, we obtain

X2 X2
x1 / fPdx < f xfPdx < g(x2) — g(x1) < a® — 1, (7.1)
X1 X1

which implies (by the Cauchy—Schwartz inequality) tiias bounded.

Next, A(X) = 0, AC? > 1, implies that lim_ ;- C = oo; moreover, by (2.14c)
(InCY < xf?/A, hencexf?/A is not integrable near. Sincef is bounded, this shows
that 1/A is not integrable neaf. But from (2.18),¢’ > C%(1 — A)/x = AC?%(1 —
A)/(xA) > 1/(2xA), sog’ is not integrable neak, which contradicts the fact thatis
a bounded function. O

The importance of Proposition 7.1 derives from Lemma 2.6b which says ghat i
then rotation stops. The main result of this section is the crash theorem which states that
if an orbit has bounded rotation and crashes, then nearby orbits also have similarly
bounded rotation. The precise statement is given in Proposition 7.2. Since we consider
more than one orbit in this section, we use the notation ) to denote the value of
atx for thea-orbit, etc.

Proposition 7.2 (Crash Theorem)lf the b-orbit crashesat x = x and

@) if(k—1/2)w < 6(x,b) < km,k > 1, for x near x, then nearby orbits have rotation
< km for x > x;
(b) if km < 6(x, b) < (k + 1/2)7, then nearby orbits haverotation < (k + 1/2)7.

Proof. Part (a): Suppose thieorbit crashes in Q3 or Q1. By Proposition 7giy1, b) >

0 for somex; < x with (k—1/2)7 < 6(x1, b) < kxr; hence, fou sufficiently neab we
haveg(x1,a) > Owith (k —1/2)7 < 0(x, a) < k. By Lemma 2.6b0 (x, a) < km for

all x > x1. Part (b): This case is much more difficult and will require several auxiliary
results. It follows from part (a) that nearby orbits have rotatiorik + 1)z ; we must
prove a much more difficult result, namely that nearby orbits have rotatiGmn-1/2) .

O

Remark. It is clear from numerical observations that mrbit crashes in Q2 or Q4;
however, that appears to be quite difficult to prove. Moreover, one can easily construct
orbit segments that start, for examplexat 1 with f =5, f' =0,A = 0.2,C = 3,

say, that crash in Q4. Such orbit segments have lim f’(x) = —oo. Nevertheless,

the next lemma shows thzettf’2 remains bounded at crash.

Lemma 7.3.If ana-orbitisdefined for x < xo, ff'(x) < Ofor x1 < x < x2, f2(x1) <
B,and f'(x1) = 0, then Af’z(x) < max(B, «?/3). In particular, if an orbit crashesin
Q2or Q4,lim,_,:- A(x)f'(x) =0.

Proof. We setg = Af’2 and then compute that

xq' = @B+ 222+ x2C% g — [P+ 2ff +x2f2 1% - 2ACff . (7.2)
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Note thaty > 0 and all terms on the right side of (7.3) are negative except for the last two.
If ¢ > B, we combine the term-gx2f’? with x2 £2 f'?; clearly,x2 f2f'? — gx2f'? =

(f2 — ¢)x2f'? < 0. Next, we combine the termgx2 f'2C2 with —2xff’AC2 to get
—AC?(y? — 2y), wherey = —xff’; the maximum value of this expression occurs
wheny = 1 and that value iftC? < «? by Lemma 2.4. Hence, i > «?/3, then
—q(x2f"?C?) — 3g — 2xf f’?AC? < 0. Thus,g > max(B, 2/3) implies thatg’ <

0: consequentlyA f2(x) < max(B, «2/3). SinceAAf’> = (Af)2, andAf'? is
bounded and lim — ¥~ A(x) = 0, lim,_ ;- (A(x) f'(x))? = 0, hence lim_ ;- A(x)
f'x)=0. O

We can now discuss the strategy of the proof of part (b) of Proposition 7.2. We want
to show that if an orbit is sufficiently close to an orbit that crashes in Q4 then it must
either crash or exit Q4 to Q1 (the case in which the orbit crashes in Q2 is completely
symmetric). To that end, lat(x) = A(x) f'(x). We will prove thatv(x, a) goes to 0
if a is sufficiently close ta and f(x,a) > 0. This means eithef’ = 0 and hence
the orbit is exiting Q4 to Q1, oA = 0, that is, the orbit is crashing in Q4. Note that
V(x) = —QAf' — xf + xAC%f + x2A % + x2f2f'AC?) /x = —v(2 + x2f"% +
x2f2C?)/x + fg > fg. We know that(x, b) goes to 0 at crash so nearby orbits will
also havev small forx nearx. We will show thatf andg are both uniformly bounded
away from 0 in an interval about That is, the size of the interval and the bounds work
for all « nearb. That is enough to force positive. The most technical part of the proof
involves showing that nearby orbits stay in Q4 long enough to hae@positive. Since
f’ goes to—oo at crash, nearby orbits hayé large also. Now, (2.14a) can be written as
xAf" 4+ 1+ A —x%f?) f' —xgf = 0; moreover, to get to Q3 orbits must pass through
xf(x) < 1 which means that the coefficient ¢f, (1 + A — x2f?), is positive. That is
enough to bound”.

The details of the proof, especially Lemma 7.5, are tedious. We will restrict ourselves
to aninterval ®9x < x < 1.01x and replace: by x (whenever justified) in making
estimates.

We show next that if thé-orbit crashes at = x with rotationkr < 6(x,b) <
(k + 1/2)7, then|x f(X)| > 1.

Lemma 7.4.1f the b-orbit crashes at x = x with0(x, b) < (k + 1/2)x for all x < x
and 0 (x, b) > kxr for x near x, then |x f(x)| > 1, inparticular f(x) # 0.

Proof. The assumption ofi(x, b) tells us that the orbit lies in Q2 or Q4 farnearx.
For simplicity of exposition we only discuss the case of Q4, iféx) > 0, f'(x) < 0.
In particular, f is a monotone function and hence has a limit athus,z(x) = xf (x)
is continuous; in particular, if we suppose that(x) < 1, thenk(x) < 1 for x nearx.
SinceA(x) = 0, we get from (2.14c) thatAC’ = C(A — 1+ x2f2) < O for x nearx.
We conclude tha€ is bounded above, hence lim;- AC2 = 0 and lim_ ;- g = 1.
Sinceg > 0, the right hand side of Eq. (2.14a) is positive and herfg€/ C is bounded
and sinceC is bounded we conclude thit is bounded; thus lin, ¢- Af’2 = 0. Then,
from (2.14b)xA’ = 1 — A — x2f2 — x2(A f'> + AC? f2), we see tha#t’ > O nearx
so there is no crash. This is a contradiction so we concludecth@t) > 1 and hence
f(x >0. O

Lemma 7.5.Thereisay > Osuchthat h(x, a) = xf(x,a) > 1/4for all a sufficiently
nearbandx <x < x +y.
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Proof. If the b-orbit crashes at = x with rotation6(x, b) > km, then there is &

such thab(y, b) = k. Let B = (f(y, b) + 1). By Proposition 7.3, if: is sufficiently
close tob, Af/2 (along theg-orbit) is bounded in Q4 byp = max@?/3, B); D is a
uniform bound onAf/2 in Q4 for all a sufficiently nearb. Next, chooser; such that
0.99x < x; < xandsuchthat(x1, b) < 0.01, g(x1, b) = 2t > 0,andi(x1, b) > 0.9;

thisis possible by Lemma 7.4 and Proposition 7.1. Theny sufficiently neab we have
A(x1,a) < 0.02, g(x1,a) >t > 0, f(x1,a) < f(x1,b) + 0.01/x andh(x1) > 3/4.

We shall find ay € (0, 0.01x) that works for allz, that is, it satisfie& (x, a) > 1/4 for

all a sufficiently nea andx < x < x + y. So leta satisfy: i)Af’2 (along thez-orbit)

is bounded byD, ii) A(x1,a) < 0.02,iii) h(x1,a) > 3/4,and iv)g(x1,a) > t > 0. If

h(x,a) > 1/4forallx < 1.01x and alla nearb we are done —let = 0.01x. Otherwise,
we definexy; = x2(a), etc. byh(x2) = 3/4, h(x3) = 1/2, h(xg) = 1/4, wherexy, x3,

andx4 are the largest values of< 1.01x with that property. Fox > x» we have from
(2.14axAf" =xgf —(A+A—h®df > -1+ A—-h?f > —f'/4sinceh < 3/4

SO f" > —f/(4xAf? = —f3/(4x1.01%D) or "/ f? > —f'/(4.04% D). We
now integrate the above from to x > x3 to get

1 -1 1 / /" / —f 0= f2)

o= o T e ), 2™ ), 20ax 0™ T avdxp (7:3)

Now, f(x) > f(x3), 50— f'(x) < 7000z ~ froebysy = 20£2D. Using the uni-
form bound onf’ inthe intervalks < x < x4, we haverys—x3 = (f(x4) — f (x3))/f' (&)
for someé € [x3, x4]. But (f(xa) — f(x3))/f'(§) = (h(xa) — h(x3))/(xf'(§)) =
1/80x3D and hence we may take= 1/80x°D. O

Lemma 7.6.Intheinterval x1 < x < X + y, g(x, a) > min(z, 0.9/ h3(%, b)).

Proof. From (2.18) we haveg’ = C2(1— A+x2A f'2—x2gf2) > C2(1— A—x%gf?).
Moreover, sinced(x1, a) < 0.02 andxA’ < 1, A(x,a) = A(x1,a) + A'(2)(x —x1) <
0.02 4+ 1/z(0.02x) < 0.04, so ifg < 0.96/h?%(x) theng’ > 0. Since f(x1,a) <
f(x1,b) + 0.01/x,h(x,a) < 101 xf(x1,a) < 2L10L(xf(x1,b) + 001 <
1.02% f (x1, b), we haveg’ > 0 if g(x1,a) < 0.9/h?(x,b). Thus, ift < g(x1,a) <
0.9/h(x,b), g’ > 0, andg(x,a) > r intheintervalx; < x < x + y; if g(x1,a) >
0.9/ h?(%, b), theng(x, a) > 0.9/h%(x, b) for all x in the intervalx; < x < X +y
becauseg cannot cross that value from abovex

Note that the above lower bound @nis uniform — it applies to alk satisfying
the conditions i)Af/2 (along thea-orbit) is bounded byD, ii) A(x1,a) < 0.02, iii)
h(x1,a) > 3/4,and iv)g(x1,a) > t > 0.

Lemma 7.7.For all a sufficiently near b, v(x, a) goesto O for somex < x + y.

Proof. To show thatv(x, a) goes to 0, we note that(x, a) > 1/4 for all a nearb and
X < x <X+ ybylLemma 7.5. Hencef (x, a) = h(x,a)/x > 1/4x. By Lemma 7.6,
g(x,a) > min(z, 1/h(x),henca’ > 1/4x min(z,1/h(x) = n > Oforx < x < x+y.
Thus,v(x + y) — v(x) = f;ﬂ’ vdx > f;” ndx > ny. Letx; be chosen so that
v(x1,a) > —ny /2. Then, ifa is sufficiently close t@, |v(x1, a) — v(x1, b)| > ny/2 so
v(x1, @) > —ny. For sucha we then have(x + y, a) > v(x, a) + ny andv(x, a) >
v(x1,a) > —ny because’ > fg > 0;thusp(x +y,a) > 0. O
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We now complete the proof of Proposition 7.2.

Proof of Proposition 7.2 b). Suppose that thk-orbit crashes at = x with 6(x, b) <
(k+1/2)x forallx < x andd(x, b) > kx forx nearx. Fora nearb thereisanr < x+y
with v(x,a) = 0 by Lemma 7.7. Since < x + y, h(x) > 1/4,i.e., f(x,a) > 0, so
thea-orbit crashesA(x, a) = 0, or exits Q4 to Q1 (or Q2 to Q3. (x, a) = 0, never
to return. In either case, theorbit has rotatio® (x, a) < (k + 1/2)7w. O

8. Proof of the Main Theorem

Proof of Theorem2.1. Let X, = {a > 0| 0(x, a) < (n + 1/2)x for all x for which the
a-orbit is defined}. Note thak,,_1 C X, and X # @ by Proposition 5.1 and hence,
X, # 0. Also note thab, 1 > Ois alower bound fo¥,, by Proposition 4.1; hencg,
has a greatest lower boung = inf(X,) > b,+1 > 0. We will show that they,-orbit is

a globally regular solution angr < 6(x, a,) < (n + 1/2)x for largex.

We first show that,, € X,, i.e.,a, is the smallest element iX,,. If 0(x,a,) >
(n + 1/2)7 for somex thend(x, a) > (n + 1/2)x for all a neara, soa ¢ X, for these
a’s and this contradicts the fact thatis the greatest lower bound &f,. Thusa, € X,,.

In particular, thes,-orbit has bounded rotation.

Next we show that the,-orbit does not crash. Recall from Proposition 7.1 that if the
a,-orbit crashes at = x theng(x, a,) > 0 for x nearx. If the a,,-orbit crashes in Q1
or Q3, that s, ifd(x, a,) < nx for x nearx thend(x, a) < nw andg(x, a) > 0 for all
a neara, which implies by Lemma 2.6b that theorbit must haved (x, a) < nx for
all x. Thus,a € X, for all a neara, and this contradicts the fact that is the greatest
lower bound ofX,,.

Similarly, if the a,-orbit crashes in Q2 or Q4, that is, at somwith (n + 1/2)7 >
0(x, a,) > nm, then by the crash lemm@a + 1/2)7 > 0(x, a) for all x in the domain
of definition of thea-orbit for all a neara, and this contradicts the fact that is the
greatest lower bound of ;.

Thus, thea,-orbit is defined for allx and hence is a globally regular solution by
Propositions 6.1. Also, by Proposition 6.2, teorbit is in Q2 or Q4 for largex. It
remains to prove that(x, a,) > nx for largex. Suppose that(x, a,) < nx for large
x. By Lemma 6.3 we have thgt(x, a,) > O for largex and henceg(x, a) > 0 for all
a neara,. Then, by Lemma 2.6b the-orbit must haved (x, a) < nx for all x and thus
a € X,, and this contradicts the fact that is the greatest lower bound faf,,. This
completes the proof of Theorem 2.10
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