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Piotr Bizoń1, Arthur Wasserman2

1 Institute of Physics, Jagellonian University, Kraków, Poland
2 Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA

Received: 14 February 2000 / Accepted: 26 June 2000

Abstract: We prove the existence of a countable family of globally regular solutions
of spherically symmetric Einstein–Klein–Gordon equations. These solutions, known as
mini-boson stars, were discovered numerically many years ago.

1. Introduction

Boson stars are compact gravitationally bound soliton-like equilibrium configurations
of bosonic fields. The simplest kind of boson star, which is made up of a self-gravitating
free complex massive scalar field, was conceived over thirty years ago by Kaup [1]
and Ruffini and Bonazzola [2] who found numerically the ground state solution to
the spherically symmetric Einstein–Klein–Gordon (EKG) equations. A decade later the
systematic numerical analysis of these equations was performed by Friedberg, Lee, and
Pang [3] who rediscovered and extended the results of [1,2], in particular they found a
countable sequence of excited states.

The aim of this paper is to give a rigorous proof of existence of solutions found
in [1–3]. In the physics literature these solutions are usually referred to as mini-boson
stars (“mini” because they are tiny objects with mass∼ 1

Gm
, wherem is the boson

mass). What are the motivations for studying such objects? Let us mention three possible
reasons varying from physical to purely mathematical. First, most theories of elementary
particles predict the existence of massive bosons which interact weakly with baryonic
matter. To the extent one believes in these models, one should accept their consequences,
like boson stars. From this standpoint, the recent surge of interest in boson stars is largely
due to the suggestion that the dark matter could be bosonic since then some fraction of
the missing mass of the universe would float around in the form of boson stars. Second,
even if massive scalar fields do not exist in nature, they provide one of the simplest
fundamental matter sources for the Einstein equations and, as such, are ideal theoretical
“laboratories” for studying the dynamics of gravitational collapse. Mathematically, these
studies amount to the analysis of the Cauchy problem for the EKG equations. Boson stars
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play an important role in this context as candidates for intermediate or final attractors of
dynamical evolution. Finally, and admittedly most interestingly for us, mini-boson stars
arenon-perturbative solutions of the EKG equations in the sense that they have no regular
flat-spacetime limit (one manifestation of this property is the fact mentioned above that
the total mass of a mini-boson star is inversely proportional to the gravitational constant
G). In this respect mini-boson stars are similar to the Bartnik–McKinnon solutions of
the Einstein–Yang–Mills equations [4]. However, in contrast to the Bartnik–McKinnon
solutions, the mini-boson stars are not static: although the metric and the stress-energy
tensor of the scalar field are time-independent, the scalar field iself has the form of a
standing waveφ(r, t) = eiωt φ̃(r). This fact has an important consequence at the ode
level, namely the lapse function does not decouple from the Klein–Gordon equation
and the hamiltonian constraint which means that we have to deal with a 4-dimensional
(nonautonomous) dynamical system1. Below we analyze this system using a shooting
method which is similar in spirit (but quite different in implementation) to the proof of
existence of the Bartnik–McKinnon solutions [5].

The paper is organized as follows. In Sect. 2 we derive the field equations together
with the boundary conditions and discuss some basic properties of solutions. We also
formulate the main theorem and sketch the heuristic idea of its proof. In Sect. 3 we prove
the local existence of solutions near the origin. In Sects. 4 and 5 we discuss the limiting
behavior of solutions for small and large values of the shooting parameter, respectively.
In Sect. 6 we derive the asymptotics of globally regular solutions. Sect. 7 contains some
technical results concerning the behavior of singular solutions. Finally, in Sect. 8, using
the results of Sects. 4–7, we complete the proof of the main theorem by a shooting
argument.

2. Preliminaries

The action for the EKG system is given by

S =
∫
d4x

√−g
(
R

16πG
− 1

2
∂aφ

∗∂aφ − 1

2
m2φ∗φ

)
, (2.1)

whereR is the scalar curvature of the spacetime metricgab, φ is the complex scalar
field, andm is a real constant called the boson mass. The associated field equations are
the Einstein equations

Rab − 1

2
gabR = 8πGTab (2.2)

with the stress-energy tensor of the scalar field

Tab = 1

2
(∂aφ

∗∂bφ + ∂aφ ∂bφ∗)− 1

2
gab(g

cd∂cφ
∗∂dφ +m2φ∗φ), (2.3)

and the Klein–Gordon equation

(� −m2)φ = 0, (2.4)

1 For comparison, the static spherically symmetric Einstein–Yang–Mills equations reduce (within the purely
magnetic ansatz) to a 3-dimensional (nonautonomous) dynamical system.
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where� is the d’Alembertian operator associated with the metricgab. Now, we assume
that the fields are spherically symmetric.We write the metric using areal radial coordinate
and polar slicing

ds2 = −e−2δAdt2 + A−1dr2 + r2d�2, (2.5)

whered�2 is the standard metric on the unit two-sphere, andA andδ are functions of
(t, r). In this parametrization the (relevent components of) Einstein equations have the
particularly simple form

∂rA = 1 − A
r

− 8πGr T00, (2.6)

∂rδ = −4πGrA−1(T00 + T11), (2.7)

∂tA = −8πGre−δAT01, (2.8)

where the components of stress-energy tensorTab are expressed in the orthonormal
frame determined by the metric (2.5) (e0 = eδA−1/2∂t , e1 = A1/2∂r ). From (2.3) we
obtain

T00 = 1

2
(A|∂rφ|2 + A−1e2δ|∂tφ|2 +m2|φ|2), (2.9)

T11 = 1

2
(A|∂rφ|2 + A−1e2δ|∂tφ|2 −m2|φ|2), (2.10)

T01 = 1

2
eδ(∂rφ

∗∂tφ + ∂rφ ∂tφ∗). (2.11)

The remaining components of Einstein’s equations are equivalent to the Klein–Gordon
equation.

For the scalar fieldφ we assume the standing wave ansatzφ(r, t) = exp(iωt)φ̃(r),
whereω is a real constant. Then, due to theU(1) symmetry of the action, the stress-
energy tensor and the metric are time-independent. Morever,T01 = 0 so Eq. (2.8) is
trivially satisfied. In terms of the dimensionless variables

x = mr, f (x) = √
4πG φ̃(r) (2.12)

and the auxiliary variable

C(x) = ω

m
A−1eδ, (2.13)

Eqs. (2.4),(2.6) and (2.7) reduce to the following system of ordinary differential equations
(hereafter prime denotesd

dx
):

(
x2f ′

C

)′
= x2

AC
(1 − AC2)f, (2.14a)

A′ = 1 − A
x

− x(Af ′2 + AC2f 2 + f 2), (2.14b)

C′ = C

xA
(A− 1 + x2f 2). (2.14c)



360 P. Bizoń, A. Wasserman

Instead ofA, it is sometimes convenient to use the “mass” functionM(x) defined by
A(x) = 1 − 2M(x)/x. From (2.14b) we have

M(x) = 1

2

∫ x
0
s2(Af ′2 + AC2f 2 + f 2)ds. (2.15)

A spacetime is said to be asymptotically flat ifδ(∞) is finite and

lim
x→∞M(x) = M∞ <∞. (2.16)

The limiting valueM∞ is interpreted as the total mass of a solution (in our case it is
measured in units1

Gm
). In Sect. 6 we will show that the finiteness of mass implies that

C has a finite limit andf decays exponentially asx → ∞.
Besides the singularity at infinity, the field equations (2.14) have the fixed singular

point atx = 0 and a moving singularity at̄x, whereA(x̄) = 0. Regularity of solutions
atx = 0 requires the following behavior:

f (x) = a +O(x2), A(x) = 1 +O(x2), C(x) = α +O(x2), (2.17)

wherea = f (0) andα = C(0) are arbitrary parameters (assumed positive without
loss of generality). In Sect. 3 we will show that these parameters determine uniquely a
smooth local solution to Eqs. (2.14).

Definition 2.1. The solution of Eqs. (2.14) starting at x = 0 with the behavior (2.17) is
called the a-orbit .

In the following whenever we write “a solution” we always mean thea-orbit. Also
when we write that some property holds for allx we always mean for allx ≥ 0. We will
frequently refer to the behavior ofa-orbits in the(f, f ′)-plane; when we write, say, that
thea-orbit enters the first quadrant (Q1 for brevity), we mean that the projection of the
a-orbit in the(f, f ′)-plane does so.

Definition 2.2. The a-orbits which exist for all x and are asymptotically flat are called
globally regular.

Now, we are ready to formulate our main result:

Theorem 2.1.For each α > 1, there is a decreasing sequence of parameters an (n =
0,1,2, . . . ) such that the corresponding an-orbits are globally regular. The index n
labels the number of nodes of the function f (x).

This theorem makes rigorous the numerical results obtained in [1–3]. Notice that al-
though thea-orbits are determined by two parameters, only the parametera has to be
fine-tuned so the shooting is essentially one-dimensional.

In order to prepare the ground for the proof of Theorem 2.1 we discuss now some
elementary global properties ofa-orbits.

Lemma 2.2.A(x) < 1 for all x > 0 unless f (x) ≡ 0.

Proof. From (2.14b),A′(x0) < 0 if A(x0) = 1 soA cannot cross 1 from below. Since
A(x) < 1 for smallx, the lemma follows. ��
Lemma 2.3.An a-orbit exists as long as A(x) > 0.
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Proof. If A(x) > 0 for x < x̄ < ∞, then limx→x̄ M(x) exists (becauseM ′ > 0 and
M(x) < x < x̄) so limx→x̄ A exists as well. We will show that the orbit can be continued
beyondx̄ provided that limx→x̄ A(x) > 0. Since 0< A < 1, the only obstruction to
extending the solution is the possibility thatC,f , orf ′ might be unbounded. To see thatf
is bounded we note that(xA)′ < 1 − x2Af ′2. Chooseε > 0 such thatA(x) > A(x̄)/2
for x̄ − ε < x < x̄; then (xA)′ < 1 − (x̄ − ε)2A(x̄)f ′2/2 and integrating from
x̄ − ε < x gives that

∫ x
x̄−ε f

′(x)2 <∞ and hence, by the Cauchy–Schwarz inequality,∫ x
x̄−ε |f ′(x)| <∞. Thus,f is bounded. This implies by Eq. (2.14c) that(lnC)′ is also

bounded so bothC and 1/C are bounded. Now, (2.14a) says thatx2f ′/C is bounded so
f ′ is bounded. ��

Remark. It follows from Lemma 2.3 that the only possible obstruction to extendability
of a-orbits to arbitrarily largex is limx→x̄ A = 0 for somex̄. If that happens we will
say that the solutioncrashes at x̄.

Let us define the functiong = 1−AC2. The following two properties of this function
will play an important role in our discussion.

Lemma 2.4.We have

(a) If g(x) ≤ 0, then g′(x) > 0;
(b) If g(x0) ≥ 0, then g(x) > 0 for all x > x0.

Proof. A simple calculation yields

g′ = C2
(

1 − A
x

+ xAf ′2 − xgf 2
)
. (2.18)

Part (a) follows immediately from (2.18). To prove Part (b) note thatg′(x1) > 0 if
g(x1) = 0, sog cannot cross zero from above.��

The restrictionα > 1 in Theorem 2.1 can be easily seen as follows. Suppose that
there is a globally regular solution withα ≤ 1. Sinceg(0) = 1 − α2, it follows from
Lemma 2.4 thatg(x) is positive for allx. Multiplying Eq. (2.14a) byf and integrating
by parts we get thatff ′ > 0 for all x, hencef 2 is monotone increasing which is
obviously impossible for globally regular solutions (in fact such solutions crash at finite
x as follows easily from Eq. (2.14b)). Thus we have

Lemma 2.5.There are no (nontrivial) globally regular solutions for α ≤ 1.

Note that Lemma 2.5 implies in particular that there are no static (α = 0) globally
regular solutions. In view of Lemma 2.5 from now on we always assume thatα > 1.

Definition 2.3. The rotation function θ(x, a) of an a-orbit is defined by θ(0, a) = 0,
tanθ(x, a) = −f ′(x)/f (x) and θ(x, a) is continuous in x. We will drop the second
argument of θ if there is no danger of confusion.

Now we list the basic properties of the rotation function ofa-orbits which we will
need below.
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Lemma 2.6.For any nonnegative integer n we have:

(a) If θ(x1) > (n+ 1/2)π for some x1, then θ(x) > (n+ 1/2)π for all x > x1.
(b) If θ(x1) < nπ for some x1 and g(x1) ≥ 0, then θ(x) < nπ for all x > x1.
(c) There are at most two values of x with θ(x) = nπ .

Proof. (a) We note thatθ ′(x) = (f ′2 − ff ′′)/(f 2 + f ′2), so θ ′(x) = 1 if θ(x) =
(n+ 1/2)π .

(b) If x > x1 andg(x1) ≥ 0, theng(x) > 0 by Lemma 2.4. Next, we note that
θ ′(x) = −g(x)/A(x) < 0 if θ(x) = nπ andg(x) > 0. If g(x) = 0 thenθ ′(x) = 0 but
θ ′′(x) = −g′(x)/A(x) < 0 sinceg′(x) > 0 wheng(x) = 0 by Eq. (2.18).

(c) The functionθ(x) − nπ changes sign at each zero for whichg(x) �= 0. From
Lemma 2.4,g changes sign at most once. Thus, forn > 0, θ(0) − nπ < 0 and at
x1, the first zero ofθ(x) − nπ , if g(x1) ≥ 0 then by part b)θ(x) − nπ < 0 for all
x > x1. If g(x1) < 0 thenθ(x) − nπ changes sign atx1, and hence, atx2, the next
zero ofθ(x) − nπ , g(x2) ≥ 0 and henceθ(x) − nπ < 0 for all x > x2. For n = 0,
θ(0)− nπ = 0, θ(x) > 0 nearx = 0 and ifθ(x1) = 0 theng(x1) ≥ 0, hence,θ(x) < 0
for all x > x1. ��
Before going into details of Sects. 3–8, let us outline the main idea of the proof of
Theorem 2.1. According to this theorem there exists a countable family of globally
regular solutions distinguished by nodal class. We first show (Sect. 3) that there is a
continuous one-parameter family of local solutions depending ona = f (0); we all
these solutionsa-orbits. In Sect. 6 we show that ana-orbit that has bounded rotation and
that is defined for allx is a globally regular solution, that is, it has the correct asymptotic
behavior asx → ∞. The existence ofa-orbits with bounded rotation that are defined for
all x is proven in each nodal class by an inductive application of a shooting argument.
The zeroth solution we construct hasθ(x, a0) < π/2 for all x; the first solution has
θ(x, a1) < 3π/2 (and greater thanπ/2 for largex), etc. This is shown in Fig. 1. The
crucial step of our argument is the control of behavior ofa-orbits for large and small
values of the parametera. In Sect. 4 we show that for sufficiently smalla thea-orbit has
arbitrarily large rotation; more precisely, there is a numberbn such thatθ(x, a) > nπ
for somex if a < bn. In contrast, we show in Sect. 5 that fora >> 1 thea-orbit exits
Q4 directly to Q1 (see Fig. 1).

Now, to prove the existence of a globally regular solution in the zeroth nodal class
we leta0 = inf {a| θ(x, a) < π/2 for all x for which thea-orbit is defined}. Note that
a0 ≥ b1 > 0. We then prove that thea0-orbit is the globally regular solution in the zeroth
nodal class. It is clear that thea0-orbit has rotationθ(x, a0) ≤ π/2 for otherwise all
nearby orbits would have rotation> π/2 which contradicts the definition ofa0. It is also
easy to see that thea0-orbit cannot exit Q4 to Q1 because again, nearby orbits would
also do so which contradicts the definition ofa0. Hence, thea0-orbit must stay in Q4; it
either crashes or is defined for allx and is a globally regular solution in the zeroth nodal
class. Thus, it remains to show that thea0-orbit does not crash. The (technical) crash
lemma of Sect. 7 shows that if an orbit crashes in Q4 then nearby orbits either crash in
Q4 or exit Q4 to Q1. Thus thea0-orbit cannot crash because nearby orbits would all be
in {a|θ(x, a) < π/2 for all x for which thea-orbit is defined} anda0 would not be the
infimum of that set.

To show the existence of globally regular solutions in higher nodal classes we proceed
as above. We letan = inf {a|θ(x, a) < (n + 1/2)π for all x for which thea-orbit is
defined}. We then show thatθ(x, an) < (n+ 1/2)π . We again use the crash lemma as
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we did in then = 0 case to show thean-orbit is defined for allx. The only difference is
that we must show thatθ(x, an) > nπ . That fact follows easily from Lemmas 2.6b and
6.3.

f’/a

f/a

-0.5
-0.4 1.0

0.3

0.0

0.0

a=0.445 a=a0=0.4404104 a=0.42

a=0.35 a=a1=0.3486769 a=0.33

a=0.32 a=a2=0.3196460 a=0.31

Fig. 1. The projection ofa-orbits on the(f, f ′) phase plane for several selected values of the shooting
parametera

3. Local Existence

Proposition 3.1.There exists a two-parameter family of local solutions of Eqs. (2.14)
near x = 0 satisfying the initial conditions (2.17).

Proof. The proof is standard so we just outline it. We introduce new variablesw = f ′,
z = ln(C), B = (1 − A)/x, and rewrite Eqs. (2.14) as the first order system

f ′ = w, (3.1a)

(x2w)′ = x
2

A

(
(xf 2 − B)w + f (1 − AC2)

)
, (3.1b)

(x2B)′ = x2(Aw2 + f 2AC2 + f 2), (3.1c)

z′ = xf
2 − B
A

. (3.1d)
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We will use the sup norm throughout this discussion:‖h‖ means the sup{|h(x)| : 0 ≤
x ≤ r}.

Consider the spaceX of quadruples of functions(f, y, B, z), where‖f − a‖ ≤
1, ‖w‖ ≤ 1, ‖B‖ ≤ M, and‖z− ln(α)‖ ≤ 1 and each of the four functions is in
C0([0, r]), the space of continuous functions defined on the interval 0≤ x ≤ r with the
sup norm.X is a complete metric space if we take as metric the maximum of the four
components. We define a mapT : X→ X by T (f,w,B, z) = (T1, T2, T3, T4) where

T1 = a +
∫ x

0
w ds, (3.2a)

T2 = 1

x2

∫ x
0

s2

A

(
(sf 2 − B)w + f (1 − AC2)

)
ds, (3.2b)

T3 = 1

x2

∫ x
0
s2
(
Aw2 + f 2AC2 + f 2)

)
ds, (3.2c)

T4 = ln α +
∫ x

0

1

A
(sf 2 − B)ds. (3.2d)

One verifies easily thatT does in fact takeX toX and thatT is a contracting map ifr
is sufficiently small, and that a fixed point ofT is a solution to our equations. The proof
that the solution depends continuously ona is also routine. ��

4. Behavior of Solutions for Smalla

In this section we show that the rotationθ(x, a) of thea-orbit is arbitrarily large ifa is
sufficiently small andx is sufficiently large.

Proposition 4.1.For any n > 0, there exists a bn such that for a < bn there is an x with
θ(x, a) > nπ .

Proof. Let f̃ = f/a. Then, Eqs. (2.14) become(
x2f̃ ′

C

)′
= x2

AC
(1 − AC2)f̃ , (4.1a)

A′ = 1 − A
x

− a2x(Af̃ ′2 + AC2f̃ 2 + f̃ 2), (4.1b)

C′ = C

xA
(A− 1 + a2x2f̃ 2) (4.1c)

with the behavior at the origin

f̃ (0) = 1, A(0) = 1, C(0) = α. (4.2)

Fora = 0 (decoupling of gravity) Eqs. (4.1bc) with conditions (4.2) have constant flat-
spactime solutionsA ≡ 1, C ≡ α. Inserting these solutions into Eq. (4.1a) gives the
Bessel equation

(x2f̃ ′)′ + x2(α2 − 1)f̃ = 0, (4.3)
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whose unique solution satisfying (4.2) is

f̃ (x) = sin
√
α2 − 1x√
α2 − 1x

. (4.4)

This solution has infinite rotation asx → ∞. If x > nπ√
α2−1

thenθ(x,0) > nπ so for

a close to 0, saya < bn, we haveθ(x, a) > nπ because solutions of Eqs. (4.1) are
continuous ina andx. This concludes the proof of Proposition 4.1.��

5. Behavior of Solutions for Largea

Proposition 5.1.The a-orbits with sufficiently large a exit Q4 directly to Q1.

We define new variables

y = ax, ṽ(y) = a(f (x)− a), Ã(y) = A(x), C̃(y) = C(x). (5.1)

Then, Eqs. (2.14) become (where now the prime denotes the derivative with respect to
y) (

y2v′

C̃

)′
= y2

ÃC̃
(1 − ÃC̃2)(1 + ṽ

a2 ), (5.2a)

Ã′ = 1 − Ã
y

− y
(

1

a2Aṽ
′2 + (1 + ÃC̃2)

(
1 + ṽ

a2

)2
)
, (5.2b)

C̃′ = C̃

yÃ

(
Ã− 1 + y2(1 + ṽ

a2 )
2
)
. (5.2c)

The initial conditions aty = 0 are

Ã(0) = 1, C̃(0) = α > 1, ṽ(0) = 0, ṽ′(0) = 0. (5.3)

As a → ∞, the solutions of Eqs.(5.2) tend uniformly on compact intervals to the
solutions of the following limiting system:(

y2v′

C

)′
= y2

AC
(1 − AC2), (5.4a)

A′ = 1 − A
y

− y(1 + AC2), (5.4b)

C′ = C

yA
(A− 1 + y2), (5.4c)

satisfying the same initial conditions as in (5.3). The rest of this section is devoted to
the analysis of Eqs. (5.4). Our goal is to show thatv′(y) becomes positive at a point
y1 < ȳ. This would imply thatv(y) is bounded below, i.e., there isd > 0 such that
v(y) > −d for y < y1, and thereforẽv(y) > −d − 1 if a is sufficiently large. Then
f (x) > a − (d + 1)/a andf ′(x) > 0 for x = y1/a, hence, ifa >

√
d + 1, thea-orbit

exits Q4 to Q1 directly without entering Q3.
Note that the functionv decouples from Eqs. (5.4bc) for the metric coefficients – this

fact considerably simplifies the analysis.
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Lemma 5.2.The solution of Eqs. (5.4) crashes at some ȳ, that is, A(ȳ) = limy→∞
A(y) = 0. Moreover, 1< ȳ <

√
3.

Proof. Note that(yA)′ < 1 − y2, so integrating givesA < 1 − y2/3. Therefore,

A(ȳ) = 0 for ȳ <
√

3. To show that̄y > 1 assumēy ≤ 1. Then( y
C
)′ = 1−y2

AC
≥ 0,

so if 0 < τ < y < ȳ we havey/C(y) > τ/C(τ) or C(y) < C(τ)/τ , soC is
bounded. Since(AC)′ = −yAC3, (ln(AC))′ = −yC2 is bounded below. Thus, by
integrating one concludes that limy→ȳ AC(y) > 0. But (AC)2 = A(AC2);AC2 ≤ α2

and limy→ȳ A(y) = 0, so limy→ȳ (AC(y))2 = 0. This contradicts limy→ȳ AC(y) > 0,
so we must havēy > 1. ��
Proof of Proposition 5.1. In order to prove thatv′(y) becomes positive at some point

y1 < ȳ, we will show thatv′(ȳ) > 0. By Eq. (5.4a) we havev′(y) = C
y2

∫ y
0
z2(1−AC2)
AC

dz,

so we must show that
∫ ȳ

0
y2(1−AC2)
AC

dy > 0.
The proof of this fact is divided into two cases: (i)ȳ2 ≥ 3/2, and (ii)ȳ2 < 3/2. Before

considering these cases we list some useful properties of the functiong = 1 − AC2.

Lemma 5.3.We have:

(a) g′ = (1 − A− y2g)C2/y;
(b) if g(y0) ≥ 0, then g(y) > 0 for all y > y0;
(c) g′ > 0 if g ≤ 1/3.

Proof. Part (a) is a calculation. For (b) note thatg′(g = 0) > 0 sog cannot cross zero
from above. For (c) we have(yA)′ < 1 − y2, so integrating gives 1− A > y2/3 and
hence,g′ > y(1/3 − g)C2. ��
We return now to the proof that

∫ ȳ
0
y2g
AC
dy > 0. We first consider the case (i)ȳ2 > 3/2.

A calculation shows thaty2g = (2y3/3+yA−y)′, hence
∫ ȳ

0 y
2gdy = 2ȳ3/3−ȳ > 0

if ȳ2 > 3/2. Sinceg(0) = 1 − α2 < 0, this implies thatg(σ ) = 0 for someσ < ȳ
and thereforeg(y) > 0 for y > σ . Note thatAC is monotone decreasing because
(AC)′ = −yAC3 < 0. Thus

y2g(y)

A(y)C(y)
≥ y2g(y)

A(σ)C(σ)
for 0 ≤ y ≤ ȳ, (5.5)

and therefore ∫ ȳ
0

y2g

AC
dy ≥ 1

A(σ)C(σ)

∫ ȳ
0
y2gdy > 0. (5.6)

Now we consider the case (ii)̄y2 ≤ 3/2.

Lemma 5.4.Define the function p = 1 + y2g − y2. If y2 ≤ 3/2, then p(y) > 0.

Proof. Note thatp(0) = 1. Lety1 be the first zero ofp, that is,p(y1) = 0 andp′(y1) ≤ 0.
If g(y1) > 1/3 thenp = y2g+ 1− y2 > y2/3+ 1− y2 = 1− 2y2/3. Thusp can have
a zero fory2

1 ≤ 3/2 only if g(y1) ≤ 1/3. Then, from Lemma (5.3),g′(y) > 0 for all
y ≤ y1. Define a functionk(y) = 2− 3A− y2. A calculation givesy3g′ = (y(k+p))′,
so by integrating we getk(y1) > 0. On the other hand we havep′ = yC2(k − p), so
k(y1) ≤ 0; contradiction. ��
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To show that
∫ ȳ

0
y2g
AC
dy > 0, we rewrite it as

∫ ȳ
0

y2g

AC
dy =

∫ ȳ
0

p − 1 + y2

AC
dy =

∫ ȳ
0

p

AC
dy −

∫ ȳ
0

1 − y2

AC
dy. (5.7)

The first term on the right hand side of (5.7) is positive becausep is positive. To compute
the second term, note that

( y
C

)′ = 1 − y2

AC
, (5.8)

henceL = limy→ȳ (y/C) exists and is finite sincēy > 1 by Lemma 5.2. IfL > 0 then
limy→ȳ C(y) = ȳ/L <∞, soC is bounded. Since limy→ȳ A(y) = 0 we conclude that
limy→ȳ AC(y) = 0. But (lnAC)′ = yC2 is bounded, so lnAC is bounded below and
hence limAC �= 0. This contradiction shows thatL = 0. Thus, the second term on the
right-hand side of (5.7) is zero. This concludes the proof of Proposition 5.1.��

6. Asymptotics of Globally Regular Solutions

In this section we derive the leading asymptotic behavior of globally regular solutions.
We use lim to denote limx→∞.

Proposition 6.1.An a-orbit which exists for all x and has bounded rotation is asymp-
totically flat. The leading asymptotic behavior for x → ∞ is

A(x) ∼ 1 − 2M∞
x
, C(x) ∼ C∞e

2M∞
x , f (x) ∼ f∞e−bx, (6.1)

where 0< M∞ <∞, 0< C∞ < 1, and b = √
1 − C2∞.

To prove this proposition we need several partial results.

Lemma 6.2.An a-orbit which exists for all x and has bounded rotation is ultimately in
the second (Q2) or fourth (Q4) quadrant.

Proof. If θ(x) is bounded above then there is an integern ≥ 0 such thatθ(x) <
(n + 1/2)π for all x but θ(x1) > (n − 1/2)π for somex1 and hence, by Lemma 2.6a
for all x > x1, (n− 1/2)π < θ(x) < (n+ 1/2)π . We next show that there is anx2 such
that for allx > x2, nπ < θ(x) < (n + 1/2)π (that is, the orbit is ultimately in Q2 or
Q4). Note that, by Lemma 2.6c the orbit must satisfy eithernπ < θ(x) < (n+ 1/2)π
or (n − 1/2)π < θ(x) < nπ , that is the orbit must lie in Q3 or Q2 ifn is odd and
in Q1 or Q4 if n is even. We must rule out the possibility that the orbit is in Q1 or
Q3. Assume that the orbit lies in Q1 or Q3 for allx > x1. Thenf (x)f ′(x) > 0 for
all x > x1, sof 2(x) ≥ f 2(x1) for all x > x1. From Eq. (2.15b) we have(xA)′ =
1− x2Af ′2 − x2f 2AC2 − x2f 2, so(xA)′ < 1− x2f 2 < 1− x2f 2(x1), and henceA
goes to zero in finitex. This contradiction concludes the proof.��
Lemma 6.3.Under the assumptions of Proposition 6.1 the function g = 1 − AC2 is
eventually positive.
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Proof. Suppose thatg(x) ≤ 0 for all x. We claim that this implies limA = 1. To see
this, suppose that lim infA = 1− 4ε for someε > 0. Let−β = lim g ≤ 0 which exists
becauseg′ > 0. Note thatg(x) < −β for all x. Choose anx1 such thatg(x1) > −β−ε. If
A(x2) < 1−3ε for somex2 > x1, then by (2.18)g′(x) > C2(1−A)/x > (1−A)/x =
x(1 − A)/x2 > x2(1 − A(x2))/x

2 > 3εx2/x
2 for x > x2, where the last but one

inequality follows from the fact thatx(1 − A(x)) is monotone increasing. Integrating
this inequality fromx2 to 2x2 say, we getg(2x2) > g(x2)+3ε/2> −β−ε+3ε/2> −β;
contradiction. Thus, lim infA = 1 and hence limA = 1. Since limg = lim(1 − AC2)

exists, limC also exists and is finite. Next, from Lemma 6.2 we know that thea-orbit is
ultimately in Q2 or in Q4. For concreteness we consider the case of Q4 (the proof of the
Q2-case is identical), that isf (x) > 0 andf ′(x) < 0 for sufficiently largex. Then, from
(2.14a), lim(x2f ′/C) exists, so lim(x2f ′) = −τ < 0 exists as well (whereτ might be
infinite; the point is thatτ �= 0). Now, by L’Hôpital’s rule, limxf = − lim(x2f ′) = τ .
But (2.14c) says(lnC)′ > τ2/4x which implies limC = ∞, a contradiction. ��
Proof of Proposition 6.2. From the previous lemma we know that there exists anx1
such thatg(x) > 0 for x > x1. Let u = ACf/g for x > x1. A calculation shows
thatu′ = −AC(fC2(1 − A)/x − f ′g + xf f ′2)/g2 sou′ < 0 if g > 0. Multiplying
Eq. (2.14a) byu we obtain

(x2Aff ′/g)′ = x2f 2 + x2f ′u′/C. (6.2)

The right-hand side is positive forx > x1, so x2Aff ′/g is negative and increasing,
hence it has a finite non-positive limit. This implies thatx2f 2 is integrable. Similarly,
multiplying Eq. (2.14a) byf we obtain

x2ff ′/C = (x2f 2g + Ax2f ′2)/(AC). (6.3)

The right-hand side is positive forx > x1, sox2ff ′/C is negative and increasing, hence
it has a finite non-positive limit. This implies thatAx2f ′2 is integrable (recall thatAC
is monotone decreasing). The integrability ofx2f 2 andAx2f ′2 implies via Eq. (2.15)
that limM = M∞ <∞ exists. This concludes the proof thatA(x) ∼ 1 − 2M∞/x.

Having limA = 1 we can strengthen Lemma 6.3 by showing that limg = g∞ >

0 exists. To see this choose anx1 such thatg(x1) > 0. ThenAC2(x1) < 1, hence
AC(x1) < 1. SinceAC is monotone decreasing, we haveAC(x) < AC(x1) for x > x1
and thus limAC < 1. Hence, limAC2 = (lim AC)2/ lim A < 1. Sinceg = 1 − AC2,
lim g exists and limg > 0.

Now we have all we need to derive the asymptotics off . Let r = f ′/f . Then
r ′ = f ′′/f −r2 = −r(1+A−x2f 2)/(xA)+g/A = g∞ −r2+ε(x), where limε = 0.
Letσ(x2) = max(|ε(x)|) for x > x2 and assume thatx2 is sufficiently large so thatg∞ >
σ(x2). If r(x2) > −√

g∞ − σ(x2), then clearlyr becomes eventually positive which
contradicts that the orbit is eventually in Q2 or Q4. Ifr(x2) < −√

g∞ + σ(x2), then
lim r = −∞; this is impossible because then by L’Hôpital’s rule limr = lim f ′′/f ′ =
lim g/r = 0. Thereforer(x2) must be sandwiched in the interval−√

g∞ + σ(x2) <

r(x2) < −√
g∞ − σ(x2). Sincex2 is arbitrarily large and limσ = 0, we conclude that

lim r = −√
g∞. The asymptotics off given in (6.1) follows immediately from this.

Finally, inserting the derived leading asymptotic behavior ofAandf into Eq. (2.14c),
we obtainC′/C ∼ −2M∞/x, from which the asymptotics ofC follows trivially. ��
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7. Solutions that Crash

Proposition 7.1.If the b-orbit crashes at some x̄ then g(x) > 0 for x near x̄.

Proof. Suppose thatg(x) < 0 for all x < x̄, soAC2(x) > 1 for all x < x̄. We have
from (2.18) thatg′ > AC2xf ′2 > xf ′2. Integrating this inequality from somex1 > 0
to somex2 < x̄, we obtain

x1

∫ x2
x1

f ′2dx <
∫ x2
x1

xf ′2dx < g(x2)− g(x1) < α
2 − 1, (7.1)

which implies (by the Cauchy–Schwartz inequality) thatf is bounded.
Next,A(x̄) = 0, AC2 > 1, implies that limx→x̄− C = ∞; moreover, by (2.14c)

(lnC)′ < xf 2/A, hencexf 2/A is not integrable near̄x. Sincef is bounded, this shows
that 1/A is not integrable near̄x. But from (2.18),g′ > C2(1 − A)/x = AC2(1 −
A)/(xA) > 1/(2xA), sog′ is not integrable near̄x, which contradicts the fact thatg is
a bounded function. ��

The importance of Proposition 7.1 derives from Lemma 2.6b which says that ifg > 0
then rotation stops. The main result of this section is the crash theorem which states that
if an orbit has bounded rotation and crashes, then nearby orbits also have similarly
bounded rotation. The precise statement is given in Proposition 7.2. Since we consider
more than one orbit in this section, we use the notationA(x, a) to denote the value ofA
atx for thea-orbit, etc.

Proposition 7.2 (Crash Theorem).If the b-orbit crashes at x = x̄ and

(a) if (k−1/2)π < θ(x, b) < kπ , k ≥ 1, for x near x̄, then nearby orbits have rotation
< kπ for x ≥ x̄;

(b) if kπ < θ(x, b) < (k + 1/2)π , then nearby orbits have rotation < (k + 1/2)π .

Proof. Part (a): Suppose theb-orbit crashes in Q3 or Q1. By Proposition 7.1,g(x1, b) >

0 for somex1 < x̄ with (k−1/2)π < θ(x1, b) < kπ ; hence, fora sufficiently nearbwe
haveg(x1, a) > 0 with (k−1/2)π < θ(x, a) < kπ . By Lemma 2.6b,θ(x, a) < kπ for
all x > x1. Part (b): This case is much more difficult and will require several auxiliary
results. It follows from part (a) that nearby orbits have rotation< (k + 1)π ; we must
prove a much more difficult result, namely that nearby orbits have rotation< (k+1/2)π .
��
Remark. It is clear from numerical observations that noa-orbit crashes in Q2 or Q4;
however, that appears to be quite difficult to prove. Moreover, one can easily construct
orbit segments that start, for example, atx = 1 with f = 5, f ′ = 0, A = 0.2, C = 3,
say, that crash in Q4. Such orbit segments have limx→x̄− f ′(x) = −∞. Nevertheless,
the next lemma shows thatAf ′2 remains bounded at crash.

Lemma 7.3.If an a-orbit is defined for x < x2, ff
′(x) < 0 for x1 < x < x2, f 2(x1) <

B, and f ′(x1) = 0, then Af ′2(x) ≤ max(B, α2/3). In particular, if an orbit crashes in
Q2 or Q4, limx→x̄− A(x)f ′(x) = 0.

Proof. We setq = Af ′2 and then compute that

xq ′ = −(3 + x2f ′2 + x2C2f 2)q − f ′2 + 2xff ′ + x2f 2f ′2 − 2AC2xff ′. (7.2)
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Note thatq ≥ 0 and all terms on the right side of (7.3) are negative except for the last two.
If q > B, we combine the term−qx2f ′2 with x2f 2f ′2; clearly,x2f 2f ′2 − qx2f ′2 =
(f 2 − q)x2f ′2 ≤ 0. Next, we combine the term−qx2f ′2C2 with −2xff ′AC2 to get
−AC2(y2 − 2y), wherey = −xff ′; the maximum value of this expression occurs
wheny = 1 and that value isAC2 ≤ α2 by Lemma 2.4. Hence, ifq ≥ α2/3, then
−q(x2f ′2C2) − 3q − 2xf f ′2AC2 ≤ 0. Thus,q ≥ max(B, α2/3) implies thatq ′ <
0; consequently,Af ′2(x) ≤ max(B, α2/3). SinceAAf ′2 = (Af ′)2, andAf ′2 is
bounded and limx → x̄−A(x) = 0, limx→x̄−(A(x)f ′(x))2 = 0, hence limx→x̄− A(x)
f ′(x) = 0. ��

We can now discuss the strategy of the proof of part (b) of Proposition 7.2. We want
to show that if an orbit is sufficiently close to an orbit that crashes in Q4 then it must
either crash or exit Q4 to Q1 (the case in which the orbit crashes in Q2 is completely
symmetric). To that end, letv(x) = A(x)f ′(x). We will prove thatv(x, a) goes to 0
if a is sufficiently close tob andf (x, a) > 0. This means eitherf ′ = 0 and hence
the orbit is exiting Q4 to Q1, orA = 0, that is, the orbit is crashing in Q4. Note that
v′(x) = −(2Af ′ − xf + xAC2f + x2Af ′2 + x2f 2f ′AC2)/x = −v(2 + x2f ′2 +
x2f 2C2)/x + fg > fg. We know thatv(x, b) goes to 0 at crash so nearby orbits will
also havev small forx nearx̄. We will show thatf andg are both uniformly bounded
away from 0 in an interval aboutx̄. That is, the size of the interval and the bounds work
for all a nearb. That is enough to forcev positive. The most technical part of the proof
involves showing that nearby orbits stay in Q4 long enough to havev go positive. Since
f ′ goes to−∞ at crash, nearby orbits havef ′ large also. Now, (2.14a) can be written as
xAf ′′ + (1+A− x2f 2)f ′ − xgf = 0; moreover, to get to Q3 orbits must pass through
xf (x) < 1 which means that the coefficient off ′, (1 + A− x2f 2), is positive. That is
enough to boundf ′.

The details of the proof, especially Lemma 7.5, are tedious. We will restrict ourselves
to an interval 0.99 x̄ < x < 1.01 x̄ and replacex by x̄ (whenever justified) in making
estimates.

We show next that if theb-orbit crashes atx = x̄ with rotationkπ < θ(x, b) <
(k + 1/2)π , then|x̄f (x̄)| ≥ 1.

Lemma 7.4.If the b-orbit crashes at x = x̄ with θ(x, b) < (k + 1/2)π for all x < x̄
and θ(x, b) > kπ for x near x̄, then |x̄f (x̄)| ≥ 1, in particular f (x̄) �= 0.

Proof. The assumption onθ(x, b) tells us that the orbit lies in Q2 or Q4 forx nearx̄.
For simplicity of exposition we only discuss the case of Q4, i.e.,f (x) ≥ 0, f ′(x) ≤ 0.
In particular,f is a monotone function and hence has a limit atx̄. Thus,h(x) = xf (x)
is continuous; in particular, if we suppose thatx̄f (x̄) < 1, thenh(x) < 1 for x nearx̄.
SinceA(x̄) = 0, we get from (2.14c) thatxAC′ = C(A− 1+ x2f 2) < 0 for x nearx̄.
We conclude thatC is bounded above, hence limx→x̄− AC2 = 0 and limx→x̄− g = 1.
Sinceg > 0, the right hand side of Eq. (2.14a) is positive and hencex2f ′/C is bounded
and sinceC is bounded we conclude thatf ′ is bounded; thus limx→x̄− Af ′2 = 0. Then,
from (2.14b),xA′ = 1 − A− x2f 2 − x2(Af ′2 + AC2f 2), we see thatA′ > 0 nearx̄
so there is no crash. This is a contradiction so we conclude thatx̄f (x̄) ≥ 1 and hence
f (x̄) > 0. ��
Lemma 7.5.There is a γ > 0 such that h(x, a) = xf (x, a) > 1/4 for all a sufficiently
near b and x̄ < x < x̄ + γ .
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Proof. If the b-orbit crashes atx = x̄ with rotationθ(x, b) > kπ , then there is ay
such thatθ(y, b) = kπ . LetB = (f (y, b)+ 1)2. By Proposition 7.3, ifa is sufficiently
close tob, Af ′2 (along thea-orbit) is bounded in Q4 byD = max(α2/3, B); D is a
uniform bound onAf ′2 in Q4 for all a sufficiently nearb. Next, choosex1 such that
0.99x̄ < x1 < x̄ and such thatA(x1, b) < 0.01, g(x1, b) = 2τ > 0, andh(x1, b) > 0.9;
this is possible by Lemma 7.4 and Proposition 7.1. Then, fora sufficiently nearbwe have
A(x1, a) < 0.02, g(x1, a) > τ > 0, f (x1, a) < f (x1, b) + 0.01/x̄ andh(x1) > 3/4.
We shall find aγ ∈ (0,0.01 x̄) that works for alla, that is, it satisfiesh(x, a) > 1/4 for
all a sufficiently nearb andx̄ < x < x̄ + γ . So leta satisfy: i)Af ′2 (along thea-orbit)
is bounded byD, ii) A(x1, a) < 0.02, iii) h(x1, a) > 3/4, and iv)g(x1, a) > τ > 0. If
h(x, a) > 1/4 for allx < 1.01x̄ and alla nearbwe are done – letγ = 0.01x̄. Otherwise,
we definex2 = x2(a), etc. byh(x2) = 3/4, h(x3) = 1/2, h(x4) = 1/4, wherex2, x3,
andx4 are the largest values ofx < 1.01x̄ with that property. Forx > x2 we have from
(2.14a)xAf ′′ = xgf − (1 + A− h2)f ′ ≥ −(1 + A− h2)f ′ ≥ −f ′/4 sinceh ≤ 3/4
sof ′′ ≥ −f ′3/(4xAf ′2) ≥ −f ′3/(4 ∗ 1.01 x̄D) or f ′′/f ′2 ≥ −f ′/(4.04 x̄ D). We
now integrate the above fromx2 to x > x3 to get

−1

f ′(x)
≥ −1

f ′(x)
+ 1

f ′(x2)
≥
∫ x
x2

f ′′

f ′2dx ≥
∫ x
x2

−f ′

4.04 x̄ D
dx = f (x)− f (x2)

4.04 x̄ D
. (7.3)

Now,f (x) ≥ f (x3), so−f ′(x) ≤ 5x̄D
f (x2)−f (x3) ≈ 5x̄2D

h(x2)−h(x3) = 20 x̄2D. Using the uni-
form bound onf ′ in the intervalx3 ≤ x ≤ x4, we havex4−x3 = (f (x4)−f (x3))/f

′(ξ)
for someξ ∈ [x3, x4]. But (f (x4) − f (x3))/f

′(ξ) ≥ (h(x4) − h(x3))/(x̄f
′(ξ)) ≥

1/80 x̄3D and hence we may takeγ = 1/80 x̄3D. ��
Lemma 7.6.In the interval x1 < x < x̄ + γ , g(x, a) > min(τ,0.9/h2(x̄, b)).

Proof. From (2.18) we havexg′ = C2(1−A+x2Af ′2−x2gf 2) ≥ C2(1−A−x2gf 2).
Moreover, sinceA(x1, a) < 0.02 andxA′ < 1, A(x, a) = A(x1, a)+A′(z)(x − x1) <

0.02 + 1/z(0.02x̄) < 0.04, so if g < 0.96/h2(x) theng′ > 0. Sincef (x1, a) <

f (x1, b) + 0.01/x̄, h(x, a) ≤ 1.01 x̄f (x1, a) < 1.01(x̄f (x1, b) + 0.01) <
1.02 x̄f (x1, b), we haveg′ > 0 if g(x1, a) < 0.9/h2(x̄, b). Thus, if τ < g(x1, a) <

0.9/h(x̄, b), g′ > 0, andg(x, a) > τ in the intervalx1 < x < x̄ + γ ; if g(x1, a) >

0.9/h2(x̄, b), theng(x, a) > 0.9/h2(x̄, b) for all x in the intervalx1 < x < x̄ + γ
becauseg cannot cross that value from above.��

Note that the above lower bound ong is uniform – it applies to alla satisfying
the conditions i)Af ′2 (along thea-orbit) is bounded byD, ii) A(x1, a) < 0.02, iii)
h(x1, a) > 3/4, and iv)g(x1, a) > τ > 0.

Lemma 7.7.For all a sufficiently near b, v(x, a) goes to 0 for some x < x̄ + γ .

Proof. To show thatv(x, a) goes to 0, we note thath(x, a) ≥ 1/4 for all a nearb and
x̄ < x < x̄ + γ by Lemma 7.5. Hence,f (x, a) = h(x, a)/x > 1/4x̄. By Lemma 7.6,
g(x, a) > min(τ,1/h(x̄), hencev′ ≥ 1/4x̄min(τ,1/h(x̄) = η > 0 for x̄ < x < x̄+γ .
Thus,v(x̄ + γ ) − v(x̄) = ∫ x̄+γ

x̄
v′dx ≥ ∫ x̄+γ

x̄
ηdx ≥ ηγ . Let x1 be chosen so that

v(x1, a) > −ηγ/2. Then, ifa is sufficiently close tob, |v(x1, a)− v(x1, b)| > ηγ/2 so
v(x1, a) > −ηγ . For sucha we then havev(x̄ + γ, a) > v(x̄, a) + ηγ andv(x̄, a) >
v(x1, a) > −ηγ becausev′ > fg > 0; thus,v(x̄ + γ, a) > 0. ��
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We now complete the proof of Proposition 7.2.

Proof of Proposition 7.2 b). Suppose that theb-orbit crashes atx = x̄ with θ(x, b) <
(k+1/2)π for all x < x̄ andθ(x, b) > kπ for x nearx̄. Fora nearb there is anx < x̄+γ
with v(x, a) = 0 by Lemma 7.7. Sincex < x̄ + γ , h(x) > 1/4, i.e.,f (x, a) > 0, so
thea-orbit crashes,A(x, a) = 0, or exits Q4 to Q1 (or Q2 to Q3),f ′(x, a) = 0, never
to return. In either case, thea-orbit has rotationθ(x, a) < (k + 1/2)π . ��

8. Proof of the Main Theorem

Proof of Theorem 2.1. LetXn = {a > 0 | θ(x, a) < (n+ 1/2)π for all x for which the
a-orbit is defined}. Note thatXn−1 ⊂ Xn andX0 �= ∅ by Proposition 5.1 and hence,
Xn �= ∅. Also note thatbn+1 > 0 is a lower bound forXn by Proposition 4.1; hence,Xn
has a greatest lower boundan = inf (Xn) ≥ bn+1 > 0. We will show that thean-orbit is
a globally regular solution andnπ < θ(x, an) < (n+ 1/2)π for largex.

We first show thatan ∈ Xn, i.e., an is the smallest element inXn. If θ(x, an) >
(n+ 1/2)π for somex thenθ(x, a) > (n+ 1/2)π for all a nearan soa /∈ Xn for these
a’s and this contradicts the fact thatan is the greatest lower bound ofXn. Thus,an ∈ Xn.
In particular, thean-orbit has bounded rotation.

Next we show that thean-orbit does not crash. Recall from Proposition 7.1 that if the
an-orbit crashes atx = x̄ theng(x, an) > 0 for x nearx̄. If the an-orbit crashes in Q1
or Q3, that is, ifθ(x, an) < nπ for x nearx̄ thenθ(x, a) < nπ andg(x, a) > 0 for all
a nearan which implies by Lemma 2.6b that thea-orbit must haveθ(x, a) < nπ for
all x. Thus,a ∈ Xn for all a nearan and this contradicts the fact thatan is the greatest
lower bound ofXn.

Similarly, if thean-orbit crashes in Q2 or Q4, that is, at somex̄ with (n+ 1/2)π >
θ(x̄, an) > nπ , then by the crash lemma(n+ 1/2)π > θ(x, a) for all x in the domain
of definition of thea-orbit for all a nearan and this contradicts the fact thatan is the
greatest lower bound ofXn.

Thus, thean-orbit is defined for allx and hence is a globally regular solution by
Propositions 6.1. Also, by Proposition 6.2, thean-orbit is in Q2 or Q4 for largex. It
remains to prove thatθ(x, an) > nπ for largex. Suppose thatθ(x, an) < nπ for large
x. By Lemma 6.3 we have thatg(x, an) > 0 for largex and hence,g(x, a) > 0 for all
a nearan. Then, by Lemma 2.6b thea-orbit must haveθ(x, a) < nπ for all x and thus
a ∈ Xn, and this contradicts the fact thatan is the greatest lower bound forXn. This
completes the proof of Theorem 2.1.��
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