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Abstract: We prove that weak solutions of the Navier—Stokes equations for compress-
ible fluid flow in one space dimension do not exhibit vacuum states, provided that no
vacuum states are present initially. The solutions and external forces that we consider
are quite general: the essential requirements are that the mass and energy densities of the
fluid be locally integrable at each time, and that ﬂfgc-norm of the velocity gradient

be locally integrable in time. Our analysis shows that, if a vacuum state were to occur,
the viscous force would impose an impulse of infinite magnitude on the adjacent fluid,
thus violating the hypothesis that the momentum remains locally finite.

1. Introduction

We prove that weak solutions of the Navier—Stokes equations for compressible fluid
flow in one space dimension do not exhibit vacuum states, provided that no vacuum
states are present initially. The solutions and external forces that we consider are quite
general: the essential requirements are that the mass and energy densities of the fluid be
locally integrable at each time, and that ﬁ:%c—norm of the velocity gradient be locally
integrable in time.

Our resultis motivated by the existence theorem of Hoff [8], in which global solutions
are constructed with large, discontinuous initial data, possibly having different limits at
x = =00, and with large external forces. In particular, arbitrary Riemann initial data
is allowed. These constructed solutions have strictly positive densities, so that vacuum
states cannot form in finite time. Uniqueness of weak solutions is not known, however,
in any class which includes solutions with vacuum states. Indeed, the uniqueness results
of which we are aware are based upon analyses in Lagrangian coordinates, in which the
reciprocal of the density is a fundamental variable; see Hoff [7] and Hoff and Zarnowski

* Supported in part by the NSF, Contract No. DMS-9703703
** Supported in part by the NSF, Contract No. DMS-G-9802370



256 D. Hoff, J. Smoller

[10], for example. This change of coordinates clearly fails when vacuum states are
allowed. The question therefore arises whether therargrsolutions in which vacuum
states occur in positive time. In the present paper we give a definitive answer by defining
avacuum state to be an open set in physical space in which there is no mass, and proving
that no such vacuum states can occur at positive times if none are present initially. We
recall in this regard that the physical derivation of the Navier—Stokes system presupposes
that the fluid in question igondilute. Our result therefore establishes an important self—
consistency for this model.

We now give a precise formulation of our results. The Navier—Stokes equations ex-
press the conservation of mass and the balance of momentum as follows:

pr + (pu)y =0, (1.1)
(pw)i + (pu® + P)y = pitgy + pf, (x,1) € R x Ry, (1.2)

wherep,u, and P denote respectively the density, velocity, and pressfire, f(x, t)

is an external force, and is a positive viscosity coefficientMe do not assume that

P is a function only of p. Rather,P may depend upon other unknowns, and there
may be appended to (1.1)—(1.2) other equations for these unknowns. For example, for
the nonbarotropic flow of an ideal gaB,= (y — 1)pe, wheree is the specific internal
energy ang is the adiabatic constant, and a third equation, the energy—balance equation,
is appended to close the system. We shall therefore assume onl§ thaP (p, x, 1),

and that

PO, x,t)=0,x e R,0<r <T, (1.3)

whereT is a positive time which will be fixed throughout. Concerning the external force
f we assume only that

f e LY((0; T1; Lg(R)), (1.4)

which is a somewhat weaker requirement than that made in [8].
Weak solutions are defined in the usual way: we say(ihat) is a weak solution of
(1.1)—(1.2) orR x [0, T'] provided that

(A1) pandpu areinC ([0, TY; ngcl(R)) with p nonnegativep (-, t) and (pu)(-, t)

are inL} (R) for eacht € [0, T1; pu?, P(p, -, -), anduy are inLY([—L, L] x [0, T])

for everyL; and for allC? test functionsp supported irR x R,

2 to
/ po| dx = / / [ods + (pu)g,] dxdr (1.5)
11 11
and
7] o
/pmb dx =/ /[pu(rm+u¢x)+(P—uux)¢x+pf¢] dxdt (1.6)
1 141

forall 1, € [0, T].
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It follows as a consequence of {fthat, for anyL > 0, there is a constaidt = C (L)
such that

L
/ o(x,dx < C(L) a.7)
-L

forallr € [0, T].
Now, in the existence theory of [8] (which deals only with the barotropic ¢ase
P(p)), smooth reference functiongx) andi(x) are defined which are constant for
x < —1, constant forx > 1, and monotone for1 < x < 1. The constructed solutions
are then shown to satisfy a number of regularity conditions and estimates, among which
the following are particularly important:

T
/ [,0142 — b + G(p, ,5)] (x, )dx +/ / W2dxdt < .
R 0 R

(Thusu, (-, t) € L%(R) for almost alls € [0, T'].) HereG is the potential energy density
relative to the reference stage defined by

PP(s) — P(px)
—————ds.

G(p,X)zp/

p(x) §

ThusG is a smooth, nonnegative function. It was also assumed in [8] that
liminf ,_.0G(p, x) > C71

for some constant, independent af. It is easily seen that this condition is satisfied in
the representative case that= P(p) = Kp”,y > 1.

In the present paper we shall deal with weak solutions which are assumed to satisfy
analogous, but somewhat weaker conditions. These conditions are formulated to be the
minimum required for the proof of our theorem, and are consequently slightly technical.

It is easy to see, however, that they are indeed weaker than the conditions described
above, which are known to be satisfied by the solutions constructed in [8].
We thus assume that

(A2) uy € L1([0, T]; L2 (R)).

loc
In particular, u. (-, t) € L2 .(R) for almost allr € [0, T']. Next we assume that

loc

(A3) there is a functiory (r) € LY([0, T]) such that, for allL > 0 and almost all
t €[0,T],

L 1/2
[/ (pu®)(x, t)dx] =y(®O@+ L), (1.8)
—L

and

L 1/2
U uy(x, t)zdx] <y(@®)(@L+L). (1.9)
—-L
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We assume also that
(A4) foreveryL > 0O there is a constaidi = C (L) such that

L
/ (plul)(x, )dx < C(L) (1.10)
-L

forallt € [0, T].

(We note, however, that, if (A were strengthened slightly by replacing the right side
of (1.8) byC(1+ L) for some constar® and requiring (1.8) to hold for ail then (A1)
would be aconsequence of (1.7) and (1.8); that is, finite local mass and kinetic energy
would imply finite local momentum.)

Finally we assume that
(As) thereis a“potential energy density” functi6ip, x, ¢), which is nonnegative and
continuous oR>g x R x [0, T'], and for which:

a) there exist positive constarg > 0 andB > O suchthat, foralk e R, ¢ € [0, T],
andp € [0, p],

G(p,x,0) = Cy'hs (1.11)

b) there exist constants; > 0 andéd € [0, 1) such that, for allkg, L € R and all
t €[0,T],

xo+L
/ G(p(x,1),x,1)dx < C1+60Cy L. (1.12)
X

0

We remark that, for solutions of the nonbarotropic system alluded to earlier, in which
P = P(p,e) = (y — 1 pe, the negative of the entropy density, that is,

S(p,e) =ple—1—loge) + (y — (1 — p + plogp),

has locally finite spatial integral at all times, at least in all known constructed solutions
which could be regarded as physical (see [5], for example). The hypothe3ialigve
may therefore be met by takig = (y —1)(1— p + p log p). The results of the present
paper are thus seen to apply as well to the equationerdfarotropic flow for an ideal
fluid.

The following theorem is the main result of this paper.

Theorem. Assumethat P and f satisfy conditions (1.3)—(1.4)above, and let (p, u) be
a solution of (1.1)—(1.2)on [0, T'] satisfying assumptions (A1)—(As). If

/ p(x,0dx >0 (1.13)
E

for every open set E C R, then

/ o(x,t)dx >0 (1.14)
E

for every open subset E C R and for every ¢ € [0, T1.
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We now give a brief, heuristic overview of the proof and explain some of the under-
lying physical motivations. The rigorous proof is detailed in a sequence of lemmas in
Sect. 2.

We first show that: € L1([0, T']; L®([—L, L])) for everyL, and that the norm in
the latter space grows at most linearlylinThese facts would be immediate from (1.8)
and (1.9) if we knew thap were bounded below away from 0. We instead apply the
hypotheses (1.11) and (1.12), which imply the weaker factdltainnot be close to zero

on too a large set. This turns out to be sufficient for the required estimate, which is given
T

inLemma 2.1 below. Observe thit |lu(-, 1) || L (—1,27)dt dominates the distance that

a fluid particle travels between ti?nes 0 ahdprovided that it remains withip—L, L].
The fact that this integral grows at most linearlylintherefore shows, at least at the
heuristic level, thaa fluid particle can travel at most a finite distance in finite time.

Now suppose that(x, 1) = 0 a.e. on(a, b), wherea is minimal andb is maximal.
Our observation above concerning finite average convection speeds then implies that
there mustbe nearby vacuum states at nearby times. Specifically, we construct ¢yrves
andz(¢) starting froma andb respectively, such that(-, 1) = 0 a.e. on(y(¢), z(t)), and
such that (¢) is minimal and; (¢) is maximal. By comparing with the time-antiderivative
of lu(-, t)| L=, we are able to prove that these curves are in fact absolutely continuous,
and can be extended backward to a minimal tigne O, and thaty(zgp) = z(70). Thus a
vacuum exists in the wedge—shaped rediogiven by

V={Gn:yt)=x=z@), o=t =<11}.

Sincep = 0inV,uis evidently linear inV, sayu(x, t) = a(t)x + 8(¢), in a suitable
sense. Now, in what is the most difficult part of the analysis, we shovirttegtal curves
of u which startin V must remainin V on{[zo, t1]. This result depends in a crucial way on
the linearity ofu in V and on the absolute continuity of the boundary cusvaadz, and
is given in Lemma 2.6 below. This invariance vffor the fluid flow thus implies that
any two integral curves af in V, proceeding backward in time, must come together at
timero. It therefore follows thad cannot beintegrable on [zg, #1]. We now apply this fact
to derive a contradiction, motivated by the following physical intuition. First recall that,
in the Navier—Stokes model, the tepmu, represents the viscous force applied at the
surface of a fluid particle by an adjacent fluid particle. (The second derivatiye in
(1.2) results from an application of the divergence theorem.) Recall also from elementary
mechanics that the time-integral of a given force, which is called the impulse, equals
the corresponding change in momentum of the system. Now, in the situation described
aboveuu, = ua is therefore the viscous force applied by the “massless fluid particles"
in V at the boundary of the fluid to the right &f. The nonintegrability of on [z, 1]
therefore implies thathe change in momentum from time ¢ to time 1 becomes infinite
ast — tp. But this contradicts the fact (1.8) that the momentum is locally finite, thus
completing the proof.

The initial-value problem for the Navier—Stokes equations (1.1)—(1.2) has been stud-
ied by many authors. See for example Kanel [12], Hoff [4, 5], and [8], Kazhikov and
Shelukhin [13], and Serre [19] for existence of solutions with constant time-asymptotic
states, as well as Liu [14], Hoff and Liu [9], Liu and Xin [15], Szepessy and Xin [21],
and Matsumura and Nishihara [16] and [17] for cases in which the time-asymptotic
state contains a viscous shock or rarefaction wave, usually of small strength. There are
a number of results concerning solutions of (1.1)—(1.2) on a finite interval with suitable
boundary conditions, among which we mention those of Amosov and Zlotnick [1], Chen,
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Hoff and Trivisa [2], Fujita-Yashima et. al. [3], Hoff and Ziane [11], Matsumura and
Yanagi [18], and Shelukhin [20]. See also Hoff and Zarnowski [10], Hoff [5] and [7],
and Hoff and Ziane [11] for uniqueness and continuous dependence results for solutions
with strictly positive densities.

Finally we call attention to the result of Hoff [6], in which solutions are obtained for
the multidimensional, spherically symmetric version of (1.1)—(1.2) with large, possibly
discontinuous data. The density is assumed to be strictly positive=atO, but the
existence theory allows for the possibility that a vacuum state forms in a ball centered at
the origin in positive time. It is not known whether there are in fact solutions with such
vacuum states, or whether such solutions can be precluded. Indeed, the question of the
spontaneous formation of vacuum states in solutions of the Navier—Stokes equations in
several space variables remains an important open question.

2. Proof of the Theorem

In this section we give the details of the proof outlined above. The hypotheses (1.3),
(2.4), and (A)—(As) will be in force throughout this section, the constafitgs C1 and

6 defined in (1.11) and (1.12) will be fixed, and, unless otherwise stétedll denote

a generic positive constant whose precise meaning will be clear from the context.

Lemma2.l.u € L0, T]; Lig(R)); in fact, there is a constant C > 0 such that for
any L > 0,

luC, DllLe—r,L) = Cy (O (L + L)
for almost all ¢ € [0, T], where y isasin (1.8)and (1.9).

Proof. From hypothesis (), u(-, t) € H%c , for almost all € [0, T]; pick such &. If
¢ > 0isgiven, andg € [-L, L], let

Ag = {x € [x0,x0+ €] : p(x,1) < p}.
Since (1.12) implies thatoG(p, x,7) > 1if 0 < p < p, we have, using (1.12),
xo+<¢

meagA;) < Cof G(p(x,t),x,t)dx < CoC1+ 6L. (2.1)

X0

Now choosé€g such that

1+6
CoC1+6£p < +

Lo, (2.2)

so that mea®i¢,) < 352 ¢o. Thus if By, = [xo, x0 + £o] — Ag,, then
measBy,) > ¢ 146 =129

o) Z £0 2 0= 2
that is, meagBy,) is strictly positive. Now ifxy € By, thenp(x, 1) > P, and therefore

Lo; (2.3)

X1

luxo, )] < luCx, D) +/ yldx

X0

1 1/2 xo0+{o 5 1/2 1
<p2 (,0 / |u|) (x1,1) + (/ uxdx> 55.
X

0
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Integrating with respect to; over the seB,, gives

1/2
measBy,)|u(xo, )| < p~ 2 (f (pu2>(x1,r)dx1)> (measBy,)) >
B[O

xo0+4o 1/2
+ £g/°measByy) </ ufdx) ,
X

0
SO

xo+to 1/2 1/2

_1 1 xo0+4o
lu(xo.1)] < [B meango)] 2 [/ puzdx:| vy [/ uﬁdx}
X0 X0

1

< [pmeasBi)| * @+ L+ Loy + LA+ L+ o)y 1)
<C'(L+L+Lo)y(t) <CA+L)y().

N

This proves the lemma since §Aimplies thaty € L1[0, T]. O

We shall show that the hypothesig, 1) = 0 a.e. on some open subsefRf leads
to a contradiction. In preparation for this, we first make a remark.

Remark. If p(-, ) = 0 on some open intervék, b), thenb — a is bounded above by a

constant depending only on the paramet&ysC1, andd appearing in (1.11) and (1.12).
Indeed, it follows from (1.11) and (1.12), that

b
CLt0C5 b -0 = [ Glotrn.x.ndv = GGHb - a),
a

and as O< 6 < 1, we see thab — a is bounded, as required.

The following lemma shows that if(-, ) is zero a.e. on some interval, thery/ifs near
t, p(-, t') is zero a.e. on a nearby, but possibly smaller interval.

Lemma?2.2. Let 1 < T and suppose that p(-, 1) = 0 a.e. on an openinterval (a, b).
Let

. n 1
to = inf {f €[0,1]: / e (-, )l Loe(a,p) < E(b - a)}
t
and

! 1
1= Sup{t €n,T]: / le s )l Loo(a,py < é(b —a)} .
1
Thenty < 11 < 1z, and for any ¢ € (tg, t2), o (-, t) = 0 on theinterval

(a+

’b_

t t
/ lu(-, )l Loo(a,pyds / lu(-, )l Loo(a,pyds ) .
11 4%
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Fig. 2.

Proof. Itisclear that g < 1 < 2, and Lemma 2.1 shows that strict inequalities must
hold because y isintegrable.

Now suppose ¢ > f1; the proof for ¢ < 1 issimilar, and will be omitted. Fix§ > 0
satisfying § < ”;6“, and for small ¢ > 0, let u® denote the usual spatial regularization
of u. Thenforamostal ¢, T > ¢ > 11,

Hus('a t) ’|L°°(a+8,b75) =< ”M(a t)“Loo(a,h) .
For easein notation, let
”u5||oo = HMS('7 t>”L°°(a+3,b—5) and ”u”OO = ”M(, t)”Loo(a,b) .

Now define the smooth function w® (-, r) by

e G O lloor ifx <42 -6

&8
, 1) = .
WD =N e ) e, x> 92 18,

and w*? is decreasing on (%32 — 8, <52 + 8); cf. Fig. 1 (wherewetakea > 0). Next,
define the smooth function W (x) by

0, ifx<a+$
Wix)=41 ifa+28<x<b-28
0, ifx>b-5§

and W? isincreasing ontheinterval (a + 6, a + 28), and decreasing on (b — 25, b — §);
cf. Fig. 2.
Now let ¢° be the solution to the problem

¢ +wlp, =0, 1>, (2.49)
¢ (1) = W’
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t
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T T T T
a+d a+2d atb atb atb
2 %73 2 *°

Fig. 3.

It is easy to check that ¢ (x, 1) is of the form depicted in Fig. 3, where the curves |-V
are characteristics. That is, ¢¢ isasmooth, compactly supported function, and can thus
serve as atest function for the (weak) formulation of a solution of (1.1), (1.2).

In particular, from (1.5) we have

b b—8 i 5 s
f pe° =/ /p(f+u¢>§)
a+3s I a+s Jn

b—§ pt
[ e
a+é Jn

so that, since p(x, 1) = 0 for x € [a, b], we have

b—§
/ () (x, )dx

+4
b—8 pt b—8§ pt
= / / 0 (us - ws‘s) §8 +/ / o(u — us)d)i‘s. (2.5)
a+é 11 a+d Jn

Now in Fig. 3, 7% is defined by

T8 = sup{t € [, T]: 11 & Il

b
D on [, 11).

stay § units away from

We now estimate 7°#% from below. For this, we first notice that since the characteristics
of (2.4) aregiven by x = w??, it follows that

b TS(S
<“+ —5> —(a+25) =/ wedr
153

2
TS(S Tszi
s/ ||u8||oodrsf lulloodt,
153

11

and thus

TES
b —
/ il oodt > ——2 — 3s. (2.6)
1 2
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Thereforeif T° is defined by

5 ! b—a
T° =supite[n,T]: lulloo < 5 —-35¢, 2.7)
48
then
T8 > 19, (2.8)

Thusif 7 € [11, T%],thent € [11, T#°], sofromFig. 3,if %% (x, 1) > O, thenx < 442 -3,
sofromFig. 1, w® (x, 1) = |[u®|l. If for such, ¢£3(x, 1) < 0, thenx > %5 + 5, and

w (x, 1) = —||u®||0o. It follows that (cf. (2.5)),
b—§ t
[ [ e —uhe <o (2.9
a+d 1
Next, we claim that
b—§ t
Iimf / pu —uf)g? =0, (2.10)
=0 at+s JIn

Granting this for the moment, we complete the proof of Lemma 2.2 as follows. First,
from (2.5), (2.9), and (2.10), we get

b—§
lim / (p)*° (x,t)dx <0, € [r, T°). (2.12)
e~V Ja+s

Then from Fig. 3, we see that the support of ¢#° is the region bounded by the charac-
teristics| and IV. As before, the x-distance traversed by these characteristicsis bounded

from above by
t t
/ ||u8||oos/ ieloc,
11 11
so that the interval

t t
<a+8+/ [l [l oo b—rS—/ IIMEIIOO) =1 (2.12)
1 1

is contained in the support of ¢ (-, r). Hence (2.11) givesthat for all ¢ € [t1, T°],
p(,t) =0 aeon Is. (2.13)

If now ¢ < 1o (cf. the statement of Lemma 2.2), then

/tll l l(b )
u < = —a),
11 * 2

and thusthereisadg > 0 such that if § < §g, then

! 1
/ lulloo < z(b —a) —46.
1 2
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For such 8, (2.7) impliesthat + < T%. Thusfor suchr and 8, p(-, t) = Oae. on I5. Taking
aseguence §; \, 0, weget that p(-, t) = 0 on the interval

t t
<a+/ llulloos b—/ ||M||oo)
11 11

for al ¢ € [11, r2], and this completes the proof of the lemma.
It remainsto prove (2.10). To thisend, wefirst differentiate (2.4) with respect to x to
obtain

0wt = —wiel,
so that along the characteristics x = x(¢),

t
oL (x(1), 1) = W (x(t1)) exp (— / wff(x(s),s)ds). (2.14)
15

1
But from Fig. 1, we see that

W, )] < CONUC, oo < CONu, $) oo,
(where |C(8)] — oo asé — 0), and thus from (2.14),

165Nl < C'(3),
where C’(8) isaconstant depending only on §. Hence

b—48 t
/ f p(u — u®)gs?
a+sé I

T
< C’(3)/. (s ) —u G, OllLe@rs.o—s 1o C Ol L1ats.p—s)dt-
n

t
<C'®) f low — pu 1 psydt
n (2.15)

But from hypotheses (A4), we have that for amost all ¢ € [¢1, T], u(-, t) € H&)c and
from (1.7) o (-, )|l L1(4+s5.—s) 1S bounded; thus for each fixed ¢ the integrand on the
right-hand side of (2.15) tendsto zero ase \ 0. Since

lu(, 1) — u® Ol e@rs.o-) 10 ¢ Ol L1ats.p—s5) < Cla, D) Jul-, )L @a+s.b-s)

and |[u(-, t)|| L= @+s.p—s) 1S integrable (by Lemma 2.1), the Lebesgue dominated con-
vergence theorem applies to the right-hand side of (2.15) and shows that (2.10) holds.
m|

Now suppose that p(-, 1) = 0 a.e. on (a, b), where, without loss of generadity, a
isminimal and b is maximal (cf. the remark following the proof of Lemma 2.1). The
interval (a, b) and thetime ¢1 will be fixed for the remainder of the argument.

Let 79 be asin the statement of Lemma 2.2, and definefor ¢ € (1o, 11),

y(t) = inf {x p(,1)=0 ae on (x, a;b)}, (2.16)
z2(t) = sup {x :p(-,1) =0 ae on (a;b,x>}. (2.17)

Clearly, y(r1) = a and z(t1) = b.
In the following lemma we prove an important regularity property for the curves y
and z.
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Fig. 4.
Lemma 2.3. There exists a constant 4 = h(a, b) > 0 such that y and z are absolutely
continuous functionson [t1 — &, t1].

Proof. Firgt, it followsfrom theremark preceding Lemma2.2 that thereexistsan L > 0
such that, for all ¢ € (rg, 12),

—L<y®),zt) <L. (2.18)

Next, choose i > 0 such that

tl b—a
/ lullzoe—r,Lydt < 5 (2.19)
t

1—h
In order to prove that z iISAC, let s and ¢ be such that
n—h<s<t<n,
and compare z(s) with z(z); cf. Fig. 4, where all depicted curves have speeds

*llu | Loo(—L, L), and thus comprise two families of horizontal translates.
Applying Lemma 2.2, we seethat if p(-, r) = 0on (y(z), z(¢)), then p(-, s) = 0 ae.

on
t t
(y(t)+/ llullLoo(—L,L) Z(f)—/ ||u||L°°(—L,L)>
s N

t
z(s) > z(1) —/ lullzoo(—r.1)- (2.20)

so that

Similarly, if p(-,s) = 0ae. on (y(s), z(s)) then
t
20226 - [l (2.21)
N
Hence (2.20) and (2.21) give, forty —h <s <t <11,

t
|z(2) — z(s)] S/ lull Loo(—r,L)- (2.22)
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Now let ¢ > 0 be given; then Lemma 2.1 impliesthat we can find § > 0 such that if
meas(E) < 8, then

/ lullLoo—r,nydt < e. (2.23)
E

Thus given points {s;}4 and {z;}} satisfying
H—h<s1<T1<$2<T2<---<S§<Tp <1,

with Y (1 —s;) < 8, (2.22) and (2.23) give
J

7
E lz(Tj) — z(s;)| < E / llell oo~ 1)
A . S
J J J

=f lullpoo—r,1) < e
Ulsj » 7)1

Thisprovesthat z iSAC on [t1 — h, t1]; Similarly, y iSAC on the sameinterval. O

In the next lemma, we obtain further results concerning the functions y(¢) and z(z).
To thisend, let S be defined as the set of all + > 0 such that there are extensions of y
and z to [z, r1] such that the following three properties hold:

(i) y andz areabsolutely continuouson [z, 1],
(i) y<zon[t, ],

z(s) z(s)+¢
(i) o(x,s)ds and o(x, s)dx are both positive for all ¢ > 0 and all
y(s)—e y(s)
z(s)
s €[t,11],and p(x,s)dx > 0.

y(s)
Notice that the last lemmaimpliesthat S is nonempty; thus let

T =inf S. (2.24)
Concerning t we have the following result.

Lemma 2.4. y and z have AC extensionstotime z, y(r) = z(t), and thereisan L > 0
suchthat for all ¢ € [t,11], —L < y(t) < z(t) < L.

Proof. We prove the last assertion first. Let
T<c<d< f<g<t,
andfort € (z,n), let
w(t) = max{z(t), —y(t)} = 0. (2.25)

Letr € [c, g]; then by definition o (-, 1) = 0ae. on (y(¢), z(¢)), and since y(r) < z(1),
Lemma 2.2 showsthat thereisanh = h(¢) > Osuchthatif |t —s| < h,thenp(-,s) =0
a.e. ontheinterval

,z(t) —

s N
(y(t) + / el Loo (—w(r),wir)) / 2]l Loo (—w(r),w(e))
t t
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and

t+h
C/ y(s)ds < 3, (2.26)
t—h

where C isasin Lemma2.1. Thus

z(s) = z(t) —

3

t
/ Nl Lt
S

t
y(is) < y@) + / el oo (—w(r), w(r))
N

)

so that using Lemma 2.1, we get

w(s)

v

w(t) —

t
/ el 2% )
S

t
w(t) — C(A+w() / y(o)do

t t
(l—C/wa(t)—C/y’.

Thusfor |t — s| < h(?), (2.26) gives
t -1 t
[2]) Lol

t t
[o)[eeel ]
N N
for some positive constant C.

Now choose constants A < B (depending on ¢, which is fixed), such that —w(¢) <
A < B < w(t). If h(z) isfurther reduced, and if |t — s| < h(z), then y(s) < A <
B < z(s), asfollows from the continuity of y and z (Lemma 2.3). For such s, using
Lemma 2.2, we find that there is a o', depending on 254, (so o = o (1)), such that if
s<5§<s+o,thenp(,5)=00n

§ §
(y(S) +/ lell Loo (—w(e),w@e))» () —/ ||M||Lw(—w(r),w(z))>.
N N

It follows that

v

w(t) < (l—C

(2.27)
5(1+c

: §
() < y(s) +/ lullLoo(—w@),wey and z(8) > z(s) —/ lzell Loo (—w(t),w(e))-
S S

We can further reduce h(r) so that h(r) < o(t). Thusif r — h(r) < s < t, then
s <t <s+o(),andwemay takes = ¢, to obtain

t
w(t) = w(s) —f lell Loo (—w(r),w(r))
N

t
> w(s) —C(1+w(t))/ Y
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wherewe have used Lemma2.1. Thusif r — h(r) < s < t, then

w(s) < <1+c/t y) [w(z)+c/ty] (2.28)

We now cover the interval [d, f] by a finite number of intervals By, (s;), where
§1> 82> > 5p and hj =h(s;). If Tj € Bh_,.+1(sj~+1) N th (8)s then by (2.27)

w(sjr1) < (1+C/j y) |:w(rj)+C/j y:|.
Sj+1 Sj+1
w(zj) < <1+C/jy> |:w(s]-)+C/Ajy:|.

J J

Also, from (2.28)

If weset w, = w(s,), and w1 = w(sy), then iterating these inequalities gives

wpgl_[(1+c[j y)(l—i—C/:jy)[wl—i-C/:y] (2.29)

J

Now if &1 +--- 4+, = ¢, and each &; > O, then

e q
[Ta+epn < (l+ 5) < et

Thus applying thisto (2.29) gives
T T
wy < Chv [wl + C/ y] <C'(wp1+1) (2.30)
0

for some constant C’. As w1 = w(s1), it follows that for s1 near #1, then as noted in
(2.18), we can bound w1 independent of 7, and so (2.30) and (2.27) bound w on [d, 1],
for al d > 7, independent of ¢. Thus we have proved that thereisan L > 0 such that

—L=<yt)<z@t) <L, te(r,nl (2.31)

We now show that z and y are uniformly continuous on theinterval (z, t1]. Oncethis
is shown then the first and third assertions of Lemma 2.4 will be proved. Thusto prove
the uniform continuity of z on (z, 1], let ¢ > 0 be given. Choose § > 0 such that if
O<s<t<T,and|s —t| <§,then

t
/ |l poo(—1,1) < €.
N

Now just as earlier in this proof, if t € (z, 1], we can find A(t) > 0 such that if

[t —s| < h(t), then
t
/ hllzcr.0)
S

|2(s) — z(0)] < : (2.32)
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Now fix s < ¢t with |s —¢| < § and s, ¢t € (t, 11]; then the interval [s, ¢] is covered by
U‘{B%k(sk),sl <5< <sg,wheres; + 5 > ;1 — 232 and b < § for each j.

Then |s; 11— s;| < M50 < max{h;, hj11} < 8. Thusby (2.32),

Sj+1
|z(s;) —z(sj4+1) < f llullLoo—1,1)-
5j

Now for some j and k, s € B (sk), t € B, (s;), and we have
2 v

l2(t) = z(s)| = lz(s) = 2(s))| 4 [2(sj) — z(sj-1)| + - - - 4 [2(sx) — 2(D)]

Sj t t
S/ +'-'+/ =/ lleell oo~ L)
s Sk s

<e.

To complete the proof, we have to show that y(r) = z(z). But thisis clear, since
otherwise y(t) < z(t), and if T > 0, then T would not be minimal, whereasif t = 0,
z(7)
then the hypothesisthat/ p(x,0)dx > Owould beviolated. O
y(T)

We next study the function u in the vacuum region. To this end, we define the set V
by

V=A_x,t):y@) <x <z(@®), T <t <t}
Notethat fort <t <11, p(-, 1) = 0ae. on (y(2), z(2)).

Lemma 2.5. There exist functions a, 8 € Llloc((r, 11]) such that u = a(t)x + B(¢) in
D'(V)yandu(x,t) = a(t)x + B(t) for all x andalmost all 7 in V.

Proof. From(1.2), weseethatu,, = 0inD’(V), andthusu’, = 0inD’(V), whereu?,
isthe standard regularization of u,,. Thusu®(x, r) = «®(t)x + B°(¢). Now from (1.10),

11 z(1) 2 12
0= Ilim / / (ut — ui?)" dx dt
e1,62—0 J; y(1)

15
_ lim 0/ et () — 20 [2() — yO1Y2 dt,
e1,620—0 J;

and thus {«?} isa Cauchy sequencein L1([t + 8, t1]) for every § > 0; that is, {«¢} isa
Cauchy sequencein Llloc((r, 11]). Also, if I isacompact setin (z, 1], andt € I,

1B (1) — B2 ()] < Cllu™ (-, 1) — u® (-, Dl Lo (y(0),200)

for someconstant C. Sinceu® — uin LY({(x,t) : 1 € I, y(t) < x < z(1)}), weseethat
{B¢}isaCauchy sequencein L1(1) so ¢ — g in L1(1); thus g — Bin LY ((z, 11]).
Sinceu® — u inD'(V), and ax + B¢ — ax + Bin L|10C((t, f1]; L°°) we obtain that
u=ax+pginV. O
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The last lemmawhich we need is

Lemma 2.6. Fix w1 € (a, b) andfor t < ¢t < 11 define w(t) by

11 11 151
w(t) = wiexp (—/ a(s)ds) —/ exp (—/ a) B(s)ds.
t 1t s

Theny(t) < w(t) < z(t)forz <t < 1.

Proof. We claim that

Z
— <
7 = az+ B
for dmost all ¢ € (z, 1]. If this holds, then since
d
d—l;} =aw+ 6,
w(t) = w1 < b =z(t1),
we find
E(Z —w) <a(z—w), a.e.
S0 that

d t
o |:exp(_/z1 (x) (z—w)i| <0 a.e.

Integrating from ¢ to #; and using Lemma 2.3 gives

t
exp <—/ d) [2(1) —w®)] = z(t1) — w(ty) > O,
15

1

sothat z(z) > w(t); similarly, w(#) > y(2).

We now prove (2.33). For this, we define the following sets of zero measure:

A={te(r,nl:u, 0 gL,z
D ={(x,t) e V:u(x,t) #a(t)x + B(1)},
E = {t € (r,11] : zisnot differentiable at 7}.

271

(2.33)

Let {r} betheset of rational numbers, and let Bjx = {x : |x —ry| < %},j, k=12, ....

From Lemma 2.1, we have [[u(-, 1)l L~s,,) € L*([0, T]). Let

Fj ={t € (r,11] : t isnot aLebesgue point of [ju(, DB}

and set F = UFj;; thenmeas(F) =0, andif r ¢ F,

. 1 ! _
im —— [ Ol = I Dl

for every j and k.

(2.34)
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z(t) At

2’5
! B
1 J k
y(®) \Z ®

Fig. 5.

[ 1 I A

Letr ¢ AUDUEU F;wewill provethat (2.33) holds at 7. Suppose not; then there
isane > Osuchthat forr near7 and s > 7,

z(1) =z

p— >a)z+p()+e=i+e,

where 7z = z(7); that is, for ¢ near £,
() = 24+ (t = D)@ + e). (2.35)
Because u(-, 1) isin Hi ., wecanfind 2 > Osuchthat if [x — Z| < A,

lu(x, 1) —ul < (2.36)

)

NI ®

and

y(t) <z—h. (2.37)
Then choose B such that

ZeBjx Clz—h,z+h].
Let Bj; = (c, d) and choose e such that
I—h<c<e<z<d<z+h
We can thus can find Ar > 0 such that
lt—1] < At = y(t) <c, e<z(t) <d;
(thiscan bedonesince y and z are continuousfunctions); cf. Fig. 5. Thenif |r — 7| < At,
p(,1) =0 ae.on (y@),z()) D (c, e),

so by Lemma 2.2, thereisaoc > O suchthat p(-,s) = 0on

s s
(C + / ||“||L°°(c,e) / ||M||L°°(c,e)
t t

,z(t) —

)
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if |t —s| <o, |t —f|] < At. Thusfor theses and ¢,

S
/ il g
t
S
/ lull oo (Bjp)
t

Let s =7, and take r withino of 7, ¢ > 7, to get

z(s) > z(t) —

> z(t) —

t
z(t) = z(1) —[ lullLooBjp)-
t

Thus using (2.35), we have

t
I+ —-D+e)<z(t) <Z +ﬁ lullo) »
t
so that
1 t
ites = [ lulisa,
If weletr N\ 7 inthislast inequality, we get

u+e < lullpes-

Since Bj; C [z — h, Z + h], this contradicts (2.36). This proves (2.33) and completes
the proof of Lemma2.6. O

n
Corollary 2.1. Iimf a(s)ds = oo.
IN\T Jt

Proof. Withwy < wa, w; € (a, b), i =1, 2, and w; (¢) the corresponding functions w
asin the last lemma, we have

n
w1(t) — w2(t) = (w1 — w2) EXp (—/ a(s)ds) .
t

From Lemma 2.6
lim (wa() — wa(1) = 0,
1N\T

and the last equation givestheresult. O

We now complete the proof of the theorem asfollows. Let ¢(¢) = wi(t) < wa(t) =
d(t) betwo curves asin Lemma 2.6, corresponding to points w1, wy respectively; then
fromLemma 2.7,

0<d(t)—c@t) — 0 as r\ .

Define functions ¢ (x) and x (x) asin Fig. 6, and definefor ¢ € (t, t1],

w e 1) = (@ (x + B0 x (0,
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P
/ X / ’ X V‘
left of c(t d(t right of e(t f(t
vacuum ( 1) ( 1) vacuum ( 1) ( 1)
Fig. 6.
X=1 X=0
tyT
0l C(t)i 2 ] ]d(t) 2 ]
T () (n
Fig. 7.

where ¢ and 8¢ areregularizations of « and 8. Consider the initial-value problem

¢; +w'¢l =0,
¢°(x, 1) = Y (x).

Using Fig. 6, we seethat ¢¢ isasmooth compactly supported function. Thusfrom (1.2),
wehave, fort <t < 11,

/pmb8

Now ¢° is constant along the characteristics of (2.38) so that the support of ¢¢, in the
region [z, t1], consists of two digoint “strip-like" regions as depicted in Fig. 7. That
is, the characteristics of (2.38) which start on (spt v,) N [c(1), d(t1)] are given by
X = afx + B¢, so for small ¢ (depending on ¢) they stay between the curves ¢(¢) and
d(t); the corresponding support of ¢£ is the shaded region (1) in Fig. 7. Similarly the
characteristics of (2.38) outside of the vacuum, which start on (spt v,) N [e(r1), f(11)]
are given by x = 0; the corresponding support of ¢¢ is depicted in Fig. 7 as the shaded
region Il.

We now consider (2.39). First, the left-hand side is bounded independent of ¢, for
T <t < 1 by virtue of (1.10). Similarly, the term

/ / of ¢
is bounded because of (1.4). Also

/ f puu — w)pt =0,
1

(2.38)

1
dx = / / [pu(@; +udl) + (P — pu)ds + pfo°]
t

(2.39)
- / / [putu — w*)gE + (P — pun)gs + pf 6]
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since p = O here. Inll, w® = 0and ¢¢ = v, so that in view of hypothesis (A3),

V/ pu — wE)f =‘/f i,
Il 11
SC///)MZSC-

‘/ (P — pu) ¢t // (P14 wlux DIV
11 11

because of (A1), (A2), and (1.9). Since P (0, x, t) = 0 (by (1.3)) we have

//(P_Mux)d)i :// _Mux¢§
1 1
t1 pd(s)
_/ f Mux¢§
t c(s)
1
—/ pa(s) [¢°(d(s), ) — ¢ (c(s), s)] ds
tt1
—/ no(s)ds,
t

because ¢¢ (d(s), s) = 1and ¢°(c(s), s) = 0. Thusfrom (2.41), we obtain that

1
/ a(s)ds
t

is bounded, independent of ¢. Letting ¢ N\, T contradicts Corollary 2.7. This completes
the proof of the theorem.

Next

= =<C
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