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Abstract: We prove that weak solutions of the Navier–Stokes equations for compress-
ible fluid flow in one space dimension do not exhibit vacuum states, provided that no
vacuum states are present initially. The solutions and external forces that we consider
are quite general: the essential requirements are that the mass and energy densities of the
fluid be locally integrable at each time, and that theL2

loc-norm of the velocity gradient
be locally integrable in time. Our analysis shows that, if a vacuum state were to occur,
the viscous force would impose an impulse of infinite magnitude on the adjacent fluid,
thus violating the hypothesis that the momentum remains locally finite.

1. Introduction

We prove that weak solutions of the Navier–Stokes equations for compressible fluid
flow in one space dimension do not exhibit vacuum states, provided that no vacuum
states are present initially. The solutions and external forces that we consider are quite
general: the essential requirements are that the mass and energy densities of the fluid be
locally integrable at each time, and that theL2

loc-norm of the velocity gradient be locally
integrable in time.

Our result is motivated by the existence theorem of Hoff [8], in which global solutions
are constructed with large, discontinuous initial data, possibly having different limits at
x = ±∞, and with large external forces. In particular, arbitrary Riemann initial data
is allowed. These constructed solutions have strictly positive densities, so that vacuum
states cannot form in finite time. Uniqueness of weak solutions is not known, however,
in any class which includes solutions with vacuum states. Indeed, the uniqueness results
of which we are aware are based upon analyses in Lagrangian coordinates, in which the
reciprocal of the density is a fundamental variable; see Hoff [7] and Hoff and Zarnowski
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[10], for example. This change of coordinates clearly fails when vacuum states are
allowed. The question therefore arises whether there areany solutions in which vacuum
states occur in positive time. In the present paper we give a definitive answer by defining
a vacuum state to be an open set in physical space in which there is no mass, and proving
that no such vacuum states can occur at positive times if none are present initially. We
recall in this regard that the physical derivation of the Navier–Stokes system presupposes
that the fluid in question isnondilute. Our result therefore establishes an important self–
consistency for this model.

We now give a precise formulation of our results. The Navier–Stokes equations ex-
press the conservation of mass and the balance of momentum as follows:

ρt + (ρu)x = 0, (1.1)

(ρu)t + (ρu2+ P)x = µuxx + ρf, (x, t) ∈ R× R+, (1.2)

whereρ,u, andP denote respectively the density, velocity, and pressure,f = f (x, t)

is an external force, andµ is a positive viscosity coefficient.We do not assume that
P is a function only of ρ. Rather,P may depend upon other unknowns, and there
may be appended to (1.1)–(1.2) other equations for these unknowns. For example, for
the nonbarotropic flow of an ideal gas,P = (γ − 1)ρe, wheree is the specific internal
energy andγ is the adiabatic constant, and a third equation, the energy–balance equation,
is appended to close the system. We shall therefore assume only thatP = P(ρ, x, t),
and that

P(0, x, t) = 0, x ∈ R,0 ≤ t ≤ T , (1.3)

whereT is a positive time which will be fixed throughout. Concerning the external force
f we assume only that

f ∈ L1 ([0; T ];L∞loc(R)
)
, (1.4)

which is a somewhat weaker requirement than that made in [8].
Weak solutions are defined in the usual way: we say that(ρ, u) is a weak solution of

(1.1)–(1.2) onR× [0, T ] provided that

(A1) ρ andρu are inC
(
[0, T ];H−1

loc (R)
)

with ρ nonnegative;ρ(·, t) and(ρu)(·, t)
are inL1

loc(R) for eacht ∈ [0, T ]; ρu2, P (ρ, ·, ·), andux are inL1([−L,L] × [0, T ])
for everyL; and for allC1 test functionsφ supported inR× R,

∫
ρφ

∣∣∣∣
t2

t1

dx =
∫ t2

t1

∫
[ρφt + (ρu)φx ] dxdt (1.5)

and

∫
ρuφ

∣∣∣∣
t2

t1

dx =
∫ t2

t1

∫
[ρu(φt + uφx)+ (P − µux)φx + ρf φ] dxdt (1.6)

for all t1, t2 ∈ [0, T ].
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It follows as a consequence of (A1) that, for anyL > 0, there is a constantC = C(L)

such that ∫ L

−L
ρ(x, t)dx ≤ C(L) (1.7)

for all t ∈ [0, T ].
Now, in the existence theory of [8] (which deals only with the barotropic caseP =

P(ρ)), smooth reference functions̄ρ(x) and ū(x) are defined which are constant for
x ≤ −1, constant forx ≥ 1, and monotone for−1≤ x ≤ 1. The constructed solutions
are then shown to satisfy a number of regularity conditions and estimates, among which
the following are particularly important:

∫
R

[
ρu2− ρ̄ū2+G(ρ, ρ̄)

]
(x, t)dx +

∫ T

0

∫
R

u2
xdxdt <∞.

(Thusux(·, t) ∈ L2(R) for almost allt ∈ [0, T ].) HereG is the potential energy density
relative to the reference stateρ̄, defined by

G(ρ, x) = ρ

∫ ρ

ρ̄(x)

P (s)− P(ρ̄(x))

s2 ds.

ThusG is a smooth, nonnegative function. It was also assumed in [8] that

lim inf ρ→0G(ρ, x) ≥ C−1

for some constantC, independent ofx. It is easily seen that this condition is satisfied in
the representative case thatP = P(ρ) = Kργ , γ ≥ 1.

In the present paper we shall deal with weak solutions which are assumed to satisfy
analogous, but somewhat weaker conditions. These conditions are formulated to be the
minimum required for the proof of our theorem, and are consequently slightly technical.
It is easy to see, however, that they are indeed weaker than the conditions described
above, which are known to be satisfied by the solutions constructed in [8].

We thus assume that

(A2) ux ∈ L1
([0, T ];L2

loc(R)
)
.

In particular, ux(·, t) ∈ L2
loc(R) for almost allt ∈ [0, T ]. Next we assume that

(A3) there is a functionγ (t) ∈ L1([0, T ]) such that, for allL > 0 and almost all
t ∈ [0, T ],

[∫ L

−L
(ρu2)(x, t)dx

]1/2

≤ γ (t)(1+ L), (1.8)

and

[∫ L

−L
ux(x, t)

2dx

]1/2

≤ γ (t)(1+ L). (1.9)
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We assume also that

(A4) for everyL > 0 there is a constantC = C(L) such that∫ L

−L
(ρ|u|)(x, t)dx ≤ C(L) (1.10)

for all t ∈ [0, T ].
(We note, however, that, if (A3) were strengthened slightly by replacing the right side

of (1.8) byC(1+L) for some constantC and requiring (1.8) to hold for allt , then (A4)
would be aconsequence of (1.7) and (1.8); that is, finite local mass and kinetic energy
would imply finite local momentum.)

Finally we assume that

(A5) there is a “potential energy density” functionG(ρ, x, t), which is nonnegative and
continuous onR≥0× R× [0, T ], and for which:

a) there exist positive constantsC0 > 0 andρ > 0 such that, for allx ∈ R, t ∈ [0, T ],
andρ ∈ [0, ρ],

G(ρ, x, t) ≥ C−1
0 ; (1.11)

b) there exist constantsC1 > 0 andθ ∈ [0,1) such that, for allx0, L ∈ R and all
t ∈ [0, T ], ∫ x0+L

x0

G(ρ(x, t), x, t)dx ≤ C1+ θC−1
0 L. (1.12)

We remark that, for solutions of the nonbarotropic system alluded to earlier, in which
P = P(ρ, e) = (γ − 1)ρe, the negative of the entropy density, that is,

S(ρ, e) ≡ ρ(e − 1− loge)+ (γ − 1)(1− ρ + ρ logρ),

has locally finite spatial integral at all times, at least in all known constructed solutions
which could be regarded as physical (see [5], for example). The hypothesis (A5) above
may therefore be met by takingG = (γ −1)(1−ρ+ρ logρ). The results of the present
paper are thus seen to apply as well to the equations ofnonbarotropic flow for an ideal
fluid.

The following theorem is the main result of this paper.

Theorem. Assume that P and f satisfy conditions (1.3)–(1.4)above, and let (ρ, u) be
a solution of (1.1)–(1.2)on [0, T ] satisfying assumptions (A1)–(A5). If∫

E

ρ(x,0)dx > 0 (1.13)

for every open set E ⊂ R, then ∫
E

ρ(x, t)dx > 0 (1.14)

for every open subset E ⊂ R and for every t ∈ [0, T ].
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We now give a brief, heuristic overview of the proof and explain some of the under-
lying physical motivations. The rigorous proof is detailed in a sequence of lemmas in
Sect. 2.

We first show thatu ∈ L1([0, T ];L∞([−L,L])) for everyL, and that the norm in
the latter space grows at most linearly inL. These facts would be immediate from (1.8)
and (1.9) if we knew thatρ were bounded below away from 0. We instead apply the
hypotheses (1.11) and (1.12), which imply the weaker fact thatρ cannot be close to zero
on too a large set. This turns out to be sufficient for the required estimate, which is given

in Lemma 2.1 below. Observe that
∫ T

0
‖u(·, t)‖L∞([−L,L])dt dominates the distance that

a fluid particle travels between times 0 andT , provided that it remains within[−L,L].
The fact that this integral grows at most linearly inL therefore shows, at least at the
heuristic level, thata fluid particle can travel at most a finite distance in finite time.

Now suppose thatρ(x, t1) = 0 a.e. on(a, b), wherea is minimal andb is maximal.
Our observation above concerning finite average convection speeds then implies that
there must be nearby vacuum states at nearby times. Specifically, we construct curvesy(t)

andz(t) starting froma andb respectively, such thatρ(·, t) = 0 a.e. on(y(t), z(t)), and
such thaty(t) is minimal andz(t) is maximal. By comparing with the time-antiderivative
of ‖u(·, t)‖L∞ , we are able to prove that these curves are in fact absolutely continuous,
and can be extended backward to a minimal timet0 ≥ 0, and thaty(t0) = z(t0). Thus a
vacuum exists in the wedge–shaped regionV given by

V = {(x, t) : y(t) ≤ x ≤ z(t), t0 ≤ t ≤ t1} .
Sinceρ = 0 inV , u is evidently linear inV , sayu(x, t) = α(t)x+β(t), in a suitable

sense. Now, in what is the most difficult part of the analysis, we show thatintegral curves
of u which start in V must remain in V on[t0, t1]. This result depends in a crucial way on
the linearity ofu in V and on the absolute continuity of the boundary curvesy andz, and
is given in Lemma 2.6 below. This invariance ofV for the fluid flow thus implies that
any two integral curves ofu in V , proceeding backward in time, must come together at
timet0. It therefore follows thatα cannot be integrable on [t0, t1]. We now apply this fact
to derive a contradiction, motivated by the following physical intuition. First recall that,
in the Navier–Stokes model, the termµux represents the viscous force applied at the
surface of a fluid particle by an adjacent fluid particle. (The second derivativeµuxx in
(1.2) results from an application of the divergence theorem.) Recall also from elementary
mechanics that the time-integral of a given force, which is called the impulse, equals
the corresponding change in momentum of the system. Now, in the situation described
above,µux = µα is therefore the viscous force applied by the “massless fluid particles"
in V at the boundary of the fluid to the right ofV . The nonintegrability ofα on [t0, t1]
therefore implies thatthe change in momentum from time t to time t1 becomes infinite
as t → t0. But this contradicts the fact (1.8) that the momentum is locally finite, thus
completing the proof.

The initial-value problem for the Navier–Stokes equations (1.1)–(1.2) has been stud-
ied by many authors. See for example Kanel [12], Hoff [4, 5], and [8], Kazhikov and
Shelukhin [13], and Serre [19] for existence of solutions with constant time-asymptotic
states, as well as Liu [14], Hoff and Liu [9], Liu and Xin [15], Szepessy and Xin [21],
and Matsumura and Nishihara [16] and [17] for cases in which the time-asymptotic
state contains a viscous shock or rarefaction wave, usually of small strength. There are
a number of results concerning solutions of (1.1)–(1.2) on a finite interval with suitable
boundary conditions, among which we mention those ofAmosov and Zlotnick [1], Chen,
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Hoff and Trivisa [2], Fujita-Yashima et. al. [3], Hoff and Ziane [11], Matsumura and
Yanagi [18], and Shelukhin [20]. See also Hoff and Zarnowski [10], Hoff [5] and [7],
and Hoff and Ziane [11] for uniqueness and continuous dependence results for solutions
with strictly positive densities.

Finally we call attention to the result of Hoff [6], in which solutions are obtained for
the multidimensional, spherically symmetric version of (1.1)–(1.2) with large, possibly
discontinuous data. The density is assumed to be strictly positive att = 0, but the
existence theory allows for the possibility that a vacuum state forms in a ball centered at
the origin in positive time. It is not known whether there are in fact solutions with such
vacuum states, or whether such solutions can be precluded. Indeed, the question of the
spontaneous formation of vacuum states in solutions of the Navier–Stokes equations in
several space variables remains an important open question.

2. Proof of the Theorem

In this section we give the details of the proof outlined above. The hypotheses (1.3),
(1.4), and (A1)–(A5) will be in force throughout this section, the constantsC0, C1 and
θ defined in (1.11) and (1.12) will be fixed, and, unless otherwise stated,C will denote
a generic positive constant whose precise meaning will be clear from the context.

Lemma 2.1. u ∈ L1([0, T ];L∞loc(R)); in fact, there is a constant C > 0 such that for
any L > 0,

‖u(·, t)‖L∞(−L,L) ≤ Cγ (t)(1+ L)

for almost all t ∈ [0, T ], where γ is as in (1.8)and (1.9).

Proof. From hypothesis (A3), u(·, t) ∈ H 1
loc , for almost allt ∈ [0, T ]; pick such at . If

% > 0 is given, andx0 ∈ [−L,L], let

A% = {x ∈ [x0, x0 + %] : ρ(x, t) ≤ ρ}.
Since (1.12) implies thatC0G(ρ, x, t) ≥ 1 if 0 ≤ ρ ≤ ρ, we have, using (1.12),

meas(A%) ≤ C0

∫ x0+%

x0

G(ρ(x, t), x, t)dx ≤ C0C1+ θ%. (2.1)

Now choose%0 such that

C0C1+ θ%0 ≤ 1+ θ

2
%0, (2.2)

so that meas(A%0) ≤ 1+θ
2 %0. Thus ifB%0 = [x0, x0 + %0] − A%0, then

meas(B%0) ≥ %0 − 1+ θ

2
%0 = 1− θ

2
%0; (2.3)

that is, meas(B%0) is strictly positive. Now ifx1 ∈ B%0, thenρ(x1, t) ≥ ρ, and therefore

|u(x0, t)| ≤ |u(x1, t)| +
∫ x1

x0

|ux |dx

≤ ρ−
1
2

(
ρ1/2|u|

)
(x1, t)+

(∫ x0+%0

x0

u2
xdx

)1/2

%
1
2
0 .
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Integrating with respect tox1 over the setB%0 gives

meas(B%0)|u(x0, t)| ≤ ρ−
1
2

(∫
B%0

(ρu2)(x1, t)dx1)

)1/2 (
meas(B%0)

)1/2

+ %
1/2
0 meas(B%0)

(∫ x0+%0

x0

u2
xdx

)1/2

,

so

|u(x0, t)| ≤
[
ρ meas(B%0)

]− 1
2
[∫ x0+%0

x0

ρu2dx

]1/2

+ %
1
2
0

[∫ x0+%0

x0

u2
xdx

]1/2

≤
[
ρ meas(B%0)

]− 1
2
(1+ L+ %0)γ (t)+ %

1
2
0 (1+ L+ %0)γ (t)

≤ C′(1+ L+ %0)γ (t) ≤ C(1+ L)γ (t).

This proves the lemma since (A3) implies thatγ ∈ L1[0, T ]. ��
We shall show that the hypothesisρ(·, t) = 0 a.e. on some open subset ofR

1 leads
to a contradiction. In preparation for this, we first make a remark.

Remark. If ρ(·, t) = 0 on some open interval(a, b), thenb − a is bounded above by a
constant depending only on the parametersC0, C1, andθ appearing in (1.11) and (1.12).
Indeed, it follows from (1.11) and (1.12), that

C1+ θC−1
0 (b − a) ≥

∫ b

a

G(ρ(x, t), x, t)dx ≥ C−1
0 (b − a),

and as 0≤ θ < 1, we see thatb − a is bounded, as required.

The following lemma shows that ifρ(·, t) is zero a.e. on some interval, then, ift ′ is near
t , ρ(·, t ′) is zero a.e. on a nearby, but possibly smaller interval.

Lemma 2.2. Let t1 < T and suppose that ρ(·, t1) = 0 a.e. on an open interval (a, b).
Let

t0 = inf

{
t ∈ [0, t1] :

∫ t1

t

‖u(·, s)‖L∞(a,b) <
1

2
(b − a)

}
and

t2 = sup

{
t ∈ [t1, T ] :

∫ t

t1

‖u(·, s)‖L∞(a,b) <
1

2
(b − a)

}
.

Then t0 < t1 < t2, and for any t ∈ (t0, t2), ρ(·, t) = 0 on the interval

(
a +

∣∣∣∣
∫ t

t1

‖u(·, s)‖L∞(a,b)ds

∣∣∣∣ , b −
∣∣∣∣
∫ t

t1

‖u(·, s)‖L∞(a,b)ds

∣∣∣∣
)
.
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||uε||∞

–||uε||∞

Wεδ(x,t)

+ δa+b
2– δa+b

2

a+b
2 x

Fig. 1.

x
a a+δ a+2δ b–2δ b–δ b

1
ψδ

Fig. 2.

Proof. It is clear that t0 ≤ t1 ≤ t2, and Lemma 2.1 shows that strict inequalities must
hold because γ is integrable.

Now suppose t > t1; the proof for t < t1 is similar, and will be omitted. Fix δ > 0
satisfying δ < b−a

6 , and for small ε > 0, let uε denote the usual spatial regularization
of u. Then for almost all t, T > t ≥ t1,∥∥uε(·, t)∥∥

L∞(a+δ,b−δ) ≤ ‖u(·, t)‖L∞(a,b) .

For ease in notation, let

‖uε‖∞ =
∥∥uε(·, t)∥∥

L∞(a+δ,b−δ) and ‖u‖∞ = ‖u(·, t)‖L∞(a,b) .

Now define the smooth function wεδ(·, t) by

wεδ(x, t) =
{
‖uε(·, t)‖∞, if x < a+b

2 − δ

−‖uε(·, t)‖∞, if x > a+b
2 + δ,

and wεδ is decreasing on
(
a+b

2 − δ, a+b
2 + δ

)
; cf. Fig. 1 (where we take a > 0). Next,

define the smooth function +δ(x) by

+δ(x) =




0, if x < a + δ

1, if a + 2δ ≤ x ≤ b − 2δ
0, if x > b − δ

and +δ is increasing on the interval (a+ δ, a+ 2δ), and decreasing on (b− 2δ, b− δ);
cf. Fig. 2.

Now let φεδ be the solution to the problem

φt + wεδφx = 0, t > t1, (2.4)

φ(·, t1) = +δ.
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xa

a+δ a+2δ b–2δ b–δ

b

– δa+b
2 + δa+b

2
a+b

2

Φεδ   0

Φ
εδ  >0

x

Φ εδ
 <0

x

I II III IV

Tεδ

t1

t

Φεδ   0

Φεδ   1

Fig. 3.

It is easy to check that φεδ(x, t) is of the form depicted in Fig. 3, where the curves I–IV
are characteristics. That is, φεδ is a smooth, compactly supported function, and can thus
serve as a test function for the (weak) formulation of a solution of (1.1), (1.2).

In particular, from (1.5) we have∫ b−δ

a+δ
ρφεδ

∣∣∣t
t1
=
∫ b−δ

a+δ

∫ t

t1

ρ
(
φεδ
t + uφεδ

x

)

=
∫ b−δ

a+δ

∫ t

t1

ρ
(
u− wεδ

)
φεδ
x ,

so that, since ρ(x, t1) = 0 for x ∈ [a, b], we have

∫ b−δ

a+δ
(ρφεδ)(x, t)dx

=
∫ b−δ

a+δ

∫ t

t1

ρ
(
uε − wεδ

)
φεδ
x +

∫ b−δ

a+δ

∫ t

t1

ρ(u− uε)φεδ
x . (2.5)

Now in Fig. 3, T εδ is defined by

T εδ = sup{t ∈ [t1, T ] : II & III

stay δ units away from
a + b

2
on [t1, t]}.

We now estimate T εδ from below. For this, we first notice that since the characteristics
of (2.4) are given by ẋ = wεδ , it follows that(

a + b

2
− δ

)
− (a + 2δ) =

∫ T εδ

t1

wεδdt

≤
∫ T εδ

t1

‖uε‖∞dt ≤
∫ T εδ

t1

‖u‖∞dt,

and thus ∫ T εδ

t1

‖u‖∞dt ≥ b − a

2
− 3δ. (2.6)
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Therefore if T δ is defined by

T δ = sup

{
t ∈ [t1, T ] :

∫ t

t1

‖u‖∞ <
b − a

2
− 3δ

}
, (2.7)

then

T εδ ≥ T δ. (2.8)

Thus if t ∈ [t1, T δ], then t ∈ [t1, T εδ], so from Fig. 3, ifφεδ
x (x, t) > 0, then x < a+b

2 −δ,
so from Fig. 1, wεδ(x, t) = ‖uε‖∞. If for such t , φεδ

x (x, t) < 0, then x > a+b
2 + δ, and

wεδ(x, t) = −‖uε‖∞. It follows that (cf. (2.5)),∫ b−δ

a+δ

∫ t

t1

ρ(uε − wεδ)φεδ
x ≤ 0. (2.9)

Next, we claim that

lim
ε→0

∫ b−δ

a+δ

∫ t

t1

ρ(u− uε)φεδ
x = 0. (2.10)

Granting this for the moment, we complete the proof of Lemma 2.2 as follows. First,
from (2.5), (2.9), and (2.10), we get

lim
ε→0

∫ b−δ

a+δ
(ρφ)εδ(x, t)dx ≤ 0, t ∈ [t1, T δ]. (2.11)

Then from Fig. 3, we see that the support of φεδ is the region bounded by the charac-
teristics I and IV. As before, the x-distance traversed by these characteristics is bounded
from above by ∫ t

t1

‖uε‖∞ ≤
∫ t

t1

‖u‖∞,

so that the interval(
a + δ +

∫ t

t1

‖uε‖∞, b − δ −
∫ t

t1

‖uε‖∞
)
≡ Iδ (2.12)

is contained in the support of φεδ(·, t). Hence (2.11) gives that for all t ∈ [t1, T δ],
ρ(·, t) = 0 a.e. on Iδ. (2.13)

If now t < t2 (cf. the statement of Lemma 2.2), then∫ t

t1

‖u‖∞ <
1

2
(b − a),

and thus there is a δ0 > 0 such that if δ ≤ δ0, then∫ t

t1

‖u‖∞ <
1

2
(b − a)− 4δ.
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For such δ, (2.7) implies that t ≤ T δ . Thus for such t and δ, ρ(·, t) = 0 a.e. on Iδ . Taking
a sequence δi ↘ 0, we get that ρ(·, t) = 0 on the interval(

a +
∫ t

t1

‖u‖∞, b −
∫ t

t1

‖u‖∞
)

for all t ∈ [t1, t2], and this completes the proof of the lemma.
It remains to prove (2.10). To this end, we first differentiate (2.4) with respect to x to

obtain

φεδ
xt + wεδφεδ

xx = −wεδ
x φεδ

x ,

so that along the characteristics x = x(t),

φεδ
x (x(t), t) = +δ

x(x(t1)) exp

(
−
∫ t

t1

wεδ
x (x(s), s)ds

)
. (2.14)

But from Fig. 1, we see that

|wεδ
x (·, s)| ≤ C(δ)‖uε(·, s)‖∞ ≤ C(δ)‖u(·, s)‖∞,

(where |C(δ)| → ∞ as δ→ 0), and thus from (2.14),

‖φεδ
x ‖∞ ≤ C′(δ),

where C′(δ) is a constant depending only on δ. Hence∣∣∣∣
∫ b−δ

a+δ

∫ t

t1

ρ(u− uε)φεδ
x

∣∣∣∣ ≤ C′(δ)
∫ t

t1

‖ρu− ρuε‖L1(a+δ,b−δ)dt

≤ C′(δ)
∫ T

t1

‖u(·, t)− uε(·, t)‖L∞(a+δ,b−δ)‖ρ(·, t)‖L1(a+δ,b−δ)dt.
(2.15)

But from hypotheses (A4), we have that for almost all t ∈ [t1, T ], u(·, t) ∈ H 1
loc and

from (1.7) ‖ρ(·, t)‖L1(a+δ,b−δ) is bounded; thus for each fixed t the integrand on the
right-hand side of (2.15) tends to zero as ε ↘ 0. Since

‖u(·, t)− uε(·, t)‖L∞(a+δ,b−δ)‖ρ(·, t)‖L1(a+δ,b−δ) ≤ C(a, b)‖u(·, t)‖L∞(a+δ,b−δ)
and ‖u(·, t)‖L∞(a+δ,b−δ) is integrable (by Lemma 2.1), the Lebesgue dominated con-
vergence theorem applies to the right-hand side of (2.15) and shows that (2.10) holds.
��

Now suppose that ρ(·, t1) = 0 a.e. on (a, b), where, without loss of generality, a
is minimal and b is maximal (cf. the remark following the proof of Lemma 2.1). The
interval (a, b) and the time t1 will be fixed for the remainder of the argument.

Let t0 be as in the statement of Lemma 2.2, and define for t ∈ (t0, t1),

y(t) = inf

{
x : ρ(·, t) = 0 a.e. on

(
x,

a + b

2

)}
, (2.16)

z(t) = sup

{
x : ρ(·, t) = 0 a.e. on

(
a + b

2
, x

)}
. (2.17)

Clearly, y(t1) = a and z(t1) = b.

In the following lemma we prove an important regularity property for the curves y
and z.
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a+b
2

z(t)
t

s

t1

z(s)

t

x

Fig. 4.

Lemma 2.3. There exists a constant h = h(a, b) > 0 such that y and z are absolutely
continuous functions on [t1 − h, t1].
Proof. First, it follows from the remark preceding Lemma 2.2 that there exists an L > 0
such that, for all t ∈ (t0, t2),

−L ≤ y(t), z(t) ≤ L . (2.18)

Next, choose h > 0 such that∫ t1

t1−h
‖u‖L∞(−L,L)dt <

b − a

2
. (2.19)

In order to prove that z is AC, let s and t be such that

t1 − h ≤ s < t ≤ t1,

and compare z(s) with z(t); cf. Fig. 4, where all depicted curves have speeds
±‖u‖L∞(−L,L), and thus comprise two families of horizontal translates.

Applying Lemma 2.2, we see that if ρ(·, t) = 0 on (y(t), z(t)), then ρ(·, s) = 0 a.e.
on (

y(t)+
∫ t

s

‖u‖L∞(−L,L), z(t)−
∫ t

s

‖u‖L∞(−L,L)
)

so that

z(s) ≥ z(t)−
∫ t

s

‖u‖L∞(−L,L). (2.20)

Similarly, if ρ(·, s) = 0 a.e. on (y(s), z(s)) then

z(t) ≥ z(s)−
∫ t

s

‖u‖L∞(−L,L). (2.21)

Hence (2.20) and (2.21) give, for t1 − h ≤ s < t ≤ t1,

|z(t)− z(s)| ≤
∫ t

s

‖u‖L∞(−L,L). (2.22)
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Now let ε > 0 be given; then Lemma 2.1 implies that we can find δ > 0 such that if
meas(E) < δ, then ∫

E

‖u‖L∞(−L,L)dt ≤ ε. (2.23)

Thus given points {sj }k1 and {τj }k1 satisfying

t1 − h ≤ s1 < τ1 < s2 < τ2 < · · · < sk < τk < t1,

with
∑
j

(τj − sj ) ≤ δ, (2.22) and (2.23) give

∑
j

|z(τj )− z(sj )| ≤
∑
j

∫ τj

sj

‖u‖L∞(−L,L)

=
∫
∪[sj , τj ]

‖u‖L∞(−L,L) ≤ ε.

This proves that z is AC on [t1 − h, t1]; similarly, y is AC on the same interval. ��
In the next lemma, we obtain further results concerning the functions y(t) and z(t).

To this end, let S be defined as the set of all t ≥ 0 such that there are extensions of y
and z to [t, t1] such that the following three properties hold:

(i) y and z are absolutely continuous on [t, t1],
(ii) y < z on [t, t1],
(iii)

∫ z(s)

y(s)−ε
ρ(x, s)ds and

∫ z(s)+ε

y(s)

ρ(x, s)dx are both positive for all ε > 0 and all

s ∈ [t, t1], and
∫ z(s)

y(s)

ρ(x, s)dx > 0.

Notice that the last lemma implies that S is nonempty; thus let

τ = inf S. (2.24)

Concerning τ we have the following result.

Lemma 2.4. y and z have AC extensions to time τ , y(τ) = z(τ ), and there is an L > 0
such that for all t ∈ [τ, t1], −L ≤ y(t) ≤ z(t) ≤ L.

Proof. We prove the last assertion first. Let

τ < c < d < f < g < t1,

and for t ∈ (τ, t1), let

w(t) = max{z(t),−y(t)} ≥ 0. (2.25)

Let t ∈ [c, g]; then by definition ρ(·, t) = 0 a.e. on (y(t), z(t)), and since y(t) < z(t),
Lemma 2.2 shows that there is an h = h(t) > 0 such that if |t− s| ≤ h, then ρ(·, s) = 0
a.e. on the interval(

y(t)+
∣∣∣∣
∫ s

t

‖u‖L∞(−w(t),w(t))

∣∣∣∣ , z(t)−
∣∣∣∣
∫ s

t

‖u‖L∞(−w(t),w(t))

∣∣∣∣
)
,
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and

C

∫ t+h

t−h
γ (s)ds ≤ 1

2 , (2.26)

where C is as in Lemma 2.1. Thus

z(s) ≥ z(t)−
∣∣∣∣
∫ t

s

‖u‖L∞(−w(t),w(t))

∣∣∣∣ ,
y(s) ≤ y(t)+

∣∣∣∣
∫ t

s

‖u‖L∞(−w(t),w(t))

∣∣∣∣ ,
so that using Lemma 2.1, we get

w(s) ≥ w(t)−
∣∣∣∣
∫ t

s

‖u‖L∞(−w(t),w(t))

∣∣∣∣
≥ w(t)− C(1+ w(t))

∣∣∣∣
∫ t

s

γ (σ )dσ

∣∣∣∣
=
(

1− C

∣∣∣∣
∫ t

s

γ

∣∣∣∣
)
w(t)− C

∣∣∣∣
∫ t

s

γ

∣∣∣∣ .
Thus for |t − s| ≤ h(t), (2.26) gives

w(t) ≤
(

1− C

∣∣∣∣
∫ t

s

γ

∣∣∣∣
)−1 [

w(s)+ C

∣∣∣∣
∫ t

s

γ

∣∣∣∣
]

≤
(

1+ C

∣∣∣∣
∫ t

s

γ

∣∣∣∣
) [

w(s)+ C

∣∣∣∣
∫ t

s

γ

∣∣∣∣
]
,

(2.27)

for some positive constant C.
Now choose constants A < B (depending on t , which is fixed), such that −w(t) <

A < B < w(t). If h(t) is further reduced, and if |t − s| ≤ h(t), then y(s) < A <

B < z(s), as follows from the continuity of y and z (Lemma 2.3). For such s, using
Lemma 2.2, we find that there is a σ , depending on B−A

2 , (so σ = σ(t)), such that if
s ≤ s̃ ≤ s + σ , then ρ(·, s̃) = 0 on(

y(s)+
∫ s̃

s

‖u‖L∞(−w(t),w(t)), z(s)−
∫ s̃

s

‖u‖L∞(−w(t),w(t))

)
.

It follows that

y(s̃) ≤ y(s)+
∫ s̃

s

‖u‖L∞(−w(t),w(t)) and z(s̃) ≥ z(s)−
∫ s̃

s

‖u‖L∞(−w(t),w(t)).

We can further reduce h(t) so that h(t) ≤ σ(t). Thus if t − h(t) ≤ s ≤ t , then
s ≤ t ≤ s + σ(t), and we may take s̃ = t , to obtain

w(t) ≥ w(s)−
∫ t

s

‖u‖L∞(−w(t),w(t))

≥ w(s)− C(1+ w(t))

∫ t

s

γ,
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where we have used Lemma 2.1. Thus if t − h(t) ≤ s ≤ t , then

w(s) ≤
(

1+ C

∫ t

s

γ

)[
w(t)+ C

∫ t

s

γ

]
. (2.28)

We now cover the interval [d, f ] by a finite number of intervals Bhj (sj ), where
s1 > s2 > · · · > sp and hj = h(sj ). If τj ∈ Bhj+1(sj+1) ∩ Bhj (sj ), then by (2.27)

w(sj+1) ≤
(

1+ C

∫ τj

sj+1

γ

)[
w(τj )+ C

∫ τj

sj+1

γ

]
.

Also, from (2.28)

w(τj ) ≤
(

1+ C

∫ sj

τj

γ

)[
w(sj )+ C

∫ sj

τj

γ

]
.

If we set wp = w(sp), and w1 = w(s1), then iterating these inequalities gives

wp ≤
∏(

1+ C

∫ τj

sj+1

γ

)(
1+ C

∫ sj

τj

γ

)[
w1 + C

∫ t

s

γ

]
. (2.29)

Now if ε1 + · · · + εq = ε, and each εi > 0, then

∏
(1+ εj ) ≤

(
1+ ε

q

)q

≤ eε.

Thus applying this to (2.29) gives

wp ≤ eC
∫ T

0 γ

[
w1 + C

∫ T

0
γ

]
≤ C′(w1 + 1) (2.30)

for some constant C′. As w1 = w(s1), it follows that for s1 near t1, then as noted in
(2.18), we can bound w1 independent of t , and so (2.30) and (2.27) bound w on [d, t1],
for all d > τ , independent of t . Thus we have proved that there is an L > 0 such that

−L ≤ y(t) ≤ z(t) < L, t ∈ (τ, t1]. (2.31)

We now show that z and y are uniformly continuous on the interval (τ, t1]. Once this
is shown then the first and third assertions of Lemma 2.4 will be proved. Thus to prove
the uniform continuity of z on (τ, t1], let ε > 0 be given. Choose δ > 0 such that if
0 ≤ s < t ≤ T , and |s − t | ≤ δ, then∫ t

s

‖u‖L∞(−L,L) ≤ ε.

Now just as earlier in this proof, if t ∈ (τ, t1], we can find h(t) > 0 such that if
|t − s| ≤ h(t), then

|z(s)− z(t)| ≤
∣∣∣∣
∫ t

s

‖u‖L∞(−L,L)
∣∣∣∣ . (2.32)
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Now fix s < t with |s − t | ≤ δ and s, t ∈ (τ, t1]; then the interval [s, t] is covered by
∪q1Bhk

2
(sk), s1 < s2 < · · · < sq , where sj + hj

2 > sj+1 − hj+1
2 , and hj < δ for each j .

Then |sj+1 − sj | ≤ hj+hj+1
2 ≤ max{hj , hj+1} < δ. Thus by (2.32),

|z(sj )− z(sj+1) ≤
∫ sj+1

sj

‖u‖L∞(−L,L).

Now for some j and k, s ∈ Bhk
2
(sk), t ∈ Bhj

2

(sj ), and we have

|z(t)− z(s)| ≤ |z(s)− z(sj )| + |z(sj )− z(sj−1)| + · · · + |z(sk)− z(t)|
≤
∫ sj

s

+ · · · +
∫ t

sk

=
∫ t

s

‖u‖L∞(−L,L)

≤ ε.

To complete the proof, we have to show that y(τ) = z(τ ). But this is clear, since
otherwise y(τ) < z(τ), and if τ > 0, then τ would not be minimal, whereas if τ = 0,

then the hypothesis that
∫ z(τ )

y(τ )

ρ(x, 0) dx > 0 would be violated. ��

We next study the function u in the vacuum region. To this end, we define the set V
by

V = {(x, t) : y(t) < x < z(t), τ < t ≤ t1}.
Note that for τ < t ≤ t1, ρ(·, t) = 0 a.e. on (y(t), z(t)).

Lemma 2.5. There exist functions α, β ∈ L1
loc((τ, t1]) such that u = α(t)x + β(t) in

D′(V ) and u(x, t) = α(t)x + β(t) for all x and almost all t in V .

Proof. From (1.2), we see that uxx = 0 in D′(V ), and thus uεxx = 0 in D′(V ), where uεxx
is the standard regularization of uxx . Thus uε(x, t) = αε(t)x+βε(t). Now from (1.10),

0 = lim
ε1,ε2→0

∫ t1

τ

(∫ z(t)

y(t)

(
uε1
x − uε2

x

)2
dx

)1/2

dt

= lim
ε1,ε2→0

∫ t1

τ

|αε1(t)− αε2(t)|[z(t)− y(t)]1/2 dt,

and thus {αε} is a Cauchy sequence in L1([τ + δ, t1]) for every δ > 0; that is, {αε} is a
Cauchy sequence in L1

loc((τ, t1]). Also, if I is a compact set in (τ, t1], and t ∈ I ,

|βε1(t)− βε2(t)| ≤ C‖uε1(·, t)− uε2(·, t)‖L∞(y(t),z(t))

for some constant C. Since uε → u in L1({(x, t) : t ∈ I, y(t) ≤ x ≤ z(t)}), we see that
{βε} is a Cauchy sequence in L1(I ) so βε → β in L1(I ); thus βε → β in L1

loc((τ, t1]).
Since uε → u in D′(V ), and αεx + βε → αx + β in L1

loc((τ, t1];L∞) we obtain that
u = αx + β in V . ��
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The last lemma which we need is

Lemma 2.6. Fix w1 ∈ (a, b) and for τ < t ≤ t1 define w(t) by

w(t) = w1 exp

(
−
∫ t1

t

α(s)ds

)
−
∫ t1

t

exp

(
−
∫ t1

s

α

)
β(s)ds.

Then y(t) < w(t) < z(t) for τ < t ≤ t1.

Proof. We claim that

dz

dt
≤ αz+ β (2.33)

for almost all t ∈ (τ, t1]. If this holds, then since

dw

dt
= αw + β,

w(t1) = w1 < b = z(t1),

we find

d

dt
(z− w) ≤ α(z− w), a.e.

so that

d

dt

[
exp

(
−
∫ t

t1

α

)
(z− w)

]
≤ 0 a.e.

Integrating from t to t1 and using Lemma 2.3 gives

exp

(
−
∫ t

t1

α

)
[z(t)− w(t)] ≥ z(t1)− w(t1) > 0,

so that z(t) > w(t); similarly, w(t) > y(t).
We now prove (2.33). For this, we define the following sets of zero measure:

A = {t ∈ (τ, t1] : ux(·, t) �∈ L2(y(z), z(t))},
D = {(x, t) ∈ V : u(x, t) �= α(t)x + β(t)},
E = {t ∈ (τ, t1] : z is not differentiable at t}.

Let {rk} be the set of rational numbers, and letBjk = {x : |x−rk| < 1
j
}, j, k = 1, 2, . . . .

From Lemma 2.1, we have ‖u(·, t)‖L∞(Bjk) ∈ L1([0, T ]). Let

Fjk = {t ∈ (τ, t1] : t is not a Lebesgue point of ‖u(·, t)‖L∞(Bjk)}
and set F = ∪Fjk; then meas(F ) = 0, and if t̄ �∈ F ,

lim
t↘t̄

1

t − t̄

∫ t

t̄

‖u(·, t)‖L∞(Bjk) = ‖u(·, t̄)‖L∞(Bjk), (2.34)

for every j and k.
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d
t = t

∆t

∆t
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y( t )
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z z+h

Fig. 5.

Let t̄ �∈ A∪D ∪E ∪F ; we will prove that (2.33) holds at t̄ . Suppose not; then there
is an ε > 0 such that for t near t̄ and t > t̄ ,

z(t)− z̄

t − t̄
≥ α(t̄)z̄+ β(t̄)+ ε ≡ ū+ ε,

where z̄ = z(t̄); that is, for t near t̄ ,

z(t) ≥ z̄+ (t − t̄ )(ū+ ε). (2.35)

Because u(·, t) is in H 1
loc, we can find h > 0 such that if |x − z̄| ≤ h,

|u(x, t̄)− ū| ≤ ε

2
, (2.36)

and

y(t̄) < z̄− h. (2.37)

Then choose Bjk such that

z̄ ∈ Bjk ⊂ [z̄− h, z̄+ h].
Let Bjk = (c, d) and choose e such that

z̄− h < c < e < z̄ < d < z̄+ h.

We can thus can find :t > 0 such that

|t − t̄ | < :t  ⇒ y(t) < c, e ≤ z(t) ≤ d;
(this can be done since y and z are continuous functions); cf. Fig. 5. Then if |t− t̄ | < :t ,

ρ(·, t) = 0 a.e. on (y(t), z(t)) ⊃ (c, e),

so by Lemma 2.2, there is a σ > 0 such that ρ(·, s) = 0 on(
c +

∣∣∣∣
∫ s

t

‖u‖L∞(c,e)

∣∣∣∣ , z(t)−
∣∣∣∣
∫ s

t

‖u‖L∞(c,e)

∣∣∣∣
)
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if |t − s| ≤ σ, |t − t̄ | < :t . Thus for these s and t ,

z(s) ≥ z(t)−
∣∣∣∣
∫ s

t

‖u‖L∞[c,e]
∣∣∣∣

≥ z(t)−
∣∣∣∣
∫ s

t

‖u‖L∞(Bjk)

∣∣∣∣ .
Let s = t̄ , and take t within σ of t̄ , t > t̄ , to get

z(t̄) ≥ z(t)−
∫ t

t̄

‖u‖L∞(Bjk).

Thus using (2.35), we have

z̄+ (t − t̄ )(ū+ ε) ≤ z(t) ≤ z̄+
∫ t

t̄

‖u‖L∞(Bjk) ,

so that

ū+ ε ≤ 1

t − t̄

∫ t

t̄

‖u‖L∞(Bjk).

If we let t ↘ t̄ in this last inequality, we get

ū+ ε ≤ ‖u‖L∞(Bjk).

Since Bjk ⊂ [z̄ − h, z̄ + h], this contradicts (2.36). This proves (2.33) and completes
the proof of Lemma 2.6. ��

Corollary 2.1. lim
t↘τ

∫ t1

t

α(s)ds = ∞.

Proof. With w1 < w2, wi ∈ (a, b), i = 1, 2, and wi(t) the corresponding functions w
as in the last lemma, we have

w1(t)− w2(t) = (w1 − w2) exp

(
−
∫ t1

t

α(s)ds

)
.

From Lemma 2.6

lim
t↘τ

(w1(t)− w2(t)) = 0,

and the last equation gives the result. ��
We now complete the proof of the theorem as follows. Let c(t) ≡ w1(t) < w2(t) ≡

d(t) be two curves as in Lemma 2.6, corresponding to points w1, w2 respectively; then
from Lemma 2.7,

0 ≤ d(t)− c(t) −→ 0 as t ↘ τ.

Define functions ψ(x) and χ(x) as in Fig. 6, and define for t ∈ (τ, t1],
wε(x, t) =

(
αε(t)x + βε(t)

)
χ(x),
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left of
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e(t1)

1

right of
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f(t1)c(t1)

ψχ ψχ

d(t1)

Fig. 6.

t

t1

τ

c(t1) d(t1)

c(t) d(t)

χ   1

e(t1) f(t1)

χ   0

(I) (II)

Fig. 7.

where αε and βε are regularizations of α and β. Consider the initial-value problem

φε
t + wεφε

x = 0,

φε(x, t1) = ψ(x).
(2.38)

Using Fig. 6, we see that φε is a smooth compactly supported function. Thus from (1.2),
we have, for τ < t < t1,∫

ρuφε

∣∣∣∣
t1

t

dx =
∫ ∫ [

ρu(φε
t + uφε

x)+ (P − µux)φ
ε
x + ρf φε

]
=
∫ ∫ [

ρu(u− wε)φε
x + (P − µux)φ

ε
x + ρf φε

]
.

(2.39)

Now φε is constant along the characteristics of (2.38) so that the support of φε
x , in the

region [t, t1], consists of two disjoint “strip-like" regions as depicted in Fig. 7. That
is, the characteristics of (2.38) which start on (spt ψx) ∩ [c(t1), d(t1)] are given by
ẋ = αεx + βε, so for small ε (depending on t) they stay between the curves c(t) and
d(t); the corresponding support of φε

x is the shaded region (I) in Fig. 7. Similarly the
characteristics of (2.38) outside of the vacuum, which start on (spt ψx) ∩ [e(t1), f (t1)]
are given by ẋ = 0; the corresponding support of φε

x is depicted in Fig. 7 as the shaded
region II.

We now consider (2.39). First, the left-hand side is bounded independent of t , for
τ < t < t1 by virtue of (1.10). Similarly, the term∫ ∫

ρf φε

is bounded because of (1.4). Also∫ ∫
I

ρu(u− wε)φε
x = 0,
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since ρ = 0 here. In II, wε = 0 and φε
x = ψx , so that in view of hypothesis (A3),∣∣∣∣

∫ ∫
II

ρu(u− wε)φε
x

∣∣∣∣ =
∣∣∣∣
∫ ∫

II

ρu2ψx

∣∣∣∣
≤ C

∫ ∫
ρu2 ≤ C.

Next ∣∣∣∣
∫ ∫

II

(P − µux)φ
ε
x

∣∣∣∣ ≤
∣∣∣∣
∫∫

II

(|P | + µ|ux |)|ψx |
∣∣∣∣ ≤ C

because of (A1), (A2), and (1.9). Since P(0, x, t) = 0 (by (1.3)) we have∫ ∫
I

(P − µux)φ
ε
x =

∫∫
I

−µuxφε
x

= −
∫ t1

t

∫ d(s)

c(s)

µuxφ
ε
x

= −
∫ t1

t

µα(s)
[
φε(d(s), s)− φε(c(s), s)

]
ds

= −
∫ t1

t

µα(s)ds,

because φε(d(s), s) = 1 and φε(c(s), s) = 0. Thus from (2.41), we obtain that∣∣∣∣
∫ t1

t

α(s)ds

∣∣∣∣
is bounded, independent of t . Letting t ↘ τ contradicts Corollary 2.7. This completes
the proof of the theorem.
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