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1 Introduction

In this paper, we give examples of two new phenomena in Kleinian groups.
We �rst exhibit a sequence of homeomorphic marked hyperbolic 3-manifolds
whose algebraic limit is not homeomorphic to any element in the sequence.
We then use this construction to exhibit situations where the space of convex
co-compact representations of a given 3-manifold group has many components
but its closure is connected.
Let M be a compact, irreducible, oriented 3-manifold and let D(�1(M)) de-

note the space of all discrete, faithful representations of �1(M) into PSL2(C).
A sequence of representations {�n} ⊂ D(�1(M)) converging to � ∈ D(�1(M))
gives rise to a sequence {N�n = H3=�n(�1(M))} of hyperbolic 3-manifolds,
each of which is homotopy equivalent to M . The sequence {N�n} is said to
converge algebraically to N� = H3=�(�1(M)). (See [7, 13, 14] for more infor-
mation about algebraic convergence of Kleinian groups.) In many situations
(see [1, 6, 15, 24, 25, 27]), it has been shown that N�n must be homeomor-
phic to N� for all large enough n, and we had suspected that this would always
be the case. In this paper, we give a collection of examples where N�n is not
homeomorphic to N� for any n. Our sequences are quite well-behaved: the
�n(�1(M)) are convex co-compact and mutually quasiconformally conjugate,
and the algebraic limit �(�1(M)) is geometrically �nite.
In our examples, M is obtained by gluing a collection of I -bundles to a

solid torus along a family of parallel annuli. These manifolds are particularly
simple examples of books of I -bundles (see [9]) where, to explain the termi-
nology, one should think of the solid torus as the binding and the I -bundles
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as the pages. The main tool in our construction is a version of Thurston’s
hyperbolic Dehn surgery theorem which is due to Tim Comar [8] (see also
Bonahon–Otal [3]). We use this theorem to produce a sequence {�′n} of convex
co-compact uniformizations of M converging to �′ ∈ D(�1(M)) such that N�′
is homeomorphic to the interior of M , and {N�n} converges “geometrically” to
a geometrically �nite hyperbolic 3-manifold N̂ which is homeomorphic to the
interior of M − �, where � is the core curve of the solid torus. (This type of
phenomenon was �rst discovered by J�rgensen [12, 15] and was subsequently
investigated by Marden [18], Thurston [27], and others, e.g. see [3, 8, 16, 24,
and 28].) If M� is homotopy equivalent to one of our examples, then it is also
obtained by gluing the same collection of I -bundles to a solid torus along the
same family of parallel annuli, although perhaps in a di�erent order. In partic-
ular, there is a cover N� of N̂ which is homeomorphic to the interior of M�.
We will see that one may precompose the representations in the sequence {�′n}
by a sequence {�n} of automorphisms of �1(M) so that the resulting sequence
of representations {�n = �′n ◦ �n} converges to a representation � ∈ D(�1(M))
with N� = N�.

Our examples also serve to demonstrate new phenomena in the deformation
theory of Kleinian groups. If we let CC(�1(M)) denote the set of convex co-
compact representations of �1(M), the components of CC(�1(M)) are in a one-
to-one correspondence with the marked homeomorphism types of irreducible
(oriented) 3-manifolds homotopy equivalent to M . In our class of examples,
the closure of CC(�1(M)) will be connected, although CC(�1(M)) can have
arbitrarily many components. We note that there are other examples where the
components of CC(�1(M)) are known to have disjoint closures. In a future
paper [2] with Darryl McCullough, we will explore more general classes of
examples.
The convex co-compact Kleinian groups correspond, via the Sullivan dic-

tionary between rational maps and Kleinian groups (see [26]), to hyperbolic
rational maps. Hence, this phenomenon is the analogue of hyperbolic com-
ponents of the Mandelbrot set whose closures intersect. It is conjectured that
CC(�1(M)) is dense in D(�1(M)). This is analogous to the conjecture that
the hyperbolic components are dense in the Mandelbrot set.

2 The examples

In this section, we construct the examples promised in the introduction. For
the remainder of the paper, �x a positive integer k = 3.
Let V = D2 × S1 be a solid torus and let A(j) (15 j 5 k) denote a family

of k disjoint parallel annuli in @V such that the inclusion map of A(j) into V
is a homotopy equivalence. (Explicitly, we could choose A(j) = [e2�i(4j−1)=4k ;
e2�i(4j+1)=4k ]× S1:) Let F(j) be a compact, oriented surface of genus j with
one boundary component. Let B(j) = F(j)× I and let @0B(j) = @F(j)× I .
Form a manifold Mk from V and {B(1); : : : ; B(k)} by identifying @0B(j) with
A(j) (by an orientation-reversing homeomorphism) for all 15 j 5 k.
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One may obtain a manifold which is homotopy equivalent to Mk , but is not
homeomorphic to Mk , by simply rearranging the pages. More speci�cally, let
� be any permutation of {1; : : : ; k}, and form M�

k from V and {B(1); : : : ; B(k)}
by identifying @0(B(�(j))) with A(j). In the proof of Lemma 3.2, we will see
that Mk and M�

k are homeomorphic if and only if � and �
′ are in the same right

coset of the dihedral group Dk within the symmetric group Sk . (Throughout
the paper �� will denote the result of applying the permutation � and then �.)
A �nitely generated, discrete subgroup � of PSL2(C) is convex co-compact

(respectively geometrically finite) if the convex core C(N ) of N = H3=� is
compact (resp. �nite volume). We say that � uniformizes a compact 3-manifold
M if there exists an orientation-preserving homeomorphism between N and the
interior of M .
Explicit convex co-compact Kleinian groups realizing Mk and M�

k (for any
�) can be constructed using the techniques of Klein–Maskit combination; see,
for example, Maskit [19], particularly Chapter VIII.E. and Maskit [20]. In
Remark 1, at the end of the section, we construct geometrically �nite Kleinian
groups uniformizing Mk and M�

k .
The properties of our main example are contained in the following theorem.

Theorem 2.1. Let � be a permutation of {1; : : : ; k}. There exists a sequence
{�n} ⊂ D(�1(Mk)) which converges algebraically to � ∈ D(�1(Mk)) such that
�n(�1(Mk)) is convex co-compact and uniformizes Mk for all n; and �(�1(Mk))
is geometrically finite and uniformizes M�

k .

Proof of 2.1. We will use a construction outlined by Kerckho� and Thurston
[16] (and later generalized by Ohshika [24], Bonahon–Otal [3] and Comar
[8]) which was originally used to produce a sequence of discrete, faithful
representations of a surface group whose geometric limit properly contains its
algebraic limit.
We �rst recall some of the notation of Dehn surgery. Let M̂ be a compact,

irreducible, oriented 3-manifold whose boundary contains a single torus T ;
any other component of @M̂ has genus at least 2. Choose a meridian m and
longitude l for the torus T , and think of m and l as a basis for �1(T ). If (p; q)
is a pair of relatively prime integers, then M̂ (p; q) is the manifold obtained
by attaching a solid torus V to M̂ by an orientation-reversing homeomorphism
which identi�es the meridian of V with a simple closed curve in the homotopy
class of mplq on T .
We now state a version of Thurston’s hyperbolic Dehn surgery theorem

which is due, in this form, to Comar [8] (see also Bonahon–Otal [3]).

Theorem 2.2. ([8]). Let M̂ be a compact; oriented 3-manifold with one
toroidal boundary component T . Let N̂ = H3=�̂ be a geometrically fi-
nite hyperbolic 3-manifold and � : int(M̂ )→ N̂ an orientation-preserving
homeomorphism between the interior of M̂ and N̂ . Further assume that
every parabolic element of �̂ is conjugate to an element of �∗(�1(T )).
Let {(pn; qn)} be a sequence of distinct pairs of relatively prime integers.
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Then; for all sufficiently large n; there exists a representation �n : �̂→
PSL2(C) with discrete image such that

1. �n(�̂) is convex co-compact and uniformizes M̂ (pn; qn);
2. the kernel of �n is normally generated by mpnlqn ; and
3. {�n} converges to the identity representation of �̂.

Moreover; if we let in denote the inclusion of M̂ into M̂ (pn; qn); then
there exists an orientation-preserving homeomorphism �n : int(M̂ (pn; qn))
→ H3=�n(�̂) such that �n ◦ �∗ is conjugate to (�n)∗ ◦ (in)∗.

Recall the construction of Mk given above. Form M̂ k by attaching an annu-
lus to Mk along two parallel, homotopically non-trivial curves in @V ∩ @Mk , and
then thickening the annulus. We denote this additional thickened annulus by R.
(Explicitly, let C1 = {e3�i=4k} × S1 ⊂ @V and let C2 = {e5�i=4k} × S1 ⊂ @V be
two parallel curves in @V ∩ @Mk . Form M̂ k by attaching S1 × I × I to Mk by an
embedding h : S1 × I × {0; 1} → @V ∩ @Mk such that h(S1 × {1=2} × {0}) =
C1 and h(S1 × {1=2} × {1}) = C2:) Notice that M̂ k is homeomorphic to the
manifold obtained by removing an open tubular neighborhood of the core curve
of V from Mk .

Let T denote the unique toroidal boundary component of M̂ k . Choose a
meridian m and a longitude l for T so that l is parallel to C1. Let in : M̂ k →
M̂ k(1; n) and f : Mk → M̂ k denote inclusion maps. Note that for any inte-
ger n ∈ Z; M̂ k(1; n) is homeomorphic to Mk and the inclusion in ◦ f : Mk →
M̂ k(1; n) is a homotopy equivalence which is homotopic to an orientation-
preserving homeomorphism.
One may check that Thurston’s geometrization theorem (see [22]) guaran-

tees that M̂ k is uniformized by a geometrically �nite Kleinian group �̂k , such
that every parabolic element of �̂k is conjugate to an element of �1(T ). (We
will later sketch, in Remark 1 at the end of the section, an explicit construc-
tion.) Let N̂ k = H3=�̂k and let � : int(M̂ k)→ N̂ k be an orientation-preserving
homeomorphism.
Let {�n : �̂k → PSL2(C)} and {�n : int(M̂ k(1; n))→ H3=�n(�̂k)} be the

sequences of representations and homeomorphisms produced by Theorem 2.2
for the sequence {(1; n)}. Set �′n = �n ◦ �∗ ◦ f∗. Since �n ◦ �∗ ◦ f∗ is con-
jugate to (�n)∗ ◦ (in)∗ ◦ f∗; �′n is faithful and has image �n(�̂k). Thus, each
�′n(�1(Mk)) is convex co-compact and uniformizes Mk . Moreover, {�′n} con-
verges to the representation �′ = �∗ ◦ f∗ with image �∗(f∗(�1(Mk))). which
uniformizes Mk .

In order to rearrange the pages, we �rst construct, given a permutation �
of {1; : : : ; k}, an immersion f� : M�

k → M̂ k such that
1. �∗((f�)∗(�1(M�

k ))) is a geometrically �nite uniformization of M
�
k , and

2. (in ◦ f�)∗ is an isomorphism for all n.
Having constructed such an f�, we complete the proof by taking �n =

�n ◦ �∗ ◦ (f�)∗ ◦ (h�)∗, where h� : Mk → M�
k is a homotopy equivalence which

is the identity on the solid torus V . Since �n ◦ �∗ ◦ (f�)∗ is conjugate to
(�n)∗ ◦ (in)∗ ◦ (f�)∗, we see that �n is faithful and that �n(�1(Mk)) = �n(�̂k).
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Hence, �n(�1(Mk)) is a convex co-compact uniformization of Mk for all n.
However, this time {�n} converges to a representation � = �∗ ◦ (f�)∗ ◦ (h�)∗
of �1(Mk) with image �∗((f�)∗(�1(M�

k ))) which is a geometrically �nite uni-
formization of M�

k .
The remainder of the proof consists of the construction of f�. As this con-

struction is the crux of the proof, we will give an alternative, more schematic,
description of the immersion in Remark 2 at the end of the section. In
Remark 1, we explicitly identify the subgroup �∗((f�)∗(�1(M�

k ))) of �̂k .
Let Hk denote the subgroup of �1(M̂ k) which is normally generated by

�1(Mk), and let M∞
k be the cover of M̂ k associated to Hk . M∞

k consists of
in�nitely many homeomorphic lifts of Mk joined together by in�nitely many
homeomorphic lifts of R. Let (Mk)i denote the ith copy of Mk and B(j)i the
copy of B(j) contained in Mi.

We construct f� : M�
k → M̂ k by �rst constructing f̃� : M

�
k → M∞

k and then
projecting. We �rst de�ne f̃� on the pages of M

�
k . We let f̃�|B(�( j)) be the natu-

ral identi�cation of B(�(j)) with B(�(j))j. We then extend f̃� to an embedding
in such a way that f̃�(V ) is contained entirely in lifts of V and R.

In order to check property (1), we consider the cover M̃ �
k of int(M̂ k) as-

sociated to (f�)∗(�1(M�
k )). Since M̃

�
k covers M̂

∞
k ; f� lifts to an embedding

g� : M�
k → M̃ �

k which is a homotopy equivalence. Let g
′
� : M

�
k → int(M̃ �

k) be
an embedding of M�

k into the interior of M̃
�
k which is homotopic to g�. If

��k = �∗((f�)∗(�1(M
�
k ))) and N

�
k = H

3=��k , then � lifts to a homeomorphism
�̃ : int(M̃ �

k)→ N�k . Hence, g
′
� ◦ �̃ is an embedding of M�

k into N
�
k which is

a homotopy equivalence. ��k is geometrically �nite, as it is a �nitely gener-
ated subgroup of a geometrically �nite co-in�nite volume Kleinian group (see
Proposition 7.1 in [22]). Hence, N�k is homeomorphic to the interior of a com-
pact 3-manifold. However, since N�k contains an embedded copy of M

�
k whose

inclusion map is a homotopy equivalence, we see that N�k is homeomorphic to
the interior of M�

k (see Theorem 1 in [21]). Thus property (1) holds.
We now check property (2). Fix a basepoint ∗ in V and let �j be a path

joining ∗ to Aj and lying entirely in V . Let g be a generator of �1(V; ∗).
Let Gj denote �1(B(j) ∪ �j; ∗) sitting as a subgroup of �1(Mk; ∗), and note
that �1(Mk; ∗) is generated by G1; : : : ; Gk . (Explicitly, the subgroup gener-
ated by G1; : : : ; Gj is the amalgamated free product of the subgroup generated
by G1; : : : ; Gj−1 and the subgroup Gj amalgamated along the common cyclic
subgroup generated by g.) Furthermore, �1(M̂ k ; ∗) is generated by �1(Mk; ∗)
and an element h which commutes with g. If we let G�j be the subgroup of
�1(M�

k ; ∗) corresponding to �1(B(j) ∪ ��−1( j); ∗), then �1(M�
k ; ∗) is generated

by G�1; : : : ; G
�
k (with a explicit description similar to that of �1(Mk; ∗)). The

restriction of (f�)∗ to G�j is an isomorphism onto cjGjc−1j , where cj is some
element of 〈g; h〉. Thus, (in ◦ f�)∗ restricted to G�j is an isomorphism onto
Gj, since (in)∗ maps cj to some power of g and g normalizes Gj. One may
then easily check that (in ◦ f�)∗ is an isomorphism. We have completed the
proof.
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Remark 1. We now explain briey how to construct �̂k using Klein–Maskit
combination, and we identify the subgroups �k and ��k , in hopes of illuminating
the construction.
Let �a(z) = z + a be the element of PSL2(C) corresponding to transla-

tion by a ∈ C. Let �j be a subgroup of PSL2(R) which uniformizes F(j)
and contains �1 as a primitive element (which thus corresponds to the punc-
ture of F(j)). Klein–Maskit combination theory [19] guarantees that we
can choose 0 = a1 ¡ a2 ¡ · · ·¡ ak such that the group �k generated by
�a1i�1�

−1
a1i ; : : : ; �ak i�k�

−1
ak i is a geometrically �nite uniformization of Mk such

that every parabolic element of �k is conjugate to �n for some n ∈ Z. Simi-
larly, there exists � ¿ ak such that the group �̂k generated by �k and ��i is
a geometrically �nite uniformization of M̂ k such that every parabolic element
is conjugate to an element of the subgroup 〈�1; ��i〉.
We can now identify ��k quite explicitly. The meridian m is identi�ed with

��i and the longitude l is identi�ed with �1. If we let �′j denote �aj�j�
−1
aj ,

then ��k is generated by

��i�′�(1)�
−1
�i ; �2�i�

′
�(2)�

−1
2�i ; : : : ; �k�i�

′
�(k)�

−1
k�i :

One can check directly, again using Klein–Maskit combination theory, that ��k
is a geometrically �nite uniformization of M�

k .

Remark 2. We now give a schematic description of f�. Let C1; : : : ; Ck be
a family of consecutive, parallel, disjoint simple closed curves on the annu-
lus A = S1 × I , where C1 = S1 × {0} and Ck = S1 × {1}. Let X �k be the 2-
complex obtained from A and {F(1); : : : ; F(k)} by identifying @F(�(j)) with
Cj. The 3-manifold M�

k is a thickening of the 2-complex X
�
k .

Fig. 1. A schematic picture of the map �f� of X
�
4 into M̂ 4 where � = (14)(2)(3).
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Let C′1; : : : ; C
′
k be a family of consecutive, parallel, disjoint longitudinal

curves on the torus T = S1 × S1. In this remark, we always traverse the merid-
inal factor of T in the positively oriented direction. Let Y be the 2-complex
obtained from T and {F(1); : : : ; F(k)} by gluing @F(j) to C′j . Then M̂ k is a
thickening of Y .
We can schematically describe f� by describing a map �f� : X

�
k → Y .

Let C′0 be a longitudinal curve on T between C′k and C
′
1. We map F(j)

to F(j), and hence Cj to C′�( j), but we map the region between Cj and
Cj+1 to the union of the region on T between C′�( j) and C

′
0 and the region

between C′0 and C
′
�( j+1). Notice that �f� “wraps” A around T at least k − 2

times.

3 Deformation spaces of Kleinian groups

In this section we show that CC(�1(Mk)) has (k − 1)! components and
connected closure. We begin by describing a topological enumeration of the
components of CC(�1(Mk)).

Consider the pair (M ′; h′) where M ′ is an oriented, compact, irreducible 3-
manifold and h′ : M → M ′ is a homotopy equivalence. Two pairs (M1; h1) and
(M2; h2) are equivalent if there exists a orientation-preserving homeomorphism
� : M1 → M2 such that � ◦ h1 is homotopic to h2. An equivalence class of
such pairs is called a marked homeomorphism type of (oriented) 3-manifolds
homotopy equivalent to M ; the set of all such equivalence classes is denoted
A(M).
Given a geometrically �nite representation � : �1(M)→ PSL2(C), there is

a homotopy equivalence h� : M → N� = H3=�(�1(Mk)) such that (h�)∗ is con-
jugate to � and an orientation-preserving homeomorphism  : N� → int(M ′)
from N� to the interior of some compact, oriented 3-manifold M ′. Hence, we
may associate to � the element (M ′;  ◦ h�) of A(M). Marden’s isomorphism
theorem [17] asserts that two convex co-compact representations lie in the
same component of CC(�1(M)) if and only if they give rise to the same ele-
ment of A(M). Combining this with work of Ahlfors, Bers, Kra, Maskit and
Thurston, one may prove (see [5]) that the components of CC(�1(M)) are in a
one-to-one correspondence with elements of A(M). This topological enumer-
ation should be considered as the analogue, via the Sullivan dictionary, of the
combinatorial enumeration of the hyperbolic components of the Mandelbrot set
(see [4]).

Theorem 3.1. Let Mk be as in the previous section. Then CC(�1(Mk)) has
(k − 1)! components but has connected closure in D(�1(M)).
Proof of 3.1. We will need a topological lemma which describes the elements
of A(Mk). For each � ∈ Sk , let h� : Mk → M�

k be a �xed homotopy equivalence
which is the identity map restricted to the solid torus V . Let j� be a homotopy
inverse for h�.
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Lemma 3.2. If we let {�1; : : : ; �n} denote a set of right coset representatives
of the cyclic subgroup Zk generated by (123 · · · n) in Sk ; then {(M�1

k ; h�1 ); : : : ;
(M�n

k ; h�n)} is a complete set of representatives for the elements of A(Mk).

Proof of 3.2. The proof of the lemma is a simple exercise in the Johannson–
Jaco–Shalen characteristic submanifold theory. We �rst note that, for � ∈
Sk , the characteristic submanifold �(M�

k ) of M
�
k consists of the I -bundles

{B(1); : : : ; B(k)} and a solid torus V0 which is obtained from V by remov-
ing a small regular neighborhood of each A(j). (See Sect. 4 of [9].)
Johannson’s theorem (Theorem 24.2 in [11]) asserts that, if h : Mk → M ′ is

a homotopy equivalence, then h may be homotoped to a homotopy equivalence
�h such that �h(�(Mk)) = �(M ′) and �h is a homeomorphism of Mk − �(Mk) to
M ′ − �(M ′). Moreover (see Proposition 28.4 in [11]), we may assume that
�h is an orientation-preserving homeomorphism restricted to each B(j). One
may also check that the component �0 of �(M ′) which contains h(V0) is a
solid torus and that the inclusion of each component of �0 ∩ @M ′ in �0 is a
homotopy equivalence. It follows that M ′ is homeomorphic to M�

k for some
�. (See also Proposition 4.3 in [9].) Therefore, every element of A(Mk) has
a representative of the form (M�

k ; h) for some � and h.
We now consider a pair (M�

k ; h) where h : Mk → M�
k is a homotopy equiv-

alence. Let g be a generator of �1(V ) sitting within �1(Mk). We may again use
Johannson’s theorem to homotope h ◦ j� : M�

k → M�
k to a homotopy equivalence

h ◦ j� such that h ◦ j�(V ) ⊂ V and h ◦ j� restricts to an orientation-preserving
homeomorphism of each B(j).
There are now two possibilities. In the case that h∗(g) is conjugate to

(h�)∗(g), we may further assume that h ◦ j� is the identity when restricted
to @0(B(j)), and hence that h ◦ j� is homotopic to an orientation-preserving
homeomorphism. Thus, in this case, (M�

k ; h�) is equivalent to (M
�
k ; h).

We now suppose that h∗(g) is not conjugate to (h�)∗(g). Let � denote
an odd element of the dihedral group Dk ⊂ Sk . There exists an orientation-
preserving homeomorphism �(�;�) from M�

k to M
��
k obtained by “reecting”

about the core curve of V (and reversing its orientation in the process). Note
that (M�

k ; h) is equivalent to (M
��
k ; �(�;�) ◦ h) and (�(�;�) ◦ h)∗(g) is conjugate

to (h��)∗(g). Hence, in this case, (M��
k ; h��) is equivalent to (M

�
k ; h).

It follows from the above arguments that every element of A(Mk) is equiv-
alent to one of the form (M�

k ; h�) for some � ∈ Sk . If � and �′ lie in the same
right coset of Zk , we may construct an orientation-preserving homeomorphism
from M�

k to M
�′
k by rotating M�

k along the core curve of V . Thus, (M
�′
k ; h�′)

is equivalent to (M�
k ; h�). It follows that every marked homeomorphism type

in A(Mk) has a representative of the desired form. One completes the proof
by using the same type of analysis to show that (M�j

k ; h�j) and (M
�i
k ; h�i) are

inequivalent if i-j.

It follows immediately from Lemma 3.2 that there are (k − 1)! components
of CC(�1(Mk)).
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Given �, let {�n} be as in Theorem 2.1. Theorem 2.2 guarantees that
there exists �n : int(M̂ k(1; n))→ H3=�n(�1(Mk)) such that (�n ◦ in)∗ is con-
jugate to �n ◦ �∗. Hence, �n lies in the component of CC(�1(M)) associated
to the element (M̂ k(1; n); in ◦ f� ◦ h�) of A(M). We note that (f� ◦ h�)∗(g)
is homotopic to f∗(g), so the analysis in the proof of Lemma 3.2 implies
that (M̂ k(1; n); in ◦ f� ◦ h�) is equivalent to (M̂ k(1; n); in ◦ f). Since there is an
orientation-preserving homeomorphism from Mk to M̂ k(1; n) which is homo-
topic to in ◦ f, we see that (M̂ k(1; n); in ◦ f) is equivalent to (Mk; id) where
id : Mk → Mk is the identity map. Therefore, every �n lies in the component
of CC(�1(Mk)) associated to (Mk; id), and so � lies in the boundary of the
component of CC(�1(Mk)) associated to (Mk; id).
One may similarly check that � is associated to the element (M�

k ; h�) of
A(M). It then follows from Corollary 6 of [23] that � also lies in the boundary
of the component of CC(�1(Mk)) corresponding to (M�

k ; h�). (One may also use
Theorem 2.2 to construct a sequence {��n} in the component of CC(�1(Mk))
corresponding to (M�

k ; h�) which converges to �.) As � was arbitrary, we see
that CC(�1(Mk)) has connected closure.

Remark 3. Notice that the technique of proof may also be used to show that
the closures of any two components of CC(�1(Mk)) intersect.

Remark 4. One may use work of [1] and [5] to show that there exist mani-
folds M such that CC(�1(M)) has arbitrarily many components, all of whose
closures are distinct. For example, the components of CC(�1(M)) will have
disjoint closures whenever M has incompressible boundary and every com-
ponent of its characteristic submanifold is a solid torus which intersects the
interior of the manifold in a collection of annuli whose fundamental groups are
not maximal cyclic subgroups of �1(M). There also exist manifolds M with
incompressible boundary such that D(�1(M)) has in�nitely many components.
The above results, together with a more general discussion of the connectivity
of deformation spaces, will be contained in [2].
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