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1. Introduction

Our goal in this paper is to prove a formula for the general degen-
eracy locus Xr associated to an oriented quiver of type An. If we are
given a sequence of vector bundles and vector bundle maps

E0 �!/1 E1 �!/2 E2 ÿ! � � � ÿ! Enÿ1 �!/n En

on an algebraic variety X , and a collection r � �rij�0�i<j�n of
non-negative integers, there is a degeneracy locus Xr � Xr�E�� �
Xr�E�;/�� de®ned by

Xr � fx 2 X j rank�Ei�x� ! Ej�x�� � rij 8 i < jg :�1:1�

This is a closed subscheme of X ; locally, where the bundles are trivial,
this is de®ned by vanishing of the minors of size rij � 1 in the product
of matrices giving the map /j � � � � � /i�1 from Ei to Ej, for all i < j.

Not all rank conditions give reasonable loci. Those that do ± and
the only ones we will consider ± are characterized by the conditions

rij � ri;jÿ1 and rij � ri�1;j for all i < j; and

ri�1;jÿ1 ÿ ri;jÿ1 ÿ ri�1;j � rij � 0 for all i < jÿ 1 ;
�1:2�
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where we set rii=rank(Ei). In fact, rank conditions satisfying (1.2) are
the only conditions that can actually occur, i.e. for which one can
have equality in (1.1). When the maps are su�ciently generic, each
such Xr is irreducible, of codimension

d�r� �
X
i<j

�ri;jÿ1 ÿ rij��ri�1;j ÿ rij� :�1:3�

When n � 1, the formula for Xr is the well-known Giambelli-
Thom-Porteous formula, which we recall in order to introduce some
notation. For a map / : E ! F of vector bundles of ranks e and f ,
and a non-negative integer r � min�e; f �; Xr is the locus where / has
rank at most r. The formula for Xr is the Schur polynomial

s�eÿr�fÿr�F ÿ E� ;

which is de®ned as follows. De®ne cohomology classes hi by the
formula

P
hi � c�E_�=c�F _�, where c�E_� � 1ÿ c1�E� � c2�E� ÿ � � �

is the total Chern class, and the division is carried out formally; in
particular, h0 � 1 and hi � 0 for i < 0. For any sequence
k � �k1; . . . ; kp� of non-negative integers, set

sk�F ÿ E� � det�hki�jÿi�1�i;j�p :

In the Giambelli-Thom-Porteous formula, k � �eÿ r�fÿr denotes
the sequence eÿ r repeated f ÿ r times. In a Schur determinant
sk�F ÿ E�; k will usually be a partition, i.e. a weakly decreasing
sequence, but later we will also need this notation when k is not a
partition.

Our general formula for the locus Xr, when r is any set of rank
conditions satisfying (1.2), has the formX

k

ck�r� sk�E�� ;

where the sum is over sequences k � �k�1�; k�2�; . . . ; k�n��, with each
k�i� a partition. The class sk�E�� is de®ned to be

sk�E�� � sk�1��E1 ÿ E0� � sk�2��E2 ÿ E1� � . . . � sk�n��En ÿ Enÿ1� :

The coe�cients ck�r� are certain integers for which we give an in-
ductive formula.

A second purpose of this paper is to introduce these integers ck�r�,
which we regard as generalized Littlewood-Richardson coe�cients.
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We have a conjectured formula for ck�r� as the number of sequences
�T1; T2; . . . ; Tn� of Young tableaux, with Ti of shape k�i�, satisfying
certain conditions. This formula has been proved when the number of
bundles is at most four, but it appears to be a di�cult combinatorial
problem to prove it in general.

In [8] a special case of this situation was studied, where the rank
conditions are given by a permutation w. For maps

G1 ! G2 ! � � � ! Gm ! Fm ! Fmÿ1 ! � � � ! F1

with rank�Gi��rank�Fi� � i; and w 2 Sm�1, let

Xw � fx 2 X j rank�Gq�x� ! Fp�x�� � rw�p; q� 8 p; q � mg ;

where rw�p; q� � #fi � p j w�i� � qg. These loci are special cases
of the loci Xr described in this paper. The formulas given here
therefore specialize to the universal double Schubert polynomials
Sw�c��F��; c��G��� for these loci. Since these universal Schubert
polynomials specialize to quantum and double Schubert polynomials
([5], [16], [13], [7]), we derive formulas for these important polyno-
mials. These formulas appear to be new even for the single Schubert
polynomials Sw�x�.

Among the loci considered here are the varieties of complexes,
which are the loci Xr with rij � 0 for jÿ i � 2. In this case the for-
mula for the coe�cients ck�r� is particularly simple, and it agrees with
our general conjectured formula.

In Section 2 we discuss the loci Xr in more detail, state the main
theorem, and derive the main applications. This includes a precise
statement of what it means for a polynomial

P
ck�r�sk�E�� to give a

formula for a locus Xr. This statement implies the assertion that if X
is non-singular and Xr has the expected codimension d�r�, then

�Xr� �
X

k

ck�r� sk�E���1:4�

in the Chow group Ad�r��X �. However, weaker assertions can be made
when X is singular or the maps /i are less generic. At the end of
Section 3 we sketch a generalization, which is based on explicit res-
olutions of singularities of these loci.

The coe�cients ck�r� are determined by the geometry, if this as-
sertion is interpreted correctly. We will see in Section 2 that ck�r�
depends only on the di�erences ri;jÿ1 ÿ rij and ri�1;j ÿ rij. This allows
the ranks of the bundles Ei to be taken large compared to the expected
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codimension d�r�; if the Chern classes of the bundles are independent,
the coe�cients ck�r� are then uniquely determined by (1.4).

Much of the work in a project of this kind ± discovering the shape
of the formula ± is invisible in the ®nal product, which has a short
proof (given in Section 3). In particular, it came as a pleasant surprise
to us that the polynomials for all the loci Xr can be written as a linear
combination of the polynomials sk�E��. We know of no reason for
this other than the proof of the explicit formula. That the coe�cients
ck�r� appear to be non-negative is even more surprising.

The conjectured formula for the coe�cients is discussed in more
detail in the ®nal Section 4; proofs of the combinatorial assertions
made there can be found in [4].

We are particularly grateful to S. Fomin, who provided an invo-
lution on pairs of tableaux which gave us the strongest evidence for
the conjectured formula, and who has collaborated with us on the
combinatorial aspects of this problem. Thanks also to M. Haiman
and M. Shimozono for their responses to combinatorial questions.
The Schubert package [12] was useful for calculations.

2. Quiver varieties; the theorem and applications

2.1. The main theorem. Given vector bundles E0; . . . ;En on a variety
X , let H be the direct sum of the bundles Hom�Eiÿ1;Ei�, i.e.

H � Hom�E0;E1� �X Hom�E1;E2� �X � � � �X Hom�Enÿ1;En� :

Writing eEi for the pullback of Ei to H , we have a universal or tau-
tological sequence of bundle maps

eE0 �!U1 eE1 �!U2 eE2 �!� � � �! eEnÿ1 �!Un eEn�2:1�

on H . For this universal case, it is a theorem of Lakshmibai and
Magyar [14] that for r satisfying (1.2), the scheme eXr � Xr�eE�� for
(2.1) is reduced and irreducible, of codimension d�r�. Moreover, eXr is
a Cohen-Macaulay variety if X is Cohen-Macaulay. (Earlier Abeasis,
del Fra, and Kraft [2] had shown, in characteristic zero, that the
reduced scheme �eXr�red is Cohen-Macaulay.) Note that, when the
bundles are trivial, H is a Cartesian product of X and a product M of
spaces of matrices, and eXr is a product of X with the corresponding
locus in M ; it is this locus in M that is studied in [1], [2], and [14].

The statement that ``the polynomial P �P ck�r�sk�E�� is a for-
mula for the locus Xr'' has the usual meaning in intersection theory
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(cf. [6, x14], [10, App. A]). It implies that when X is non-singular and
codim�Xr;X � � d�r�; then

�Xr� �
X

k

ck�r� sk�E��

in the Chow group Ad�r�X , where �Xr� is the cycle de®ned by the
scheme Xr. For arbitrary X and maps /i, there is a well de®ned cycle
class Xr in the Chow group Amÿd�r��Xr�, where m � dim�X �, whose
image in Amÿd�r��X � is the class

P
ck�r�sk�E��/�X �. Whenever Xr has

codimension d�r� in X ; Xr is a positive cycle supported on Xr; if X is
Cohen-Macaulay, or more generally if depth�Xr;X � � d�r�, this cycle
is �Xr�, but if X is not Cohen-Macaulay the coe�cient of a component
of Xr in Xr may be smaller than the length of Xr at its generic point.
These classes Xr are compatible with the basic constructions of in-
tersection theory, exactly as in [6, Thm. 14.3].

In fact, to give maps /i : Eiÿ1 ! Ei for all i is the same as giving a
section s : X ! H of the bundle H , and Xr � sÿ1�eXr�. The general
class Xr is constructed by intersecting eXr � H with the (regular)
embedding s : X ! H , i.e.

Xr � s!�eXr� ;
where s! : A��eXr� ! A��Xr� is the re®ned intersection [6, x6]. As in
[6, x14], the general properties of these classes follow from this con-
struction. It therefore su�ces to prove the corresponding formula on
H , i.e. that

�eXr� �
X

k

ck�r� sk�eE��/�H �
in ANÿd�r��H�, where N � dim�H� � dim�X � �Pn

i�1 eiÿ1ei; ei �
rank�Ei�:

It is natural to arrange the rank conditions in a triangular array:

r00 r11 r22 r33 � � � rnn

r01 r12 r23 � � � rnÿ1;n
r02 r13 � � � rnÿ2;n

r03 � � � rnÿ3;n
. .

.

r0n

It is useful to replace each small triangle

e f
r
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occurring in this array by the rectangle of width eÿ r and height f ÿ r.

We then have the rectangular array

R01 R12 R23 � � � Rnÿ1;n
R02 R13 � � � Rnÿ2;n

R03 � � � Rnÿ3;n
. .

.

R0n

where Rij has width ri;jÿ1 ÿ rij and height ri�1;j ÿ rij. Note that the
expected codimension d�r� is the sum of the areas of the rectangles.
The condition (1.2) says that the rectangles get (weakly) shorter as
one proceeds in a southeasterly direction, and they get (weakly)
narrower as one travels southwest. For example, the rank conditions
given in the triangular array

6 8 9 6
5 6 6

4 3
2

correspond to the rectangular array:

Our formula depends on the rectangles in this array. To be precise,
it depends on the integers ri;jÿ1 ÿ rij and ri�1;j ÿ rij for all i < j; if a
width ri;jÿ1 ÿ rij is zero, we need to know the height ri�1;j ÿ rij, even
though the rectangle Rij is empty. (The conjectured formula discussed
later does not have this defect.) Each Rij is identi®ed with the parti-
tion �ri;jÿ1 ÿ rij�ri�1;jÿrij for which it is the Young diagram.

At this point we need some notation. If R is a rectangle of width
e and height f , and r and s are partitions, with the length `�r� of
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r at most f , then �R� r; s� denotes the sequence �e� r1; e� r2; . . . ;
e� rf ; s1; s2; . . .�; this is a partition only if e� rf � s1. For a parti-
tion k � �k1; . . . ; kp�, jkj denotes

P
ki; which is the number of boxes

in the Young diagram of k. For partitions k; r; s with
jrj � jsj � jkj; ck

r;s denotes the Littlewood-Richardson coe�cient,
which is the coe�cient of the Schur polynomial sk in the expansion of
sr � ss (see [17]). We set ei � rii � rank�Ei�; ri � riÿ1;i, and Ri � Riÿ1;i,
so Ri has height ei ÿ ri and width eiÿ1 ÿ ri.

If I � �i1; . . . ; ip� is a sequence of non-negative integers that is not
weakly decreasing, then sI�F ÿ E� is either 0 or it is �sk�F ÿ E� for
some unique partition k and unique coe�cient �1. This partition and
coe�cient can be found by performing a sequence of moves of the
type

�j1; . . . ; jp� 7! �j1; . . . ; jkÿ1; jk�1 ÿ 1; jk � 1; jk�2; . . . ; jp�

if jk�1 > jk; if one reaches a sequence �j1; . . . ; jp� with some
jk�1 � jk � 1, then sI � 0; otherwise one reaches a partition
k � �k1; . . . ; kp� in m steps, and then sI � �ÿ1�msk.

We now give an algorithm for constructing ®nite formal
sums

P
ck�r�S�k�; with k varying over n-tuples of partitions

k � �k�1�; . . . ; k�n��. The polynomial for the degeneracy locus Xr will
be obtained by replacing each S�k� by sk�E��. In the algorithm we will
meet symbols S�I�1�; . . . ; I�n�� where each I�j� is a sequence of in-
tegers. For such symbols we imitate the above rule for Schur poly-
nomials to write S�I�1�; . . . ; I�n�� as either zero or �S�k�1�; . . . ; k�n��
for unique partitions k�1�; . . . ; k�n�. If sI�j� � 0 for any j, put
S�I�1�; . . . ; I�n�� � 0; otherwise write sI�j� � ejsk�j� for 1 � j � n, with
ej � �1, and put S�I�1�; . . . ; I�n�� � �Pej�S�k�1�; . . . ; k�n��:

We construct the polynomial
P

ck�r�S�k� by induction on n. For
n � 1 we have just one rectangle R � R01, and the polynomial is
S�R�, which gives sR�E1 ÿ E0�. Given the rectangular array for r,
delete the top row. This gives a smaller array, for which we have
a polynomial

P
dlS�l� by induction, the sum over sequences

l � �l�1�; . . . ; l�nÿ 1�� of partitions. The polynomial
P

ck�r�S�k� is
obtained by replacing each S�l� in P dlS�l� by

X Ynÿ1
i�1

cl�i�
r�i�;s�i�

 !
S�I�1�; . . . ; I�n�� :

Here the sum is over all sequences �r�1�; . . . ;r�nÿ 1�� and
�s�1�; . . . ; s�nÿ 1�� of partitions, with jr�i�j � js�i�j � jl�i�j; such that
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the length of r�i� is at most the height of Ri, i.e. `�r�i�� � ei ÿ ri:
De®ne I�i� to be �Ri � r�i�; s�iÿ 1�� for 1 � i � n, where s�0� and
r�n� are taken to be the empty partition. One uses the rules just given
to write each S�I�1�; . . . ; I�n�� as 0 or �S�k� for a unique k �
�k�1�; . . . ; k�n��; thus arriving at a polynomial

P
ck�r�S�k�:

Main Theorem. The formula for Xr is
P

ck�r�sk�E��:
This theorem will be proved in the next section. We ®rst interpret

it in the case where the rectangular array has only two non-empty
rows, i.e. Rij � ; if jÿ i > 2. In this case the inductive polynomialP

dlS�l� is just S�l�, for l � �R02;R13; . . . Rnÿ2;n�. For a rectangle
shape R, the Littlewood-Richardson coe�cient cR

r;s vanishes unless r
and the 180� rotation of s ®t together to make R, in which case
cR
r;s � 1:

Corollary 1. If Rij is empty for jÿ i > 2, then the formula for Xr

is
P

sk�E��, where the sum is over all k � �k�1�; . . . ; k�n��, with
k�i� � �Ri � r�i�; s�iÿ 1��, such that r�i� and s�i� ®t together to form
Riÿ1;i�1 for 1 � i � nÿ 1; here r�n� and s�0� are empty.

Note that, by (1.2), for any division of Riÿ1;i�1 into r�i� and
s�i�; r�i� always ®ts on the right side of Ri, and s�i� ®ts below Ri�1, so
the resulting sequences k�i� � �Ri � r�i�; s�iÿ 1�� are always parti-
tions. This formula can be remembered by the picture

R01 R12

R02

R13

Rn n–2,

Rn n–1,R23
.

.

.

.

.

.

The situation in the corollary covers the case of varieties of
complexes, which means that rij � 0 for jÿ i � 2: In this case the
triangular array is
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e0 e1 e2 e3 � � � en

r1 r2 r3 � � � rn

0 0 � � � 0

so the array of rectangles is

e r1 1–

r2 r3 rn

r1 r2 rn–1

e r2 2– e r3 3– e rn n–

e rn n–1 –e r0 1– e r1 2– e r2 3–

. . .

. . .

P. Pragacz reports that he had known this formula for Xr in the case
of varieties of complexes.

2.2. Geometric description of ck�r�: Although we use the notation ck�r�
for the coe�cients, it should be emphasized that they depend only
on the di�erences ri; jÿ1 ÿ rij and ri�1; j ÿ rij, not on the integers rij

themselves. For example they are unchanged if the same positive
integer is added to each rij.

The linear independence of ordinary Schur polynomials
sk�x1; . . . ; xp� as k varies over partitions of length at most p, implies
that the polynomials sk�E�� are linearly independent functions of the
Chern classes of the bundles E0;E1; . . . ;En, if the ranks of the bundles
are suitably large (e.g. if `�k�i�� � ei for 1 � i � n�:

From the preceding two paragraphs it follows that the coe�cients
ck�r� are uniquely determined by the geometry, i.e. by the fact thatP

ck�r�sk�E�� is a formula for Xr. To see this, one can choose the
ranks ei large, and one can ®nd a smooth variety X on which Xr has
the expected codimension d�r�, and for which the classes sk�E��, forP jk�i�j � d�r�, are linearly independent. For example, one can start
with universal bundles Ei on large Grassmannians Gi, let G �Qn

i�0 Gi,
and set X �an

i�1Hom�Eiÿ1;Ei�.

2.3. Schubert polynomials. In [1], the rank conditions r satisfying (1.2)
are described by diagrams of dots connected by lines. One puts
ei � rii dots in column i, and lines are drawn between some dots in
adjacent columns. Then rij is the number of lines connecting a dot in
column i to a dot in column j. The example given earlier in this
section can be described by the diagram
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Now ®x a positive integer m. For a permutation w 2 Sm�1, we form
a diagram with 2m columns of lengths 1; 2; . . . ;m;m;mÿ 1; . . . ; 2; 1:
All possible lines are drawn among the ®rst m columns and among
the last m columns. Between the two middle columns, the i'th dot on
the right is connected to the w�i�'th dot on the left. If w�i� � m� 1,
no connection is made. For example, if m � 4 and w � 31452, this
diagram is

The number of connections between the left column with q dots
and the right column with p dots is the number

rw�p; q� � #fi � p j w�i� � qg :

There are the maximal number of connections between two columns
on the left or between two on the right. This means that for a se-
quence E� of bundle maps

G1 ! G2 ! � � � ! Gm ! Fm ! Fmÿ1 ! � � � ! F1

with rank�Gi�=rank�Fi� � i, the locus Xr�E�� de®ned in the intro-
duction is exactly the locus Xw de®ned in [8], with the same scheme
structure. In [8] ``universal Schubert polynomials'' Sw�c��F��; c��G���
were constructed, which represent the loci Xw. From the fact that the
formula for a locus is unique, we deduce the following corollary.

Corollary 2. With r determined by w as above,

Sw�c��F��; c��G��� �
X

k

ck�r� sk�E�� :

When these bundle maps are specialized so that each Giÿ1 ! Gi is
an inclusion of bundles, and each Fi ! Fiÿ1 is a surjection, then
Sw�c��F��; c��G��� becomes the double Schubert polynomial
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Sw�x1; . . . ; xm; y1; . . . ; ym�

of Lascoux and Sch�utzenberger; here we set xi � c1�ker�Fi ! F iÿ1��
and yi � c1�Gi=Giÿ1�. The right side of the formula in this corollary
also simpli®es in this case. It follows from the de®nition that for a
partition s, we have

ss�Gi ÿ Giÿ1� � �yi�q if s � �q�; q � 0
0 otherwise ,

�
and

ss�Fiÿ1 ÿ Fi� � �ÿxi�p if s � �1�p; p � 0
0 otherwise .

�
Thus sk�E�� � 0 unless k � ��q2�; �q3�; . . . ; �qm�; s; �1�pm ; . . . ; �1�p2�; in
which case

sk�E�� � �ÿ1�p2�����pmxp2
2 � � � xpm

m yq2
2 � � � yqm

m ss�x=y� ;

where ss�x=y� � det�hsi�jÿi�;
P

hk �
Q�1ÿ yi�=

Q�1ÿ xj�: Our for-
mula therefore writes Sw�x; y� as a signed sum of monomials in
the x2; . . . ; xm; y2; . . . ; ym times Schur polynomials ss�x=y�. When all
variables yi are set equal to zero, we have only the terms with
q2 � � � � � qm � 0, and this writes the ordinary Schubert polynomial
Sw�x� � Sw�x; 0� as a signed sum of monomials in x2; . . . ; xm times
(symmetric) Schur polynomials ss�x�:

Unlike the inductive construction of Schubert polynomials from
high degree to low degree, our formulas are simplest for those of low
degree.

For example, for w � 3142 2 S4, the corresponding array of
rectangles is

Calculating
P

ck�r�S�k� with the algorithm of the main theorem,
working from the bottom up, one has, with ; the empty par-
tition,
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S�;�, S�;; 1�
, S�;; 1; ;� � S�;; ;; 1�
, S�;; 2; ;; ;� � S�;; 1; 1; ;� � S�;; 1; ;; 1�
,
X

ck�r�S�k� � S�;; 2; 1; ;; ;� � S�;; 1; 11; ;; ;��
S�;; 1; 2; ;; ;� � S�;; 1; 1; 1; ;� � S�;; ;; 21; ;; ;��
S�;; ;; 11; 1; ;� � S�;; 1; 1; ;; 1� � S�;; ;; 11; ;; 1� :

Substituting sk�E�� for S�k�, this is a formula for the universal double
Schubert polynomial associated to w � 3142. It specializes to the
formula

S3142�x; y� � s21�x=y� � y3s2�x=y� � �y3 ÿ x2 ÿ x3�s11�x=y��
y3�y3 ÿ x2 ÿ x3�s1�x=y�

and to

S3142�x� � s21�x� ÿ �x2 � x3�s11�x� :

The rectangular array coming from a permutation w 2 Sm�1
has only empty rectangles and 1� 1 rectangles. In fact, this array is
determined from the diagram of the permutation denoted
D0�w� in �8; x2� : the diagram D0�w� is re¯ected in a vertical line, then
rotated 135� clockwise, and the result ®tted in the bottom of the
triangle; each box in D0�w� is then in the position of a non-empty
rectangle of the rectangular array. In other words, the rectangle Rij

is non-empty i� D0�w� contains a box in position �2mÿ j; i� 1�,
which happens exactly when we have both w�2m� 1ÿ j� � i� 1 and
wÿ1�i� 2� � 2mÿ j:

3. Proof of the Theorem

3.1. Geometric preliminaries. It follows from the general discussion
in Section 2 that it su�ces to prove the formula for the universal
locus Xr�E�� in H �aHom�Eiÿ1;Ei�: (Throughout this section we
omit notation for pullbacks of bundles by canonical maps.) In
particular, we know from [2] and [14] that Xr�E�� is reduced and
irreducible of the expected codimension d�r�, and that Xr�E�� is the
closure of the locus X�r �E�� where each of the maps Ei�x� ! Ej�x�
has rank equal to rij for i < j. We must prove that, with these
assumptions,
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�Xr�E��� �
X

k

ck�r� sk�E��/�H �

in the Chow group ANÿd�r��H�; N � dim�H�.
Form the Grassmannian bundle G0 over X with ri � riÿ1;i as in

x2:1:
G0 � Gr�r1;E1� �X Gr�r2;E2� �X � � � �X Gr�rn;En� :

Let G � G0 �X H , with projection p : G! H : Let 0! Ai ! Ei !
Qi ! 0 be the universal exact sequences on G0, and hence also on G.
Let Z � G be the intersection of the zero-schemes of the canonical
maps Eiÿ1 ! Ei ! Qi, i.e.

Z � Z�E0 ! Q1�/Z�E1 ! Q2�/ � � �/Z�Enÿ1 ! Qn� :

On Z we have maps Eiÿ1 ! Ai for 1 � i � n: Composing these with
the inclusions Aiÿ1 � Eiÿ1 we get a sequence A� of bundles and bundle
maps on Z:

A1 ! A2 ! � � � ! An :

Let �r denote the rank conditions obtained by omitting the top row
of the triangular array for r, and let X�r�A�� � Z be the locus given
by these maps and rank conditions. It is easy to see that X�r�A�� is
mapped into Xr�E�� by p.

Now Z is isomorphic to the bundle �n
i�1Hom�Eiÿ1;Ai� over G0,

and we have a canonical projection

q : Z �a
n

i�1
Hom�Eiÿ1;Ai� !a

n

i�2
Hom�Aiÿ1;Ai� � H 0 :

Denote by X0 the universal locus X�r�A�� on H 0. Then X�r�A�� in Z is
the inverse image of X0 by q. Since the maps on H 0 are universal, it
follows that X0 is irreducible, and therefore X�r�A�� is an irreducible
subscheme of Z.
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Lemma 1. p maps X�r�A�� birationally onto Xr�E��:
Proof. Let Z� denote the open subset of Z where the maps Eiÿ1 ! Ai

are surjective. Then the schemes X��r �A��/Z� and X�r �E�� are isomor-
phic; they are both universal objects in the category of schemes Y
over H , such that the pullback to Y of the sequence E� satis®es
rank�Ei ! Ej� � rij everywhere on Y . Since both X�r�A�� and
Xr�E�� are irreducible schemes, and since X�r �E�� 6� ;, the assertion
follows. h

Note that this argument gives a direct proof that the codimension
of Xr�E�� in H is d�r�. Indeed, by induction we know that X0 has
codimension d��r� in H 0, and X�r�A�� must then have the same codi-
mension in Z. We conclude that the codimension of Xr�E�� in H is

d��r� � dim�H� ÿ dim�Z� � d�r� :

3.2. Proof of the main theorem. By induction on n we know that
�X0� �P cl��r�sl�A��/�H 0�, so

�X�r�A��� � q��X0� �
X

l

cl��r� sl�A��/�Z� :

Furthermore �Z� �Qn
i�1 ctop�Hom�Eiÿ1;Qi��/�G�, so

�Z� �
Yn

i�1
sR0i�Qi ÿ Eiÿ1�/�G� ;

where R0i � �eiÿ1�eiÿri . Since p��X�r�A��� � �Xr�E��� by Lemma 1, we
are therefore reduced to proving the identity

p�
X

l

cl��r� sl�A�� �
Yn

i�1
sR0i�Qi ÿ Eiÿ1�/�G�

 !
�
X

k

ck�r� sk�E��/�H � :

�3:1�

For this we need the following basic Gysin formula of Pragacz
[18, Prop. 2.2], whose proof comes from [11], cf. [10, App. F].

Lemma 2. Let E and F be vector bundles of ranks e and f on a variety X.
Let 0 � d � min�e; f �: Let G=Gr(d,F) be the Grassmann bundle, with
universal exact sequence 0! A! F ! Q! 0 and projection

678 A. S. Buch, W. Fulton



p :G! X . Let q � f ÿ d; R � �eÿ d�q, and R0 � �e�q. For any par-
titions k and l, with k of length at most q, and any a 2 A��X �,

p��sR0�k�Qÿ E�sl�Aÿ E�/p�a� � sR�k;l�F ÿ E�/ a :

We also need the following special case of the factorization for-
mula of Lascoux and Sch�utzenberger [16] and Berele and Reger [3],
cf. [18].

Lemma 3. Let E and F be vector bundles of ranks e and f. Let R � �e�f .
Let k be a partition of length at most f. Then

sk�F �sR�F ÿ E� � sR�k�F ÿ E� :

Note that this identity follows from Lemma 2. Finally we need the
basic identity �17; x1:5�:

Lemma 4. For bundles E1;E2, and E3, and a partition l,

sl�E3 ÿ E1� �
X

cl
rssr�E2 ÿ E1�ss�E3 ÿ E2� ;

the sum over partitions r and s with jrj � jsj � jlj, with cl
r;s the

Littlewood-Richardson coe�cient.

Now we can prove (3.1). First use Lemma 4 to replace each factor
sl�i��Ai�1 ÿ Ai� that occurs in each sl�A�� on the left side of (3.1) by
the sumX

cl�i�
r�i�;s�i�sr�i��Ei ÿ Ai�ss�i��Ai�1 ÿ Ei�

�
X

cl�i�
r�i�;s�i�sr�i��Qi�ss�i��Ai�1 ÿ Ei� :

Note that sr�i��Qi� � 0 if `�r�i�� > rank�Qi� � ei ÿ ri. Next use
Lemma 3 to replace each sr�i��Qi� � sR0i�Qi ÿ Eiÿ1� in the result by
sR0i�r�i��Qi ÿ Eiÿ1�. The left side of (3.1) becomes

X
l

cl��r�
X

r�i�;s�i�

Ynÿ1
i�1

cl�i�
r�i�;s�i�

 !
�

p�
Yn

i�1
sR0i�r�i��Qi ÿ Eiÿ1�ss�iÿ1��Ai ÿ Eiÿ1�/�G�

 !
:

Finally, n applications of Lemma 2 yields
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p�

 Yn

i�1
sR0i�r�i��Qi ÿ Eiÿ1�ss�iÿ1��Ai ÿ Eiÿ1�/�G�

!

�
Yn

i�1
sRi�r�i�;s�iÿ1��Ei ÿ Eiÿ1�/�H � ;

and this gives the required formula

X
l

cl��r�
X

r�i�;s�i�

 Ynÿ1
i�1

cl�i�
r�i�;s�i�

!Yn

i�1
sRi�r�i�;s�iÿ1��Ei ÿ Eiÿ1�/�H �

�
X

k

ck�r� sk�E��/�H � :

Although we have stated it for varieties over a ®eld, the theorem
(and its proof) extend readily to schemes of ®nite type over a regular
base, as in [6, x20].

3.3. A generalization. There is a generalization of the theorem which
may be useful in its own right, and which gives some insight into the
proof. (It is not needed in this paper.) Fix E0; . . . ;En on X , and
r � �rij� satisfying (1.2). Let H �aHom�Eiÿ1;Ei�, on which the
tautological bundle maps are universal, and one has the universal
locus Xr � H :

Let p : F ! H be the partial ¯ag bundle parameterizing ¯ags in
each Ej of ranks r0j; r1j; . . . ; rjÿ1;j. Let E0j � E1j � � � � � Ejÿ1;j � Ej

denote the tautological ¯ags of vector bundles on F ; 1 � j � n:
Let Z � F be the locus on which the image of Ei;jÿ1 by the map

Ejÿ1 ! Ej is contained in the subbundle Eij, i.e. Z is the subscheme
de®ned by the vanishing of all maps Ei;jÿ1 ! Ej=Eij for i < j.

One sees as in Lemma 1 that p maps Z birationally onto Xr. In
fact, if X is non-singular, this construction gives a canonical resolu-
tion of singularities of the universal locus Xr. It is easy to see that the
class of Z is given by

�Z� �
Y
i<j

zij ;

where zij � ctop�Hom�Ei;jÿ1;Ei�1;j=Eij��:
Consider a path c through the triangular array for r, going from

r00 to rnn. The path must be a union of line segments between
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neighboring rank conditions, and it must intersect any vertical line at
most once.

r00

r01 r12

r02 r13

r03 r14

r04

r24

r23 r34

r11 r22 r33 r44

For each j � 1; . . . ; n let kj be minimal such that c goes through rkj;j.
Let F �c� be the partial ¯ag bundle parameterizing ¯ags in Ej of ranks
rkj;j; rkj�1;j; . . . ; rjÿ1;j, and let Ekj;j � � � � � Ejÿ1;j � Ej be the tauto-
logical ¯ags on F �c�; 1 � j � n: If the path has m line segments, we let
A0;A1; . . . ;Am denote the vector bundles on F �c� corresponding to the
rank conditions passed through by the path. (In the illustration,
m � 7, and the bundle sequence is E00;E01;E02;E12;E22;E23;E34;E44:�

Let Xr�c� � F �c� be the subscheme de®ned by the conditions that
each map Ei;jÿ1 ! Ej=Eij vanishes for rij on or above the path, and
rank�Eip ! Ej� � rij for rip on or above the path and p � j. The
canonical maps F ! F �c� ! X map Z birationally onto Xr�c� which
in turn is mapped birationally onto Xr. Our goal is to give a formula
for the class of Xr�c�: To do this, we de®ne a formal linear combi-
nation U�c� of symbols S�k�, where k is a sequence of partitions, one
for each line segment in c. The formula for Xr�c� is obtained by
replacing each S�k�1�; . . . ; k�m�� by Qm

i�1 sk�i��Ai ÿ Aiÿ1�, and multi-
plying the result by

Q
zij; the product over all i; j such that rij is on or

above c.
We de®ne U�c� inductively. If c is the lowest possible path, going

from r00 to r0n to rnn, then U�c� � S�;; . . . ; ;�, where the empty par-
tition ; is repeated 2n times. Otherwise, we can ®nd a path c0 that is
equal to c except it goes lower at one place, in one of the following
ways:

Case 1:
rij

r ij r ij

r i    , j–1 ri    , j–1ri, j+1 ri, j+1

ri, j–1 ri, j–1ri , j+1 ri , j+1

rij

Case 2:

γγ′
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In Case 1, we obtain U�c� from U�c0� by replacing each symbol
S�. . . ;l; . . .� byPcl

r;sS�. . . ;r;s; . . .�:Note that in this case F �c��F �c0�
and X�c� � X�c0�: For Case 2, each symbol S�. . . ; l; m; . . .� in U�c0� is
replaced by the symbol S�. . . ;�Rij � m; l�; . . .�. Note that the partitions
k�i� are always empty for line segments on the left or right edges of the
triangle.

The proof that this polynomial gives a formula for �Xr�c�� is
similar to that of our main theorem: one shows that �Z� pushes for-
ward to the class of this polynomial. The induction step, in either
Case 1 or 2, is more transparent, as changes are made in only one
segment of the formula.

If bundle maps and ¯ags of subbundles are given on X corre-
sponding to ranks on or above the path c, these determine a section
s : X ! F �c�, so one has corresponding formulas for the classes
s��Xr�c��:When c is the horizontal path across the top of the diagram,
we recover the main theorem.

4. On the coe�cients ck�r�

There are some properties of the coe�cients ck�r� that follow from
geometry, i.e. from the main theorem, although they are not obvious
from the algorithm de®ning them. We describe these ®rst, and then
discuss properties we believe for other reasons. We conclude with a
comparison of the numbers ck�r� with Littlewood-Richardson coef-
®cients.

Consider the dual sequence

E_n ! E_nÿ1 ! � � � ! E_0

with dual rank conditions, rank�E_j ! E_i � � rij, which we denote by
r_; then Xr_�E_� � � Xr�E��: Note that the rectangular array for r_

is obtained by re¯ecting that for r in a vertical line, and replacing
each rectangle by its transpose. Using the basic identity that
sk�F ÿ E� � sk0 �E_ ÿ F _�, where k0 is the transpose of k, we ®nd that

ck_�r_� � ck�r� ;�4:1�

where, if k � �k�1�; . . . ; k�n��, we put k_ � �k�n�0; . . . ; k�1�0�:
It can happen that for some k, all of the rank conditions of the

form rank�Ei ! Ek� � rik and rank�Ek ! Ej� � rkj follow from other
rank conditions. This happens when, in the rectangle diagram, all the
rectangles on the two 45� lines descending from position k are empty.
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For the example G1 ! G2 ! G3 ! F3 ! F2 ! F1 considered at the
end of Section 2, with rank conditions r coming from w � 3142 2 S4;
the bundles G1 and F2 are inessential in this way. If an inessential
bundle Ek is omitted, one has a shorter sequence E0� : E0 ! � � � !
Ekÿ1 ! Ek�1 ! � � � ! En; with the map Ekÿ1 ! Ek�1 being /k�1 � /k;
and corresponding rank conditions r0; the array of rectangles for r0 is
obtained by omitting the 45� lines of empty rectangles and moving all
rectangles below up a row. For example, if G1 and F2 are omitted
from the example, one has G2 ! G3 ! F3 ! F1, with rectangular
array

Lemma 4 can be used to expand any sq�Ek�1 ÿ Ekÿ1� occuring in
the formula

P
cl�r0�sl�E0�� as a sum of terms of the form

sr�Ek ÿ Ekÿ1� � ss�Ek�1 ÿ Ek�. Since Xr0 �E0�� � Xr�E��, with this inter-
pretation we haveX

l

cl�r0� sl�E0�� �
X

k

ck�r� sk�E�� :�4:2�

Now we turn to our conjectured formula for the coe�cients ck�r�,
which interprets them by counting Young tableaux, in a way similar
to and generalizing the classical Littlewood-Richardson rule. Recall
that a (semistandard) Young tableau is a ®lling of the boxes in the
Young diagram of a partition with integers that are weakly increasing
in rows and strictly increasing down columns. Two Young tableaux P
and Q can be multiplied to give another Young tableau denoted P � Q:
One way to do this is to arrange P and Q corner to corner and play
the jeu de taquin, sliding inside corners through but keeping the weak

and strict orderings. For example, if P = 1
3

2
4 and Q = 1 1

4 , this can
be carried out by the sequence of moves

The ®nal tableau is P � Q: The main fact is that this product is inde-
pendent of choice of the sequence of inside corners, from which it
follows that the set of tableaux form an associative monoid, called the
plactic monoid. With this notion, the Littlewood-Richardson number
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ck
l;m is the number of ways a given tableau T of shape k can be factored
into a product T � P � Q, such that P has shape l and Q has shape m.
For proofs and relations with Schur polynomials, see [15] or [9].

Given rank conditions r (satisfying (1.2) as always), form the array
of rectangles Rij. We choose a ®xed tableau Tij on each shape Rij; with
the condition that each entry of Tij must be strictly smaller than any
entry of Tkl if Rkl lies in the wedge cut out by 45� lines below Rij; i.e. if
k � i and l � j with �k; l� 6� �i; j�.

From this array of rectangular tableaux we will construct a set
of n-tuples of tableaux �T1; . . . ; Tn� that we call factor sequences.
Our conjecture is that ck�r� is the number of factor sequences
�T1; . . . ; Tn� such that Ti has shape k�i� for 1 � i � n. We ®rst
explain this for n � 3, where we start with an array of rectangular
tableaux:

A B C
D E

F

Factor F into a product F � F1 � F2 of tableaux. Pass F1 up to the left,
and multiply it to D from the right. Pass F2 up to the right and
multiply it to E from the left. Then factor the results:

D � F1 � D1 � D2 and F2 � E � E1 � E2 :

Pass the results up to the left and right, arriving at tableaux
A � D1; D2 � B � E1; and E2 � C. This gives a factor sequence �T1; T2; T3�
� �A � D1; D2 � B � E1; E2 � C�:

In general one proceeds by induction. A factor sequence for the
given array of rectangular tableaux is obtained by forming a factor
sequence �S1; . . . ; Snÿ1� for the array of the bottom nÿ 1 rows. Factor
each Si arbitrarily into Si � Pi � Qi: Then

�T1; . . . ; Tn� � �T01 � P1; . . . ;Qiÿ1 � Tiÿ1;i � Pi; . . . ;Qnÿ1 � Tnÿ1;n�

is a factor sequence for the given array.

Conjecture. ck�r� is the number of factor sequences �T1; . . . ; Tn� of shape
k � �k�1�; . . . ; k�n�� that can be made from a given array of rectangular
tableaux.

The conjecture has a number of consequences:

C1. Each ck�r� is a non-negative integer.
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C2. The coe�cients ck�r� depend only on the rectangles Rij, not on
their sides.

This means that if one of the sides of a rectangle Rij is 0, the length
of the other side is irrelevant. (The algorithm of the main theorem
shows this when the height of a rectangle is 0, but not when the width
is 0.)

Implicit in the conjecture is the assertion

C3. The number of factor sequences of shape k is independent of
choice of ®xed tableaux Tij.

Granting C3, it is not hard to see that the conjectured formula for
the ck�r� satis®es the duality (4.1). For this one chooses the Tij so that
no entry appears more than once, and uses the fact that factoring a
tableau T with distinct entries into P � Q is equivalent to factoring its
conjugate T 0 into Q0 � P 0. It is also not di�cult to verify that the
conjectured formula satis®es the property (4.2) for omitting ines-
sential bundles.

The conjecture is true for the case where Rij is empty for jÿ i > 2.
This follows from the description in Corollary 1 of Section 2, together
with the fact that for a tableau T of rectangular shape R, for each r
and s that ®t together to form R; there is a unique factorization
T � P � Q with P of shape r and Q of shape s; conversely, any fac-
torization of T has factors of shapes that ®t together to form R.

The conjecture has been proved when n � 3. More generally, it is
proved when Rij is empty for jÿ i > 3 and no two non-empty rect-
angles in the third row are adjacent. The proof depends on a won-
derful involution on pairs of tableaux produced for us by S. Fomin.
This proof is given in [4].

One reason that the combinatorial formula is hard to work with is
that a given factor sequence can arise in many ways by the algorithm
that produces them. At ®rst glance it would appear that to tell if some
�T1; . . . ; Tn� is a factor sequence, one would have to test all possible
ways of carrying out the sequence of factorings. However, there is a
direct test. For this, de®ne Pi to be the part of Ti lying to the right of
the rectangle Ri, and de®ne Qiÿ1 to be everything lying below Tiÿ1;i
and Pi:

Ti–1, i

Qi–1

Pi

Ti =
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Then �T1; . . . ; Tn� is a factor sequence if and only if Q0 and Pn are
empty and �P1 � Q1; . . . ; Pnÿ1 � Qnÿ1� is a factor sequence for the lower
nÿ 1 rows of the array. By induction this gives a direct algorithm to
test, from the top down. Note that this algorithm, like the theorem,
uses the height of a rectangle Rij even if its width is zero. This cri-
terion is proved in [4].

The full conjecture follows from an assertion that Fomin's invo-
lution preserves factor sequences. This assertion is true for n � 3, and
it has been veri®ed in 500,000 randomly generated examples for
n � 10. For a discussion of Fomin's involution and the discussion of
this, we refer again to [4].

The numbers ck�r� generalize Littlewood-Richardson numbers cc
a;b

in fact as well as in spirit. To see this, take any rectangle R containing
c, and let s be the complement of c in R (rotated 180�):

Form the array of rectangles

where the vertical lines are the height of R, the horizontal lines are
its width, and the dot is empty. Choose r giving rise to this array.
Then

cc
a;b � ck�r� ;

with k � �a;b; s�. This follows easily from the theorem (and also from
the conjecture).

There are analogous conjectures for the coe�cients of the poly-
nomials for the more general loci described in x3.3. In particular,
all these coe�cients should also be positive. Details will be given in
[4].
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