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Introduction

The purpose of this paper is to present a geometric theorem which clarifies
and extends in several directions work of Brownawell, Kollár and others on
the effective Nullstellensatz. Specifically, we work on an arbitrary smooth
complex projective variety X, with the previous “classical” results corres-
ponding to the case when X is projective space. In this setting we prove
a local effective Nullstellensatz for ideal sheaves, and a corresponding
global division theorem for adjoint-type bundles. We also make explicit the
connection with the intersection theory of Fulton and MacPherson. Finally,
constructions involving products of prime ideals that appear in earlier work
are replaced by geometrically more natural conditions involving orders of
vanishing along subvarieties.

Much of the previous activity in this area has been algebraic in nature,
and seems perhaps not well-known in detail among geometers. Therefore
we have felt it worthwhile to include here a rather extended Introduction.
We start with an overview of the questions and earlier work on them. Then
we present the set-up and statement of our main theorem. We conclude with
a series of examples (which can be read before the general result) of what
it yields in special cases.

Background. In recent years there has been a great deal of interest in
the problem of finding effective versions of Hilbert’s Nullstellensatz. The
classical theorem of course states that given polynomials

f1, . . . , fm ∈ C[t1, . . . , tn],
? Research of first author partially supported by NSF Grant DMS 96-22540
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if the f j have no common zeroes inCn then they generate the unit ideal, i.e.
there existgj ∈ C[t1, . . . , tn] such that∑

gj f j = 1.(*)

A first formulation of the problem is to bound the degrees of thegj in
terms of those of thef j . Current work in this area started with a theorem of
Brownawell [3], who showed that if degf j ≤ d for all j , then one can find
gj as in (*) such that

deggj ≤ n2dn + nd.(B1)

Brownawell’s argument was arithmetic and analytic in nature, drawing on
height inequalities from transcendence theory and the classical theorem of
Skoda. Shortly thereafter, Kollár [19] gave a more elementary and entirely
algebraic proof of the optimal statement that in the situation above, one can
in fact take

deg(gj f j ) ≤ dn(K1)

provided thatd 6= 2.1

Koll ár deduces (K1) as an immediate consequence of a rather surprising
theorem in the projective setting. Specifically, consider a homogeneous ideal
J ⊆ C[ T0, . . . , Tn ]. Then of courseJ contains some power of its radical.
The main theorem of [19] is the effective statement that ifJ is generated by
forms of degree≤ d (d 6= 2), then already(√

J
)dn ⊆ J.(K2)

[Proof of (K1): let Fj ∈ C[T0, . . . , Tn] be the homogenization off j . Then
the common zeroes of theFj lie in the hyperplane at infinity{T0 = 0}, and
consequentlyT0 ∈ √(F1, . . . , Fm). Therefore(T0)

dn =∑Gj Fj thanks to
(K2), and (K1) follows upon dehomogenizing.] By analyzing Kollár’s proof,
Brownawell [4] subsequently shed a somewhat more geometric light on this
result. Namely, still assuming thatJ is generated by forms of degree≤ d,
he shows that there exist reduced and irreducible subvarietiesWi ⊂ Pn with

∪Wi = Z =def Zeroes(
√

J),

plus positive integerssi > 0, satisfying the following properties. First, one
has the degree bound ∑

si degWi ≤ dn,(B2)

1 Here and below we are oversimplyfing slightly Kollár’s results. He actually establishes
a more precise statement allowing for thef j to have different degrees, and giving stronger
estimates whenm≤ n. Furthermore, he works over an arbitrary ground field.
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so that in particular
∑

si ≤ dn. Secondly, ifIWi denotes the homogeneous
ideal ofWi , then ∏(

IWi

)si ⊆ J.(B3)

This formulation is referred to as the “prime-power Nullstellensatz” or the
“algebraic Bezout theorem”.2 Since

√
J ⊆ IWi for everyi , it is immediate

that (B3) and (B2) imply (K2), and in fact (B3) improves (K2) unless every
component ofZ is a linear space. However Brownawell’s construction does
not provide a clearly canonical choice for theWi . We refer to [29] and [1] for
excellent surveys of this body of work, and to [2] for a discussion of some
analytic approaches to these questions. Recently Sombra [28] proved an
analogue of (K2) for projectively Cohen-Macaulay varietiesX ⊂ PN, from
which he deduces an interesting generalization of (B1) for sparse systems
of polynmials (see Examples 2 and 3 below). Motivated in part by Sombra’s
work, Kollár [20] has generalized these results to arbitrary ideals in the
polynomial ring.

While this picture is fairly complete from an algebraic point of view,
a number of geometric questions present themselves. First, it is natural to
ask whether the results of Kollár and Brownawell — which involve homo-
geneous ideals in the polynomial ring — can be seen as the caseX = Pn of
a more general picture involving an arbitrary smooth projective varietyX:
Sombra’s theorem gives one step in this direction. Next, one might hope to
clarify the connection with intersection theory that is evidently lurking here.
Finally, it is difficult geometrically to determine whether a given polynomial
lies in a product of ideals, and from this point of view one would like to
replace the product of prime powers occuring in (B3) by an intersection
of symbolic powers defined by orders of vanishing along subvarieties. The
theorem we present in this paper attemps to address these questions.3

Set-up and statements.Turning to a detailed presentation of our results, we
start by introducing the set-up in which we shall work, and by fixing some
notation. LetX be a smooth complex projective variety of dimensionn, and
let

D1, . . . , Dm ∈ |D|
be effective divisors onX lying in a given linear series. SetL = OX(D),
and let sj ∈ Γ(X, L) be the section definingDj . We denote byB the
scheme-theoretic intersection

B = D1 ∩ · · · ∩ Dm ⊂ X,

2 As explained in [4] one should take hereW0 = ∅, with IW0 = (T0, . . . , Tn), and assign
to W0 “honorary degree” one.

3 We should state at the outset however that in the “classical” caseX = Pn our numerical
bounds are in some instances slightly weaker than those of Kollár-Brownawell.



430 L. Ein, R. Lazarsfeld

and we let

J =
∑

OX(−Dj ) ⊂ OX

be its ideal sheaf. Finally, setZ = Bred, so thatZ = Zeroes(
√

J) is the
reduced scheme defined by the radical ofJ.

Recall next from [9], Chapter 6, §1, that the schemeB canonically
determines a decomposition

Z = Z1 ∪ · · · ∪ Zt

of Z into (reduced and irreducible)distinguished subvarietiesZi ⊂ Z,
together with positive integersri > 0. We will review the precise definition
in §2, but for the moment suffice it to say that theZi are the supports
of the irreducible components of the projectivized normal coneP(CB/X)
of B in X. The coefficientr i attached toZi arises as the multiplicity of
the corresponding component of the exceptional divisor in the (normalized)
blowing up ofX alongB. Every irreducible component ofZ is distinguished,
but there can be “embedded” distinguished subvarieties as well. We denote
by 4Zi ⊆ OX the ideal sheaf ofZi , and by4<r>

Zi
its r th symbolic power,

consisting of germs of functions that have multiplicity≥ r at a general point
of Zi .

Our main result is the following:

Theorem. With notation and assumptions as above, suppose thatL is
ample.

(i). The distinguished subvarietiesZi ⊂ X satisfy the degree bound∑
ri · degL(Zi ) ≤ degL(X) =

∫
X

c1(L)
n,

where as usual theL-degree of a subvarietyW ⊆ X is the integer
degL(W) =

∫
W c1(L)dim(W).

(ii). One has the inclusion

4<n·r1>
Z1

∩ · · · ∩ 4<n·rt>
Zt

⊆ J.

In other words, in order that a function (germ)φ lie in J, it suffices
that φ vanishes to order≥ nri at a general point of each of the
distinguished subvarietiesZi .

(iii). Denote byKX a canonical divisor ofX, and letA be a divisor onX
such thatA− (n+ 1)D is ample. If

s ∈ Γ(X,OX(KX + A))

is a section which vanishes to order≥ (n+ 1) · ri at the general point
of eachZi , then one can write

s=
∑

sj h j for some sectionsh j ∈ Γ(X,OX(KX + A− Dj )),

where as abovesj ∈ Γ(X,OX(Dj )) is the section definingDj .
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As in Brownawell’s algebraic Bezout theorem, the inequality in (i) serves
in effect to bound the coefficientsr i from above. One should view (ii) as
a local effective Nullstellensatz. Together with (i) it immediately implies
the first statement of the

Corollary. (a). With notation and assumptions as above:(√
J
)n·degL (X) ⊆ (√J

)n·max{ri } ⊆ J.

More generally, (√
J
)<n·degL (X)> ⊆ J,

where the symbolic power on the left denotes the sheaf of all functions
that vanish to at least the indicated order at every point ofZ.

(b). If s ∈ Γ(X,OX(kD)) is a section which has multiplicity≥ (n+ 1)∫
c1(L)n at every point ofZ, then if k � 0 is sufficiently large there

existh j ∈ Γ
(
X,OX((k− 1)D)

)
such thats=∑ sj h j . ut

It is perhaps already somewhat surprising that there are tests for membership
in an ideal that depend only on orders of vanishing along its zero-locus. Note
that the Theorem applies to an arbitrary ideal sheafJ as soon asL ⊗ J is
globally generated. So from a qualitative point of view one may think of
the Corollary as giving global constraints on the local complexity ofJ. On
the quantitative side, we remark that the factor ofn appearing in (ii) and
statement (a) of the Corollary can be replaced by min(m,n), and similarly
in (iii) and (b) one can substitute min(m,n+ 1) for (n+ 1). The results of
Koll ár and Brownawell might suggest the hope that one could drop these
factors altogether, but examples (see 2.3) show that this is not possible, at
least with theZi and ri as we have defined them. However it is possible
that (a) holds with the exponentn · degL(X) replaced by degL(X), with an
analogous improvement of (b).

The proof of the Theorem is quite elementary and, we hope, transparent.
It consists of three steps. First (§1) we use vanishing theorems to give
a simple algebro-geometric proof of a statement of Skoda type. The theorem
in question establishes local and global criteria involving some multiplier-
type ideal sheaves4` to guarantee that one can write a given germφ ∈ OX
or global sections ∈ Γ(X,OX(KX+ A)) in terms of thesj ∈ Γ(X, L). The
local statement was originally proved in [27] usingL2-methods, and while
Skoda’s result is well known in analytic geometry and commutative algebra
(cf. [23], [15] and [22]), it seems to be less familiar to algebraic geometers.
We hope therefore that the discussion in §1 – which in addition contains an
extension of these results to higher powers ofJ – may be of independent
interest.4 The next point (§2) is to relate the sheaves4` to orders of vanishing

4 In fact one can deduce the local effective Nullstellensatz directly from the theorem of
Briançon and Skoda for regular local rings (Remark 2.4). From our perspective however
the local and global statements are two sides of the same coin, and in essence we end up
reproving Briançon-Skoda.
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along the Fulton-MacPherson distinguished subvarietiesZi . Section 2 also
contains a geometric characterization of these subvarieties, in the spirit
of van Gastel, Flenner and Vogel ([11],[8]). Finally, a simple calculation
of intersection numbers gives the degree bound (§3). It is interesting to
observe that while the final outcome is quite different, essentially all of
these techniques have antecendents in earlier work in this area.

Examples.Finally, in order to give a feeling for the sort of concrete state-
ments that come out of the Theorem, we conclude this Introduction with
a few examples.

Example 1.Consider the “classical” caseX = Pn andL = OPn(d ), so that
we are dealing withm homogeneous polynomials

s1, . . . , sm ∈ C[T0, . . . Tn]
of degreed. Then the degree bound in part (i) of the Theorem says that∑

ri · ddim(Zi ) · deg(Zi ) ≤ dn,(*)

where here deg(Zi ) is the standard degree (with respect toOPn(1)). The
conclusion of statement (iii) is that ifs is a homogeneous polynomial of
degree≥ (n + 1)(d − 1) + 1 vanishing to order≥ ri (n + 1) on each of
the Zi thens lies in the homogeneous idealJ spanned by thesj . In other
words, if I<r>

Zi
denotes the homogeneous primary ideal of all polynomials

having multiplicity≥ r at a general point ofZi , and if(T0, . . . , Tn) denotes
the irrelevant maximal ideal, then we have

(T0, . . . , Tn)
(dn+d−n) ∩ I<(n+1)r1>

Z1
∩ · · · ∩ I<(n+1)rt>

Zt
⊂ J.

By analogy with Brownawell’s “prime-power” formulation of Kollár’s
theorem, one might think of this as a “primary decomposition” version
of the Nullstellensatz. Comparing this with Brownawell’s statement (B3),
the most surprising difference is that one can ignore here any of the “embed-
ded” distinguished subvarietiesZi for which the corresponding coefficient
ri is small. Numerically, the factor ofddim(Zi ) in (*) strengthens (B2), but
the factor of(n+ 1) in the exponent prevents one from recovering (K2) in
the “worst” cases when every component ofZ has small degree.

Example 2.M. Rojas has observed that following the model of [28] one
can apply the Theorem to suitable toric compactificationsX of Cn to obtain
extensions of the results (B1) and (K1) of Brownawell and Kollár to certain
sparse systems of polynomials (see also [21], [12], and [24] for other other
applications of toric geometry to sparse systems of polynomials). In some
settings, the numerical bounds that come out strengthen Sombra’s. We
refer to the forthcoming preprint [25] of Rojas for the precise statements,
but illustrate their flavor in a special case. Consider as above polynomials
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f j ∈ C[t1, . . . , tn] and suppose that one is given separate degree bounds in
each of the variablestk:

degtk( f j ) ≤ dk ∀ j.

Assuming that thef j have no common zeroes inCn, then one can findgj
with

∑
gj f j = 1 where now

degtk (gj f j ) ≤ (n+ 1)! d1 · · · · · dn.(*)

(By way of comparison, Sombra’s general theorem yields in this setting the
analogous inequality with the factor of(n + 1)! replaced bynn+3.) If for
instance one thinks ofd1, . . . ,dn−1 as being fixed, then (*) gives a linear
bound in the remaining input degreedn. [To prove (*), one applies the
Theorem toX = P1 × · · · × P1 andL = O(d1, . . . ,dn), and argues as in
the proof that (K2) implies (K1).]

Example 3.Our last example is a variant of a result of Sombra [28], (1.8).
In the situation of the Theorem, suppose thatH is a very ample divisor onX
which is sufficiently positive so that thatH − KX − (n + 1)D is ample,
and consider the embeddingX ⊂ PN = P defined by the complete linear
system|H|. Let I ⊂ S := C[T0, . . . , TN] be the homogeneous ideal ofX
under this embedding, letR = S/I be the homogeneous coordinate ring
of X, and letF1, . . . , Fm ∈ R be homogeneous elements of degrees≤ d.
Let P ∈ R be a homogeneous element lying in the radical of the ideal
(F1, . . . , Fm). Then

P(n+1)dndegX ∈ (F1, . . . , Fm),

where degX = (Hn) denotes the degree ofX in the projective embedding
defined by|H|. (As in [28], one first reduces to the case where all theFj
are of equal degreed.) When I is a Cohen-Macaulay ideal — which for
sufficiently positiveH is equivalent to the vanishingsHi (X,OX) = 0 for
0< i < dim X — this is a slight numerical improvement of Sombra’s result
(which however does not require the variety defined byI to be non-singular).

Acknowledgements.We wish to thank W. Fulton, J. Kollár, M. Rojas, K. Smith and M. Som-
bra for valuable correspondence and discussions.

0. Notation and conventions

(0.1). We work throughout with varieties and schemes defined over the
complex numbers.
(0.2). LetX be a smooth variety, andφ ∈ OX the germ of a regular function
defined in the neighborhood of a pointx ∈ X. We say thatφ vanishes
to order≥ r at x, or thatφ has multiplicity≥ r at x if φ ∈ mr

x, where
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mx ⊂ OxX is the maximal ideal ofx. Equivalently, all the partials ofφ of
order< r should vanish atx. If Z ⊂ X is an irreducible subvariety, with
ideal sheaf4Z ⊂ OX, we denote by4<r>

Z ⊂ OX the sheaf of germs of
functions that vanish to order≥ r at a general (and hence at every) point
of Z. It is a theorem of Nagata and Zariski (cf. [7], Chapter 3, Section 9)
that this coincides with ther th symbolic power of4Z, although there is
no loss here in taking this as the definition of symbolic powers. Evidently
4 r

Z ⊂ 4<r>
Z , but whenZ is singular the inclusion may well be strict.

(0.3) LetX be a smooth projective variety of dimensionn. A line bundleL
on X is numerically effective(or nef) if∫

C
c1(L) ≥ 0

for every irreducible curveC ⊂ X. A fundamental theorem of Kleiman
(cf. [14], Chapter I, §6) implies that any intersection number involving
the product of Chern classes of nef line bundles with an effective cycle is
non-negative. A nef line bundle isbig if its top self-intersection is strictly
positive: ∫

X
c1(L)

n > 0.

For a divisor D on X, we define nefness or bigness by passing to the
associated line bundleOX(D).
(0.4) The basic global vanishing theorem we will use is the following
extension by Kawamata and Viehweg of the classical Kodaira vanishing
theorem:

Theorem. Let X be a smooth complex projective variety, and letKX denote
a canonical divisor onX. If D is a big and nef divisor onX then

Hi (X,OX(KX + D)) = 0 for i > 0.

One of the benefits of allowing merely big and nef bundles is that this result
then implies a local vanishing theorem for higher direct images. For our
purposes, the following statement will be sufficient:

Theorem. Let X be a smooth quasi-projective complex variety, and let
f : X −→ Y be a generically finite and surjective projective morphism.
Suppose thatD is a divisor onX which is nef for f , i.e. whose restriction
to every fibre off is nef. Then

Rj f∗
(
OX(KX + D)

) = 0 for j > 0.

This is called vanishing for the mapf . We refer to [18] for a very readable
introduction to the circle of ideas surrounding vanishing theorems, and to
[17], (0.1) and (1.2.3) for a more technical and detailed discussion.
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1. A theorem of Skoda type

In this section we use vanishing for big and nef line bundles to give a sim-
ple algebro-geometic proof of a theorem of Skoda type. In his classical
paper [27], Skoda usesL2 techniques to establish an analytic criterion
guaranteeing that a germf ∈ C{z1, . . . , zn} lies in the ideal generated by
a given collection of functionsf1, . . . , fm ∈ C{z1, . . . , zn}. In view of the
close connection that has emerged in recent years between suchL2 methods
and vanishing theorems (cf. [5] for a survey), it is natural to expect that one
can recover statements of this sort via vanishing. We carry this out here.
Besides being very elementary and transparent, the present approach has
the advantage of simultaneously giving global results. A special case of
Skoda’s theorem played a role in Siu’s recent work [26] on the deformation
invariance of plurigenera, and it was algebrized as below by Kawamata [16].

Let X be a smooth irreducible quasi-projective complex variety of di-
mensionn. We emphasize that for the time beingX need not be projective,
and in fact for the local results one might want to think ofX as representing
the germ of an algebraic variety. Let

J ⊆ OX

be an ideal sheaf defining a proper subschemeB ⊂ X. For each̀ ≥ 1 we
associate toJ a multiplier-type ideal sheaf

4` ⊂ OX

as follows. Start by forming the blow-up

νo : V0 = BlB(X) −→ X

of X along B, and then take a resolution of singularitiesY −→ V0 to get
a birational map

f : Y −→ X.

The idealJ becomes principal onV0 and hence also onY. More precisely,
let F be the pull-back toY of the exceptional divisor onV0. Then

J ·OY = OY(−F ).

We set

4` = f∗
(
OY(KY/X − `F )

)
,

whereKY/X = KY − f ∗KX is the relative canonical divisor ofY over X.
Note that4` ⊆ f∗OY(KY/X) = OX, so that4` is indeed an ideal sheaf onX.
One can check by standard arguments that it is independent of the choice
of a resolution, although we don’t actually need this fact here. In the setting
of local algebra, such ideals were introduced and studied by Lipman [22].
One could also define4` via an L2 integrability condition, as in Skoda’s
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paper [27]. We refer to [6] for a discussion, from an algebro-geometric
viewpoint, of multiplier ideals of this sort.

Our object is to relate the ideal sheaves4` to J. To this end letL be
any line bundle onX such thatL ⊗ J is globally generated. Choose global
sections

s1, . . . , sm ∈ Γ(X, L ⊗ J)

generatingL ⊗J, and setDj = div(sj ) ∈ |L|. Thus the subschemeB ⊂ X
defined byJ is just the scheme-theoretic intersection of theDj . Note that
all the Dj are linearly equivalent: for convenience we will sometimes write
D for any divisor in their linear equivalence class. SinceL ⊗ J is globally
generated, so is its inverse image

N =def f ∗L ⊗OY(−F ).

In fact, we can write

f ∗Dj = F + D′j

where theD′j ∈ |N| are effective divisors onY that generate a base-point
free linear system.

Pushing forward the evident map

OY(KY/X − (`− 1)F )⊗ f ∗L∗ = OY(KY/X − `F − D′j )
·D′j−→ OY(KY/X − `F )

determines a sheaf homomorphism

σ j : 4`−1⊗ L∗ −→ 4`

on X. Observe thatσ j is induced by multiplication bysj in the sense that
one has a commutative diagram

4`−1⊗ L∗
σ j−−−→ 4`y y

L∗
·sj−−−→ OX

,

where the vertical maps arise from the natural inclusions of4`−1 and4`
in OX. This may be verified by pushing forward the corresponding commu-
tative square

OY(KY/X − (`− 1)F )⊗ f ∗L∗
·D′j−−−→ OY(KY/X − `F)

·(`−1)F

y y·`F

OY(KY/X)⊗ f ∗L∗
· f ∗D j−−−→ OY(KY/X)
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of invertible sheaves onY. In particular, the image ofσ j lies in the ideal
sheafOX(−Dj ) of Dj .

We now come to the main result of this section:

Proposition 1.1. (i). (Skoda’s Theorem, cf. [27], [22].)If ` ≥ min(m,n)
then the sheaf homomorphism

σ =def

m∑
j=1

σ j :
m⊕

j=1

4`−1⊗ L∗−→4`

is surjective. In particular,

4` ⊂ J.

(ii). Assume thatX is projective, and fix̀ ≥ min(m,n + 1). Let A be
a divisor onX such thatA− `D is ample (or big and nef). Then the
map on global sections

m⊕
j=1

H0(X,OX(KX + A − Dj )⊗ 4`−1)

−→ H0(X,OX(KX + A) ⊗ 4`)

induced byσ is surjective. In particular if

s ∈ H0(X,OX(KX + A))

lies in the subspaceH0(X,OX(KX+A)⊗4`) ⊆ H0(X,OX(KX+A)),
then

s=
∑

h j sj for some h j ∈ H0(X,OX(KX + A − Dj )).

Proof. As in [23], §5, we argue via a Koszul complex. Working onY, let P
be the vector bundle

P =
m⊕

j=1

OY(−D′j ) ∼=
m⊕

j=1

N∗.

Then theD′j determine in the evident way a surjective homomorphism
P −→ OY. Form the corresponding Koszul complex and for fixed` twist
by Q = Q` =def OY(KY/X − `F ):

. . . −→ Λ2P⊗ Q −→ P⊗ Q −→ Q −→ 0.(*)

For (i) we need to establish the surjectivity of the push-forward homo-
morphism:

f∗
(
P⊗ Q

) −−−→ f∗Q∥∥∥ ∥∥∥⊕
4`−1⊗ L∗ 4`

.
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Chasing through the exact sequence (*), we see that it is enough to establish
the vanishings:

Rj f∗
(
Λ j+1P⊗ Q

) = 0 for 1≤ j ≤ n.(**)

Since all the fibres off have dimension≤ n− 1, the vanishing of thenth

direct imageRn f∗ in (**) is free. So we can limit attention toj ≤ n− 1.
Furthermore, asP has rankm, (**) is trivial if j + 1> m. Thus all told we
are reduced to considering onlyj + 1≤ min(m,n) in (**).

Now

Λi P⊗ Q = Λi P⊗OY(KY/X − `F ) ∼=⊕OY(KY ⊗ N⊗(`−i))

⊗ f ∗OX(−KX)⊗ f ∗L⊗−`.

But N is globally generated, and hence is nef forf (and globally nef when
X is projective). Furthermore, thanks to the projection formula twisting by
bundles pulling back fromX commutes with taking higher direct images.
Hence it follows from vanishing forf (cf. (0.4)) that one has the vanishing
of all the higher direct images

Rj f∗
(
Λi P⊗ Q

) = 0 for j > 0, i ≤ `.
This proves (**) (whenj + 1 ≤ min(m,n) and` ≥ min(m,n)), and with
it statement (i).

The second assertion follows similarly by applying global vanishing for
big and nef divisors onY. In fact, twisting by f ∗OX(KX + A), we need to
prove the surjectivity of the homomorphism

H0
(
Y, P⊗ Q⊗ f ∗OX(KX + A)

) −−−−→ H0
(
Y,Q⊗ f ∗OX(KX + A)

)∥∥∥ ∥∥∥⊕
H0
(
X,OX(KX + A − Dj )⊗ 4`−1

)
H0
(
X,OX(KX + A)⊗ 4`

) .
determined by the map on the right in (*). Chasing again through that
sequence it suffices to establish the vanishings

H j
(
Y,OY(KY + f ∗(A− `D))⊗ N⊗(`− j−1)

) = 0(***)
for 0< j ≤ min(m− 1,n).

But by hypothesisf ∗(A− `D) is big and nef, andN is nef. So provided
that` ≥ min(m,n+ 1) the bundle occuring in (***) is big and nef, and we
are done thanks to (0.4). ut

Although not required for the main development, as in [23], [22] and [15],
Chapter 5, it is of some interest to extend these results to higher powers ofJ.
To this end, given a multi-indexJ = ( j1, . . . , jm)of length|J| =∑ jα = k,
denote by

sJ = sj1
1 · · · · · sjm

m ∈ Γ
(
X, L⊗k

)
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the corresponding monomial in thesj , and letDJ =∑ jαDα be the divisor
of sJ. Then for` ≥ k multiplication bysJ determines as above a mapping

σJ : 4`−k ⊗ L⊗−k −→ 4l ,

and we have the following extension of Proposition 1.1:

Proposition 1.2. (i). (cf. [22].) If ` ≥ min(m+ k−1,n+ k−1) then the
sheaf homomorphism

σ =def

∑
|J|=k

σJ :
⊕
|J|=k

4`−k ⊗ L⊗−k−→4`

is surjective. In particular,

4` ⊂ Jk.

(ii). Assume thatX is projective, and fix̀ ≥ min(m+ k− 1,n + k). Let
A be a divisor onX such thatA− `D is ample (or big and nef). Then
the map on global sections⊕
|J|=k

H0(X,OX(KX + A − DJ)⊗ 4`−k)

−→ H0(X,OX(KX + A)⊗ 4`)

induced byσ is surjective. In particular if

s ∈ H0(X,OX(KX + A))

lies in the subspaceH0(X,OX(KX + A)⊗ 4`), then

s=
∑

hJsJ for somehJ ∈ H0(X,OX(KX + A − DJ)).

Sketch of Proof.We merely indicate the modifications required in the proof
of Proposition 1.1. Starting as before with the surjective map of vector
bundlesP −→ OY onY, we takekth symmetric powers to getSkP −→ OY.
The main point is then to exhibit a complex resolving the kernel of this map.
But in fact there is a long exact sequence of bundles

0−→Sk,1×(m−1)
P−→ . . . −→Sk,1,1P−→Sk,1P−→SkP−→OY−→0.

(+)

Here Sk,1×p
P denotes the bundle formed fromP via the representation of

the general linear groupGL(m,C) corresponding to the Young diagram
(k,1×p) = (k,1, . . . ,1) (p repetitions of 1). The existence of (+), and the
fact that it terminates where indicated, follow e.g. from [13], (1.a.10). Now
since P is a direct sum of copies ofN∗, it follows that Sk,1×p

is a sum of
copies ofN⊗−(k+p). From this point on the argument proceeds as before,
using the twist of (+) byQ in place of the Koszul complex (*) appearing in
the proof of 1.1. ut
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2. Distinguished subvarieties

In order for the results of the previous section to be useful, one needs
a criterion to guarantee that a functionφ lies in the ideal4` occuring there.
We use an approach suggested by the proof of Proposition 4.1 of [19], the
idea being in effect to work directly on the blow-up of the ideal sheafJ.
This naturally leads to a condition involving the order of vanishing ofφ
along certain distinguished subvarieties ofZ. We also give a geometric
characterization of these distinguished subvarieties, in the spirit of [11]
and [8], that clarifies somewhat their connection with constructions of [4]
and [20].

We keep notation as in §1. ThusX is a smooth quasi-projective complex
variety of dimensionn, J ⊂ OX is an ideal sheaf defining a subscheme
B ⊂ X, andsj ∈ Γ(X,J⊗ L) are global sections generatingJ⊗ L, cutting
out effective divisorsDj . We denote by

Z = (B)red= Zeroes(
√

J)

the reduced subscheme ofX supported onB.
As above, we start by blowing upX along the idealJ to get

ν0 : V0 = BlB(X) −→ X.

Now let V −→ V0 be the normalization ofV0, with

ν : V −→ X

the natural composition. Denote byE the pull-back toV of the exceptional
divisor onV0, so thatE is an effective Cartier divisor onV. ThenJ ·OV =
OV(−E), and consequently

M =def ν
∗L
(− E

)
is base-point free. Observe that sinceV is normal, the resolutionf : Y−→ X
of V0 introduced in §1 necessarily factors through a map

h : Y −→ V.

Moreover we have

h∗E = F , h∗M = N.

Now E determines a Weil divisor onV, say

[E] =
t∑

i=1

ri [Ei ],

where theEi are the irreducible components of the support ofE, andr i > 0.
Set

Zi = ν(Ei ) ⊆ X,
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so thatZi is a reduced and irreducible subvariety ofX. Remark that

Zi ⊂ Z, and Z =
⋃

Zi .

Following Fulton and MacPherson [9] we callZi the distinguished sub-
varietiesof Z, and we refer tori as the coefficient attached toZi .5 Note
that two or more of the componentsEi ⊂ V may have the same image
in X, i.e. there might be coincidences among theZi , but it will be clear that
this doesn’t cause any problems. (If one wants to eliminate duplications,
one could attach to each distinct distinguished subvariety the largest coeffi-
cient associated to it. However we prefer to allow repetitions.) A geometric
characterization of these subvarieties is given in Proposition 2.6.

The criterion for which we are aiming is

Lemma 2.1. Let4Zi ⊂ OX be the ideal sheaf ofZi , and denote by4<r>
Zi

its
r th symbolic power, consisting of germs of functions that have multiplicity
≥ r at a general point ofZi . Then for anỳ ≥ 1 one has the inclusion

4<r1`>
Z1

∩ · · · ∩ 4<rt`>
Zt

⊆ 4`,

where4` is the multiplier-type ideal introduced in §1.

In other words, in order that a function (germ)φ lie in 4`, it suffices thatφ
have multiplicity≥ r i` at a general (and hence every) point of each of the
distinguished subvarietiesZi .

Corollary 2.2. (i). Settingp= min(m,n), one has the inclusion

4<r1 p>
Z1

∩ · · · ∩ 4<rt p>
Zt

⊆ J.

(ii). Assume thatX is projective, fix` ≥ min(m,n + 1), and let A be
a divisor on X such thatA − `D is ample (or big and nef). Ifs ∈
Γ(X,OX(KX + A)) vanishes to order≥ ri` at the general point of
eachZi , then

s=
∑

sj h j for some h j ∈ Γ(X,OX(KX + A− Dj )).

Proof. Apply Proposition 1.1. ut
Proof of Lemma 2.1.The assertion is local onX, but to avoid heavy notation
we will abusively writeX where we really mean a small open subset thereof.
This being said, consider the factorization

Y
h−→ V

ν−→ X

5 Strictly speaking, Fulton and MacPherson define the distinguished subvarieties to be
the images inX of the components of the exceptional divisor ofV0, but normalizing does
not affect the subvarieties that arise.
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of f : Y −→ X, and suppose given a germ

φ ∈ 4<r1`>
Z1

∩ · · · ∩ 4<rt`>
Zt

⊂ OX.

Thenφ has multiplicity≥ ri` at each point ofZi , and consequentlyν∗φ has
multiplicity ≥ ri` at a general point ofEi (which in particular is a smooth
point of V). This implies that

ordEi (ν
∗φ) ≥ r i`,

and hence that div(ν∗φ)�`E. Now F=h∗E and therefore div( f ∗φ)�`F.
SinceKY/X is effective, this in turn implies that

div( f ∗φ)+ KY/X � `F.

But this means exactly that

φ ∈ f∗
(
OY(KY/X − `F )

) = 4`,

as required. ut

Example 2.3.Here is an example to show that the factorp = min(n,m)
cannot in general be omitted from the exponents in Corollary 2.2. Fix a pos-
itive integera. Working in X = C2 with coordinatesx andy, consider the
divisors defined bys1 = xa ands2 = ya. An explicit calculation shows that
the normalized blow-up ofX along the ideal(xa, ya) is isomorphic to its
blow-up along(x, y), but with exceptional divisora times the exceptional
divisor of the “classical” blow-up. So in this case there is a single distin-
guished subvarietyZ1 = {(0,0)} which appears with coefficientr1 = a.
But for a ≥ 2

(x, y)a 6⊆ (xa, ya), i .e. 4<r1>
Z1
6⊆ J,

although of course(x, y)2a ⊆ (xa, ya), as predicted by 2.2.

Remark 2.4.One can recover part (i) of the Corollary 2.2 directly from the
theorem of Briançon-Skoda (cf. [15], Chapter 5, or [22]) for regular local
rings. Indeed, arguing as above we have:

4<r1`>
Z1

∩ · · · ∩ 4<rt`>
Zt

⊂ ν∗OV(−`E) = J`.

But Briançon-Skoda states that

Jmin(n,m) ⊂ J.

This suggests that in fact the local effective Nullstellensatz should hold in
considerably greater algebraic generality than that which we consider here.
However it is not immediately clear in a purely local setting how to get
useful upper bounds on the coefficientsri in the exceptional divisor of the
normalized blow-up along the given ideal.
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As before, the Corollary extends in a natural way to powers ofJ. In fact,
Proposition 1.2 and the previous Lemma yield:

Corollary 2.5. (i). Settingp = min(m+ k− 1,n + k− 1), one has the
inclusion

4<r1 p>
Z1

∩ · · · ∩ 4<rt p>
Zt

⊆ Jk.

(ii). Assume thatX is projective, fix̀ ≥ min(m+ k− 1,n + k), and let
A be a divisor onX such thatA− `D is ample (or big and nef). If
s ∈ Γ(X,OX(KX + A)) vanishes to order≥ ri` at the general point
of eachZi , then

s=
∑
|J|=k

sJhJ for somehJ ∈ Γ
(
X,OX(KX + A − DJ)

)
.

ut
We conclude this section with a geometric characterization of the distin-

guished subvarietiesZi ⊂ X associated toJ, following ideas of [11] and [8].
It shows that they are in fact closely connected to constructions appearing in
[19], [4] and [20]. In a word, the decomposition considered here is related
to this earlier work in much the same fashion that the Fulton-MacPherson
intersection classes are related to the intersection cycles constructed by
Vogel et. al. (which appear very explicitly in [20]).

Let

U ⊂ Γ(X,J ⊗ L)

be them-dimensional subspace spanned by the generating sectionss1, . . . , sm.
Given a subspaceW ⊆ U, set

So
W =

{
x ∈ X− Z

∣∣ s(x) = 0 ∀s ∈ W
}
,

SW = closure
(
So

W

) ⊂ X.

If W ⊂ U is a general subspace of dimensione, then SW is an algebraic
subset ofX of pure dimensionn− e.

Proposition 2.6. Let T ⊂ X be an irreducible subvariety of dimension
d ≤ n− 2, and consider the(d+ 1) − dimensionalsubsetsSW ⊂ X for
W ⊂ U a general subspace of dimensionn−d−1. ThenT is distinguished
if and only if

T ⊂ SW

for all sufficiently generalW.

For example consider the cased = 0, so thatT is a single point. Then the
subsetsSW appearing in the Proposition are curves, and the assertion is that
the distinguished points are exactly the common intersection points of this
family of curves.
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Proof of Proposition 2.6.The vector spaceU ⊂ Γ(X,J⊗L) is isomorphic
in the natural way to a subspaceU ′ ⊂ Γ(V,M) generatingM = ν∗L (−E),
and in the sequel we identifyU andU ′. We will consider the maps

V
φ−−−→ Pm−1

ν

y
X

,(+)

φ being the morphism defined byU ′ (or U), so thatφ∗OPm−1(1) = M.
ThusPm−1 is the projective space of one-dimensional quotients ofU, and
a subspaceW ⊂ U of dimensione corresponds to a linear subspaceLW ⊂
Pm−1 of codimensione.

We claim first that all of the fibres ofν map finitely toPm−1. In fact,
the blow-upV0 = BlB(X) is the closure of the graph of the rational map
X 99K Pm−1 determined by thesj ∈ Γ(X, L) (cf. [9]. Chapter 4, §4). Thus
V0 sits naturally as a subvariety

V0 ⊂ X × Pm−1,

and in particular its normalizationV maps finitely toX × Pm−1 via the
morphism determined by (+). Hence the fibres ofV overX are indeed finite
over Pm−1, as claimed. It follows in particular that ifEi is a component
of the exceptional divisorE = ν−1(Z) in V, and if Zi = ν(Ei ) ⊂ X is
the corresponding distinguished subvariety ofX, then all of the fibres of
Ei −→ Zi map finitely toPm−1.

We claim next that ifW ⊂ U is a sufficiently general subspace of
dimension 1≤ n− d− 1≤ n− 1, then

SW = ν
(
φ−1(LW)

)
.(*)

In fact, the two sides of (*) evidently agree away fromZ. So to verify that
they actually coincide, it suffices to show that no irreducible component of
φ−1(LW) is contained in the exceptional divisorE = ν−1(Z). To this end,
let Ei denote an irreducible component ofE, so thatEi has dimensionn−1.
Then for sufficiently generalW, eitherEi ∩ φ−1(LW) = ∅ or else

dim
(
Ei ∩ φ−1(LW)

) = (n− 1)− (n− d− 1) = d.

On the other hand,φ−1(LW) itself is either empty or of pure dimension
d+ 1, and so indeed no component ofφ−1(LW) is contained in the support
of E.

Now fix an irreducible subvarietyT ⊂ X of dimensiond ≤ n−2. Then
T is distinguished iffν−1(T ) contains at least one irreducible component
of dimensionn− 1 which dominatesT. SettingFt = ν−1(t), this is in turn
equivalent to the condition that for generalt ∈ T:

dim Ft ≥ n− d− 1.
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We have noted already thatφ restricts to a finite mapping on each of the
fibresFt , and sinceν is properFt is complete. Thereforeφ(Ft) ⊂ Pm−1 is
a Zariski-closed subset having the same dimension asFt . Thus dimFt ≥
n − d − 1 if and only if φ(Ft) meets any linear spaceL ⊂ Pm−1 of
codimensionn− 1− d, i.e. iff

Ft ∩ φ−1(LW) 6= ∅(**)

for generalW ⊂ U of dimensionn−d−1. But (**) holds for generalt ∈ T
iff

ν
(
φ−1(LW)

) ⊇ T.

The Proposition then follows from (*).

Remark 2.7.It would be interesting to have a geometric characterization of
the coefficientsr i attached to the distinguished subvarietiesZi .

3. Degree bounds

The only remaining point is to prove a Brownawell-type bound on the
degrees of the distinguished subvarietiesZi . There are general positivity
theorems for Fulton-MacPherson intersection classes, as developed e.g.
in [10], lurking here. However it is easiest to bypass these results in the case
at hand.

We keep notation as in the previous sections. ThusX is a smooth complex
variety of dimensionn, J ⊂ OX is an ideal sheaf defining a subscheme
B ⊂ X, Z = Bred is the corresponding reduced algebraic subset ofX, and
s1, . . . , sm ∈ Γ(X,J⊗L) are global sections generatingJ⊗L. We continue
to denote byZ1, . . . , Zt ⊂ X the distinguished subvarieties determined
by J, and byr i > 0 the coefficients attached to them.

Proposition 3.1. Assume thatX is projective and thatL is nef. Then

t∑
i=1

ri · degL(Zi ) ≤ degL(X) =
∫

X
c1(L)

n.(*)

Proof. The given sectionssj ∈ Γ(X,J ⊗ L) determine in the natural way
sectionss′j ∈ Γ(V,M) generatingM = ν∗L(−E). We consider as in the
proof of Proposition 2.6 the corresponding morphism

φ : V −→ Pm−1,

so thatφ∗OPm−1(1) = M. Recall from that proof thatφ is finite on all the
fibres ofν (the point being thatV0 = BlB(X) embeds as a subvariety of
X × Pm−1, and hence thatV maps finitely to this product). In particular, if
Ei is a component of the exceptional divisorE in V, and if Zi = ν(Ei ) is
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the corresponding distinguished subvariety, then the restriction ofM to any
of the fibres ofEi −→ Zi is ample.

Now denote bỹL = ν∗L the pull-back ofL toV. Noting that
∫

V c1(M)n ≥
0, and recalling that[E] = c1(L̃)− c1(M), we have:

degL(X) =
∫

V
c1(L̃)

n

≥
∫

V

(
c1(L̃)

n − c1(M)
n
)

=
∫

V

(
c1(L̃)− c1(M)

)n−1∑
j=0

c1(L̃)
j c1(M)

n−1− j


=
∫
[E]

n−1∑
j=0

c1(L̃)
j c1(M)

n−1− j


=

t∑
i=1

ri ·
∫

Ei

n−1∑
j=0

c1(L̃)
j c1(M)

n−1− j


≥

t∑
i=1

ri ·
∫

Ei

c1(L̃)
dim(Zi )c1(M)

n−1−dim(Zi ),

where in the last step we have used that∫
Ei

c1(L̃)
j c1(M)

n−1− j ≥ 0 for all j

thanks to the fact that̃L and M are nef. Now the restriction toEi of
c1(L̃)dim(Zi ) is represented (say in rational cohomology) by degL(Zi )general
fibres of the mapEi −→ Zi . Moreover as we have noted the restriction of
M to each of these fibres is ample, and hence each has positiveM-degree.
Therefore ∫

Ei

c1(L̃)
dim(Zi )c1(M)

n−1−dim(Zi ) ≥ degL(Zi ),

and the Proposition follows. ut

The proof of the Theorem stated in the Introduction is now complete.
The degree bound just established combined with Corollary 2.5 also give
an analogous statement involving higher powers ofJ.

Remark 3.2.One can obtain a slight strengthening of Proposition 3.1 by
taking into account a further geometric invariant. Specifically, denote byµ
the number of intersection points away fromZ of n general divisors in the
linear series spanned by theDj (and setµ = 0 if m≤ n). Equivalently, with
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notation as at the end of §2,µ = #SW whereW ⊂ U is a general subspace
of dimensionn. Then in the situation of 3.1 the calculations just completed
show that in fact:

t∑
i=1

ri · degL(Zi ) ≤ degL(X)− µ.

Indeed, simply observe that with notation as in the previous proof:

µ =
∫

V
c1(M)

n.

Remark 3.3.In the statement of the Theorem appearing in the Introduction,
we assumed for simplicity that the line bundleL is ample. In fact, the
only positivity used in the proof is the nefness ofL, which comes into
Proposition 3.1. However to get a non-trivial assertion, one wants to avoid
the possibility that theL-degrees appearing there might be zero. Perhaps
then the most natural hypothesis for the Theorem is thatL is nef, and that
its restriction to the zero-locusZ is ample. By the same token, in statement
(iii) of the main Theorem, it is sufficient to suppose thatA− (n+ 1)D is
big and nef.

Remark 3.4.In the work of Kolĺar [19] and others on projective space, one
allows the degrees of the defining equations to differ. One can generalize
the results here to the case where the divisorsDj lie in different linear
series by imposing the condition thatOX(Dj − Dk) be base-point-free for
j ≤ k. However this makes the arguments a little more technical and less
transparent, and we do not address this extension here.
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