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Introduction

The purpose of this paper is to present a geometric theorem which clarifies
and extends in several directions work of Brownawell, Kofind others on

the effective Nullstellensatz. Specifically, we work on an arbitrary smooth
complex projective variety X, with the previous “classical” results corres-
ponding to the case when X is projective space. In this setting we prove
a local effective Nullstellensatz for ideal sheaves, and a corresponding
global division theorem for adjoint-type bundles. We also make explicit the
connection with the intersection theory of Fulton and MacPherson. Finally,
constructions involving products of prime ideals that appear in earlier work
are replaced by geometrically more natural conditions involving orders of
vanishing along subvarieties.

Much of the previous activity in this area has been algebraic in nature,
and seems perhaps not well-known in detail among geometers. Therefore
we have felt it worthwhile to include here a rather extended Introduction.
We start with an overview of the questions and earlier work on them. Then
we present the set-up and statement of our main theorem. We conclude with
a series of examples (which can be read before the general result) of what
it yields in special cases.

Background.In recent years there has been a great deal of interest in
the problem of finding effective versions of Hilbert's Nullstellensatz. The
classical theorem of course states that given polynomials

fl,..., fmec[tl,,tn],
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if the f; have no common zeroes@f then they generate the unit ideal, i.e.
there exisg; € C[t, ..., ty] such that

*) Yogfi=1

A first formulation of the problem is to bound the degrees of ghen
terms of those of thd;. Current work in this area started with a theorem of
Brownawell [3], who showed that if défg < d for all j, then one can find
g;j as in (*) such that

(B1) degg; < n?d" + nd.

Brownawell's argument was arithmetic and analytic in nature, drawing on
height inequalities from transcendence theory and the classical theorem of
Skoda. Shortly thereafter, Kalt [19] gave a more elementary and entirely
algebraic proof of the optimal statement that in the situation above, one can
in fact take

(K1) deg(g; fj) <d"

provided thad # 2.

Kollar deduces (K1) as an immediate consequence of a rather surprising
theorem in the projective setting. Specifically, consider a homogeneous ideal
JCC[Ty,..., Ty ]. Then of course) contains some power of its radical.
The main theorem of [19] is the effective statement thdtig generated by
forms of degree< d (d # 2), then already

(K2) VI cu

[Proof of (K1): letF; € C[To, ..., Ty] be the homogenization df;. Then

the common zeroes of tHg lie in the hyperplane at infinityTo = 0}, and
consequentlyly € /(Fq, ..., Fm). Therefore(Tp)?" = > GjFj thanks to
(K2), and (K1) follows upon dehomogenizing.] By analyzing o proof,
Brownawell [4] subsequently shed a somewhat more geometric light on this
result. Namely, still assuming thdtis generated by forms of degreed,

he shows that there exist reduced and irreducible subvari#tiesP" with

UW, = Z =qef Zeroesy/'J),

plus positive integers > 0, satisfying the following properties. First, one
has the degree bound

(B2) > sdegWi <d",

1 Here and below we are oversimplyfing slightly Kafk results. He actually establishes
a more precise statement allowing for theto have different degrees, and giving stronger
estimates whem < n. Furthermore, he works over an arbitrary ground field.
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so that in particulad_s < d". Secondly, ifly; denotes the homogeneous
ideal of W;, then

(B3) [T0w)* <

This formulation is referred to as the “prime-power Nullstellensatz” or the
“algebraic Bezout theoren?’Since+/J C lw for everyi, it is immediate
that (B3) and (B2) imply (K2), and in fact (B3) improves (K2) unless every
component o is a linear space. However Brownawell’s construction does
not provide a clearly canonical choice for the. We refer to [29] and [1] for
excellent surveys of this body of work, and to [2] for a discussion of some
analytic approaches to these questions. Recently Sombra [28] proved an
analogue of (K2) for projectively Cohen-Macaulay varieties: PN, from
which he deduces an interesting generalization of (B1) for sparse systems
of polynmials (see Examples 2 and 3 below). Motivated in part by Sombra’s
work, Kollar [20] has generalized these results to arbitrary ideals in the
polynomial ring.

While this picture is fairly complete from an algebraic point of view,
a number of geometric questions present themselves. First, it is natural to
ask whether the results of Kéll and Brownawell — which involve homo-
geneous ideals in the polynomial ring — can be seen as thexcasE" of
a more general picture involving an arbitrary smooth projective vadety
Sombra’s theorem gives one step in this direction. Next, one might hope to
clarify the connection with intersection theory that is evidently lurking here.
Finally, it is difficult geometrically to determine whether a given polynomial
lies in a product of ideals, and from this point of view one would like to
replace the product of prime powers occuring in (B3) by an intersection
of symbolic powers defined by orders of vanishing along subvarieties. The
theorem we present in this paper attemps to address these quéstions.

Set-up and statementsTurning to a detailed presentation of our results, we
start by introducing the set-up in which we shall work, and by fixing some
notation. LetX be a smooth complex projective variety of dimensioand

let

be effective divisors orX lying in a given linear series. Sét = Ox (D),
and lets; € I'(X, L) be the section definind@;. We denote byB the
scheme-theoretic intersection

B=DiN---NDmC X,

2 As explained in [4] one should take hetg = ¢, with Iy, = (To, ..., Tn), and assign
to Wp “honorary degree” one.

3 We should state at the outset however that in the “classical”XaseP" our numerical
bounds are in some instances slightly weaker than those dikBtownawell.
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and we let
3= Z@x(—Dj) C Ox

be its ideal sheaf. Finally, s& = Bq, SO thatZ = Zeroes./9) is the
reduced scheme defined by the radicaf of

Recall next from [9], Chapter 6, §1, that the scheBi@anonically
determines a decomposition

Z=271U---UZ

of Z into (reduced and irreduciblegjistinguished subvarietieg; c Z,
together with positive integers > 0. We will review the precise definition

in 82, but for the moment suffice it to say that tHe are the supports

of the irreducible components of the projectivized normal cB(€g,x)

of B in X. The coefficientr; attached toZ; arises as the multiplicity of
the corresponding component of the exceptional divisor in the (normalized)
blowing up ofX alongB. Every irreducible component & is distinguished,

but there can be “embedded” distinguished subvarieties as well. We denote
by Iz, € Ox the ideal sheaf of;, and by 17" its r'h symbolic power,
consisting of germs of functions that have multiplicityr at a general point

of Z;.

Our main result is the following:

Theorem. With notation and assumptions as above, suppose lthist
ample.

(). The distinguished subvarietieg C X satisfy the degree bound

Y ri-ded (Z)) fdeq(X)zfcl(L)”,
X

where as usual thé&.-degree of a subvarietyv € X is the integer
deg (W) = f,, Ca(L)mW,
(). One has the inclusion

<n-ry> <n-ry>
M. N cg.

In other words, in order that a function (germp)lie in ¢, it suffices
that ¢ vanishes to order- nr; at a general point of each of the
distinguished subvarieties;.

(iii). Denote byKx a canonical divisor ofX, and letA be a divisor onX
such thatA — (n 4+ 1) D is ample. If

seI'(X, Ox(Kx + A)

is a section which vanishes to order(n+ 1) - r; at the general point
of eachZ;, then one can write

S= Zsjhj for some sectionB; € I'(X, Ox(Kx + A— Dj)),

where as above; € I'(X, Ox(Dj)) is the section definin®;.
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As in Brownawell’s algebraic Bezout theorem, the inequality in (i) serves
in effect to bound the coefficients from above. One should view (ii) as
a local effective Nullstellensatz. Together with (i) it immediately implies
the first statement of the

Corollary. (a).With notation and assumptions as above:

(ﬁ)n-deg(X) c (\/g)n-max{ri} - g

More generally,

(\/g)<n-deg_(X)> - g’

where the symbolic power on the left denotes the sheaf of all functions
that vanish to at least the indicated order at every poinZof

(b). If s € T'(X, Ox(kD)) is a section which has multiplicityg (n + 1)
[ ci(L)" at every point ofZ, then ifk > 0 is sufficiently large there
existhj € I'(X, Ox((k — 1) D)) such thats = }_ sjh;. o

Itis perhaps already somewhat surprising that there are tests for membership
in an ideal that depend only on orders of vanishing along its zero-locus. Note
that the Theorem applies to an arbitrary ideal shfeak soon as ® ¢ is
globally generated. So from a qualitative point of view one may think of
the Corollary as giving global constraints on the local complexit§.oc®n
the quantitative side, we remark that the factomadppearing in (i) and
statement (a) of the Corollary can be replaced by(mim), and similarly
in (iii) and (b) one can substitute nim, n + 1) for (n + 1). The results of
Kollar and Brownawell might suggest the hope that one could drop these
factors altogether, but examples (see 2.3) show that this is not possible, at
least with theZ; andr; as we have defined them. However it is possible
that (a) holds with the exponent. deg (X) replaced by deg X), with an
analogous improvement of (b).

The proof of the Theorem is quite elementary and, we hope, transparent.
It consists of three steps. First (81) we use vanishing theorems to give
a simple algebro-geometric proof of a statement of Skoda type. The theorem
in question establishes local and global criteria involving some multiplier-
type ideal sheaveg, to guarantee that one can write a given gerra Ox
or global sectiors € I'(X, Ox(Kx + A)) interms of thes; € I'(X, L). The
local statement was originally proved in [27] usibgmethods, and while
Skoda'’s result is well known in analytic geometry and commutative algebra
(cf. [23], [15] and [22]), it seems to be less familiar to algebraic geometers.
We hope therefore that the discussion in 81 — which in addition contains an
extension of these results to higher powersfof may be of independent
interest! The next point (§2) is to relate the shealg$o orders of vanishing

4 In fact one can deduce the local effective Nullstellensatz directly from the theorem of
Briangon and Skoda for regular local rings (Remark 2.4). From our perspective however
the local and global statements are two sides of the same coin, and in essence we end up
reproving Briangon-Skoda.
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along the Fulton-MacPherson distinguished subvariétjeSection 2 also
contains a geometric characterization of these subvarieties, in the spirit
of van Gastel, Flenner and Vogel ([11],[8]). Finally, a simple calculation
of intersection numbers gives the degree bound (83). It is interesting to
observe that while the final outcome is quite different, essentially all of
these techniques have antecendents in earlier work in this area.

Examples.Finally, in order to give a feeling for the sort of concrete state-
ments that come out of the Theorem, we conclude this Introduction with
a few examples.

Example 1.Consider the “classical” cas¢ = P" andL = Opn(d), so that
we are dealing wittm homogeneous polynomials

Si,...,Sn € C[Tp, ... Tyl
of degreed. Then the degree bound in part (i) of the Theorem says that

*) Y _ri-dM) . deg(z) < d",

where here de¢Z;) is the standard degree (with respect@g (1)). The
conclusion of statement (iii) is that  is a homogeneous polynomial of
degree> (n + 1)(d — 1) + 1 vanishing to order ri(n 4+ 1) on each of
the Z; thens lies in the homogeneous ideadlspanned by ths;. In other
words, if 177> denotes the homogeneous primary ideal of all polynomials
having multiplicity > r at a general point oZ;, and if (T, ..., T,) denotes
the irrelevant maximal ideal, then we have

d d— n+1)r n+1)r
(To,...,Tn)(”+ n)m|z<l( )l>ﬂ---ﬂ|Z( )t>CJ.

By analogy with Brownawell's “prime-power” formulation of Kdali's
theorem, one might think of this as a “primary decomposition” version
of the Nullstellensatz. Comparing this with Brownawell’s statement (B3),
the most surprising difference is that one can ignore here any of the “embed-
ded” distinguished subvarietieg for which the corresponding coefficient

ri is small. Numerically, the factor ad¥™Z) in (*) strengthens (B2), but

the factor of(n + 1) in the exponent prevents one from recovering (K2) in
the “worst” cases when every componentfolias small degree.

Example 2.M. Rojas has observed that following the model of [28] one
can apply the Theorem to suitable toric compactificati¥ref C" to obtain
extensions of the results (B1) and (K1) of Brownawell and &b certain
sparse systems of polynomials (see also [21], [12], and [24] for other other
applications of toric geometry to sparse systems of polynomials). In some
settings, the numerical bounds that come out strengthen Sombra’s. We
refer to the forthcoming preprint [25] of Rojas for the precise statements,
but illustrate their flavor in a special case. Consider as above polynomials
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f; € Cl[ty, ..., ty] and suppose that one is given separate degree bounds in
each of the variable:

deg, (fj) <dk Vj.

Assuming that thef; have no common zeroes @I', then one can find;
with )" g; f; = 1 where now

*) deg, (gjf)) <(+1! dy----- 0.

(By way of comparison, Sombra’s general theorem yields in this setting the
analogous inequality with the factor ofi + 1)! replaced byn"*3.) If for
instance one thinks aly, ..., d,_1 as being fixed, then (*) gives a linear
bound in the remaining input degreR. [To prove (*), one applies the
Theorem toX = P! x --- x PLandL = @(dy, ..., dy), and argues as in
the proof that (K2) implies (K1).]

Example 3.0ur last example is a variant of a result of Sombra [28], (1.8).
In the situation of the Theorem, suppose tHds a very ample divisor oX
which is sufficiently positive so that thad — Kx — (n + 1)D is ample,
and consider the embedding c PN = P defined by the complete linear
system|/H|. Letl ¢ S:= C[Ty,..., Ty] be the homogeneous ideal ¥f
under this embedding, IR = S/I be the homogeneous coordinate ring
of X, and letF,, ..., Fn € R be homogeneous elements of degreed.

Let P € R be a homogeneous element lying in the radical of the ideal
(F1,...,Fn). Then

PMTILAIX ¢ (Fy, ... Fin),

where deg< = (H") denotes the degree &f in the projective embedding
defined by|H|. (As in [28], one first reduces to the case where all e
are of equal degred.) When| is a Cohen-Macaulay ideal — which for
sufficiently positiveH is equivalent to the vanishingd' (X, ©x) = 0 for

0 < i < dim X —thisis a slight numerical improvement of Sombra’s result
(which however does not require the variety defined bybe non-singular).

AcknowledgementsWe wish to thank W. Fulton, J. Kdlt, M. Rojas, K. Smith and M. Som-
bra for valuable correspondence and discussions.

0. Notation and conventions

(0.1). We work throughout with varieties and schemes defined over the
complex numbers.

(0.2). LetX be a smooth variety, anple O« the germ of a regular function
defined in the neighborhood of a poixte X. We say thatp vanishes
to order > r at x, or that¢ has multiplicity> r at x if ¢ € m{, where
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my, C OxX is the maximal ideal ok. Equivalently, all the partials ap of
order < r should vanish ak. If Z ¢ X is an irreducible subvariety, with
ideal sheafl; C Ox, we denote byl;"> C Ox the sheaf of germs of
functions that vanish to order r at a general (and hence at every) point
of Z. It is a theorem of Nagata and Zariski (cf. [7], Chapter 3, Section 9)
that this coincides with the symbolic power ofI, although there is
no loss here in taking this as the definition of symbolic powers. Evidently
1% C 17", but whenZ is singular the inclusion may well be strict.

(0.3) Let X be a smooth projective variety of dimensionA line bundleL
on X is numerically effectivéor nej) if

/cl(L) >0
C

for every irreducible curveC ¢ X. A fundamental theorem of Kleiman
(cf. [14], Chapter I, 86) implies that any intersection number involving
the product of Chern classes of nef line bundles with an effective cycle is
non-negative. A nef line bundle g if its top self-intersection is strictly

positive:
/ C]_(L)n > 0.
X

For a divisor D on X, we define nefness or bigness by passing to the
associated line bundi@x (D).

(0.4) The basic global vanishing theorem we will use is the following
extension by Kawamata and Viehweg of the classical Kodaira vanishing
theorem:

Theorem. Let X be a smooth complex projective variety, anddetdenote
a canonical divisor orX. If D is a big and nef divisor oiX then

H'(X, Ox(Kx + D)) =0 for i > 0.

One of the benefits of allowing merely big and nef bundles is that this result
then implies a local vanishing theorem for higher direct images. For our
purposes, the following statement will be sufficient:

Theorem. Let X be a smooth quasi-projective complex variety, and let
f : X — Y be a generically finite and surjective projective morphism.
Suppose thab is a divisor onX which is nef forf, i.e. whose restriction

to every fibre off is nef. Then

R f.(Ox(Kx + D)) =0 for j> 0.
This is called vanishing for the maf. We refer to [18] for a very readable

introduction to the circle of ideas surrounding vanishing theorems, and to
[17], (0.1) and (1.2.3) for a more technical and detailed discussion.
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1. A theorem of Skoda type

In this section we use vanishing for big and nef line bundles to give a sim-
ple algebro-geometic proof of a theorem of Skoda type. In his classical
paper [27], Skoda usel? techniques to establish an analytic criterion
guaranteeing that a gerfh € C{z, ..., z,} lies in the ideal generated by
a given collection of functiondq, ..., f, € C{zy, ..., z,}. In view of the
close connection that has emerged in recent years betweeh $uwtthods
and vanishing theorems (cf. [5] for a survey), it is natural to expect that one
can recover statements of this sort via vanishing. We carry this out here.
Besides being very elementary and transparent, the present approach has
the advantage of simultaneously giving global results. A special case of
Skoda’s theorem played a role in Siu’s recent work [26] on the deformation
invariance of plurigenera, and it was algebrized as below by Kawamata [16].
Let X be a smooth irreducible quasi-projective complex variety of di-
mensiom. We emphasize that for the time beiXgneed not be projective,
and in fact for the local results one might want to think&ds representing
the germ of an algebraic variety. Let

F <€ Ox

be an ideal sheaf defining a proper subsch&e X. For each¥ > 1 we
associate t a multiplier-type ideal sheaf

Ig C O
as follows. Start by forming the blow-up
Vo : Vo =Blg(X) — X

of X along B, and then take a resolution of singularitiés—> V; to get
a birational map

f:Y— X

The idealg becomes principal oN and hence also ovi. More precisely,
let F be the pull-back to¥ of the exceptional divisor olp. Then

F - Oy =0Ov(=F).
We set
7, = f.(Oy(Kyx — €F)),

whereKy,x = Ky — f*Kx is the relative canonical divisor of over X.

Note thatZ, € f.Ov(Ky/x) = Ox, so thatZ, is indeed an ideal sheaf ot

One can check by standard arguments that it is independent of the choice
of a resolution, although we don't actually need this fact here. In the setting
of local algebra, such ideals were introduced and studied by Lipman [22].
One could also defing, via an L? integrability condition, as in Skoda’s
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paper [27]. We refer to [6] for a discussion, from an algebro-geometric
viewpoint, of multiplier ideals of this sort.

Our object is to relate the ideal sheavgsto ¢. To this end letL be
any line bundle orX such that. ® ¢ is globally generated. Choose global
sections

St,...,SmelX, L®F)

generating- ® ¢, and seD; = div(s;j) € |L|. Thus the subschent C X
defined byg is just the scheme-theoretic intersection of e Note that

all the D; are linearly equivalent: for convenience we will sometimes write
D for any divisor in their linear equivalence class. Sihce g is globally
generated, so is its inverse image

N =gef T*'L ® Ov(—F).
In fact, we can write
f*Dj=F + D/j

where theD| € |N] are effective divisors olY that generate a base-point
free linear system.
Pushing forward the evident map

Ov(Kyx — (¢ = DHF) ® f*L* = Oy(Ky)x — £F — Dj)

— Oy(Ky)x — £F)
determines a sheaf homomorphism
aj . Ig,]_® L* — Ig

on X. Observe that; is induced by multiplication by; in the sense that
one has a commutative diagram

Iaely —2s 1,

| L

L* i) (9)(

where the vertical maps arise from the natural inclusiong,of and 7,
in @x. This may be verified by pushing forward the corresponding commu-
tative square

.D’,
Ov(Ky)x — (¢ —DF) ® f*L* — Oy(Ky,x — £F)

»(IZ—l)Fl l.(F

*

£*D
Oy(Ky/x) ® f*L* —>  Oyv(Kyx)
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of invertible sheaves oN. In particular, the image of; lies in the ideal
sheaf(9x(—Dj) of Dj.
We now come to the main result of this section:

Proposition 1.1. (). (Skoda’s Theorem, cf. [27], [22].)f £ > min(m, n)
then the sheaf homomorphism

m m
o =defzo'j 2@ I 1 ®@L"—1,
=1 =1

is surjective. In particular,
Iy C g

(i). Assume thai is projective, and fiX. > min(m,n + 1). Let A be
a divisor onX such thatA — ¢D is ample (or big and nef). Then the
map on global sections

m
P HO(X, Ox(Kx + A = D)) ® Ir-1)
j=1
— H%X, Ox(Kx + A ® 1))
induced by is surjective. In particular if
s€ H(X. Ox(Kx + A))

lies in the subspacEl%(X, Ox(Kx+A)® I;) € HO(X, Ox(Kx+A)),
then

s=)Y hjs;  forsomeh; € H%(X, Ox(Kx + A — D))).

Proof. Asin[23], 85, we argue via a Koszul complex. Workingonet P
be the vector bundle

m m
P=@ov-D) =N
j=1 j=1

Then theD/j determine in the evident way a surjective homomorphism

P — Oy. Form the corresponding Koszul complex and for fixetvist
by Q = Q¢ =gef Oy (Ky,x — £F):

*) ..— A’P®Q—>PRQ— Q—0.

For (i) we need to establish the surjectivity of the push-forward homo-
morphism:

f.(P®Q) —— f.Q

Dr1eL* 1
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Chasing through the exact sequence (*), we see that it is enough to establish
the vanishings:

(**) R, (AT'P®Q)=0forl<j<n.

Since all the fibres off have dimensiorc n — 1, the vanishing of thah
direct imageR" f, in (**) is free. So we can limit attention t¢p < n — 1.
Furthermore, a® has rankm, (**) is trivial if j +1 > m. Thus all told we
are reduced to considering onjy+ 1 < min(m, n) in (**).

Now

AP ® Q= A'P® Oy(Kyx — LF) =@ Oy(Ky ® N*¢)
® f*Ox(—Kx) ® f*L®,
But N is globally generated, and hence is nef fofand globally nef when
X is projective). Furthermore, thanks to the projection formula twisting by
bundles pulling back fronX commutes with taking higher direct images.

Hence it follows from vanishing foff (cf. (0.4)) that one has the vanishing
of all the higher direct images

Rf,(AP®Q)=0forj>0,i=<¢

This proves (**) (whenj + 1 < min(m, n) and£ > min(m, n)), and with
it statement (i).

The second assertion follows similarly by applying global vanishing for
big and nef divisors olY. In fact, twisting by f*Ox(Kx + A), we need to
prove the surjectivity of the homomorphism

HOY, P® Q® f*Ox(Kx + A) —— HOY,Q® f*Ox(Kx + A))

| |

@HO(X, Ox(Kx + A — Dj)®Ig,1) HO(X, (9x(Kx+A)®Ig)

determined by the map on the right in (*). Chasing again through that
sequence it suffices to establish the vanishings

(**) HI(Y, Ov(Ky + f*(A—¢D)) ® N®“~17D) = 0
for0 < j <min(m— 1, n).
But by hypothesisf*(A — ¢D) is big and nef, andN is nef. So provided

that¢ > min(m, n 4+ 1) the bundle occuring in (***) is big and nef, and we
are done thanks to (0.4). O

Although not required for the main development, asin[23], [22] and [15],
Chapter 5, itis of some interest to extend these results to higher powgrs of
Tothis end, given amulti-indeX = (jy, ..., jm) Oflength|J| = > j, =k,
denote by

Sy =8t ---gn e I (X, L)
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the corresponding monomial in tlsg and letD; = ) j, D, be the divisor
of s;3. Then for¢ > k multiplication bys; determines as above a mapping

o3 Lk ® L®_k — 1,
and we have the following extension of Proposition 1.1:

Proposition 1.2. (i). (cf.[22].) If £ > min(m+k—1, n+k— 1) then the
sheaf homomorphism

O =def Z 03 @ L k@LP* =1,
13]=k 13]=k

is surjective. In particular,
Ig C gk.

(ii). Assume thak is projective, and fiX > min(m + k — 1, n + k). Let
A be a divisor onX such thatA — ¢D is ample (or big and nef). Then
the map on global sections

P HOX, Ox(Kx + A — Dy) ® Iri)
|J|=k
— HY%(X, Ox(Kx + A) ® 1))

induced by is surjective. In particular if
se H%X, Ox(Kx + A))
lies in the subspackl®(X, Ox(Kx + A) ® I,), then

S= ZhJsJ for someh; € HO (X, Ox(Kx + A — Dj)).

Sketch of ProofWe merely indicate the modifications required in the proof
of Proposition 1.1. Starting as before with the surjective map of vector
bundlesP — @y onY, we takek™ symmetric powers to g&P — Oy.

The main point is then to exhibit a complex resolving the kernel of this map.
But in fact there is a long exact sequence of bundles

(+)
0 V™o kllp_  ckip  gp_, Oy — 0.

Here SV P denotes the bundle formed froRvia the representation of
the general linear grou@ L(m, C) corresponding to the Young diagram
(k, 1*P) = (k, 1, ..., 1) (p repetitions of 1). The existence of (+), and the
fact that it terminates where indicated, follow e.g. from [13], (1.a.10). Now
since P is a direct sum of copies df*, it follows that §**" is a sum of
copies of N®~&+P) From this point on the argument proceeds as before,
using the twist of (+) byQ in place of the Koszul complex (*) appearing in
the proof of 1.1. O



440 L. Ein, R. Lazarsfeld

2. Distinguished subvarieties

In order for the results of the previous section to be useful, one needs
a criterion to guarantee that a functigries in the idealZ, occuring there.

We use an approach suggested by the proof of Proposition 4.1 of [19], the
idea being in effect to work directly on the blow-up of the ideal shgaf
This naturally leads to a condition involving the order of vanishingp of
along certain distinguished subvarieties &f We also give a geometric
characterization of these distinguished subvarieties, in the spirit of [11]
and [8], that clarifies somewhat their connection with constructions of [4]
and [20].

We keep notation as in 81. Thifsis a smooth quasi-projective complex
variety of dimensiom, § C Oy is an ideal sheaf defining a subscheme
B C X,ands; € I'(X, g ® L) are global sections generatiggo L, cutting
out effective divisordD;. We denote by

Z = (B)red = Zeroes,/§)

the reduced subscheme Xfsupported orB.
As above, we start by blowing u)} along the idealf to get

Vo - Vo = BlB(X) — X.
Now letV — V; be the normalization oy, with
v:V— X

the natural composition. Denote I&the pull-back tov of the exceptional
divisor onVy, so thatE is an effective Cartier divisor od. Thend - Oy =
Ov(—E), and consequently

M =def v*L (— E)

is base-point free. Observe that sivces normal, the resolutior : Y — X
of \p introduced in 81 necessarily factors through a map

h:Y — V.
Moreover we have
h*E=F , h*M = N.

Now E determines a Weil divisor ox, say

t
[E]=) ri[Eil
i=1

where theg; are the irreducible components of the suppofEpandr; > O.
Set

Zi =v(E) € X,
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so thatZ; is a reduced and irreducible subvariety>ofRemark that
zcz, ad z=|]z.

Following Fulton and MacPherson [9] we ca&l| the distinguished sub-
varietiesof Z, and we refer ta; as the coefficient attached #.5 Note
that two or more of the componenE C V may have the same image
in X, i.e. there might be coincidences among #ebut it will be clear that
this doesn’'t cause any problems. (If one wants to eliminate duplications,
one could attach to each distinct distinguished subvariety the largest coeffi-
cient associated to it. However we prefer to allow repetitions.) A geometric
characterization of these subvarieties is given in Proposition 2.6.

The criterion for which we are aiming is

Lemma 2.1. Let Iz C Ox be the ideal sheaf d;, and denote b)tzfr> its

rth symbolic power, consisting of germs of functions that have multiplicity
> r at a general point oZ;. Then for any > 1 one has the inclusion

Iz<1f1(> N-..N Iz<lrt6> c 1,
whereZ, is the multiplier-type ideal introduced in §1.

In other words, in order that a function (gergnjie in Z,, it suffices that
have multiplicity > r;£ at a general (and hence every) point of each of the
distinguished subvarieties;.

Corollary 2.2. (i). Settingp = min(m, n), one has the inclusion

<rip> <rep>
N N1 cg.

(i). Assume thaiX is projective, fix¢ > min(m,n + 1), and let A be
a divisor on X such thatA — ¢D is ample (or big and nef). 1§
(X, Ox(Kx + A)) vanishes to order ri¢ at the general point of
eachZ;, then

s=Y sh; forsomeh; e I'(X, Ox(Kx + A— D).
Proof. Apply Proposition 1.1. O

Proof of Lemma 2.1 he assertionislocal aX, but to avoid heavy notation
we will abusively writeX where we really mean a small open subset thereof.
This being said, consider the factorization

Yy v x

5 Strictly speaking, Fulton and MacPherson define the distinguished subvarieties to be
the images inX of the components of the exceptional divisor\gf but normalizing does
not affect the subvarieties that arise.
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of f : Y — X, and suppose given a germ
pe I N NI Cox.

Theng has multiplicity> r; ¢ at each point o¥Z;, and consequently*¢ has
multiplicity > r;i¢ at a general point oE; (which in particular is a smooth
point of V). This implies that

ordg, (v'¢) > rif,

and hence that diw*¢) = £E. Now F =h*E and therefore di¢f *¢) > ¢F.
SinceKy,x is effective, this in turn implies that

div(f*¢) + Ky,x = ¢F.
But this means exactly that
¢ € f.(Ov(Kyx —LF)) =T,

as required. 0

Example 2.3.Here is an example to show that the facfpe min(n, m)
cannot in general be omitted from the exponents in Corollary 2.2. Fix a pos-
itive integera. Working in X = C? with coordinates< andy, consider the
divisors defined by, = x? ands, = y2. An explicit calculation shows that
the normalized blow-up oK along the idealx?, y?) is isomorphic to its
blow-up along(x, y), but with exceptional divisoa times the exceptional
divisor of the “classical” blow-up. So in this case there is a single distin-
guished subvariety,; = {(0, 0)} which appears with coefficiemty = a.
Butfora > 2

X Y*Z YD, Qe IV ¢4,
although of courseéx, y)2 € (x3, y?), as predicted by 2.2.

Remark 2.4.0ne can recover part (i) of the Corollary 2.2 directly from the
theorem of Briancon-Skoda (cf. [15], Chapter 5, or [22]) for regular local
rings. Indeed, arguing as above we have:

N NI CvOy(—LE) = gl
But Briangon-Skoda states that
gmin(n,m) C gz

This suggests that in fact the local effective Nullstellensatz should hold in
considerably greater algebraic generality than that which we consider here.
However it is not immediately clear in a purely local setting how to get
useful upper bounds on the coefficientsn the exceptional divisor of the
normalized blow-up along the given ideal.
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As before, the Corollary extends in a natural way to poweg. dh fact,
Proposition 1.2 and the previous Lemma yield:

Corollary 2.5. (i). Settingp = min(m+ k — 1,n + k — 1), one has the
inclusion

<rip> <rtp> k
;PN NI gk

(i). Assume thak is projective, fixt > min(m+ k — 1, n 4+ k), and let
A be a divisor onX such thatA — ¢D is ample (or big and nef). If
s e I'(X, Ox(Kx + A)) vanishes to order ri¢ at the general point
of eachZ;, then

S= Z sshy  for someh; € (X, Ox(Kx + A — Dy)).
[J|=k

O

We conclude this section with a geometric characterization of the distin-
guished subvarieties; ¢ X associated tg, following ideas of [11] and [8].
It shows that they are in fact closely connected to constructions appearing in
[19], [4] and [20]. In a word, the decomposition considered here is related
to this earlier work in much the same fashion that the Fulton-MacPherson
intersection classes are related to the intersection cycles constructed by
Vogel et. al. (which appear very explicitly in [20]).

Let

UcI'(X,g®L)

be them-dimensional subspace spanned by the generating sestions, sy.
Given a subspace/ C U, set

Sv={xeX—-2Z|sx)=0 Vse W},
Sw = closurd ) C X.

If W c U is a general subspace of dimensigrthen Sy, is an algebraic
subset ofX of pure dimensiom — e.

Proposition 2.6. Let T ¢ X be an irreducible subvariety of dimension
d < n— 2, and consider théd + 1) — dimensionalsubsetsSy c X for
W C U ageneral subspace of dimensior d — 1. ThenT is distinguished
if and only if

TC Sw
for all sufficiently general.

For example consider the cade= 0, so thafT is a single point. Then the
subsetsSy appearing in the Proposition are curves, and the assertion is that
the distinguished points are exactly the common intersection points of this
family of curves.
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Proof of Proposition 2.6The vector space c I'(X, g®L) isisomorphic
in the natural way to a subspadé c I'(V, M) generatingMl = v*L (—E),
and in the sequel we identity andU’. We will consider the maps

v —£, pm-i

(+) l :
X

¢ being the morphism defined By’ (or U), so that¢p*Opm-1(1) = M.
ThusP™1 is the projective space of one-dimensional quotients) pAnd
a subspac®V c U of dimensione corresponds to a linear subspdcg C
P™1 of codimensiore.

We claim first that all of the fibres of map finitely toP™2. In fact,
the blow-upVy = Blg(X) is the closure of the graph of the rational map
X --» P™1 determined by the; € I'(X, L) (cf. [9]. Chapter 4, 84). Thus
V sits naturally as a subvariety

Vo C X x P™ 1,

and in particular its normalizatioW maps finitely toX x P™! via the
morphism determined by (+). Hence the fibre&/adver X are indeed finite
over P"-1, as claimed. It follows in particular that E; is a component
of the exceptional divisoE = v=1(Z) in V, and if Z;, = v(E)) C X is
the corresponding distinguished subvarietyXafthen all of the fibres of
Ei — Z; map finitely toP™1.

We claim next that ifW c U is a sufficiently general subspace of
dimension1<n—d—-1<n-—1, then

(*) Sw = (¢~ (Lw)).

In fact, the two sides of (*) evidently agree away fradn So to verify that
they actually coincide, it suffices to show that no irreducible component of
¢~ 1(Lw) is contained in the exceptional divis&r = v=1(Z). To this end,

let Ej denote an irreducible component®fso thatE; has dimensiom — 1.
Then for sufficiently generalV, eitherE; N ¢~1(Lw) = ¥ or else

dm(EN¢ '(Lw)=M-)—-(n—-d-1 =d.

On the other handp=1(Ly) itself is either empty or of pure dimension
d + 1, and so indeed no componentgof' (L) is contained in the support
of E.

Now fix an irreducible subvariety c X of dimensiond < n— 2. Then
T is distinguished iffv=1(T ) contains at least one irreducible component
of dimensionn — 1 which dominated . SettingF, = v=(t), this is in turn
equivalent to the condition that for genetat T:

dmFk>n—-d-1
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We have noted already thatrestricts to a finite mapping on each of the
fioresF,, and sincev is properF, is complete. Thereforg(F,) c P™1is

a Zariski-closed subset having the same dimensioR; ashus dimF, >
n—d — 1 if and only if ¢(F;) meets any linear space ¢ P™ 1! of
codimensiom — 1 —d, i.e. iff

**) Fengt(Lw) #9

for generaW c U of dimensiom —d — 1. But (**) holds for generat € T
iff

v HLw) 2 T.
The Proposition then follows from (*).

Remark 2.7.1t would be interesting to have a geometric characterization of
the coefficients; attached to the distinguished subvariettgs

3. Degree bounds

The only remaining point is to prove a Brownawell-type bound on the
degrees of the distinguished subvarieti&s There are general positivity
theorems for Fulton-MacPherson intersection classes, as developed e.qg.
in [10], lurking here. However it is easiest to bypass these results in the case
at hand.

We keep notation as in the previous sections. TXissa smooth complex
variety of dimensiom, § C Ox is an ideal sheaf defining a subscheme
B C X, Z = Bqis the corresponding reduced algebraic subset,aind
S1, ..., Sn € I'(X, g®L) are global sections generatigig® L. We continue
to denote byZ,, ..., Z; C X the distinguished subvarieties determined
by 4, and byr; > 0 the coefficients attached to them.

Proposition 3.1. Assume thakX is projective and that. is nef. Then

—

) > ri-deg.2) < deg (%) = [ euL"

i=1

Proof. The given sections; € I'(X, § ® L) determine in the natural way
sectionss; € I'(V, M) generatingM = v*L(—E). We consider as in the
proof of F;roposition 2.6 the corresponding morphism

¢:V— P,

so thatgp*©@pm-1(1) = M. Recall from that proof thap is finite on all the
fibres of v (the point being thavy, = Blg(X) embeds as a subvariety of
X x P™1, and hence tha¥ maps finitely to this product). In particular, if
E;i is a component of the exceptional dividérin V, and if Z; = v(E;) is
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the corresponding distinguished subvariety, then the restrictid tof any
of the fibres ofE; — Zi is ample.
Now denoteby. = v*L the pull-back oL toV. Noting that/,, c;(M)" >

0, and recalling thatE] = c1(L) — c1(M), we have:

deg (X) = / e (D)

Vv

> fv (cr(D)" — ca(M)")

n-1
= /V CIGEA) (Z c1<E)ic1<M)”“)
j=0

n—1
:f (ch(t)iq(wl)"“)
[E] \

j=0

t n-1
=)n f (ch(t)iq(wl)”“)
i=1 Ei

j=0

t
= Zri /E Cl(I:)d'm(zi)cl(M)n—l—mm(zi)’
i=1

where in the last step we have used that
/ cu(D) ey (M1 > 0 forall j
Ei

thanks to the fact that and M are nef. Now the restriction t&; of
c1(0)dmM@) js represented (say in rational cohomology) by,dék) general
fibres of the magE; — Z;. Moreover as we have noted the restriction of
M to each of these fibres is ample, and hence each has pdditegree.
Therefore

/ 61(D)IM ) ¢y (M9 > deg (Z;),

Ei

and the Proposition follows. O

The proof of the Theorem stated in the Introduction is now complete.
The degree bound just established combined with Corollary 2.5 also give
an analogous statement involving higher powerg of

Remark 3.2.0ne can obtain a slight strengthening of Proposition 3.1 by
taking into account a further geometric invariant. Specifically, denote by
the number of intersection points away fré@of n general divisors in the
linear series spanned by tlg (and sefx = 0 if m < n). Equivalently, with
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notation as at the end of 8g2,= #S, whereW c U is a general subspace
of dimensiom. Then in the situation of 3.1 the calculations just completed
show that in fact:

—

> ri-deg (Zi) < deg (X)— .

i=1

Indeed, simply observe that with notation as in the previous proof:

M=/01(M)n-
v

Remark 3.3.In the statement of the Theorem appearing in the Introduction,
we assumed for simplicity that the line bundleis ample. In fact, the
only positivity used in the proof is the nefness lof which comes into
Proposition 3.1. However to get a non-trivial assertion, one wants to avoid
the possibility that the.-degrees appearing there might be zero. Perhaps
then the most natural hypothesis for the Theorem is lthatnef, and that

its restriction to the zero-locus is ample. By the same token, in statement
(iii) of the main Theorem, it is sufficient to suppose that- (n + 1)D is

big and nef.

Remark 3.4.In the work of Kollar [19] and others on projective space, one
allows the degrees of the defining equations to differ. One can generalize
the results here to the case where the dividdgslie in different linear
series by imposing the condition th@(D; — Dy) be base-point-free for

j < k. However this makes the arguments a little more technical and less
transparent, and we do not address this extension here.
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