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0. Introduction

Let M be a complex manifold and fix once and for all a complete Riemannian
metric on M and a holomorphic diffeomorphism, or automorphism, f ∈
DiffO(M). Recall that the stable manifold Ws

p through a point p ∈ M with
bounded orbit is defined by

Ws
p := {

x ∈ M
∣∣ dist( f N x, f N p) ≤ CρN for N ≥ 0

}
,

where ρ = ρp < 1 and C = Cp > 0. It turns out that often Ws
p is an

immersed complex manifold. Assuming this to be the case, the following
problem was posed by E. Bedford [B].

Problem: Determine the complex structure of the stable manifolds of f .

In many cases it can be shown that Ws
p is a monotone union of balls,

and this in turn implies [Br] that it is diffeomorphic to real Euclidean
space. Moreover, by the contracting nature of the dynamics, one sees that
the Kobayashi pseudometric of Ws

p vanishes identically. However, when
dim(Ws

p) ≥ 3, it is not possible to deduce only from these properties
that Ws

p is biholomorphic to Euclidean space. For example, there exist
monotone unions of balls which are not Stein [F]. (The question of Stein-
ness of monotone unions of balls in complex dimension 2 is open.) When
dim(Ws

p) = 1, the Uniformization Theorem implies that Ws
p is biholomor-

phic to C [BLS,W].
The main results of this paper are proved in the non-uniform setting, i.e.

with respect to compactly supported invariant measures. More precisely,
we say that a subset A ⊂ M is invariant if f A = A, and that it has total
measure if µ(A) = 1 for every compactly supported invariant probability
measure µ.

Our main objective in this paper is to prove the following theorem.
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Theorem 1. There exists an invariant Borel set K( f ) ⊂ M of total measure
such that for every p ∈ K( f ), Ws

p is a complex manifold biholomorphic to
complex Euclidean space.

Let us clarify things a little further. The set K( f ) is the set of so-called
Oseledec points or regular points. Its existence is a part of the well known
and fundamental theorem of V. Oseledec [O]. The equally fundamental
work of Ya. Pesin [P] states in part that the stable manifold passing through
each Oseledec point p ∈ K( f ) is an immersed (complex) manifold. What
we show is that for each p ∈ K( f ), Ws

p is biholomorphic to Ck, where
k = dimCWs

p.
We postpone to Sect. 3 a more detailed discussion of the results of

Oseledec and Pesin which we will use in this paper. For now, however, we
content ourselves with saying that every point in K( f ) has a bounded orbit,
although K( f ) itself need not be bounded. Moreover, we emphasize that,
to have a non-trivial result, it is necessary to have at least one invariant
measure with compact support, but this is guaranteed to happen once f
leaves invariant a bounded subset of M.

Our approach to proving Theorem 1 is to associate to the dynamical
system f a certain “unraveled” dynamical system, and then conjugate the
latter to a much simpler (polynomial) dynamical system on the so-called
stable distribution. To state the result more precisely we need to develop
some notation and concepts, which we now proceed to do.

Recall that the stable distribution Es is a family of vector subspaces Es
p

of TMp on which df is asymptotically contracting: for p ∈ M with bounded
orbit, Es

p is given by

Es
p := {

v ∈ TMp

∣∣ |df Nv| ≤ CρN for N ≥ 0
}
,

where ρ = ρp < 1 and C = Cp > 0. Notice that this exponential decay
is not uniform, i.e. p �→ ρp, p �→ Cp and even p �→ dim Es

p could be
discontinuous.

From here on, let K( f ) denote the set of Oseledec points (whose well
known definition is recalled in Sect. 3). If the stable manifold Ws

p defined
above exists as an immersed submanifold of M, then (TWs

p)p = Es
p. In view

of Pesin’s work mentioned above, this is the case whenever p ∈ K( f ).
Next we discuss what was meant by unraveled above. To this end, even

though it might happen that for q 
= p the two stable manifolds Ws
p and Ws

q
intersect and thus agree, we treat Ws

p and Ws
q as distinct stable manifolds.

More precisely, we define the set

W s :=
⊔

p∈K( f )

Ws
p. (0.1)

Since Ws
f p = fWs

p, f induces a bijection on W s, still denoted f , which is
holomorphic on the fibers. (We will topologize W s and Es shortly.) We note
again that the bundle W s is defined only over the topological space K( f )
of Oseledec points. The following is our main result.
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Theorem 2. There exists a measurable isomorphism Ψ : W s → Es|K( f )
and a bundle automorphism P : Es|K( f ) → Es|K( f ) such that, for every
p ∈ K( f ),

1. Pp : Es
p → Es

fp is a polynomial automorphism;
2. PN

p → 0 locally uniformly on Es
p;

3. Ψp := Ψ|Ws
p is a biholomorphism of Ws

p onto Es
p and (dΨp)p = id;

4. Ψ ◦ f ◦ Ψ−1 = P on K( f ).

Remark. Note first that (3) implies Theorem 1. Secondly, we do not claim
that p �→ deg(Pp) is constant or even bounded. However, it is constant along
orbits. Finally, the map Ψ turns out to be slightly better than measurable. It
is slowly varying; a concept we shall discuss more thoroughly in Sect. 4.

We now return to the question of topologizing W s and Es. Let

dist(x, y) =
{

distp(x, y) x, y ∈ Ws
p

distp(x, p) + d(p, q) + distq(q, y) x ∈ Ws
p, y ∈ Ws

q

dist(v,w) =
{ |v − w| v,w ∈ Es

p

|v| + d(p, q) + |w| v ∈ Es
p, w ∈ Es

q

The function distp is a distance on Ws
p associated to the complete Riemann

metric on M (so that distp recovers the intrinsic topology of Ws
p). The

function d appearing on the right hand side of these definitions is the same
for both functions. In the case of Theorem 2, we shall take d(p, q) = δp,q,
i.e. W s is the disjoint union of all the stable manifolds. We refer to this as
the discrete case. Later on, it is also useful to take d to be the Riemannian
distance on M. We shall refer to this as the bouquet case. To these topologies
we associate the Borel sets, and it is with respect to this σ -algebra that Ψ is
measurable.

We turn now to the hyperbolic picture. Recall that f ∈ DiffO(M) is
hyperbolic on a compact set K if K is invariant and there exists a continuous
splitting

TM|K = Es ⊕ Eu

with the following properties.

(a) Es
p and Eu

p have constant rank for all p ∈ K , say k and n − k (n =
dim M);

(b) df(Es
p) = Es

f p and df(Eu
p) = Eu

fp for all p ∈ K ;
(c) there exist positive constants C and ρ, with ρ < 1, so that, for all p ∈ K

and all N ≥ 0∥∥df N
∣∣Es

p

∥∥ ≤ CρN and
∥∥df N

∣∣Eu
p

∥∥ ≥ C−1ρ−N .
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In this case we write

W s =
⊔
p∈K

Ws
p and Es =

⋃
p∈K

Es
p.

Then Es is a continuous vector bundle and the set of (local) stable manifolds
form a lamination near K (see, e.g. [S]). (We are abusing language slightly
here: we are interested in the restriction of Es to the set K of hyperbolicity,
but Es is being written instead of Es|K .)

Theorem 1 implies that Ws
p is biholomorphic to Ck for every p ∈

K( f ) ∩ K . Moreover there are always invariant measures on an invariant
compact set, so the set K( f ) ∩ K is nonempty: it contains every periodic
point in K and many more points (unless K is a finite set). Nevertheless, one
would like to prove that every stable manifold through K is biholomorphic
to Ck. We conjecture that this is indeed the case. The main problem in prov-
ing this is that even though df N uniformly contracts vectors in Es

p, p ∈ K ,
the exact rate of contraction can be highly nonconstant. In fact, controlling
the (asymptotic) rates of contraction within Es is central to our approach.

On the other hand, the conjecture above is easy to prove if an (unfortu-
nately quite strong) hypothesis is placed on the map f . If A is the restriction
to Es of df, let

L+ := lim sup
N→∞

sup
p∈K

N−1 log
∥∥AN

p

∥∥ and

L− := lim inf
N→∞

inf
p∈K

−N−1 log
∥∥A−N

p

∥∥.

Note that L− ≤ L+ < 0. We say that f is equi-contracting if 2L+ < L−.
Note, in particular, that if f has one dimensional stable manifolds, then

f is automatically equi-contracting.

Theorem 3. If f is hyperbolic and equi-contracting on a compact set K,
then there exists a homeomorphism Ψ : W s → Es over K such that

1. for every p ∈ K, Ψp := Ψ|Ws
p is a biholomorphism of Ws

p onto Es
p and

(dΨp)p = id;
2. Ψ ◦ f ◦ Ψ−1 = df |Es.

In Theorem 3 we use the bouquet topology on W s and Es. Note that the
equi-contracting hypothesis implies that f can be brought to a linear form
as opposed to the more general polynomial form given by Theorem 2.

Regarding history, while Oseledec/Pesin theory has been used in com-
plex dynamics before (see e.g. [BD], [BLS]), to our knowledge this is the
first application to the study of the complex structure of stable manifolds in
higher dimensions. When f has a fixed point, the fact that f is conjugate to
a normal form is due to S. Sternberg [St], and (independently, though much
later) to Rosay and Rudin [RR] in the holomorphic case with essentially the
same proof. (We note that, even though Sternberg’s theorem is stated for an
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attracting fixed point, say p, one can reduce to this case by restricting f to
its stable manifold Ws

p, since the latter is invariant in the fixed point case.)
The condition for linearization was known to C. Siegel [Si]. In the general,
non-stationary case, very little seems to have been done. The main work
we know of is due to M. Guysinsky and A. Katok [G,GK]. However, they
place rather strong hypotheses on the spectrum of df which, while sufficient
(and, perhaps more so, necessary) for their applications, would be much too
strong for the problem we are interested in here.

Roughly speaking, our approach combines the ideas from the proof of
Sternberg’s Theorem with techniques from Oseledec-Pesin Theory. The
proof of Sternberg’s theorem, as in [St] or [RR], uses linear algebra to split
the stable space Es

p into invariant subspaces where df has an essentially
fixed rate of contraction (given by the eigenvalues of df |Es

p). In the setting
of Theorem 2 we use Oseledec-Pesin theory in order to control the rate of
contraction of df.

The organization of the paper is as follows. In Sect. 1 we define a con-
tinuous family of uniformly sized charts for the stable manifolds, and in
Sect. 2 we prove Theorem 3. In Sect. 3 we state the results we use from
the Oseledec/Pesin theory and in Sect. 4 we set up the slowly varying for-
malism, working out some useful lemmas and propositions. In Sect. 5 we
prove the existence of Ψ locally. This section is the main step in the proof
of Theorem 2, the latter being completed in Sect. 6.

Acknowledgements. We thank John-Erik Fornæss and Ralf Spatzier for their interest in this
project and for interesting discussions, and more particularly we thank Ralf for also directing
us to many useful references on related results in real dynamics. We are also grateful to
Charles Favre, Nessim Sibony and the referee for many helpful comments and suggestions.

1. Holomorphic exponential maps I. Hyperbolic case

In this section, we construct a continuous (in p) family of biholomorphic
maps χp from a neighborhood of 0p in Es

p into Ws
p. To this end, let f ∈

DiffO(M) be hyperbolic on a compact set K ⊂⊂ M. For ε > 0, set

Es
p(ε) :=

{
v ∈ Es

p

∣∣ |v| < ε
}

and Es(ε) :=
⋃
p∈K

Es
p(ε),

the latter equipped with the bouquet topology discussed in the introduction.

Proposition 1.1. There exists ε > 0 and a continuous mapping χ : Es(ε) →
W s which maps each Es

p(ε) biholomorphically into Ws
p, maps the zero vec-

tor 0p ∈ Es
p to p ∈ Ws

p, and satisfies d(χ|Es
p)0p = idEs

p
.

Remark. Originally, we had a rather complicated and not even completely
general proof of this proposition. We thank C. Favre for showing us a much
simpler and complete proof, which we now present.
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Proof of Proposition 1.1. As mentioned before, it is shown in [S] that W s

gives a lamination near K . Cover K by a finite number of balls Bi , 1 ≤ i ≤ l.
Let

ξi : Es(εi)|Bi ∩ K → W s, 1 ≤ i ≤ l

be local parameterizations of W s near K ∩ Bi such that, for all p ∈ Bi ∩ K ,
ξi(0p) = p and dξi(0p) = id. Such parameterizations exist if the balls
Bi are taken small enough. Write ε := min{εi; 1 ≤ i ≤ l}. Let W s

i (ε) =
ξi(Es(ε)|Bi ∩ K ) be the image of Es(ε)|Bi ∩ K under ξi , and set W s(ε) =
∪iW

s
i (ε). Finally, let {ϕi; 1 ≤ i ≤ l} be a partition of unity subordinate

to the covering {Bi; 1 ≤ i ≤ l} of K . Then the map χ : Es(ε) → W s(ε)
whose inverse is given by the formula

χ−1(x) =
∑

1≤i≤l

ϕi(p)ξ−1
i (x), x ∈ Ws

p,

has the desired properties. ��

2. Proof of Theorem 3

We first sketch the basic idea of the proof. Let

A := df |Es

denote the restriction to Es of df and, with χ as in Proposition 1.1, set

F := χ−1 ◦ f ◦ χ and W s(ε) := χ(Es(ε)).

Here and below, in order to avoid referring to the specific coordinates v
chosen on Es, we use the notation O(m) in place of the more common
O(|v|m).

We want to show that the maps A−N χ−1 f N converge, locally uniformly
on W s as N → ∞, to a biholomorphic map. (Note that, because of the use
of χ−1, each of the former maps is only defined on some compact subset
of W s.) Since A−1 F − id = O(2), we have, on a given compact subset of
W s and for N sufficiently large, that

A−(N+1)χ−1 f N+1 − A−Nχ−1 f N = A−N
(

A−1 F − id
)
χ−1 f N

∼ e(−L−+2L+)N,

where the last estimate is uniform on compact sets. By the equi-contracting
hypothesis, this implies locally uniform convergence. Injectivity and sur-
jectivity of the limit map are then easily established. The details are as
follows.

Given δ > 0 with L+ + δ < 0 there exists N0 ∈ N and ε > 0 such that

|FN0v| ≤ e(L++δ)N0 |v| whenever v ∈ Es(ε).
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This follows from the definition of L+ and the fact that (dFp)p = Ap. Now
set

C := sup
{ |F jv|/|v| ; 0 ≤ j < N0, v ∈ Es(ε)

}
.

For N ≥ 0, write N = kN0 + j with 0 ≤ j < N0. Then

|FNv| = |F j(FkN0 v)| ≤ C|FkN0 v| ≤ Ce(L++δ)kN0 |v|,
and so there exists N1 = N1(δ) such that for all N ≥ N1,

|FNv| ≤ e(L++2δ)N, v ∈ Es(ε).

Now consider a compact J ⊂⊂ W s. By the contracting nature of f there
exists n ≥ 0 such that f n(J) ⊂ W s(ε). Since χ−1 is continuous on W s(ε),
the above estimate implies that there exists N2 = N2(J, δ) ≥ N1 + n such
that for all N ≥ N2,

|χ−1 f N z| ≤ e(L++3δ)N, z ∈ J.

Since (dFp)p = Ap there exists C > 0 such that for all v ∈ Es(ε),∣∣v − A−1 Fv
∣∣ ≤ C|v|2.

Using the definition of L− and increasing N2 if necessary, one then obtains,
for all z ∈ J and N ≥ N2, the estimate∣∣A−N χ−1 f N z − A−(N+1)χ−1 f N+1z

∣∣ ≤ ‖A−N‖ · ∣∣wN − A−1 FwN

∣∣2

≤ e−(L−−δ)N C |wN |2
≤ Ce(2L+−L−+5δ)N,

where wN = χ−1 f N z. Since 2L+ < L− by the equi-contracting hypothesis,
it follows that

Ψ := lim
N→∞ A−N χ−1 f N

exists locally uniformly in the bouquet topology. Thus Ψ is continuous and
clearly satisfies dΨ = id as well as the functional equation

A−1 ◦ Ψ ◦ f = Ψ.

We claim that Ψ is in fact a homeomorphism. Clearly Ψ(Ws
p) ⊂ Es

p for
all p ∈ K . For fixed p, Ψ|Ws

p, being a uniform limit of automorphisms,
is holomorphic and injective. Thus Ψ is itself injective. This implies that
Ψ(W s) contains a neighborhood N of the zero section of Es. We now use
the contracting property of A to show surjectivity of Ψ. Consider any v ∈ Es

p

and pick N large enough so that ANv ⊂ N , i.e. there exists y ∈ Ws
f N p

with

Ψ(y) = AN v. Let x := f −N y. Then

v = A−N Ψ(y) = Ψ( f −N y) = Ψ(x).

Thus Ψ is a homeomorphism, which completes the proof. ��



416 M. Jonsson, D. Varolin

3. Lyapunov data and stable manifolds

In this section, we give an overview, containing no proofs, of various results
in smooth ergodic theory. There are several references which the reader can
consult for details. We have taken most of our statements from [PS], but
a more detailed proof of some of the theorems can be found in [M].

First, to an automorphism f one can associate its Lyapunov data: these
are vector spaces Eλ

p ⊂ TMp, called the Lyapunov spaces of f , defined by

Eλ
p :=

{
v ∈ TMp

∣∣∣∣ lim
N→±∞ N−1 log

∣∣df Nv
∣∣ = λ

}
.

The numbers λ = λ(p) such that Eλ
p 
= {0} are called the Lyapunov expo-

nents.
In general, of course, there are only a finite number of Lyapunov expo-

nents at a given point p. A point p with bounded orbit such that

TMp =
⊕
λ∈R

Eλ
p, (3.1)

is called an Oseledec point (or regular point) of f . The splitting (3.1) is
called the Lyapunov splitting. We denote the set of Oseledec points by
K( f ).

Before stating the basic result on Oseledec points, we need the following
definitions.

Definition 3.1. Let X ⊂ M be an f -invariant Borel set.

1. A Borel function R : X → (0,∞) is called ε-slowly varying if e−ε ≤
R( f p)/R(p) ≤ eε for every p ∈ X.

2. A collection of Borel functions {Rε : X → (0,∞) ; ε > 0} is called
a slow variation if Rε is ε-slowly varying for every ε > 0.

3. A function h : X → (0,∞) is called slowly varying if there exists a slow
variation Rε such that either h ≤ Rε or h ≥ 1/Rε for all ε > 0.

Remark. In what follows, we shall have to control either the growth or
shrinking of certain functions along orbits of f . To distinguish these two
situations, we establish the following convention: in the former case, the
functions shall have ranges of the form (a,∞) with a ≥ 1, and in the latter,
ranges of the form (0, b) with b < ∞.

Theorem 3.2 ([O]). The set K( f ) is an invariant Borel set of total meas-
ure. Moreover, there is a slow variation {Rε : K( f ) → (1,∞)} such that
for all p ∈ K( f ) and all ε > 0,

a)

Rε(p)−1e−εN ≤ |d( f N )pv|
eλN |v| ≤ Rε(p)eεN whenever v ∈ Eλ

p (3.2)
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b)

�
(
Eλ

p, Eλ′
p

) ≥ 1

Rε(p)
whenever λ′ 
= λ.

At every Oseledec point, one has the following decomposition.

TMp = Es
p ⊕ E0

p ⊕ Eu
p,

where
Es

p =
⊕
λ<0

Eλ
p and Eu

p =
⊕
λ>0

Eλ
p.

Given such a p we define the stable manifold at p by

Ws
p :=

{
x ∈ M

∣∣∣∣ lim sup
N→∞

1

N
log dist( f N x, f N p) < 0

}
.

The Pesin stable manifold theorem can thus be stated as follows.
Theorem 3.3 ([P]). For every p ∈ K( f ), Ws

p is an immersed (complex)
submanifold of M.

In fact, Pesin’s result also tells us how the stable manifolds Ws
p depend

on the base point p. In particular we have a non-uniform version of the
exponential map in Proposition 1.1.
Theorem 3.4 ([P]). The stable lamination W s defined by (0.1) is a slowly
varying lamination on K( f ) in the following sense: let M ↪→ Rn be an
isometric immersion into Euclidean space. Then there is a slowly varying
function r : K( f ) → (0, 1) with the property that if Dp is the ball of radius
r(p) and center 0p in Es

p, then the orthogonal projection Π : Ws
p → Es

p is

invertible on the branch of Π−1(Dp) containing p. Moreover, there exists
a map χ : Es(r) → W s which maps Es

p(r(p)) biholomorphically into Ws
p,

maps 0p to p, and satisfies dχ0p = idEs
p
. Moreover, p �→ ‖dχp|Es(r(p))‖

is a slowly varying function on K( f ).

Remark. This lamination aspect of Pesin’s theorem is rarely stated, but it
is easily seen to be true if one follows the proof, say in [PS], based on the
graph transform.

The set K( f ) can be further decomposed into invariant subsets as
follows. For l ∈ N+, λ = (λ1, . . . , λl) with λl < · · · < λ1 < 0 and
m = (m1, . . . , ml), let

K(λ, m) :=
{

p ∈ K( f )

∣∣∣ Es
p = Eλ1

p ⊕ · · · ⊕ Eλl
p and

dim
(
E

λ j
p

) = m j 1 ≤ j ≤ l.
}
.

Then
K( f ) =

⋃
λ,m

K(λ, m),

and each K(λ, m) is a Borel set which is invariant for f . These subset of
“constant stable Lyapunov data” will be crucial to our further analysis.
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4. Slowly varying bundles and maps

In this section we establish definitions and basic results about slowly varying
objects. The slowly varying notion of regularity is the strongest form of
regularity that can be expected to hold in the non-uniform picture. Roughly
speaking, slowly varying objects can be treated as constants, as long as we
are interested in exponential estimates.

Measurable bundles and maps. Recall that the relative k-Grassmannian
of TM is a bundle Gk(TM) → M whose fiber over p ∈ M is the set of
k dimensional complex subspaces of TMp. A measurable complex vector
bundle over a Borel subset X ⊂ M is then a measurable section E of
the Grassmann bundle Gk(TM) over X. A measurable subbundle E ′ of
a measurable complex vector bundle E is a measurable complex vector
bundle such that E ′

p is a subspace of E p for each p ∈ X. We implicitly
assume that the base X is invariant for f , and endow all such vector bundles
with the metric inherited from TM. The total spaces are given the discrete
topology discussed in the introduction.

As a matter of notation, given a function g : X → (0,∞), let

E(g) :=
⋃
p∈X

E p(g(p)),

where E p(r) = {v ∈ E p | |v| < r}. Notice that this is a neighborhood of the
zero section OE of E and we call such a neighborhood a tube. Later on we
will work with slowly varying tubes, i.e. tubes defined by slowly varying
functions g.

Let E → X and E ′ → X be two measurable vector bundles. A (mea-
surable) bundle map Φ : E → E ′ fibered over φ : X → X is then a map of
the total spaces, defined in some tube E(g), such that φ is measurable (with
respect to the Borel σ -algebra inhereted from M) and Φ(E p) ⊂ E ′

φ(p) for
p ∈ X. We shall require that Φ map the zero section of E to the zero section
of E ′, and that the map Φp := Φ|E ′

p be holomorphic for each p ∈ X. This
situation is sometimes denoted by the shorthand Φ/φ. In our setting, it will
always be the case that φ = f or φ = id.

A bundle map Φ/φ is said to be homogeneous of degree m if for every
c ∈ C one has Φ(c · v) = cm · Φ(v). We use the notation

‖Φp‖ := max
v∈E p

|Φp(v)|
|v|m , (4.1)

and the notation ‖Φ‖ : p �→ ‖Φp‖.
More generally, Φ is said to be polynomial of degree m if there exist

homogeneous maps Φ j of degree j, 1 ≤ j ≤ m such that Φ = ∑m
j=1 Φ j .

By our requirement that the fiber maps be holomorphic, every bundle map
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Φ/φ has a homogeneous expansion

Φ =
∞∑

m=1

Φm . (4.2)

Using the notation in (4.1) we define B(p) := supm ‖Φm,p‖1/m < ∞ for
every p ∈ X. In general one can say very little about the dependence of
B(p) on p, but the maps we will work with have more regularity: we say
that Φ is slowly varying if B is slowly varying in the sense of Definition 3.1.

It trivially follows that if Φ is slowly varying, then so are all of its
homogeneous parts Φm . Also, sums, compositions and inverses of slowly
varying maps are easily seen to be slowly varying.

Tubes associated to slowly varying maps. Consider a slowly varying
selfmap T/id of a bundle E → X such that dT |OE = id. This has the
homogeneous expansion

T = id +
∞∑
j=2

Tj .

Then ‖Tj‖ ≤ B j for some slowly varying function B : X → (2,∞) and T
is defined on the slowly varying tube E(1/B).

In the next two propositions, which will be crucial in the final step of
the proof of Theorem 2, we will show that the range, as well as the domain
of injectivity of T contain slowly varying tubes.

Proposition 4.1. Let T/id be as above. Then there exists a slowly varying
function g : X → (0, 1) such that

T(E(1/B))) ⊃ E(g).

Proof. For each v ∈ E(1/B), one has

|Tv| ≥ |v| −
∞∑
j=2

(B|v|) j = |v| − B2|v|2
1 − B|v| = |v|

(
1 − B2|v|

1 − B|v|
)

.

Letting |v| ≤ 1/(2B2) < 1/4B, we see that |Tv| ≥ |v|/3. The proposition
now follows (with g = 1/3B) from this and the openness of the maps Tp. ��

Of course, since dTp = id, the Inverse Function Theorem says that Tp
is invertible on a neighborhood of 0p. The next proposition shows that if T
is slowly varying then so is the size of this neighborhood.

Proposition 4.2. Let T/id be as above. Then there exists a slowly varying
function h : X → (0, 1) such that Tp is well-defined and injective on
E p(h(p)) for each p ∈ X.
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Proof. Let h be a function to be specified shortly. It is easily shown (say,
using linear coordinates on E p) that there is a constant C, depending only
on the rank of E, such that for all j ≥ 2, p ∈ X, and x, y ∈ E p(h(p)),

|Tj(x) − Tj(y)| ≤ C( j + 1)k B(p) jh(p) j−1|x − y|,
where k = rank(E). Now

|T(x) − T(y)| =
∣∣∣∣x − y +

∞∑
j=2

(Tj(x) − Tj(y))

∣∣∣∣
≥ |x − y|

(
1 −

∞∑
j=2

C( j + 1)k B(Bh) j−1

)
.

Thus h = 1/(2B3) does the trick provided B is bounded from below by
a sufficiently large constant. This completes the proof. ��

Contracting linear maps. We say that a linear bundle map A/φ of a bundle
E → X is contracting if there exists λ < 0 such that lim supN→∞

1
N

log |AN v| ≤ λ for every v ∈ E. If A is slowly varying, then this implies that
there is a slow variation Rε : X → (1,∞) such that∥∥AN

p

∥∥ ≤ Rε(p)e(λ+ε)N p ∈ X, N ≥ 1. (4.3)

There is a standard way of making this contraction more uniform by chang-
ing the metric. To this end, fix ε > 0 and set

〈v,w〉∗ :=
∞∑

N=0

e−2(λ−ε)N
〈
ANv, AN w

〉
, v,w ∈ E (4.4)

and denote the associated norm by | · |∗ and operator norm by ‖ · ‖∗.
Using (4.3) it is straightforward to verify that the series (4.4) converges,
and that the metric thus obtained is a Borel metric on E with the following
properties: ‖A‖∗ ≤ eλ+ε and there exists an ε-slowly varying function
C : X → (1,∞) such that

|v| ≤ |v|∗ ≤ C(p)|v|, v ∈ E p.

Splittings and flags. Suppose that the vector bundle E → X splits, i.e.
there exist subbundles E1, . . . , El of E such that

E =
l⊕

j=1

E j .

We say that this splitting is slowly varying if the projection maps E → E j
are all slowly varying. It is possible to show that the splitting E = ⊕E j
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is slowly varying if and only if the angle functions �(Ei, E j) are slowly
varying functions.

To a splitting ⊕Ei there is an associated flag V•, i.e. a sequence V0 =
{0} � V1 � · · · � Vl = E of vector subbundles defined by

Vj =
j⊕

i=1

Ei .

Since this flag comes from a splitting, it is equipped with projections pr j :
E → Vj . We remark that the flag V• depends on the ordering of the
vector spaces Ei . For our applications, the Ei are Lyapunov spaces and the
Lyapunov exponents provide a natural ordering.

Pseudo-linear maps. Let E → X be a vector bundle with a splitting
E = ⊕E j . A homogeneous selfmap Φ of degree m of E can then be further
decomposed as

Φ =
l∑

j=1

∑
|α|=m

Φ j,α (4.5)

where

Φ j,α : E → E j and Φ j,α(c · v) = cαΦ j,α(v). (4.6)

Here c = (c1, . . . , cl) ∈ Cl, α = (α1, . . . , αl) ∈ Nl, cα = cα1
1 . . . cαl

l and

c · (v1 ⊕ · · · ⊕ vl) = c1v1 ⊕ · · · ⊕ clvl.

It follows easily from the definition that if Φ is a slowly varying homoge-
neous map of E, then all of the summands Φ j,α in the decomposition (4.5)
are slowly varying.

A selfmap Φ of E is said to be a flag map (with respect to the flag V•
associated to ⊕E j) if pr jΦ is a map of Vj for all j, i.e.

Φ(v1 ⊕ · · · ⊕ vl) = Φ1(v1) ⊕ Φ2(v1 ⊕ v2) ⊕ · · · ⊕ Φl(v1 ⊕ · · · ⊕ vl).

We shall say that a flag map Φ is pseudo-linear if it is of the form

Φ = A + H,

where A is a linear map which preserves the splitting, and H is a polynomial
flag map with no constant or linear part, such that pr j H = pr j H|Vj−1 for
2 ≤ j ≤ l. In other words, Φ can be written

Φ(v1⊕· · ·⊕vl) = Av1⊕(Av2+H2(v1))⊕· · ·⊕(Avl+Hl(v1⊕· · ·⊕vl−1)).

Notice that if A is invertible, then so is Φ, and its inverse is a pseudo-linear
flag map whose degree is bounded in terms of the degree of Φ.
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Contracting pseudo-linear maps. A bundle map Φ/φ of a bundle E → X
is said to be contracting if its linear part dΦ|OE is contracting. If Φ is slowly
varying, then this implies that for v ∈ E with |v| small one has |ΦNv| → 0
as N → ∞. On the other hand, if Φ is linear (and contracting), then this
convergence holds locally uniformly for v ∈ E. The next result, which
will be a crucial ingredient in the proof of Theorem 2 shows that the same
property carries over to some pseudo-linear maps Φ.

Proposition 4.3. Let E → X be a measurable bundle with a slowly vary-
ing splitting ⊕Ei and associated flag V•. Let Φ/ f be a slowly varying,
pseudo-linear, contracting bundle map with respect to V•. Then ΦN → 0
locally uniformly in the topology on E. More precisely, there exists λ < 0
with the following property: if p ∈ X and J ⊂⊂ E p then there exists
C = C(J, p) > 0 such that

|ΦNv| ≤ CeλN for all v ∈ J and N ≥ 0. (4.7)

Proof. The statement of the proposition does not change if we replace the
metric on E by the metric given by (4.4), so let us work with that metric.
By compactness of J it suffices to show the estimate (4.7) for large N.

Let Φ = A + H as in the definition of pseudo-linear, and let λ < 0 be
the associated exponent of contraction. Thus we have ‖A‖ ≤ eλ on E f N p
for all N ≥ 0. Pick ε > 0 so small that λ + 3ε < 0.

For N ≥ 1 let ΦN = ΦN
1 ⊕ · · · ⊕ ΦN

l be the decomposition of ΦN :
E → E relative to the splitting E = E1 ⊕ · · · ⊕ El. Then ΦN

1 = AN so
‖ΦN

1 ‖ ≤ eλN . For 2 ≤ j ≤ l we have

ΦN+1
j = AΦN

j + Hj
(
ΦN

1 ⊕ · · · ⊕ ΦN
j−1

)
, (4.8)

where the Hj’s are polynomials with no constant or linear terms. The slowly
varying nature of the Hj’s implies the existence of constants r0 > 0 and
C0 > 0 such that

|Hj(w)| ≤ C0eεN |w|2 whenever w ∈ E f N p and |w| ≤ r0e−εN . (4.9)

We now inductively show the following estimate, which clearly implies the
statement of the proposition (with λ replaced by λ+ ε): there exists N0 > 0
such that if v ∈ J , 1 ≤ i ≤ l and N ≥ N0 then∣∣ΦN

i v
∣∣ ≤ e(λ+ε)N ! r0e−εN . (4.10)

This estimate clearly holds for i = 1. Suppose it holds for i such that
1 ≤ i < j ≤ l and let us show that it then hold for i = j after possibly
increasing N0. Indeed, if N ≥ N0 then (4.8), (4.9) and (4.10) imply that∣∣ΦN+1

j v
∣∣ ≤ eλe(λ+ε)N + C0eεN e2(λ+ε)N ≤ e(λ+ε)(N+1) (4.11)

if N0 is large enough. Thus (4.10) holds, which completes the proof. ��
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Regular bundle maps. Consider a bundle E → X with a splitting ⊕E j .
A linear bundle map A : E → E is said to be regular if it preserves the
splitting and if there exist λl < · · · < λ1 such that

lim
N→∞

1

N
log |ANv| = λ j for v ∈ E j .

Now suppose, in addition, that the map A and the splitting ⊕Ei are slowly
varying. Then one may show, using standard techniques as in [M], that there
exists a slow variation Rε : X → (1,∞) such that for all p ∈ X, all ε > 0,
and all N ∈ Z:

Rε(p)−1e−εN ≤
∣∣AN

p v
∣∣

eλ j N |v| ≤ Rε(p)eεN whenever v ∈ E j,p. (4.12)

A general bundle map Φ/φ is said to be regular if it is slowly varying and
if the linear bundle map A := dF|0E is regular. The vector λ = (λr, . . . , λ1)
is said to be the Lyapunov data associated to Φ. It is easy to see that a regular
bundle map is contracting if and only if its Lyapunov data satisfies λ1 < 0.

The part of Oseledec’s Theorem that we will use can be stated as follows.
There exist invariant Borel sets K(λ, m) in M, the union of which has total
measure. Over each K(λ, m) there is a measurable bundle Es ⊂ TM with
a slowly varying splitting ⊕Eλi such that A := df |Es is a regular contracting
bundle map fibered over f .

The definition of a linear bundle map being regular is asymptotic in
nature. The concept of an adapted metric makes this information easier to
work with. For ε > 0 we define

〈v,w〉∗ε :=
∑
N∈Z

〈
ANv, AN w

〉
e2λ j N+2ε|N| , v,w ∈ E j (4.13)

and 〈v,w〉ε = 0 for v ∈ Ei , w ∈ E j , i 
= j. We denote the associated norm
by | · |∗ε and operator norm by ‖ · ‖∗ε . Often we will drop the subscript and
write | · |∗ instead of | · |∗ε .

Using (4.12) and the slow variation of the splitting ⊕E j it is not too hard
to verify that the series (4.13) converges, and that the metric thus obtained
is a Borel metric on E with the following properties:

eλ j−ε|v|∗ε ≤ |Av|∗ε ≤ eλ j+ε|v|∗ε for v ∈ E j ,

and there exists a slow variation Cε : X → (1,∞) such that

|v| ≤ |v|∗ε ≤ Cε(p)|v|, v ∈ E p. (4.14)

Recall that a bundle map Φ/φ is slowly varying if and only if the function
p �→ supm ‖Φm,p‖1/m is slowly varying, where

∑
Φm is the homogeneous

expansion of Φ. Using (4.14) it is straightforward to verify that Φ is slowly
varying if and only if there exists a slow variation Rε such that

‖Φm.p‖∗ε ≤ R2ε(p)m .

In this sense, working with the given metric | · | or the adapted metric | · |∗ε
has no effect on the definition of slow variation.
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5. Local analytic conjugation

The goal of this section is to establish the main step in the proof of Theo-
rem 2, namely a local conjugation of regular bundle maps to a pseudo-linear
model.

Theorem 5.1. Let E → X be a measurable bundle over an f -invariant
Borel set X ⊂ M with a slowly varying splitting E = ⊕E j. Let F/ f be
a slowly varying, contracting, and regular bundle map of E (with respect
to this splitting). Then there exists a polynomial bundle map P/ f with
dP|0E = dF|0E and a bundle map T/id with dT |0E = id, so that

TFT−1 = P

holds on a slowly varying neighborhood of the zero section OE in E. More-
over, P and T are slowly varying, and P is a pseudo-linear, contracting,
polynomial automorphism of the flag associated to the splitting of E.

One should view T as a conjugacy (i.e. change of coordinates) that
conjugates F to the simpler mapping P. The proof of Theorem 5.1 occupies
the remainder of this section.

Proof of Theorem 5.1. Write A = dF|OE and recall our notation O(m). We
construct a pair of sequences {Pm/ f }m≥1 and {Tm/id}m≥1 of slowly varying
polynomial bundle maps such that:

(a) Tm = id + O(2) and Pm = A + O(2);
(b) P−1

m Tm F − Tm = O(m + 1);
(c) there exists m0 ≥ 1 such that Pm = Pm0 for all m ≥ m0;
(d) P := Pm0 is a pseudo-linear map of the flag associated to the splitting

of E;
(e) Tm converges to an analytic map T .

The construction is inductive, and proceeds as follows. Set P1 = A and
T1 = id. Suppose that we have constructed Tm and Pm . Let

Tm+1 = Tm + Hm+1 and Pm+1 = Pm(id + Qm+1),

with Hm+1 and Qm+1 to be determined. Then a simple calculation shows
that

P−1
m+1Tm+1 F − Tm+1

= P−1
m Tm F − Tm − (

Qm+1 + Hm+1 − A−1 Hm+1 A
) + O(m + 2).

Thus, writing Φm+1 := P−1
m Tm F −Tm mod O(m +2), we see that (b) holds

for m + 1 if we can find homogeneous solutions Hm+1 and Qm+1 for the
equation

Φm+1 = Qm+1 + Hm+1 − A−1 Hm+1 A. (5.1)

The next lemma shows that solutions of (5.1) exist so that (c) and (d) hold
as well.
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Lemma 5.2. If Φ/id is a homogeneous, slowly varying, polynomial bundle
mapping of degree m ≥ 2, then there exist homogeneous, slowly varying
polynomial bundle mappings Q/id and H/id, also of degree m, such that

Φ = Q + H − A−1 HA. (5.2)

Moreover Q can be chosen as follows. If m is sufficiently large, then one
can take Q = 0. Otherwise, Q is a pseudo-linear map of the flag associated
to ⊕E j with no linear part, i.e. Q has the form

Q(v1 ⊕ · · · ⊕ vl) = 0 ⊕ Q2(v1) ⊕ · · · ⊕ Ql(v1 ⊕ · · · ⊕ vl−1).

Before proving Lemma 5.2, we need to develop a few ideas. First,
the homogeneous polynomial bundle mapping Φ can be decomposed with
respect to the splitting ⊕Ei into ( j, α)-homogeneous parts Φ j,α as in (4.5).
By linearity we only need to solve (5.2) for each summand Φ j,α. Recall that
if Φ is slowly varying, then so are these summands.

In order to solve (5.2) we will make crucial use of the fact that A is regular
with respect to the splitting ⊕Ei . Let λ = (λ1, . . . , λl) be the Lyapunov
data associated to A and notice that

λl < · · · < λ1 < 0

since A is contracting. If Φ is ( j, α)-homogeneous, then it follows that

‖A−N ◦ Φ ◦ AN‖ ∼ e(λ·α−λ j )N‖Φ‖ for |N| " 1. (5.3)

This estimate, which is the key to the analysis in this section, will be made
more precise below. Here we only note that the quantity λ j − λ · α plays an
obvious role in (5.3) and leads to the following definition. We say that the
pair ( j, α) is resonant if

λ j = λ · α.

It is called non-resonant otherwise, and more specifically, super-resonant
or sub-resonant if we have λ j − λ · α < 0 or λ j − λ · α > 0, respectively.

Lemma 5.3. There exists m0 ∈ N such that all pairs ( j, α) with |α| > m0
are sub-resonant. Furthermore, if ( j, α) is resonant then α j = α j+1 = · · · =
αl = 0.

Proof. For the first statement pick m0 ≥ λl/λ1. The second statement is
easily verified. ��
For the rest of this section we work with a fixed but small ε > 0. Specifically
we require that

sup{λ · α − λ j + (|α| + 2)ε} < 0, (5.4)

where the supremum is taken over all sub-resonant pairs ( j, α) (it is easy to
check that this is possible), and

min{λ · α − λ j − (|α| + 2)ε} > 0 (5.5)

where the minimum is taken over all sub-resonant pairs ( j, α); the latter
form a finite set by Lemma 5.3.
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Lemma 5.4. With notation as in Lemma 5.2, if ( j, α) is non-resonant and
Φ is ( j, α)-homogeneous, then one can find a slowly varying H/id so that

Φ = H − A−1 HA.

Further, there exists a constant C, depending only on on the Lyapunov data
λ, such that

‖H‖∗ ≤ C‖Φ‖∗, (5.6)

where ‖ · ‖∗ = ‖ · ‖∗ε is the operator norm associated to the adapted
metric (4.13).

Proof. The operator Ψ �→ Ψ − A−1ΨA has the following two formal
inverses:

Ψ �→ G+(Ψ) :=
∞∑

N=0

A−N ΨAN and

(5.7)

Ψ �→ G−(Ψ) := −
∞∑

N=1

AN ΨA−N .

We proceed in two cases.

(i) Sub-resonant case: let H = G+(Φ).
(ii) Super-resonant case: let H = G−(Φ).

We have to show that this makes sense. Let us consider the sub-resonant
case (i). We have

‖G+Φ‖∗ ≤
∞∑

N=0

‖A−N ΦAN‖∗

≤
∞∑

N=0

e(λ·α−λ j+(|α|+2)ε)N‖Φ‖∗

=: C‖Φ‖∗.
It follows from (5.4) that C < ∞ and that C does not depend on j, α or ε.
Thus (5.6) holds, and this implies that H is slowly varying. Notice that the
construction of H does not depend on the choice of ε. The super-resonant
case is treated similarly, using (5.5). This completes the proof. ��
Proof of Lemma 5.2. Simply decompose Φ as a sum of resonant, sub-
resonant and super-resonant ( j, α)-homogeneous polynomial bundle map-
pings Φ j,α. For the non-resonant terms we get Hj,α from Lemma 5.4 and set
Q j,α = 0. For the resonant terms we set Hj,α = 0 and Q j,α = Φ j,α. Then
set H = ∑

Hj,α and Q = ∑
Q j,α. From Lemma 5.4 we get that H and Q

are slowly varying. The remaining statements follow from Lemma 5.3. ��
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Returning to the proof of Theorem 5.1 we have constructed our se-
quences of maps Pm and Tm , and have shown that they satisfy (a)–(d)
above. It remains to show that T = lim Tm is analytic and slowly varying.
For this it suffices to show that ‖Hm‖∗ ≤ Bh(m) for some ε-slowly varying
B : X → (1,∞) and some concave function h : N → R+.

Recall that the degree of the inverse of a pseudo-linear map is bounded
in terms of the degree of the map itself. In particular, the degree ν of P−1 is
finite, so we may write

P−1 = SA−1 = (S1 + S2 + · · · + Sν)A−1,

where S1 = id and Sj is homogeneous of degree j, and all the maps are
slowly varying. Finally, write F = AG, so that G/id is analytic and slowly
varying. We denote the homogeneous expansion of G by

G =
∞∑
j=1

G j,

observing that G1 = id.
Keeping ε fixed we now pick an ε-slowly varying B : X → (2,∞) with

the following properties:

‖Si‖∗ ≤ Bα for 2 ≤ i ≤ ν (5.8)
‖Hm‖∗ ≤ Bα for 2 ≤ m ≤ m1 (5.9)

‖Gk‖∗ ≤ Bkα for k ≥ 2 (5.10)

‖A−1‖∗ ≤ Bα and ‖A‖∗ ≤ 1. (5.11)

Here α ∈ (0, 1) and m1 > m0 will be chosen later. As before we write
‖ · ‖∗ = ‖ · ‖∗ε . That (5.8)–(5.11) are possible follows from the fact that
each Si and each Hm are slowly varying, as are G and A−1, while A is
contracting. We claim that if α is small enough and m1 is large enough, then

‖Hm‖∗ ≤ Bm−√
m for all m ≥ 2. (5.12)

This is clearly true for m ≤ m1 by our choice of B. Suppose that (5.12)
holds for some m. To establish it for m+1 it suffices, in view of Lemma 5.4,
to prove that

‖Φm+1‖∗ ≤ C−1 Bm+1−√
m+1,

where Φm+1 is given by (5.1). To this end, let us take a look at the quantity
P−1Tm F − Tm , keeping in mind that we are only interested in the terms of
degree m + 1. Thus the terms coming from −Tm automatically disappear,
and we have

Φm+1 = P−1Tm F − Tm mod O(m + 2)

=
∑

Si A−1 Hj AGk, (5.13)
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where the sum is over all i, j and k such that ijk = m + 1, k ≥ 1, 1 ≤ j ≤
(m + 1)/2 and 1 ≤ i ≤ ν. (The constraint on the index j comes from the
fact that (i) 1 ≤ j ≤ m, and (ii) we need only consider the terms of degree
m + 1.)

The sum (5.13) consists of considerably fewer than νm2 terms. We now
estimate Si A−1 Hj AGk in all possible cases, using (5.8)–(5.12) and the
induction hypothesis, and assuming that α is small while m1 is large.

(i) (k ≥ 2, i ≥ 2): then ij ≤ (m + 1)/2 and∥∥Si A−1 Hj AGk

∥∥∗ ≤ Bα+i(α+( j−√
j)+ jkα) ≤ B(m+1)( 1

2+3α)

≤ 1

Cνm2
Bm+1−√

m+1.

(ii) (k ≥ 2, i = 1): then j ≤ (m + 1)/2 and∥∥A−1 Hj AGk

∥∥∗ ≤ Bα+( j−√
j)+ jkα ≤ B(m+1)( 1

2+2α)

≤ 1

Cνm2
Bm+1−√

m+1.

(iii) (k = 1): then i ≥ 2 and ij = (m + 1). Further, a straightforward
calculation readily shows that

√
m + 1(

√
i−1)−α(1+i) ≥ α

√
m + 1,

so∥∥Si A−1 Hj A
∥∥∗ ≤ Bα+i(α+( j−√

j)) = B(m+1−√
m+1)+(1+i)α−√

m+1(
√

i−1)

≤ B(m+1−√
m+1)−α

√
m+1

≤ 1

Cνm2
Bm+1−√

m+1.

Putting all this together, we have:

‖Φm+1‖∗ ≤
∑
i, j,k

∥∥Si A−1 Hj AGk

∥∥∗

< νm2 1

Cνm2
Bm+1−√

m+1 = 1

C
Bm+1−√

m+1.

Thus the induction step is complete and (5.12) holds for all m ≥ 2. Theo-
rem 5.1 now follows from the definition of a slowly varying bundle map.

��

6. Proof of Theorem 2

We may replace K( f ) by the Borel set K(λ, m). Let us apply Theorem 5.1
to the bundle Es → K(λ, m) (with its Lyapunov splitting) and the bundle
map F = χ−1 ◦ f ◦ χ of Es, where χ is the exponential map given by
Theorem 3.4. By Theorem 3.2 and Theorem 3.4 the map F is slowly varying,
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contracting and regular (with respect to the Lyapunov splitting). Thus we
may apply Theorem 5.1 to F.

With P and T as in Theorem 5.1 let

ΨN := P−N Tχ−1 f N .

Then for each p ∈ K(λ, m) and each compact subset J ⊂⊂ Ws
p there

exists an integer N0 = N0(J) such that ΨN is well defined on J whenever
N ≥ NJ . Indeed, since f N decays exponentially as N → ∞, and Tχ−1 is
slowly varying, f N will carry J into the (slowly varying) domain of Tχ−1,
provided N is large enough. Then one has

ΨN+1 − ΨN = P−N(P−1TF − T )χ−1 f N = 0.

It follows that, locally uniformly in the discrete topology on W s, ΨN con-
verges as N → ∞ to a map Ψ : W s → Es. Evidently Ψ is holomorphic on
the fibers Ws

p of W s, maps Ws
p into Es

p, and satisfies the functional equation

P−1Ψ f = Ψ.

It remains only to show that Ψ is bijective, which it obviously suffices to
check on fibers. Thus we fix from here on a point p ∈ K(λ, m).

First note that, by Proposition 4.2, there exists a slowly varying function
h such that Tχ−1|Es(h) (and thus P−N Tχ−1|Es(h)) is injective on fibers.
If x1, x2 ∈ Ws

p are two points, then for large enough N, f N x j ∈ Es(h) for

j = 1, 2. (Again, this is so because f N decays exponentially, and thus f N x j
eventually enters and remains inside the slowly varying tube Es(h).) But
then, if N is large enough,

Ψx1 = Ψx2 ⇒ P−N Tχ−1( f N x1
) = P−N Tχ−1( f N x2

)
⇒ f N x1 = f N x2 ⇒ x1 = x2.

Thus Ψ is injective.
Next, fix v ∈ Es

p. We want to find x ∈ Ws
p with Ψ(x) = v. By Propo-

sition 4.1, there exists a slowly varying tube Es(g) in the range of Ψ.
Further, by Proposition 4.3, |PNv| decays exponentially, so PN(v) enters
and remains inside Es(g) for large enough N. Let y ∈ Ws

f N p
be such that

Ψ(y) = PN (v) and set x = f −N y. Then

Ψ(x) = Ψ( f −N y) = P−NΨ(y) = v,

and thus Ψ is surjective.
Finally, from the fact that (dPp)p = A = dfp|Es and that (dχp)p = id,

we see from the definition of Ψ = ΨN that (dΨp)p = id. This completes
the proof of Theorem 2. ��
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Final remarks. The proof of the existence of the normal form in the sta-
tionary case as presented in [St,RR] does not use the convergence of the
formal solution T of the local conjugation problem. Instead, one shows the
existence of a sufficiently large integer m such that P−N Tm FN converges.
This relies heavily on the fact that the iterates of a pseudo-linear map grow at
most exponentially (see Lemma 1 in the Appendix of [RR]). This exponen-
tial growth seems quite hard to establish in the slowly varying setting—it
would be interesting to know whether it is indeed possible. On the other
hand, our method also provides a new proof in the analytic stationary case.
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