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1. Introduction

A small part of the Generalized Riemann Hypothesis asserts that L-functions
do not have zeros on the line segment ( 1

2 , 1]. The question of vanishing at
s = 1

2 often has deep arithmetical significance, and has been investigated
extensively. A persuasive view is that L-functions vanish at 1

2 either for
trivial reasons (the sign of the functional equation being negative), or for
deep arithmetical reasons (such as the L-function of an elliptic curve of
positive rank) and that the latter case happens very rarely. N. Katz and
P. Sarnak [7] have formulated precise conjectures on the low lying zeros in
families of L-functions which support this view.

In the case of Dirichlet L-functions it is expected that L( 1
2 , χ) is never

zero, and so L(σ, χ) �= 0 for all 1
2 ≤ σ ≤ 1. This conjecture appears

to have been first enunciated by S.D. Chowla [2] in the special case of
quadratic characters χ. Progress towards these non-vanishing questions
has been in two directions: zero-density type results which establish that
very few L-functions have a zero in ( 1

2 + ε, 1] (see for example A. Sel-
berg [10], M. Jutila [6] and D.R. Heath-Brown [4]), and a growing body
of work on non-vanishing at 1

2 (see for example R. Balasubramanian and
V.K. Murty [1], H. Iwaniec and Sarnak [5], and K. Soundararajan [11]).
Further much numerical evidence for the GRH has been accumulated, and
these calculations support Chowla’s conjecture (see [8] and [9]). However
the state of knowledge could not exclude the possibility that every Dirichlet
L-function of sufficiently large conductor has a non-trivial real zero. In this
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paper we eliminate this possibility, and prove that a positive proportion of
quadratic Dirichlet L-functions do not vanish on [ 1

2 , 1].
For an integer d ≡ 0, or 1 (mod 4) we put χd(n) = (

d
n

)
, so that χd is

a real character with conductor at most |d|. If d is an odd, positive, square-
free integer then χ−8d is a real, primitive character with conductor 8d, and
with χ−8d(−1) = −1.

Theorem 1. For at least 20% of the odd square-free integers d ≥ 0 we have
L(σ, χ−8d) > 0 for 0 ≤ σ ≤ 1. More precisely, for all large x the number
of odd positive square-free integers d ≤ x such that L(σ, χ−8d) > 0 for all
0 ≤ σ ≤ 1 exceeds 1

5(
4x
π2 ).

While in this paper we have restricted our attention to fundamental
discriminants of the form −8d, our methods would apply to fundamental
discriminants in any arithmetic progression. Also our proof yields that
there are many L-functions having no non-trivial zeros in a thin rectangle
containing the real axis. Precisely, there is a constant c > 0 such that for
at least 20% of the fundamental discriminants −8d with 0 < d ≤ x, the
rectangle {σ+ it : σ ∈ [0, 1], |t| ≤ c/ log x} is free of zeros of L(s, χ−8d).
As another consequence of our work we find that the number of fundamental
discriminants −8d with 0 < d ≤ x such that L(s, χ−8d) has a zero in the
interval [σ, 1] is � x1−(1−ε)(σ− 1

2 ) for any fixed ε > 0.

2. Outline of the proof

We begin with the following version of the argument principle, due to
Selberg [10], whose proof we reproduce for completeness.

Lemma 2.1. Let f be a holomorphic function, which is non-zero in some
half-plane Re(z) ≥ W. Let B be the rectangular box with vertices W0 ± iH,
W1 ± iH where H > 0 and W0 < W < W1. Then

4H
∑
β+iγ∈B
f(β+iγ)=0

cos
( πγ

2H

)
sinh

(
π(β − W0)

2H

)

=
∫ H

−H
cos

(
πt

2H

)
log | f(W0 + it)|dt

+
∫ W1

W0

sinh
(
π(α− W0)

2H

)
log | f(α+ iH) f(α− iH)|dα

− Re
∫ H

−H
cos

(
π

W1 − W0 + it

2iH

)
log f(W1 + it)dt.

Proof. From the box B we exclude the line segments x + iγ with W0 ≤
x ≤ β for every zero β + iγ of f lying in B. Denoting by Γ the boundary
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of the resulting domain we see that∫
Γ

cos
(
π

s − W0

2iH

)
log f(s)ds = 0.

Since the value of log f(s) differs by 2πi on the upper and lower sides of
the “cuts” from β + iγ to W0 + iγ , we conclude from the above that

2πi
∑
β+iγ∈B
f(β+iγ)=0

∫ β+iγ

W0+iγ
cos

(
π

s − W0

2iH

)
ds

=
(∫ W0+iH

W0−iH
+
∫ W1+iH

W0+iH
−
∫ W1+iH

W1−iH
−
∫ W1−iH

W0−iH

)
cos

(
π

s − W0

2iH

)
log f(s)ds.

The imaginary part of the LHS above equals the LHS of the equality of
the lemma. The imaginary part of the first integral on the RHS above equals
the first term on the RHS of the lemma. The second and fourth integrals on
the RHS above have combined imaginary part equal to the second term on
the RHS of the lemma. Lastly the imaginary part of the third term on the
RHS above equals the third term on the RHS of the lemma. Thus Lemma 2.1
is proved.

Let X be large, and let d be any odd square-free number in [X, 2X]. We
shall apply Lemma 2.1 to a mollified version of L(s, χ−8d). Precisely, for
a parameter Xε ≤ M ≤ X to be fixed later1, let

M(s, d) =
∑
n≤M

λ(n)

ns
χ−8d(n),

where the λ(n) are real numbers � nε to be specified later. We apply
Lemma 2.1 with f(s, d) := L(s, χ−8d)M(s, d) and W0 = 1

2 − R
log X , H =

S
log X , and W1 = σ0 where R and S are fixed positive parameters in the
interval (ε, 1/ε) to be chosen later, and σ0 > 1 will be chosen later such that
f(s, d) has no zeros in Re s > σ0. Since the LHS of Lemma 2.1 consists of
positive terms we glean that

4S
∑

β≥ 1
2 − R

log X
L(β,χ−8d )=0

sinh
(π(R + log X(β − 1/2))

2S

)
(2.1)

≤ I1(d)+ I2(d)+ I3(d),

1 Here and throughout, ε denotes a small positive real number. The reader should be
warned that it might be a different ε from line to line.
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where (after obvious changes of variables)

(2.2a) I1(d) =
∫ S

−S
cos

(
πt

2S

)
log

∣∣∣ f
(1

2
− R

log X
+ i

t

log X
, d
)∣∣∣dt,

I2(d) =(2.2b)∫ (σ0− 1
2 ) log X

−R
sinh

(
π(x + R)

2S

)
log

∣∣∣ f

(
1

2
+ x

log X
+ i

S

log X
, d

) ∣∣∣2dx,

and

I3(d) =(2.2c)

− Re
∫ S

−S
cos

(
π
(σ0 − 1/2) log X − R + it

2iS

)
log f

(
σ0 + i

t

log X
, d
)

dt.

Suppose that L(β, χ−8d) = 0 for some β ∈ [ 1
2 , 1]. We claim that the

LHS of (2.1) exceeds 8S sinh
(
πR
2S

)
. To see this, suppose first that L(s, χ−8d)

has a zero β > 1
2 + R

log X . Then the contribution of this zero alone would be

≥ 4S sinh( πR S) ≥ 8S sinh
(
πR
2S

)
since sinh(2x) ≥ 2 sinh x for x ≥ 0. On the

other hand, if L(s, χ−8d) has a zero at 1
2 + ξ

log X for some 0 ≤ ξ ≤ R then by

the functional equation it also has a zero at 1
2 − ξ

log X . In case ξ = 0 note that

there is at least a double zero at 1
2 . Both these zeros are included in the LHS

of (2.1), and together they contribute 4S
(

sinh
(
π(R−ξ)

2S

)
+ sinh

(
π(R+ξ)

2S

))
≥

8S sinh
(
πR
2S

)
, since the minimum value of sinh(x − y) + sinh(x + y) for

0 ≤ y ≤ x is attained at y = 0. We document this below:

I1(d)+ I2(d)+ I3(d) ≥ 8S sinh
(
πR

2S

)
(2.3)

if L(s, χ−8d) has a non-trivial real zero.

The plan now is to obtain upper bounds for I1(d) + I2(d) + I3(d) on
average over d, and thereby conclude that the inequality (2.3) cannot hold
too often. To elaborate on this, we first fix some notation. Let {an}∞

n=1 be
any sequence of complex numbers, and let F denote a smooth function
supported in the interval [1, 2]. Throughout this paper we adopt the notation

S(ad; F) = S(ad; F, X) = 1

X

∑
d odd

µ2(d)ad F

(
d

X

)
.

Let Φ be a smooth non-negative function supported in [1, 2]. For a complex
number w we define

Φ̌(w) =
∫ ∞

0
Φ(y)ywdy.(2.4a)
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For integers ν ≥ 0 we define

Φ(ν) = max
0≤ j≤ν

∫ 2

1
|Φ( j)(t)|dt.(2.4b)

Integrating by parts ν times we get that

Φ̌(w) = 1

(w+ 1) · · · (w+ ν)

∫ ∞

0
Φ(ν)(y)yw+νdy,

so that for Re w > −1 we have

|Φ̌(w)| �ν

2Re w

|w+ 1|νΦ(ν).(2.4c)

Let N (X,Φ) count, with weight Φ(d/X), the odd, square-free integers
d ∈ [X, 2X] such that L(s, χ−8d) has a non-trivial real zero. In view of (2.1)
and (2.3) we see that

N (X,Φ) ≤ X
(

8S sinh
(πR

2S

))−1
S(I1(d)+ I2(d)+ I3(d);Φ).

For a complex number δ1 we define

W(δ1,Φ) = S(|L( 1
2 + δ1, χ−8d)M( 1

2 + δ1, χ−8d)|2;Φ)

S(1;Φ)
.(2.5)

Since the arithmetic mean exceeds the geometric mean we have that

S(log | f( 1
2 + δ1, d)|2;Φ) ≤ S(1;Φ) log W(δ1;Φ).

Using this in (2.1), and recalling the definitions (2.2a,b), we conclude that

N (X,Φ) ≤ XS(1;Φ)

8S sinh
(
πR
2S

)(J1(X;Φ)+ J2(X;Φ)
)

(2.6)

+ X

8S sinh
(
πR
2S

)S(I3(d);Φ),

where

(2.7a) J1(X;Φ) =
∫ S

0
cos

(
πt

2S

)
log W

(
− R

log X
+ i

t

log X
;Φ
)

dt,

J2(X;Φ) =
∫ (σ0− 1

2 ) log X

−R
sinh

(π(x + R)

2S

)
log W

( x

log X
+ i

S

log X
;Φ
)

dx.

(2.7b)

At this juncture we specify more carefully the choice of our mollifier
coefficients. To counter the rapid growth of the sinh(π(x + R)/(2S)) term
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in (2.7b), we would like W((x + iS)/ log X;Φ) to tend rapidly to 1. One
way to ensure this is to choose λ(n) = 0 if n is even, or if n > M, and for
odd integers n ≤ M define

λ(n) := µ(n)Q
( log(M/n)

log M

)
:=
{
µ(n) if n ≤ M1−b

µ(n)P
(

log(M/n)
log M

)
if M1−b ≤ n ≤ M.

(2.8)

Here b is a parameter in [ε, 1 − ε], and P(x) is a polynomial such that
P(0) = P′(0) = 0, and P(b) = 1, P′(b) = 0.

Proposition 2.1. Suppose Φ is a non-negative smooth function supported
on [1, 2] such that Φ(t) � 1, and with

∫ 2
1 Φ(t)dt � 1. If M ≤ √

X and δ1

is a complex number with 3
4 ≥ Re δ1 > ε then

W(δ1,Φ) = 1 + O
(
Φ(2)X

ε
(
M−2Re δ1(1−b) + M( 1

2 −Re δ1)(1−b)X− 1
2
))
.

Further f(s, d) has no zeros in Re s > 1 + 3 log log M/ log M, and taking
σ0 = 1 + 3 log log M/ log M, we have

S(I3(d);Φ) � exp
(
π
(1/2 + ε) log X

2S

)
M−(1−b)Xε.

The implied constants above, and elsewhere, may depend upon ε, and
the polynomial P. Proposition 2.1 allows us to mollify a little away from 1

2 ,
and we now turn to the more delicate question of mollifying near 1

2 .
From now on we let ϑ denote a fixed positive real number below 1

100 ,
which we shall choose later. Let δ1 and δ2 be two complex numbers with
|δ1| and |δ2| ≤ ϑ, and define τ = δ1+δ2

2 , and δ = δ1−δ2
2 . Note that both τ and

δ are ≤ ϑ in magnitude. All our subsequent work may be carried out under
the less stringent assumption that max(|Re δ|, |Re τ|) ≤ 1

4 − ε, and some
of the error terms that feature below may also be strengthened. However
the more restrictive condition imposed here allows for a somewhat simpler
exposition, and is quite adequate for our application.

Let

ξ(s, χ−8d) =
(

8d

π

) s
2 − 1

4

Γ( s
2 + 1

2)L(s, χ−8d),

denote the completed L-function which satisfies the functional equation
ξ(s, χ−8d) = ξ(1 − s, χ−8d). We shall show how to evaluate

S(ξ( 1
2 + δ1, χ−8d)ξ(

1
2 + δ2, χ−8d)M(

1
2 + δ1, d)M( 1

2 + δ2, d);Ψ),(2.9)

where Ψ is a smooth function supported on [1, 2]. By taking δ2 = δ1 and
Ψ(t) = Φ(t)t−τ we obtain (8X/π)τΓδ(τ)S(1;Φ)W(δ1,Φ) where

Γδ(s) = Γ
(3

4
+ s

2
+ δ

2

)
Γ
(3

4
+ s

2
− δ

2

)
.
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To evaluate the expression (2.9), we first need an “approximate func-
tional equation” for ξ( 1

2 + δ1, χ−8d)ξ(
1
2 + δ2, χ−8d). For ξ > 0 we define

Wδ,τ (ξ) = 1

2πi

∫
(c)

Γδ(s)ξ
−s 2s

s2 − τ2
ds,(2.10)

where c > |Re τ| is a real number. Here, and throughout, we abbreviate∫ c+i∞
c−i∞ to

∫
(c). In Lemma 3.1 we shall see that Wδ,τ (ξ) is a smooth function

on (0,∞), and that it decays exponentially as ξ → ∞. For all integers
n ≥ 1, and complex numbers s we put

rs(n) =
∑
ab=n

(a

b

)s
,

which is plainly an even function of s. Finally, for all integers d > 0 we
define

Aδ,τ (d) :=
∞∑

n=1

rδ(n)√
n

(−8d

n

)
Wδ,τ

(nπ

8d

)
.(2.11)

We establish in Lemma 3.2 that for fundamental discriminants −8d(< 0)
we have

ξ

(
1

2
+ δ1, χ−8d

)
ξ

(
1

2
+ δ2, χ−8d

)
= Aδ,τ (d).

Thus our expression in (2.9) becomes S(Aδ,τ (d)M(
1
2+δ1,d)M(

1
2+δ2,d);Ψ).

Let
√

2X ≥ Y > 1 be a real parameter to be chosen later and write
µ2(d) = MY (d)+ RY (d) where

MY (d) =
∑
l2 |d
l≤Y

µ(l), and RY (d) =
∑
l2|d
l>Y

µ(l).

Given a sequence {an}∞
n=1, and a smooth function F supported on [1, 2], we

define

SM(ad; F) = SM,X,Y (ad; F) = 1

X

∑
d odd

MY (d)ad F

(
d

X

)
,

and

SR(ad; F) = SR,X,Y ( fd; F) = 1

X

∑
d odd

∣∣∣RY (d)ad F
( d

X

)∣∣∣,
so that S(ad; F) = SM( fd; F)+ O(SR(ad; F)).
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Proposition 2.2. Let Ψ be a smooth function supported on [1, 2], with
Ψ(t) � 1. With notations as above, and supposing that M ≤ √

X, we have

SR(Aδ,τ (d)M(
1
2 + δ1, d)M( 1

2 + δ2, d);Ψ)

� Xϑ+ε
( 1

Y
+ M−Re δ1 + M−Re δ2 + M−2Re τ

Y
1
2

+ M1−2Re τ

X
1
2

)
.

It remains lastly to evaluate SM(Aδ,τ (d)M(
1
2 + δ1, d)M( 1

2 + δ2, d);Ψ).
We evaluate more generally SM(Aδ,τ (d)

(−8d
l ;Ψ

)
for any odd integer l.

To state our result, we need a few more definitions. For any two complex
numbers s and w we define

Z(s;w) = ζ(s − 2w)ζ(s)ζ(s + 2w).(2.12)

We write the odd integer l as l = l1l2
2, where l1 and l2 are odd, and l1 is square-

free. For a complex number w with |Re w| ≤ 1
4 , and a complex number

s with Re s > 1
2 we define ηw(s; l) = ∏

p ηp;w(s; l) where η2;w(s; l) =
(1 − 2−s−2w)(1 − 2−s)(1 − 2−s+2w) and for primes p ≥ 3 we have

ηp;w(s; l) =(2.13) 


(
p

p+1

) (
1 − 1

ps

)(
1 + 1

p + 1
ps − p2w+p−2w

ps+1 + 1
p2s+1

)
if p � l(

p
p+1

) (
1 − 1

ps

)
if p|l1(

p
p+1

) (
1 − 1

p2s

)
otherwise.

Note that ηw(s; l) is absolutely convergent in the range of our definition.

Proposition 2.3. With notations as above, we may write

SM

((−8d

l

)
Aδ,τ (d);Ψ

)

= 2

3ζ(2)
√

l1

∑
µ=±

(
rδ(l1)Γδ(µτ)

(
8X

l1π

)µτ
Ψ̌(µτ)Z(1+2µτ; δ)ηδ(1+2µτ; l)

+ rτ (l1)Γτ (µδ)

(
8X

l1π

)µδ
Ψ̌(µδ)Z(1 + 2µδ; τ)ητ (1 + 2µδ; l)

)

+ R(l)+ O
(

l
ϑ− 1

4 +ε
1 X− 1

4 +ε + Xϑ+εl2ϑ− 1
2

1

Y 1−4ϑ

)
.

Here R(l) is a remainder term bounded for each individual l by

|R(l)| � l
1
2 +εY 1+ε

X
1
2 −|Re δ|−εΨ(2)Ψ

ε
(3),
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and bounded on average by

2L−1∑
l=L

|R(l)| �
( L1+εY 1+ε

X
1
2 −|Re δ|−ε + L1+ϑ+εY 2ϑ+ε

X
1
2 −|Re δ|−ε

)
Ψ(2)Ψ

ε
(3).

We shall prove Proposition 2.3 in Sect. 5. Observe that although each
of the four main terms in Proposition 2.3 has singularities (for example the
first term has poles when τ = 0, or when τ = ±δ), their sum is regular.

Plainly Propositions 2.2 and 2.3 can be used to evaluate the quantity in
(2.9). However, carrying this out is complicated, and in an effort to keep the
exposition simple we shall restrict our values of δ1 and δ2 to those necessary
in evaluating J1(X;Φ) and J2(X;Φ).

Proposition 2.4. Let Φ be a non-negative smooth function on [1, 2] with
Φ(t) � 1, and with

∫ 2
1 Φ(t)dt � 1. Let δ1 be a complex number such

that Re δ1 ≥ − 1
ε log X , and with ϑ ≥ |δ1| ≥ ε

log X . We take δ2 = δ1 so that
τ = Re δ1, and δ = iIm δ1. Then with the mollifier coefficients as in (2.8),
and with M = X

1
2 −5ϑ we have that W(δ1,Φ) equals

1 +
(1 − (8X/π)−2τ

2τ log M
−
(

8X

π

)−τ
(8X/π)δ − (8X/π)−δ

2δ log M

)

×
∫ b

0
M−2τ(1−x)

∣∣∣Q′(x)+ Q′′(x)
2δ1 log M

∣∣∣2dx

with an error O(X−ϑ+εΦ(2)Φ
ε
(3) + M−2τ(1−b)|δ1|6 log5 X).

We emphasize that the conditions on |δ1| and Re δ1 were assumed only to
ease our exposition. In fact, the stated result holds without these restraints.
Armed with these results, we complete the proof of Theorem 1.

Proof of Theorem 1. We take Φ to be a smooth function supported in
(1, 2) such that Φ(t) ∈ [0, 1] for all t, Φ(t) = 1 for t ∈ (1 + ε, 2 − ε),
and |Φ(ν)(t)| �ν,ε 1. Our mollifier is chosen as in (2.8), with M =
X

1
2 −5ϑ , and b = 0.64. Further we take σ0 as in Proposition 2.1, and S =

π/(2(1 − b)(1 − 20ϑ)). Using Proposition 2.1 in (2.6) we get that

N (X,Φ) ≤ XS(1;Φ)

8S sinh
(
πR
2S

)(J1(X;Φ)+ J2(X;Φ))+ o(X),

where J1 and J2 are given in (2.7a,b).
Applying Proposition 2.4 we get that for real numbers u and v with

ϑ log X ≥ |u + iv| ≥ ε and u ≥ −1/ε

W
(u + iv

log X
,Φ
)

= V(u, v)+ O
(

M−2u(1−b)/ log X (1 + |u| + |v|)6
log X

)
,
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where

V(u, v) := 1 + e−u log X

log M

(sinh u

u
− sin v

v

)

×
∫ b

0
M−2u(1−x)/ log X

∣∣∣Q′(x)+ Q′′(x) log X

2(u + iv) log M

∣∣∣2dx.

Plainly V(u, v) ≥ 1 always, and so we deduce that

J1(X;Φ) =
∫ S

0
cos

(
πt

2S

)
log V(−R, t)dt + O

( 1

log X

)
.

Further, using the above together with Proposition 2.1, and keeping in mind
our choice for S, we obtain that

J2(X;Φ) =
∫ ∞

0
sinh

(πu

2S

)
log V(u − R, S)du + o(1).

We conclude that

N (X,Φ) ≤ XS(1;Φ)

8S sinh
(
πR
2S

)( ∫ S

0
cos

(
πt

2S

)
log V(−R, t)dt

+
∫ ∞

0
sinh

(πu

2S

)
log V(u − R, S)du

)
+ o(X).

We now take R = 6.8, P(x) = 3(x/b)2 −2(x/b)3, and ϑ = 10−10. Then
a computer calculation showed that N (X,Φ) ≤ 0.79XS(1;Φ) + o(X).
Taking X = x/2, x/4, . . . , we obtain Theorem 1.

We end this section by reflecting on some features of the method used
to prove Theorem 1. Our overall strategy was to estimate on average the
number of zeros (weighted suitably) of the mollified L-function in a small
box B as in Lemma 2.1. If we use the usual argument principle to estimate
the zeros in B, then we face the problem of trying to understand the argument
of f(s, d) on the horizontal sides of B. This appears to be difficult because
the argument of L(s, χ−8d) is intimately related to the location of its zeros.
Selberg’s argument principle (Lemma 2.1) allows us to circumvent this by
introducing the kernel sin(π(s − W0 + iH)/(2iH)) which is real on the
left vertical edge of B, and purely imaginary on the horizontal edges of B.
This enables us to deal only with log | f(s, d)| (a quantity well suited for
estimating from above) on these three sides of B, while on the left vertical
edge of B we are in the region of absolute convergence of L(s, χ−8d) so
that log f(s, d) is relatively easy to understand on this line.

The chief drawback with Selberg’s lemma is the exponential growth of
the the kernel sin(π(s − W0 + iH)/(2iH)) on the horizontal sides of B. To
offset this it is necessary that log | f(s, d)| be very small on the horizontal
sides of B (at least on average over d). This motivates our choice (see (2.8))



Real zeros of quadratic Dirichlet L-functions 11

of the mollifier coefficients λ(n): this choice guarantees that the Dirichlet
series coefficients of f(s, d) vanish for 2 ≤ n ≤ M1−b so that we would
expect f(s, d) to be close to 1 on average (as confirmed by Proposition 2.1).
Since the growth of Selberg’s kernel is determined by the height H of the
box B, and the decay of log | f(s, d)| is controlled by how long a mollifier
we can take, we see that there is a natural limitation on how small a box we
can take in terms of how long a mollifier we can allow.

In this way we reduce the problem of estimating the weighted aver-
age of zeros in B to evaluating certain mollified mean values, and that
is accomplished by extending the ideas in [11]. There are two features of
this approach which are a little dissatisfying. Firstly the choice of mollifier
coefficients is made in an ad hoc way through some numerical experimen-
tation. This is in contrast with the classical situation of mollifying at a point
where the optimal mollifier coefficients emerge as minimizers of a certain
quadratic form while keeping a linear form fixed. The situation here is less
clear because the final answer depends on a complicated integral over the
sides of B of the mollified moments, and also because the initial mollifier
coefficients are no longer free, as explained above. We have not understood
this optimization problem fully, and it is quite possible that a better choice
of mollifier exists.

Secondly, the proof of Theorem 1 relied crucially upon knowing that
our weighted average of zeros is less than 1. Since this emerged only after
an involved calculation we now indicate why it is reasonable to expect this
average to be small. More precisely note that in the proof of Theorem 1 we
bounded

1

2 sinh
(
πR
2S

) ∑
β+iγ∈B

f(β+iγ,d)=0

cos

(
πγ log X

2S

)
sinh

(
π(R + log X(β − 1/2))

2S

)
.

(2.14)

We showed that on average over d this quantity is bounded by 0.79, while
if L(s, χ−8d) had a real zero this quantity exceeds 1; thus producing many
L(s, χ−8d) having no real zeros. We now restrict our attention to the zeros in
(2.14) arising from the L(s, χ−8d) term, and calculate (conjecturally) their
contribution. We suspect that the contribution from zeros of the mollifier
to (2.14) is negligible on average; at any rate (2.14) is at least as large as
the contribution from zeros of L(s, χ−8d), and so it is necessary that this be
small. If we assume the Generalized Riemann Hypothesis then the zeros of
L(s, χ−8d) in B contribute to (2.14) the amount

1

2

∑
|γ log X|≤S

L( 1
2 +iγ,χ−8d)=0

cos

(
πγ log X

2S

)
.(2.15)

The distribution of low lying zeros in families of L-functions has been
studied extensively by Katz and Sarnak [7], and the conjectures they formu-
late there enable one to calculate sums like (2.15) on average. Our family of
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L-functions is expected to have a symplectic symmetry, whose 1-level dens-
ity function is conjecturally 1 − sin(2πx)/(2πx) (see pp. 405–409 of [7]).
Note that this density vanishes to order 2 at 0, indicating that the zeros of
L(s, χ−8d) tend to repel the point 1/2. This philosophy predicts that the
average value of (2.15) is∫ S/(2π)

0
cos

(
π2x

S

)(
1 − sin(2πx)

2πx

)
dx.

For the choice of S in Theorem 1 (namely S ≈ π/(0.72)) the above evaluates
to 0.1827 . . . . Thus conjecturally there are very few zeros in our box, and
this suggests an explanation for why the method works.

We may ask if results similar to Theorem 1 hold for other families
of L-functions. Our remarks above indicate that perhaps the method would
succeed in other families with a repulsion phenomenon at 1/2. One example
of these is the family of modular forms (say, of large weight) with odd sign
of the functional equation, where there is always a zero at 1/2 but the next
zero is repelled. We hope to return to these questions later.

3. Preliminaries

3.1. The approximate functional equation

Lemma 3.1. For ξ ∈ (0,∞), Wδ,τ (ξ) is a smooth complex-valued function.
For ξ near 0 we have the asymptotic

Wδ,τ (ξ) = Γδ(τ)ξ
−τ + Γδ(−τ)ξτ + O(ξ1−ε).

For large ξ and any integer ν we have the estimate

W (ν)
δ,τ (ξ) �ν ξ

2ν+6e−2ξ �ν e−ξ .

Proof. By moving the line of integration in (2.10) to Re s = −1 + ε we see
immediately the asymptotic claimed for small ξ . Plainly the ν-th derivative
of Wδ,τ is given by the convergent integral

(−1)ν

2πi

∫
(c)

Γδ(s)s(s + 1) · · · (s + ν − 1)ξ−s 2s

s2 − τ2
ds

for any c > |Re τ|. Thus Wδ,τ (ξ) is smooth. To prove the last estimate of the
lemma we may suppose that ξ > ν+4. Since |Γ(x + iy)| ≤ Γ(x) for x ≥ 1,
and sΓ(s) = Γ(s + 1), we obtain that the integral above giving W (ν)

δ,τ (ξ) is
bounded by

�ν |Γ(c/2 + ν + 3)|2ξ−c
∫
(c)

|ds|
|s2 − τ2| �ν Γ(c/2 + ν + 3)2

ξ−c

c − |Re τ| .
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By Stirling’s formula this is

�ν

(c + 2ν + 6

2e

)c+2ν+6 ξ−c

c − |Re τ| ,

and taking c = 2ξ − 2ν − 6(≥ 2) we get the lemma.

Lemma 3.2. Let δ1 and δ2 be complex numbers less than 1
5 in magnitude.

For fundamental discriminants −8d(< 0) we have

ξ( 1
2 + δ1, χ−8d)ξ(

1
2 + δ2, χ−8d) = Aδ,τ (d).

Proof. Consider for some 3/2 − |Re δ| > c > 1/2 + |Re δ|
1

2πi

∫
(c)
ξ( 1

2 + δ+ s, χ−8d)ξ(
1
2 − δ+ s, χ−8d)

2s

s2 − τ2
ds.

Expanding L( 1
2 + δ + s, χ−8d)L(

1
2 − δ + s, χ−8d) into its Dirichlet series∑∞

n=1
rδ(n)

n
1
2 +s

(−8d
n

)
, and integrating term by term, we get that this equals

Aδ,τ (d). Now move the path of integration to the line Re(s) = −c. We
encounter poles at s = τ , −τ , and the residues here give ξ( 1

2 + δ +
τ, χ−8d)ξ(

1
2 − δ + τ, χ−8d) + ξ( 1

2 + δ − τ, χ−8d)ξ(
1
2 − δ − τ, χ−8d) =

2ξ( 1
2 + δ1, χ−8d)ξ(

1
2 + δ2, χ−8d), upon using the functional equation. In

the remaining integral on the −c line, we let s → −s and use the functional
equation. Then it evaluates to −Aδ,τ (d), which completes our proof.

3.2. On Gauss-type sums

Let n be an odd integer. We define for all integers k

Gk(n) =
(

1 − i

2
+
(−1

n

)
1 + i

2

) ∑
a(mod n)

(an

e

)(ak

n

)
,

and put

τk(n) =
∑

a(mod n)

(a

n

)
e

(
ak

n

)
=
(

1 + i

2
+
(−1

n

)
1 − i

2

)
Gk(n).

If n is square-free then
( ·

n

)
is a primitive character with conductor n. Here

it is easy to see that Gk(n) = (
k
n

)√
n. For our later work, we require

knowledge of Gk(n) for all odd n. This is contained in the next lemma
which is Lemma 2.3 of [11].

Lemma 3.3.
(i) (Multiplicativity) Suppose m and n are coprime odd integers.
Then Gk(mn) = Gk(m)Gk(n).
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(ii) Suppose pα is the largest power of p dividing k. (If k = 0 then set
α = ∞.) Then for β ≥ 1

Gk(p
β) =




0 if β ≤ α is odd,
ϕ(pβ) if β ≤ α is even,
−pα if β = α+ 1 is even,(

kp−α
p

)
pα

√
p if β = α+ 1 is odd,

0 if β ≥ α+ 2.

3.3. Lemmas for estimating character sums

We collect here two lemmas that will be very useful in bounding the char-
acter sums that arise below. These are consequences of a recent large sieve
result for real characters due to D.R. Heath-Brown [4] (see Lemmas 2.4 and
2.5 of [11]).

Lemma 3.4. Let N and Q be positive integers and let a1, . . . , aN be arbi-
trary complex numbers. Let S(Q) denote the set of real, primitive characters
χ with conductor ≤ Q. Then

∑
χ∈S(Q)

∣∣∣∣∑
n≤N

anχ(n)

∣∣∣∣
2

�ε (QN)ε(Q + N)
∑

n1n2=�
|an1 an2 |,

for any ε > 0. Let M be any positive integer, and for each |m| ≤ M write
4m = m1m2

2 where m1 is a fundamental discriminant, and m2 is positive.
Suppose the sequence an satisfies |an| � nε. Then

∑
|m|≤M

1

m2

∣∣∣∣∑
n≤N

an

(m

n

)∣∣∣∣
2

� (MN)εN(M + N).

Lemma 3.5. Let S(Q) be as in Lemma 3.4, and suppose σ + it is a com-
plex number with σ ≥ 1

2 . Then∑
χ∈S(Q)

|L(σ + it, χ)|4 � Q1+ε(1 + |t|)1+ε, and

∑
χ∈S(Q)

|L(σ + it, χ)|2 � Q1+ε(1 + |t|) 1
2 +ε.

3.4. Poisson summation

For a Schwarz class function F we define

F̃(ξ) = 1 + i

2
F̂(ξ)+ 1 − i

2
F̂(−ξ) =

∫ ∞

−∞
(cos(2πξx)+ sin(2πξx))F(x)dx.
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We quote the following version of Poisson summation (see Lemma 2.6
of [11]):

Lemma 3.6. Let F be a smooth function supported in (1, 2). For any odd
integer n,

SM

((
d

n

)
; F

)
= 1

2n

(
2

n

) ∑
α≤Y

(α,2n)=1

µ(α)

α2

∑
k

(−1)kGk(n)F̃

(
kX

2α2n

)
.

4. Proofs of Propositions 2.1 and 2.2

We first record two applications of Lemma 3.4 which will be useful in
the proofs of these Propositions. Write λ2(n) = ∑

ab=n,a,b≤M λ(a)λ(b).
Note that |λ2(n)| � nε and that M(s, d)2 = ∑

n≤M2 λ2(n)n−s
(−8d

n

)
. By

Lemma 3.4 we see that for N ≤ M2(� X2) we have∑
X≤d≤2X

µ2(2d)
∣∣∣ ∑

N≤n≤2N

λ2(n)

ns

(−8d

n

) ∣∣∣2

� Xε(X + N)
∑

N≤n1 ,n2≤2N
n1n2=�

|λ2(n1)λ2(n2)|
(n1n2)

Re s

� Xε(X + N)N1−2Re s
∑

N≤n1 ,n2≤2N
n1n2=�

1√
n1n2

� Xε(X + N)N1−2Re s
∑

a≤M2

d(a2)

a

� Xε(X + N)N1−2Re s.

From this we conclude that∑
X≤d≤2X

µ2(2d)|M(s, d)|4 � Xε(X + X M2(1−2Re s) + M4(1−Re s)).(4.1)

In a similar manner we see that if l is any odd integer ≤ √
2X then

∑
X/l2≤m≤2X/l2

µ2(2m)|M(s, l2m)|4 � Xε
(X

l2
+ X

l2
M2(1−2Re s) + M4(1−Re s)

)
.

(4.2)

4.1. Proof of Proposition 2.1

Since Φ is a non-negative smooth function supported on [1, 2] such that
Φ(t) � 1, and

∫ 2
1 Φ(t)dt � 1 we see that S(1;Φ) � X−1 ∑

X≤d≤2X µ
2(2d)
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� 1. We write B(s, d) = L(s, χ−8d)M(s, d)− 1 so that

W(δ1,Φ) = 1 + O(S(B( 1
2 + δ1, d);Φ) + S(|B( 1

2 + δ1, d)|2;Φ)).(4.3)

To estimate the unknown terms above, we consider

1

2πi

∫
(c)

Γ(s)B( 1
2 + δ1 + s, d)Xsds,

for any real number c > max(0, 1
2 −Re δ1). We move the line of integration

to the line Re s = −Re δ1. The pole at s = 0 contributes B( 1
2 + δ1; d) and

so we conclude that B( 1
2 + δ1, d) equals

1

2πi

∫
(c)

Γ(s)B( 1
2 + δ1 + s, d)Xsds− 1

2πi

∫
(−Re δ1)

Γ(s)B( 1
2 + δ1 + s, d)Xsds.

(4.4)

Write the expression in (4.4) as T1(
1
2 + δ1, d)− T2(

1
2 + δ1, d), say.

We first consider the contributions of the T2(d) terms to the unknown
quantities in (4.3). We shall prove that

S(|T2(
1
2 + δ1, d)|2;Φ) � X−2Re δ1+ε, and

S(|T2(
1
2 + δ1, d)|;Φ) � X−Re δ1+ε.

(4.5)

Plainly the second estimate above follows from the first and Cauchy’s
inequality. To see the first estimate observe that by Cauchy’s inequality

|T2(
1
2 + δ1, d)|2

� X−2Re δ1

( ∫
(−Re δ1)

|Γ(s)B( 1
2 + δ1 + s, d)2ds|

)( ∫
(−Re δ1)

|Γ(s)ds|
)
,

and in view of the rapid decay of |Γ(s)| as |Im s| → ∞, we deduce that

|T2(
1
2 + δ1, d)|2 � X−2Re δ1

×
(

1 +
∫
(−Re δ1)

|Γ(s)||L( 1
2 + δ1 + s, χ−8d)M(

1
2 + δ1 + s, d)|2|ds|

)
.

Averaging this over the appropriate d, with another application of Cauchy’s
inequality we obtain that S(|T2(

1
2 + δ1, d)|2;Φ) is bounded by

X−2Re δ1

(
1 +

∫
(−Re δ1)

|Γ(s)|S(|L( 1
2 + δ1 + s, χ−8d)|4;Φ)

1
2

× S(|M( 1
2 + δ1 + s, d)|4;Φ)

1
2 |ds|

)
,

and (4.5) follows upon using Lemma 3.5 and (4.1) above (keeping in mind
that M ≤ √

X).
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It remains now to consider the T1 contribution. In the region Re s > 1
we may write

B(s, d) =
∞∑

n=1

b(n)

ns

(−8d

n

)
.

From the shape of our mollifier we see that b(n) = 0 for all n ≤ M1−b,
b(n) = 0 for all square values n ≤ M2(1−b) (because b(m2) = ∑

d|m2 λ(d) =∑
d|m λ(d) = b(m), since λ is supported on square-free numbers), and lastly

|b(n)| � d(n) � nε for all n. We write

T1(
1
2 + δ1, d) = 1

2πi

∫
(c)

Γ(s)
∑

M1−b≤n≤X log2 X

b(n)

n
1
2 +δ1+s

(−8d

n

)
Xsds

+
∑

n>X log2 X

b(n)

n
1
2 +δ1

(−8d

n

)(
1

2πi

∫
(c)

Γ(s)

(
X

n

)s

ds

)
.

Since 1
2πi

∫
(c) Γ(s)

(
X
n

)s
ds = e−n/X , the second term above contributes

� X−5 say. In the first term above we move the line of integration to
Re s = 1

log X . Thus

T1(
1
2 + δ1, d) =(4.6)

1

2πi

∫
(

1
log X

) Γ(s)
∑

M1−b≤n≤X log2 X

b(n)

n
1
2 +δ1+s

(−8d

n

)
Xsds + O(X−5).

By Cauchy’s inequality we get that

|T1(
1
2 + δ1, d)|2

� X−10 +
(∫

( 1
log X )

|Γ(s)|
∣∣∣ ∑

M1−b≤n≤X log2 X

b(n)

n
1
2 +δ1+s

(−8d

n

) ∣∣∣2|ds|
)

×
( ∫

( 1
log X )

|Γ(s)ds|
)

� X−10 + Xε

∫
( 1

log X )

|Γ(s)|
∣∣∣ ∑

M1−b≤n≤X log2 X

b(n)

n
1
2 +δ1+s

(−8d

n

) ∣∣∣2|ds|.

Splitting the sum over n into dyadic blocks and using Lemma 3.4 we
conclude that

S(|T1(
1
2 + δ1, d)|2;Φ) � M−2Re δ1(1−b)Xε,

which when combined with (4.5) gives that

S(|B( 1
2 + δ1, d)|2;Φ) � M−2Re δ1(1−b)Xε.(4.7)
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We now show how to bound S(T1(
1
2 + δ1, d);Φ). By (4.6) we see that

S(T1(
1
2 + δ1, d);Φ)(4.8)

� X−5 + Xε
∑

M1−b≤n≤X log2 X

|b(n)|
n

1
2 +Re δ1

∣∣∣S ((−8d

n

)
;Φ

) ∣∣∣.
For each odd integer n let ψn denote the character ψn(m) = (

m
n

)
whose

conductor is at most n. Note that ψn is non-trivial unless n is a square.
Observe that for any sequence of numbers an � nε, and any smooth function
g with g(0) = 0 and g(x) decaying rapidly as x → ∞, we have the Mellin
transform identity

∞∑
n=1

ang(n) = 1

2πi

∫
(c)

∞∑
n=1

an

nw

( ∫ ∞

0
g(t)tw−1dt

)
dw,(4.9)

where c > 1. Hence we obtain that for any odd integer n

S(ψn(−8d);Φ)

= ψn(−8)

2πi

∫
(c)

∞∑
d=1

µ2(2d)ψn(d)

dw
Xw−1Φ̌(w− 1)dw

= ψn(−8)

2πi

∫
(c)

L(w,ψn)

L(2w,ψn)
(1 + ψn(2)/2

w)−1 Xw−1Φ̌(w− 1)dw,

where L(w,ψn) = ∑∞
d=1ψn(d)/dw is the usual Dirichlet L-function. We

move the line of integration above to the line Re w = 1
2 + 1

log X . We
encounter a pole at w = 1 if and only if n is a square (in which case
L(w,ψn) is essentially ζ(w)) and the residue of this pole is � 1. Thus we
conclude that

|S(ψn(−8d);Φ)|
� δ(n = �)+ X− 1

2 +ε
∫
( 1

2 + 1
log X )

|L(w,ψn)||Φ̌(w− 1)||dw|,

where δ(n = �) is 1 if n is a square, and 0 otherwise. Since b(n) = 0 for
all squares ≤ M2(1−b) we find that

∑
M1−b≤n≤X log2 X

|b(n)|
n

1
2 +Re δ1

∣∣∣S ((−8d

n

)
;Φ

) ∣∣∣ � XεM−2Re δ1(1−b)

+ X− 1
2 +ε

∫
( 1

2 + 1
log X )

∑
M1−b≤n≤X log2 X

1

n
1
2 +Re δ1

|L(w,ψn)||Φ̌(w− 1)||dw|.
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An easy application of Lemma 3.5 gives that∑
N≤n≤2N

|L(w,ψn)| � N1+ε(1 + |w|) 1
4 +ε,

and using this above, together with (2.4c) (taking ν = 2 there), we get that

∑
M1−b≤n≤X log2 X

|b(n)|
n

1
2 +Re δ1

∣∣∣S ((−8d

n

)
;Φ

) ∣∣∣
� XεΦ(2)

(
M−2Re δ1(1−b) + X−Re δ1 + M( 1

2 −Re δ1)(1−b)X− 1
2
)
.

Using this in (4.8), and combining with (4.5) we deduce that (since M ≤√
X)

S

(
B

(
1

2
+ δ1, d

)
;Φ

)
� XεΦ(2)

(
M−2Re δ1(1−b) + M( 1

2 −Re δ1)(1−b)X− 1
2
)
.

(4.10)

Using (4.10) and (4.7) in (4.3), we deduce the first statement of the propo-
sition.

To see the second assertion, note that

f(s, d) = 1 + B(s, d) = 1 + O
( ∑

n≥M1−b

d(n)

nRe s

)
,

from which it follows easily that f(s, d) has no zeros to the right of 1 +
3 log log M/ log M. Further for s in this region log f(s, d) = B(s, d) +
O(|B(s, d)|2), and so, with σ0 as in the proposition, we have

S(I3(d);Φ) � exp
(
π
( 1

2 + ε) log X

2S

)
×
(
|S(B(s, d);Φ)| + S(|B(s, d)|2;Φ)

)
.

Thus the second assertion also follows from (4.7) and (4.10).

4.2. Proof of Proposition 2.2

Observe that RY (d) = 0 unless d = l2m where m is squarefree and l > Y .
Further, note that |RY (d)| ≤ ∑

k|d 1 � dε. Hence

SR(Aδ,τ (d)M( 1
2 + δ1, d)M( 1

2 + δ2, d);Ψ)(4.11)

� X−1+ε ∑
Y<l

(l,2)=1

∑
X/l2≤m≤2X/l2

|Aδ,τ (l2m)M( 1
2 + δ1, l

2m)M( 1
2 + δ2, l

2m)|,
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where the � on the sum over m indicates that m is odd and squarefree. By
two applications of Cauchy’s inequality the sum over m above is

�
(∑

m
|M( 1

2 + δ1, l
2m)|4

) 1
4
(∑

m
|M( 1

2 + δ2, l
2m)|4

) 1
4

(4.12)

×
(∑

m
|Aδ,τ (l2m)|2

) 1
2

.

Now observe that for any c > 1
2 + |Re δ|

Aδ,τ (l
2m) = 1

2πi

∫
(c)

Γδ(s)

(
8l2m

π

)s
2s

s2 − τ2

∞∑
n=1

rδ(n)

ns+ 1
2

(−8l2m

n

)
ds.

(4.13)

Plainly

∞∑
n=1

rδ(n)

ns+ 1
2

(−8l2m

n

)
= L( 1

2 + s + δ, χ−8m)L(
1
2 + s − δ, χ−8m)E(s, l)

(4.14)

where

E(s, l) =
∏
p|l

(
1 − 1

ps+ 1
2 +δ

(−8m

p

))(
1 − 1

ps+ 1
2 −δ

(−8m

p

))
.

Since χ−8m is non-principal, it follows that the left side of (4.14) is analytic
for all s.

Hence we may move the line of integration in (4.13) to the line from
ϑ + 1/ log X − i∞ to ϑ + 1/ log X + i∞. We encounter no poles, and
so Aδ,τ (l2m) is given by the integral on this new line. Since |E(s, l)| ≤∏

p|l(1 + 1/
√

p)2 � lε � Xε, 2s/(s2 − τ2) � Xε, and |Γδ(s)| decays
exponentially for large |Im s|, we obtain by Cauchy’s inequality that

|Aδ,τ (l2m)|2

� X2ϑ+ε
∫
(ϑ+ 1

log X )

|Γδ(s)||L( 1
2 + s + δ, χ−8m)L( 1

2 + s − δ, χ−8m)|2|ds|.

Summing this over m and using Lemma 3.5, we obtain that

∑
X/l2≤m≤2X/l2

|Aδ,τ (l2m)|2 � X1+2ϑ+ε

l2

∫
(ϑ+ 1

log X )

|Γδ(s)|(1 + |s|)1+ε|ds|

� X1+2ϑ+ε

l2
.
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Using this together with (4.2) we conclude that the quantity in (4.12) is
bounded by

� X
1
2 +ϑ+ε

l

(X
1
4

l
1
2

+ X
1
4

l
1
2

M−Re δ1 + M
1
2 −Re δ1

)

×
(X

1
4

l
1
2

+ X
1
4

l
1
2

M−Re δ2 + M
1
2 −Re δ2

)
,

which when inserted in (4.11), and recalling that M ≤ √
X, yields the

proposition.

5. Proof of Proposition 2.3

Observe that

SM

((−8d

l

)
Aδ,τ (d);Ψ

)
=

∞∑
n=1

rδ(n)√
n

SM

((−8d

ln

)
; Fn

)
,(5.1)

where

Fn(t) = Fn(δ, τ; t) = Ψ(t)Wδ,τ

( nπ

8Xt

)
.

Using the Poisson summation formula, Lemma 3.6 above, we obtain for
odd n (using G−k(ln) = (−1

ln

)
Gk(ln), and

(
16
ln

) = 1 when ln is odd)

SM

((−8d

ln

)
; Fn

)
= 1

2ln

∑
α≤Y

(α,2ln)=1

µ(α)

α2

∞∑
k=−∞

(−1)kG−k(ln)F̃n

(
kX

2α2ln

)
.

(5.2)

Note that when n is even, the LHS above is zero.
Using this in (5.1), we deduce that

SM

((−8d

l

)
Aδ,τ (d);Ψ

)
= P (l)+ R0(l),

where P (l) is the main principal contribution (arising from the k = 0 term
in (5.2)), and R0(l) includes all the non-zero terms k in (5.2). Thus

P (l) = 1

2l

∞∑
n=1

n odd

rδ(n)

n
3
2

∑
α≤Y

(α,2ln)=1

µ(α)

α2
G0(ln)F̃n(0),

and

R0(l) = 1

2l

∞∑
n=1
n odd

rδ(n)

n
3
2

∑
α≤Y

(α,2ln)=1

µ(α)

α2

∞∑
k=−∞

k�=0

(−1)kG−k(ln)F̃n

(
kX

2α2ln

)
.

(5.3)
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5.1. The principal P (l) contribution

Note that F̃n(0) = F̂n(0) and that G0(ln) = ϕ(ln) if ln = � and G0(ln) = 0
otherwise. Using this together with

∑
α≤Y

(α,2ln)=1

µ(α)

α2
= 1

ζ(2)

∏
p|2ln

(
1 − 1

p2

)−1(
1 + O

( 1

Y

))
,

we deduce that

P (l) = 1 + O(Y−1)

ζ(2)

∞∑
n=1

ln=�
n odd

rδ(n)

n
1
2

∏
p|2ln

(
p

p + 1

)
F̂n(0).

Recall that l = l1l2
2 where l1 and l2 are odd, and l1 is square-free. The

condition that ln = � is thus equivalent to n = l1m2 for some integer m.
Hence

P (l) = 1 + O(Y−1)

ζ(2)
√

l1

∞∑
m=1
m odd

rδ(l1m2)

m

∏
p|2lm

(
p

p + 1

)
F̂l1m2(0).

For any c > |Re τ| we have

F̂l1m2(0) =
∫ ∞

0
Ψ(t)Wδ,τ

(
l1m2π

8Xt

)
dt

= 1

2πi

∫
(c)

Γδ(s)

(
8X

l1m2π

)s ( ∫ ∞

0
Ψ(t)tsdt

) 2s

s2 − τ2
ds

= 1

2πi

∫
(c)

Γδ(s)Ψ̌(s)

(
8X

l1m2π

)s 2s

s2 − τ2
ds.

Thus for any c > ϑ

P (l) = 2

3

1 + O(Y−1)

ζ(2)
√

l1
I(l),(5.4a)

where

I(l) = 1

2πi

∫
(c)

Γδ(s)

(
8X

l1π

)s

Ψ̌(s)
2s

s2 − τ2

∞∑
m=1
m odd

rδ(l1m2)

m1+2s

∏
p|lm

(
p

p + 1

)
ds.

(5.4b)
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Lemma 5.1. Suppose l = l1l2
2 is as above. Then for Re s > 1 + 2|Re δ|

∞∑
m=1
m odd

rδ(l1m2)

ms

∏
p|lm

(
p

p + 1

)
= rδ(l1)Z(s; δ)ηδ(s; l)

where Z and η are as defined in (2.12) and (2.13).

Proof. This follows by comparing the Euler factors on both sides.

Using Lemma 5.1 in (5.4b), we deduce that

I(l) := rδ(l1)

2πi

∫
(c)

Γδ(s)

(
8X

l1π

)s

Ψ̌(s)
2s

s2 − τ2
Z(1 + 2s; δ)ηδ(1 + 2s; l)ds.

Note first that taking c = ϑ + ε here we deduce easily that I(l) �
|rδ(l1)|(X/l1)

ϑ+ε. We now move the line of integration above to the line
Re s = − 1

4 + ε. We encounter simple poles at s = ±τ , ±δ. The remaining
integral on the − 1

4 + ε line we bound as follows: From [3] we know that
on this line |Z(1 + 2s; δ)| � (1 + |s|)3, and plainly |ηδ(1 + 2s; l)| �∏

p|l1
(

1 + O
(

1√
p

))∏
p�l1
(1 + O( 1

p1+ε )) � lε1. Hence the integral on the

Re s = − 1
4 + ε line is

� |rδ(l1)|l
1
4 +ε
1

X
1
4 −ε

∫
(− 1

4 +ε)
|s|2|Ψ̌(s)|Γδ(s)||ds| � |rδ(l1)|l

1
4 +ε
1

X
1
4 −ε .

We deduce that

I(l) = rδ(l1) Res
s=±δ,±τ

{
Γδ(s)

(
8X

l1π

)s

Ψ̌(s)
2s

s2 − τ2
Z(1 + 2s; δ)ηδ(1 + 2s; l)

}

+ O

( |rδ(l1)|l
1
4 +ε
1

X
1
4 −ε

)
.

Using this in (5.4a), we conclude that

P (l) = 2rδ(l1)

3ζ(2)
√

l1
(5.5)

× Res
s=±δ
s=±τ

{
Γδ(s)

(
8X

l1π

)s

Φ̌(s)
2s

s2 − τ2
Z(1 + 2s; δ)ηδ(1 + 2s; l)

}

+ O

( |rδ(l1)|Xϑ+ε

Yl
1
2 +ϑ
1

+ |rδ(l1)|Xε

(Xl1)
1
4

)
.
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5.2. Extracting the secondary principal term from R0(l)

Define for all real numbers ξ , and all complex numbers w with Re w > 0,

f(ξ,w) =
∫ ∞

0
F̃t

(
ξ

t

)
tw−1dt.(5.6)

Since |F̃t(ξ/t)| ≤ 2
∫∞
−∞ |Ft(x)|dx � e− t

20X by Lemma 3.1, the integral
above is absolutely convergent for Re w > 0. We collect below some prop-
erties of f(ξ,w)which are easily established by making minor modifications
to the proof of Lemma 5.2 of [11].

Lemma 5.2. For corresponding choices of sign define

G±(u) = (2π)−uΓ(u)
(

cos
(
π
2 u
)± sin

(
π
2 u
))
.

If ξ �= 0 then for any 1 + Re w > c > max(|Re τ|,Re w) we have

f(ξ,w) = |ξ|wΦ̌(w)
1

2πi

∫
(c)

Γδ(s)

(
8X

π|ξ|
)s

Gsgn(ξ)(s − w)
2s

s2 − τ2
ds.

(5.7)

For ξ �= 0, f(ξ,w) is a holomorphic function of w in Re w > −1 + |Re τ|,
and in the region 1 ≥ Re w > −1 + |Re τ| satisfies the bound

| f(ξ,w)| � (1 + |w|)−Re w− 1
2 exp

(
− 1

10

√|ξ|√
X(1 + |w|)

)
|ξ|w|Φ̌(w)|.

Using the Mellin transform identity (4.9), we may recast the expression
for R0(l) (see (5.3) above) as

R0(l) = 1

2l

∑
α≤Y

(α,2l)=1

µ(α)

α2

∞∑
k=−∞

k�=0

(−1)k

2πi

∫
(c)

∞∑
n=1

(n,2α)=1

rδ(n)

n
3
2 +wG−4k(ln) f

(
kX

2α2l
, w

)
dw,

(5.8)

for any c > |Re δ|.
Lemma 5.3. Write −4k = k1k2

2 where k1 is a fundamental discriminant
(possibly k1 = 1, giving the trivial character), and k2 is positive. In the
region Re s > 1 + |Re δ|

∞∑
n=1

(n,2a)=1

rδ(n)

ns

G−4k(ln)√
n

= L(s − δ, χk1 )L(s + δ, χk1)
∏

p

Gδ;p(s;−k, l, α)

=: L(s − δ, χk1 )L(s + δ, χk1)Gδ(s;−k, l, α),(5.9)
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where Gδ;p(s;−k, l, α) is defined as follows: If p|2α then

Gδ;p(s;−k, l, α) =
(

1 − 1

ps−δ

(
k1

p

))(
1 − 1

ps+δ

(
k1

p

))
,

while, if p � 2α,

Gδ;p(s;−k, l, α)

=
(

1 − 1

ps−δ

(
k1

p

))(
1 − 1

ps+δ

(
k1

p

)) ∞∑
r=0

rδ(pr)

prs

G−4k(pr+ord p(l))

p
r
2

.

Then Gδ(s;−k, l, α) is holomorphic in the region Re s > 1
2 + |Re δ|, and

for Re s ≥ 1
2 + |Re δ| + ε satisfies the bound

|Gδ(s;−k, l, α)| � αε|k|εl 1
2 +ε(l, k2

2

) 1
2 .(5.10)

Proof. This follows by making minor changes to the proof of Lemma 5.3
of [11].

We use Lemma 5.3 in (5.8), and move the line of integration to the line
Re w = − 1

2 + |Re δ| + ε. We encounter poles only when −k = � (so that
k1 = 1, and L(s, χk1) = ζ(s)): in this case, we have simple poles atw = ±δ,
and the residues of these poles give rise to a second main term (see (5.12)
below). Thus we may write R0(l) = R(l)+ P2(l) where

R(l) = 1

2l

∑
α≤Y

(α,2l)=1

µ(α)

α2
(5.11)

×
∞∑

k=−∞
k�=0

(−1)k

2πi

∫
(− 1

2 +|Re δ|+ε)
L(1 + w+ δ, χk1)L(1 +w− δ, χk1)

× Gδ(1 +w;−k, l, α) f
( kX

2α2l
, w
)

dw,

and (with an obvious change of notation, writing k2 in place of −k)

P2(l) = 1

2l

∑
α≤Y

(α,2l)=1

µ(α)

α2

∑
µ=±

ζ(1 + 2µδ)(5.12)

×
∞∑

k=1

(−1)kGδ(1 + µδ; k2, l, α) f
(

− k2 X

2α2l
, µδ

)
.
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5.3. The secondary principal term P 2(l)

Let v be a complex number with |Re v| ≤ ϑ+ 1
2 log X , and let u be a complex

number with Re u > 1
2 . We define

H(u, v; l, α) = lu
∞∑

k=1

(−1)k

k2u
Gv(1 + v; k2, l, α).

Note that the above series converges absolutely when Re u > 1
2 . Using

Lemma 5.2, and noting that Gv(s; k2, l, α) is an even function of v, we see
that ∑

µ=±

∞∑
k=1

(−1)kGδ(1 + µδ; k2, l, α) f
(

− k2 X

2α2l
, µδ

)

may be recast as

1

2πi

∫
(c)

Γδ(s)

(
16α2

π

)s

(5.13)

×
∑
µ=±

Ψ̌(µδ)

(
X

2α2

)µδ
G−(s − µδ)

2s

s2 − τ2
H(s − µδ,µδ; l, α)ds,

where c > max( 1
2 + |Re δ|, |Re τ|) = 1

2 + |Re δ|.
From the definition of Gv we see that

H(u, v; l, α) = −lu(1 − 21−2u)

∞∑
k=1

1

k2u
Gv(1 + v; k2, l, α)

= −lu(1 − 21−2u)
∏

p

∞∑
b=0

Gv;p(1 + v; p2b, l, α)

p2bu
.

Using the expression for Gv;p in Lemma 5.3 and then employing Lemma 3.3
to evaluate it, we see (after some straight-forward but tedious calculations)
that we may write

H(u, v; l, α) = −l(1 − 21−2u)l
u− 1

2
1 ζ(2u)ζ(2u + 1 + 4v)H1(u, v; l, α)

where H1 = ∏
p H1;p with

H1;p =




(
1 − 1

p

)(
1 − 1

p1+2v

)(
1 − 1

p2u+1+4v

)
if p|2α(

1 − 1
p

)(
1 − 1

p1+2v

)(
1 + 1

p + 1
p1+2v − 1

p2u+2+4v

)
if p � 2αl(

1 − 1
p

)(
1 − 1

p1+2v

)(
1 + 1

p2u+2v

)
if p|l1(

1 − 1
p

)(
1 − 1

p1+2v

)(
1 + 1

p1+2v

)
if p|l, p � l1.
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These expressions show that H(u, v; l, α), viewed as a function of u, is
meromorphic in the domain Re u > − 1

2 −2Re v. Note that there is a simple
pole at u = −2v. Thus we may move the line of integration in (5.13) to
the line Re s = ϑ + 1

log X , and since we encounter no poles, (5.13) is given
by the resulting integral on this line. Using these observations in (5.12) we
conclude that

P2(l) = 1

2πi

∫
(ϑ+ 1

log X )

Γδ(s)

(
16

π

)s 2s

s2 − τ2
(5.14)

×
∑
µ=±

Ψ̌(µδ)

(
X

2

)µδ
ζ(1 + 2µδ)G−(s − µδ)

× 1

2l

∑
α≤Y

(α,2l)=1

µ(α)

α2−2s+2µδ
H(s − µδ,µδ; l, α)ds.

We now wish to show that the sum over α in (5.14) may be extended to
infinity, at the cost of an acceptable error. Let C denote the circle, oriented
counter-clockwise, with center at 0 and radius ϑ + 1

2 log X . Given s with

Re s = ϑ + 1
log X , the function 2zΨ̌(z)

(
X

2α2

)z
ζ(1 + 2z)G−(s − z)H(s − z,

z; l, α) is analytic for z inside C. So by Cauchy’s theorem

(5.15)
∑
µ=±

Ψ̌(µδ)

(
X

2α2

)µδ
ζ(1 + 2µδ)G−(s − µδ)H(s − µδ,µδ; l, α)

= 1

2πi

∫
C

Ψ̌(z)

(
X

2α2

)z

ζ(1 + 2z)G−(s − z)H(s − z, z; l, α)
2z

z2 − δ2
dz.

For z on C we see that 2ϑ+3/(2 log X) ≥ Re (s−z) ≥ 1/(2 log X). Further
| 2z

z2−δ2 Ψ̌(z)ζ(1 + 2z)
(

X
2α2

)z | � (log2 X)(Xα2)ϑ+1/ log X , and by Stirling’s
formula we see that |G−(s − z)| � log X(1 + |Im (s)|)2ϑ−1/2+3/(2 log X ) �
log X. Lastly from our expressions for H(u, w; l, α) we deduce that

|H(s− z, z; l, α)| � l1+εl
2ϑ+ 3

2 log X − 1
2

1 αε(1+|s|) log X. From these estimates
we conclude that (5.15) is bounded by

l1+εl2ϑ− 1
2

1 (Xα2)ϑ+ε(1 + |s|).
We deduce that

1

2l

∑
α>Y

(α,2l)=1

µ(α)

α2−2s

×
∑
µ=±

Ψ̌(µδ)

(
X

2α2

)µδ
ζ(1 + 2µδ)G−(s − µδ)H(s − µδ,µδ; l, α)
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is bounded by � lεl
2ϑ− 1

2
1 Xϑ+ε(1 + |s|)Y−1+4ϑ . Using this in (5.14) we

conclude that the error incurred in extending the sum over α to infinity is

� lεl
2ϑ− 1

2
1 Xϑ+εY−1+4ϑ

∫
(ϑ+ 1

log X )

|Γδ(s)|(1 + |s|) |s|
|s2 − τ2| |ds|

� lεl
2ϑ− 1

2
1 Xϑ+εY−1+4ϑ.

Thus, up to an error O(lεl
2ϑ− 1

2
1 Xϑ+εY−1+4ϑ), P2(l) is given by

∑
µ=±

Ψ̌(µδ)

(
X

2

)µδ
ζ(1 + 2µδ)

1

2πi
(5.16)

×
∫
(ϑ+ 1

log X )

Γδ(s)

(
16

π

)s

G−(s − µδ)
2s

s2 − τ2
K(s, µδ; l)ds,

where

K(s, v; l) = 1

2l

∞∑
α=1

(α,2l)=1

µ(α)

α2−2s+2v
H(s − v, v; l, α).

Using our expression for H a calculation gives

K(s, v; l) = − 1

4l
1
2 +v
1

ϕ(l)

l

∏
p|2l

(
1 − 1

p1+2v

)∏
p|l

p�l1

(
1 + 1

p1+2v

)
rs(l1)

×
(

4s + 4−s − 2−1−2v − 21+2v

4s

)
ζ(2s − 2v)ζ(2s + 1 + 2v)

×
∏
p�2l

(
1 − 1

p

)(
1 − 1

p1+2v

)(
1 + 1

p
+ 1

p1+2v
+ 1

p3+4v
− (p2s + p−2s)

p2+2v

)
.

Using this together with the functional equation for ζ(s) and the relations
Γ(z)Γ(1− z) = πcosec(πz) and Γ(z)Γ(z + 1

2 ) = π
1
2 21−2zΓ(2z)we see that

J(s, v; l) := Γv(s)G−(s − v)

(
16

π

)s

K(s, v; l)

satisfies the functional equation J(s, v; l) = J(−s, v; l). In fact, we obtain
the useful identity

ζ(1 + 2v)J(s, v; l) = 2rs(l1)

3ζ(2)
√

l1

(
16

πl1

)v
Γs(v)Z(1 + 2v; s)ηs(1 + 2v; l);

(5.17)

it is plain that the left side above is invariant under s → −s.
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Consider now for µ = ± the integral in (5.16): that is,

1

2πi

∫
(ϑ+ 1

log X )

J(s, µδ; l)
2s

s2 − τ2
ds.(5.18)

We move the line of integration to the line Re(s) = −ϑ− 1
log X . We encounter

simple poles at s = δ,−δ, τ , and −τ . Thus (5.18) equals

Res
s=±δ,±τ

J(s, µδ; l)
2s

s2 − τ2
+ 1

2πi

∫
(−ϑ− 1

log X )

J(s, µδ; l)
2s

s2 − τ2
ds.

Changing s to −s and using the relation J(s, µδ; l) = J(−s, µδ; l) we see
that the above is

= Res
s=±δ,±τ

J(s, µδ; l)
2s

s2 − τ2
− 1

2πi

∫
(ϑ+ 1

log X )

J(s, µδ; l)
2s

s2 − τ2
ds.

Hence (5.18) equals

1

2
Res

s=±δ,±τ
J(s, µδ; l)

2s

s2 − τ2
= Res

s=µδ
J(s, µδ; l)

2s

s2 − τ2
+ J(τ, µδ; l),

using once again that J(s, µδ; l) = J(−s, µδ; l).
We conclude that

P2(l) =
∑
µ=+,−

Ψ̌(µδ)

(
X

2

)µδ
ζ(1 + 2µδ)(5.19)

×
(

Res
s=µδ

J(s, µδ; l)
2s

s2 − τ2
+ J(τ, µδ; l)

)
+ O


 lεXϑ+εl2ϑ− 1

2
1

Y 1−4ϑ


 .

5.4. The contribution of the remainder terms R(l)

The contribution of the remainder terms R(l) is bounded in much the same
manner as the analogous quantity in [11] (see Sect. 5.4 there). For the sake
of completeness we give a detailed sketch of the main ideas of the proof.

First we bound |R(l)| for individual l. Using the bounds of Lemmas 5.2
and 5.3 in (5.11) we get that |R(l)| is

� l−|Re δ|+ε

X
1
2 −|Re δ|−ε

∑
α≤Y

1

α1+2|Re δ|−ε

∫
(− 1

2 +|Re δ|+ε)
|Ψ̌(w)|(1 + |w|)−|Re δ|

×
∞∑

k=−∞
k�=0

|L(1 +w+ δ, χk1)L(1 +w− δ, χk1 )|
|k1| 1

2 −|Re δ| k2|Re δ|
2

× exp
(

− 1

10

√|k|
α
√

l(1 + |w|)
)
|dw|.
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Performing the sum over k2 we see that this is bounded by

l
1
2 +ε

X
1
2 −|Re δ|−ε

∑
α≤Y

αε
∫
(− 1

2 +|Re δ|+ε)
|Ψ̌(w)|(1 + |w|) 1

2

×
∑

k1

|L(1 +w+ δ, χk1 )L(1 +w− δ, χk1 )|
|k1|

× exp
(

− 1

10

√|k1|
α
√

l(1 + |w|)
)
|dw|.

We split the k1 into dyadic blocks and use Cauchy’s inequality with Lem-
ma 3.5 to estimate these contributions. We deduce that

|R(l)| � l
1
2 +εY 1+ε

X
1
2 −|Re δ|−ε

∫
(− 1

2 +|Re δ|+ε)
|Ψ̌(w)|(1 + |w|)|dw|

� l
1
2 +εY 1+ε

X
1
2 −|Re δ|−εΨ(2)Ψ

ε
(3).

We now sketch how a better bound for R(l)may be obtained on average.
Let βl = R(l)

|R(l)| if R(l) �= 0, and βl = 1 otherwise. Then, from (5.11),∑2L−1
l=L |R(l)| = ∑2L−1

l=L βlR(l) is

(5.20) �
∑
α≤Y

(α,2)=1

1

α2

∫
(− 1

2 +|Re δ|+ε)

∞∑
k=−∞

k�=0

|L(1 +w+ δ, χk1)L(1 +w− δ, χk1 )|

×
∣∣∣∣

2L−1∑
l=L
(l,α)=1

βl

l
Gδ(1 +w;−k, l, α) f

(
kX

2α2l
, w

)∣∣∣∣|dw|.

We now split the sum over k into dyadic blocks K ≤ |k| ≤ 2K − 1. By
Cauchy’s inequality the sum over k in this range is bounded by the product
of two terms. The first of these terms is(2K−1∑

|k|=K

k2|L(1 +w+ δ, χk1 )L(1 +w− δ, χk1)|2
) 1

2

� (K(1 + |w|)) 1
2 +ε,

upon using Cauchy’s inequality again with Lemma 3.5. The second term in
question is(2K−1∑

|k|=K

1

k2

∣∣∣∣
2L−1∑

l=L
(l,2α)=1

βl

l
Gδ(1 +w;−k, l, α) f

(
kX

2α2l
, w

)∣∣∣∣
2 ) 1

2

.(5.21)

Lemma 5.4. Let α ≤ Y, K and L be positive integers, and suppose w is
a complex number with Re w = − 1

2 + |Re δ| + ε. Then for any choice of
complex numbers γl with |γl| ≤ 1 we have



Real zeros of quadratic Dirichlet L-functions 31

2K−1∑
|k|=K

1

k2

∣∣∣∣
2L−1∑

l=L
(l,2α)=1

γl

l
G(1 +w;−k, l, α) f

(
kX

2α2l
, w

)∣∣∣∣
2

is bounded by

(1 + |w|)−2|Re δ|+ε|Ψ̌(w)|2α
2−4|Re δ|+εL2−2|Re δ|+εK2|Re δ|+ε

X1−2|Re δ|−ε

× exp

(
− 1

20

√
K

α
√

L(1 + |w|)

)
,

and also by

((1 + |w|)αKL X)ε|Ψ̌(w)|2
(
α2L(1 + |w|)

K

)2|Re τ |−2|Re δ|

× α2L

KX1−2|Re δ| (K + L).

We bound (5.21) using the first bound of the Lemma for K ≥ α2L(1 +
|w|) log2 X, and the second bound for smaller K . Inserting this bound in
(5.20) gives (with a little calculation)

2L−1∑
l=L

|R(l)| �
∑
α≤Y

∫
(− 1

2 +|Re δ|+ε)
|Ψ̌(w)|(1 + |w|)1+ε

×
(
α2+εL1+ε

X
1
2 −|Re δ|−ε + α1+2ϑ+εL1+ϑ+ε

X
1
2 −|Re δ|−ε

)
|dw|

�
(

L1+εY 1+ε

X
1
2 −|Re δ|−ε + Y 2ϑ+εL1+ϑ+ε

X
1
2 −|Re δ|−ε

)
Ψ(2)Ψ

ε
(3),

as desired.

Proof of Lemma 5.4. We follow closely the proof of Lemma 5.4 in [11].
Using the bound for Gδ in Lemma 5.3, and the bound for | f(ξ,w)| in
Lemma 5.2 we easily obtain the first bound claimed.

Write the integral in (5.7) as 1
2πi

∫
(c) g(s, w; sgn(ξ))

(
8X
|ξ|π
)s

ds. Taking
c = |Re τ| + ε, we see that (for K ≤ |k| ≤ 2K − 1)∣∣∣∣

2L−1∑
l=L

(l,2α)=1

γl

l
Gδ(1 +w;−k, l, α) f

(
kX

2α2l
, w

)∣∣∣∣
� |Ψ̌(w)| α1+2|Re τ |−2|Re δ|+ε

K
1
2 +|Re τ |−|Re δ|−εX

1
2 −|Re δ|−ε

×
∫
(c)

∣∣∣∣g(s, w; sgn(k))
2L−1∑

l=L
(l,2α)=1

γl

l1+w−s
Gδ(1 +w;−k, l, α)ds

∣∣∣∣.
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Since |g(s, w; sgn(k))| � (1 + |w|)c− 1
2 −Re w+ε exp(−π

2 |Im(s)|) by Stir-
ling’s formula, we get by Cauchy’s inequality that the above is

� (1 + |w|)|Re τ |−|Re δ|+ε|Ψ̌(w)| α1+2|Re τ |−2|Re δ|+ε

K
1
2 −|Re δ|+|Re τ |−εX

1
2 −|Re δ|−ε

×
(∫

(c)
exp

(−π
2 |Im(s)|) ∣∣∣∣

2L−1∑
l=L

(l,2α)=1

γl

l1+w−s
Gδ(1 +w;−k, l, α)

∣∣∣∣
2

|ds|
) 1

2

.

The second bound of the lemma follows by combining this with Lemma 5.5
below.

Lemma 5.5. Let |δl| � lε be any sequence of complex numbers, with δl = 0
if (l, 2α) �= 1. Letw be any complex number with Re(w) = − 1

2 +|Re δ|+ε.
Then

2K−1∑
|k|=K

1

k2

∣∣∣∣
2L−1∑
l=L

δl√
l
Gδ(1 +w;−k, l, α)

∣∣∣∣
2

� (KLα)ε(K + L)L.

Proof. For any integer k = ±∏i, ai≥1 pai
i we define a(k) = ∏

i pai+1
i , and

put b(k) = ∏
i, ai=1 pi

∏
i, ai≥2 pai−1

i . Note that Gδ(1 + w;−k, l, α) = 0
unless l can be written as dm where d|a(k) and (m, k) = 1 with m square-
free. From the definition of G in Lemma 5.3, and using Lemma 3.3, we
get

Gδ(1 +w; k, l, α) = √
m

(−k

m

)∏
p|m

(
1 + rδ(p)

p1+w

(−k

p

))−1

× Gδ(1 +w;−k, d, α).

Using Lemma 5.3 to bound |Gδ(1 + w;−k, d, α)| we see that our desired
sum is

� (KLα)ε
2K−1∑
|k|=K

1

k2

×
∑

d|a(k)
d

∣∣∣∣
2L/d∑

m=L/d

δdmµ(m)
2

(−k

m

)∏
p|m

(
1 + rδ(p)

p1+w

(−k

p

))−1∣∣∣∣
2

.

We interchange the sums over d and k. Note that d|a(k) implies that that
b(d)|k, so that k = b(d) f for some integer f with K/b(d) ≤ | f | ≤
2K/b(d). Write −4 f = f1 f 2

2 where f1 is a fundamental discriminant, and



Real zeros of quadratic Dirichlet L-functions 33

f2 is positive. Notice that k2 ≥ f2. Thus our desired sum is bounded by

(KLα)ε
∑
d≤2L

d
2K/b(d)∑

f =K/b(d)

1

f2
(5.22)

×
∣∣∣∣

2L/d∑
m=L/d

δdmµ(m)
2

(− fb(d)

m

)∏
p|m

(
1 + rδ(p)

p1+w

(− fb(d)

p

))−1∣∣∣∣
2

.

Observe that(− fb(d)

m

)∏
p|m

(
1 + rδ(p)

p1+w

(− fb(d)

p

))−1

= am

(− fb(d)

m

)∏
p|m

(
1 − rδ(p)

p1+w

(− fb(d)

p

))

= am

(− fb(d)

m

)∑
n|m

µ(n)rδ(n)

n1+w

(− fb(d)

n

)
,

where am = ∏
p|m(1 − rδ(p)2

p2+2w )
−1 � mε. Hence for appropriate bm(n, d) �

(mnd)ε we have that the |∑m |2 term in (5.22) is bounded by

( ∑
n≤L/d

|rδ(n)|
n

1
2 +|Re δ|+ε

∣∣∣∣
2L/(nd)∑

m=L/(nd)

bm(n, d)µ2(m)

(− f

m

)∣∣∣∣
)2

�
(

L

d

)ε ∑
n≤L/d

∣∣∣∣
2L/(nd)∑

m=L/(nd)

bm(n, d)µ2(m)

(− f

m

) ∣∣∣∣
2

,

using Cauchy’s inequality. Using this in (5.22) and invoking Lemma 3.4 we
conclude that our desired sum is

� (KLα)ε
∑
d≤L

d
∑

n≤L/d

L

nd

(
K

b(d)
+ L

nd

)

� (KLα)ε(KL + L2)
∑
d≤L

1

b(d)
� (KLα)ε(KL + L2),

as stated.

5.5. Completion of the proof

From our work above the remainder terms are under control; and we need
only simplify the main term P (l) + P2(l) arising from (5.5) and (5.19).
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Using (5.17) it is easy to see that the contribution to (5.19) from the poles
at µδ cancel precisely the contribution to (5.5) from the poles at µδ. Thus
our main term includes only the contribution from the poles at ±τ in both
these expressions. Employing (5.17) we deduce that the main term is

2

3ζ(2)
√

l1

∑
µ=±

(
rδ(l1)Γδ(µτ)

(
8X

l1π

)µτ
Ψ̌(µτ)Z(1 + 2µτ; δ)ηδ(1 + 2µτ; l)

+ rτ (l1)Γτ (µδ)

(
8X

l1π

)µδ
Ψ̌(µδ)Z(1 + 2µδ; τ)ητ (1 + 2µδ; l)

)
.

This proves Proposition 2.3.

6. Mollification near s = 1
2 : proof of Proposition 2.4

Throughout this section we recall that δ2 = δ1 so that τ is purely real, and δ
is purely imaginary. Further we recall that τ ≥ − 1

ε log X , that ϑ ≥ |δ1| ≥ ε
log X

and that M = X
1
2 −5ϑ . From Lemma 3.2, and the definition of ξ(s, χ−8d) we

see that

S(1;Φ)W(δ1,Φ) = (8X/π)−τ

Γδ(τ)
S(Aδ,τ (d)|M( 1

2 + δ1, d)|2;Φ−τ )

where Φ−τ (t) = t−τΦ(t). We choose Y = X4ϑ , and decompose the above
as

(8X/π)−τ

Γδ(τ)

{
SM(Aδ,τ (d)|M( 1

2 + δ1, d)|2;Φ−τ )

+ O(SR(Aδ,τ (d)|M( 1
2 + δ1, d)|2;Φ−τ ))

}
.

Applying Proposition 2.2 we conclude that

(6.1) S(1;Φ)W(δ1,Φ) = (8X/π)−τ

Γδ(τ)
SM(Aδ,τ (d)|M( 1

2 + δ1, d)|2;Φ−τ )

+ O(X−ϑ+ε).

Now

SM(Aδ,τ (d)|M( 1
2 + δ1, d)|2;Φ−τ )

=
∑

l

(∑
rs=l

λ(r)λ(s)

r
1
2 +δ1 s

1
2 +δ2

)
SM

(
Aδ,τ (d)

(−8d

l

)
;Φ−τ

)
,
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and we use Proposition 2.3 to evaluate these terms. First we note that the
various remainder terms in Proposition 2.3 contribute (using |λ(n)| � nε,
rδ(n) � nε, d(n) � nε, and τ ≥ −1/(ε log X))

�
∑
l≤M2

lε

l
1
2 +τ

(
l
ϑ− 1

4
1 X− 1

4 +ε + Xϑ+εl2ϑ− 1
2

1

Y 1−4ϑ
+ |R(l)|

)
� X−ϑ+εΦ(2)Φ

ε
(3).

Thus we get that

S(1;Φ)W(δ1,Φ)(6.2a)

= (8X/π)−τ

Γδ(τ)

∑
l

(∑
rs=l

λ(r)λ(s)

r
1
2 +δ1 s

1
2 +δ2

)
M(l)+ O(X−ϑ+εΦ(2)Φ

ε
(3)),

where M(l) = M1(l)+ M2(l) with

M1(l) = 2

3ζ(2)
√

l1

∑
µ=±

rδ(l1)Γδ(µτ)

(
8X

l1π

)µτ
(6.2b)

× Φ̌(µτ − τ)Z(1 + 2µτ; δ)ηδ(1 + 2µτ; l),

and

M2(l) = 2

3ζ(2)
√

l1

∑
µ=±

rτ (l1)Γτ (µδ)

(
8X

l1π

)µδ
(6.2c)

× Φ̌(µδ − τ)Z(1 + 2µδ; τ)ητ (1 + 2µδ; l).

From our assumptions on δ1 we know that τ2−δ2 = |δ1|2 ≥ ε2/(log X)2.
This enables us to evaluate the M1(l) and M2(l) contributions to (6.2a)
separately. Let C denote a closed contour (oriented counter-clockwise)
which contains the points ±τ and such that for w ∈ C we have |Re w| ≤
|τ| + C/ log X, and |Im w| ≤ C/ log X for some absolute constant C, and
such that |w2 − τ2| ≥ ε2/(3 log2 X), and |w2 − δ2| ≥ ε2/(3 log2 X), and
finally such that the perimeter length of C is � |δ1|. Then the contribution
of M1(l) to (6.2a) is

1

2πi

∫
C

2Φ̌(w− τ)

3ζ(2)Γδ(τ)

(
8X

π

)w−τ
Z(1 + 2w; δ)Γδ(w) 2w

w2 − τ2
(6.3)

×
{∑

l

rδ(l1)

l
1
2 +w
1

(∑
rs=l

λ(r)λ(s)

r
1
2 +δ1 s

1
2 +δ2

)
ηδ(1 + 2wτ; l)

}
dw.

We focus first on simplifying the term in parenthesis above. Since λ is
supported on square-free integers, we may write r = αa, s = αb where
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α, a, and b are square-free with (a, b) = 1. Thus l = α2a b, l1 = ab, and
l2 = α. With this notation the sum over l in (6.3) becomes∑

α

∑
a,b

(a,b)=1

rδ(ab)

(ab)
1
2 +w

λ(αa)λ(αb)

α1+δ1+δ2 a
1
2 +δ1 b

1
2 +δ2

ηδ(1 + 2w;α2ab)(6.4)

=
∑
α

1

α1+2τ

∑
a,b

(a,b)=1

rδ(a)rδ(b)

a1+δ1+wb1+δ2+wλ(αa)λ(αb)ηδ(1 + 2w;α2ab).

Define, for odd primes p,

hw(p) =
(

1 + 1

p
+ 1

p1+2w
− p−2δ + p2δ

p2+2w
+ 1

p3+4w

)
and extend this multiplicatively to a function on odd, square-free integers.
From the definition of η we see that

ηδ(1 + 2w;α2ab) = ηδ(1 + 2w; 1)

hw(α)hw(a)hw(b)

∏
p|α

(
1 + 1

p1+2w

)
.

Hence our expression (6.4) may be recast as

ηδ(1 + 2w; 1)
∑
α

1

α1+2τhw(α)

∏
p|α

(
1 + 1

p1+2w

)

×
∑

a,b
(a,b)=1

rδ(a)λ(αa)

a1+δ1+whw(a)

rδ(b)λ(αb)

b1+δ2+whw(b)
.

Using
∑

β|(a,b) µ(β) = 1 if (a, b) = 1 and 0 otherwise, the above becomes

ηδ(1 + 2w; 1)
∑
α

∏
p|α(1 + 1/p1+2w)

α1+2τhw(α)

∑
β

rδ(β)2µ(β)

β2+2τ+2whw(β)2
(6.5)

×
∑
a,b

rδ(a)λ(aαβ)

a1+δ1+whw(a)

rδ(b)λ(bαβ)

b1+δ2+whw(b)
.

Define for odd primes p

Hw(p) = 1 + 1

p1+2w
− rδ(p)2

p1+2whw(p)
,

and extend this multiplicatively to all odd, square-free integers. Then group-
ing terms according to γ = αβ, we see that (6.5) equals

ηδ(1 + 2w; 1)
∑
γ

Hw(γ)

γ 1+2τhw(γ)

(∑
a

rδ(a)λ(aγ)

a1+δ1+whw(a)

)(∑
b

rδ(b)λ(bγ)

b1+δ2+whw(b)

)
.

(6.6)
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Lemma 6.1. Let R be a polynomial with R(0) = R′(0) = 0. Let g be
a multiplicative function with g(p) = 1 + O(p−ν) for some fixed ν > 0. Let
y be a large real number, and suppose that u and v are bounded complex
numbers such that Re(u + v) and Re(u − v) are ≥ −D/ log y where D is
an absolute positive constant. When Re s > 1 + D/ log y we have

∞∑
n=1

n odd

rv(n)µ(nc)

ns+u
g(n) = µ(c)G(s, c; u, v)

ζ(s + u + v)ζ(s + u − v)
,

where G(s, c; u, v) = ∏
p G p(s, c; u, v) with

G p(s, c; u, v) :=
{(

1 − 1
ps+u+v

)−1(
1 − 1

ps+u−v
)−1

if p|2c(
1 − 1

ps+u+v
)−1(

1 − 1
ps+u−v

)−1(
1 − g(p)rv(p)

ps+u

)
otherwise,

so that G(s, c; u, v) is holomorphic in Re s > max( 1
2 , 1 − ν) + D/ log y.

For any odd integer c ≤ y we have

∑
n≤y/c
n odd

rv(n)µ(nc)

n1+u
g(n)R

(
log(y/(cn))

log y

)

= O

(
E(c)

log2 y

( y

c

)−Re u+|Re v|
exp(−A0

√
log(y/c))

)

+ Res
s=0

µ(c)G(s + 1, c; u, v)

sζ(1 + s + u + v)ζ(1 + s + u − v)

∞∑
k=0

1

(s log y)k
R(k)

(
log(y/c)

log y

)

for some absolute constant A0 > 0, and where E(c) = ∏
p|c(1 + 1/

√
p).

Proof. Our assertion about the generating function
∑

rv(n)µ(nc)g(n)/ns+u

follows readily upon comparing Euler products. In proving the other state-
ments we may plainly suppose that c ≤ y/2. Using the Taylor expansion
R(x) = ∑∞

j=0
R( j)(0)

j ! x j = ∑∞
j=2

R( j)(0)
j ! x j , we see that our sum is

∞∑
j=2

R( j)(0)

(log y) j

1

j!
∑
n≤y/c
n odd

rβ(n)µ(nc)

n1+α g(n) log j
( y

cn

)

=
∞∑
j=2

R( j)(0)

(log y) j

1

2πi

∫
(

D+1
log(y/c)

) µ(c)G(s + 1, c; u, v)

ζ(1 + s + u + v)ζ(1 + s + u − v)

( y

c

)s ds

s j+1
.

The integral above is evaluated by a standard procedure: First one truncates
the above integral to the line segment D+1

log(y/c)−iT to D+1
log(y/c)+iT where T :=

exp(
√

log(y/c)). The error involved in doing so is � E(c)(log y/c)2/T 2.
Next we shift the integral on this line segment to the left onto the line
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segment −Re u + |Re v| − A1/ log T where A1 is a positive constant such
that ζ(1 + s + u + v)ζ(1 + s + u − v) has no zeros in the region traversed.
We encounter a (multiple) pole at s = 0 whose residue we shall calculate
presently. The integrals on the three other sides are bounded using standard
estimates for 1/ζ(s) in the zero-free region, and contribute an amount �
E(c)(log(Ty/c))2(T −2 + (y/c)−Re u+|Re v|−A1/ log T ). We conclude that for an
appropriate positive constant A0 the above is

= Res
s=0

µ(c)G(s + 1, c; u, v)

sζ(1 + s + u + v)ζ(1 + s + u − v)

∞∑
j=2

R( j)(0)(y/c)s

s j log j y

+ O

(
E(c)

log2 y

( y

c

)−Re u+|Re v|
exp(−A0

√
log(y/c))

)
.

For the purpose of the residue calculation we may replace
∑∞

j=2
R( j)(0)(y/c)s

s j log j y
with
∞∑
j=2

R( j)(0)

s j log j y

(∑
l≤ j

sl

l! (log(y/c))l
)

=
∞∑

k=0

s−k

logk y

∞∑
l=0

R(k+l)(0)

l!
(

log(y/c)

log y

)l

,

upon grouping terms according to k = j − l, and bearing in mind that
R(0) = R′(0) = 0. This clearly equals

∞∑
k=0

s−k

logk y
R(k)

(
log(y/c)

log y

)
,

completing our proof of the lemma.

We now return to the evaluation of the expression (6.6). We first deal
with the contribution arising from the terms γ ≤ M1−b. We shall ap-
ply Lemma 6.1 twice. In both cases we take u = δ1 + w, v = δ, and
g(n) = 1/hw(n), and we shall denote the corresponding G(s, γ ; u, v) by
Gw(s, γ ; u, v). In the first application we take y = M, and R(x) = P(x);
and in the second application we take y = M1−b and R(x) = (1 − P(b +
x(1 − b))). Adding these two applications we deduce that∑
a≤M/γ
a odd

rδ(a)µ(aγ)

a1+δ1+whw(a)
Q

(
log(M/aγ)

log M

)

= µ(γ)Gw(1, γ ; δ1 +w, δ)

ζ(1 + δ1 +w+ δ)ζ(1 + δ1 +w− δ)

+ O
( E(γ)

log2 M

(
M1−b

γ

)−τ−Re w

exp(−A0

√
log M1−b/γ )

)
.

Note that the main term above came from the k = 0 contribution in the
applications of Lemma 6.1, and that the contributions from k ≥ 1 in the two
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applications cancel each other. Indeed the appropriate term for k ≥ 1 in the
first application is

1

(log M)k
P(k)

(
log(M/γ)

log M

)
,

and the corresponding term in the second application is

1

(log M1−b)k
(1 − P(b + x(1 − b)))(k)

∣∣∣
x=log(M1−b/γ)/ log M

,

and these clearly cancel. This justifies our preceding expression, and now
observe that, because of our choice of the contour C, the main term there
is � |δ1|2. An analogous expression holds for the sum over b in (6.6), with
the only change being that δ1 above gets replaced by δ2. We deduce that the
contribution of the γ ≤ M1−b terms to (6.6) equals

ηδ(1 + 2w; 1)

×
∑

γ≤M1−b

γ odd

Hw(γ)

γ 1+2τhw(γ)

( µ2(γ)Gw(1, γ ; δ1 +w, δ)Gw(1, γ ; δ2 +w, δ)∏
µ=± ζ(1 + δ1 +w+ µδ)ζ(1 + δ2 + w+ µδ)

+ O
(

E(γ)
|δ1|2

log2 M

(
M1−b

γ

)−τ−Re w

exp(−A0

√
log(M1−b/γ))

))
.

This is readily seen to be

ηδ(1 + 2w; 1)

×
∑

γ≤M1−b

γ odd

Hw(γ)

γ 1+2τhw(γ)

µ2(γ)Gw(1, γ ; δ1 +w, δ)Gw(1, γ ; δ2 +w, δ)∏
µ=± ζ(1 + δ1 +w+ µδ)ζ(1 + δ2 +w+ µδ)

+ O
( |δ1|2

log2 M
M(1−b)(−τ−Rew)

)
.

We use this expression in (6.3) to evaluate the contribution of the γ ≤ M1−b

terms to the integral there. From our choice of C, and since M = X
1
2 −5ϑ ,

we see that the error term arising from the above is

O
(

log2 X|δ1|3M−2τ(1−b)
)
.(6.7)

The main term arising there is

1

2πi

∫
C

2Φ̌(w− τ)

3ζ(2)Γδ(τ)

(
8X

π

)w−τ
Z(1 + 2w; δ)Γδ(w) 2w

w2 − τ2
ηδ(1 + 2w; 1)

×
∑

γ≤M1−b

γ odd

Hw(γ)

γ 1+2τhw(γ)

µ2(γ)Gw(1, γ ; δ1 +w, δ)Gw(1, γ ; δ2 +w, δ)∏
µ=± ζ(1 + δ1 +w+ µδ)ζ(1 + δ2 +w+ µδ)

dw.
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A priori the integrand has two poles (at ±τ) inside C, but since
∏
µ=± ζ(1+

δ1+w+µδ)−1ζ(1+δ2+w+µτ)−1 vanishes (indeed to order 2) atw = −τ , in
fact we have only the one simple pole at w = τ . Thus by Cauchy’s theorem
the main term above equals

2Φ̌(0)

3ζ(2)

ηδ(1 + 2τ; 1)

ζ(1 + 2τ)
(6.8)

×
∑

γ≤M1−b

γodd

µ2(γ)Hτ(γ)

γ 1+2τhτ (γ)
Gτ (1, γ ; δ1 + τ, δ)Gτ (1, γ ; δ2 + τ, δ).

Lemma 6.2. With w on the contour C, and other notations as above we
have for x ≥ 2

ηδ(1 + 2w; 1)
∑
γ≤x
γ odd

µ2(γ)Hw(γ)

γ 1+2τhw(γ)
Gw(1, γ ; δ1 +w, δ)Gw(1, γ ; δ2 +w, δ)

= ζ(1 + 2τ)(1 − x−2τ )(1 + O(|w− τ|))+ O(x−2τ ).

Further if 1 ≤ y ≤ x then for any smooth function R on [0, 1]

ηδ(1 + 2w; 1)
∑
y≤γ≤x
γ odd

µ2(γ)Hw(γ)

γ 1+2τhw(γ)
Gw(1, γ ; δ1 +w, δ)

× Gw(1, γ ; δ2 +w, δ)R
( log γ

log x

)

= (1 + O(|δ1|))
∫ x

y
R

(
log t

log x

)
dt

t1+2τ
.

Proof. Upon recalling the definition of Gw(s, γ ; u, v) from Lemma 6.1 we
see that our desired expression equals

ηδ(1 + 2w; 1)Gw(1, 1; δ1 +w, δ)Gw(1, 1; δ2 +w, δ)
∑
γ≤x
γodd

fw(γ)

γ 1+2τ
,

say, where fw(γ) is the multiplicative function given by

fw(γ) = µ2(γ)
Hw(γ)

hw(γ)

∏
p|γ

(
1 − rδ(p)

p1+δ1+whw(p)

)−1(
1 − rδ(p)

p1+δ2+whw(p)

)−1
.

Plainly fw(p) = 1+O(1/
√

p), say, and so the calculation of the sum over γ
becomes a standard exercise. Writing the generating function∑

γ odd fw(γ)/γ s = ζ(s)Fw(s), (note that F is holomorphic in Re s > 1
2 ),
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using Perron’s formula, and shifting contours appropriately we deduce eas-
ily that

∑
γ≤x
γ odd

fw(γ)

γ 1+2τ
= ζ(1 + 2τ)Fw(1 + 2τ)− Fw(1)

x−2τ

2τ
+ O(x−( 1

3 +2τ))

= ζ(1 + 2τ)(1 − x−2τ )Fw(1 + 2τ)+ O(x−2τ ),

upon using ζ(1+2τ) = 1/(2τ)+O(1), and that Fw(1+2τ) = Fw(1)+O(τ).
Denote ηδ(1 + 2w; 1)Gw(1, 1; δ1 + w, δ)Gw(1, 1; δ2 + w, δ)Fw(1 + 2τ)
by H(w) say. Then with a little calculation we may check that H(w) =
H(τ) + O(|w − τ|), and that H(τ) = 1. This proves the first assertion of
the Lemma. Our second claim follows upon using partial summation, and
arguing along similar lines.

Using Lemma 6.2 in (6.8) above, and combining with the error term
estimate (6.7), we conclude that the part of the M1(l) contribution arising
from the γ ≤ M1−b terms equals

2Φ̌(0)

3ζ(2)
(1 − M−2τ(1−b))+ O(log2 X|δ1|3M−2τ(1−b)).(6.9)

We now turn to the corresponding contribution from the terms γ > M1−b

in (6.6). Applying Lemma 6.1 with u, v, g(n), and Gw(s, γ ; u, v) as above,
and with R(x) = P(x), and y = M. We get that for any odd M1−b ≤ γ < M,

(since Q
(

log(M/aγ)
log M

)
= P

(
log(M/aγ)

log M

)
for γ in this range)

∑
a≤M/γ
a odd

rδ(a)µ(aγ)

a1+δ1+whw(a)
Q

(
log(M/aγ)

log M

)

= O
( E(γ)

log2 M

(
M

γ

)−τ−Re w

exp(−A0

√
log(M/γ))

)

+ Res
s=0

µ(γ)Gw(1 + s, γ ; δ1 +w, δ)

sζ(1 + s + δ1 +w+ δ)ζ(1 + s + δ1 +w− δ)

×
∞∑

k=0

1

(s log M)k
Q(k)

(
log(M/γ)

log M

)
.

Write the Taylor expansion of Gw(1 + s, γ ; u, v)/(ζ(1 + s + δ1 + w
+ δ)ζ(1 + s + δ1 + w − δ)) as a0 + a1s + a2s2 + . . . . Then we see that
a0 = (δ1 + w + δ)(δ1 + w − δ)Gw(1, γ ; δ1 + w, δ) + O((|δ1| + |w|)3),
a1 = 2(δ1 + w)Gw(1, γ ; δ1 + w, δ) + O((|δ1| + |w|)2), a3 = Gw(1, γ ;
δ1 +w, δ)+ O(|δ1|+ |w|), and that an �n 1 for n ≥ 4. From this it follows
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that the residue term above equals

µ(γ)Gw(1, γ ; δ1 + w, δ)

(
(δ1 +w+ δ)(δ1 +w− δ)Q

(
log(M/γ)

log M

)

+ 2
δ1 +w

log M
Q′
(

log(M/γ)

log M

)
+ 1

log2 M
Q′′
(

log(M/γ)

log M

))
+ O(|δ1|3).

An analogous espression holds for the sum over b in (6.6), replacing δ1
above with δ2. We use these expressions to evaluate the contribution to (6.6)
from the terms γ > M1−b. Firstly, we see that the remainder terms that
accrue are (bearing in mind that w is on the contour C)

�
∑

M1−b≤γ≤M

1

γ 1+2τ

( E(γ)

log2 M
|δ1|2

(
M

γ

)−τ−Re w

× exp(−A0

√
log(M/γ))+ |δ1|5

)
� |δ1|2

log2 M
M−τ−Re w + M−2τ(1−b)|δ1|5 log M.

Secondly, we get that the main term here is (denoting for brevity
Q( j)(log(M/γ)/ log M) by Q( j)

γ )

ηδ(1 + 2w; 1)
∑

M1−b<γ≤M
γ odd

µ2(γ)Hw(γ)

γ 1+2τhw(γ)
Gw(1, γ ; δ1 +w, δ)Gw(1, γ ; δ2 +w, γ)

×
(
(δ1 +w+ δ)(δ1 +w− δ)Qγ + 2

δ1 +w

log M
Q′
γ + 1

log2 M
Q′′
γ

)

×
(
(δ2 +w+ δ)(δ2 +w− δ)Qγ + 2

δ2 +w

log M
Q′
γ + 1

log2 M
Q′′
γ

)
.

Applying Lemma 6.2 (and a suitable change of variables) we conclude that
this equals

log M
∫ b

0
M−2τ(1−x)(6.10)

×
(
(δ1 +w+ δ)(δ1 +w− δ)Q(x)+ 2

δ1 +w

log M
Q′(x)+ Q′′(x)

log2 M

)

×
(
(δ2 +w+ δ)(δ2 +w− δ)Q(x)+ 2

δ2 +w

log M
Q′(x)+ Q′′(x)

log2 M

)
dx

+ O(M−2τ(1−b)|δ1|5 log M).

We use these expressions in (6.3) to evaluate the contribution of the
γ > M1−b terms to the integral there. From our choices of M and C we get



Real zeros of quadratic Dirichlet L-functions 43

that the error term arising from the above is

O
(|δ1|3 M−2τ log2 X + |δ1|6 M−2τ(1−b) log5 X

)
.(6.11)

Call the main term in (6.10) N(w). Inserting this into the integral in (6.3),
we seek to evaluate

1

2πi

∫
C

2Φ̌(w− τ)

3ζ(2)Γδ(τ)

(
8X

π

)w−τ
Z(1 + 2w; δ)Γδ(w)N(w) 2w

w2 − τ2
dw.

Now Φ̌(w − τ)Γδ(w)/Γδ(τ) = Φ̌(0) + O(|δ1|), and 2wZ(1 + 2w; δ) =
1

4(w2−δ2)
+ O(|δ1| log2 X), and N(w) � M−2τ(1−b)|δ1|4 log M, whence we

deduce that the above integral is

2Φ̌(0)

3ζ(2)

1

2πi

∫
C

(
8X

π

)w−τ
N(w)

1

4(w2 − δ2)

1

w2 − τ2
dw(6.12)

+ O(|δ1|6M−2τ(1−b) log5 X)

= 2Φ̌(0)

3ζ(2)

1

8δ1δ2τ

(
N(τ) −

(
8X

π

)−2τ

N(−τ)
)

+ O(|δ1|6M−2τ(1−b) log5 X).

Using integration by parts together with Q(0) = Q ′(0) = 0, and Q(b) = 1,
Q′(b) = 0 we may simplify the expression for N(τ) to

8δ1δ2τM−2τ(1−b) + 4δ1δ2

log M

∫ b

0
M−2τ(1−x)

∣∣∣Q′(x)+ Q′′(x)
2δ1 log M

∣∣∣2dx.

Similarly we find that

N(−τ) = 4δ1δ2

log M

∫ b

0
M−2τ(1−x)

∣∣∣Q′(x)+ Q′′(x)
2δ1 log M

∣∣∣2dx.

Using these identities we conclude that our expression in (6.12) equals

2Φ̌(0)

3ζ(2)

(
M−2τ(1−b) + 1 − (8X/π)−2τ

2τ log M

∫ b

0
M−2τ(1−x)

∣∣∣Q′(x)

+ Q′′(x)
2δ1 log M

∣∣∣2dx

)
+ O(M−2τ(1−b)|δ1|6 log5 X).

Combining this with (6.11) we conclude that the part of the M1(l) contri-
bution arising from the M1−b ≤ γ ≤ M terms equals

2Φ̌(0)

3ζ(2)

(
M−2τ(1−b) + 1 − (8X/π)−2τ

2τ log M

∫ b

0
M−2τ(1−x)

∣∣∣Q′(x)

+ Q′′(x)
2δ1 log M

∣∣∣2dx

)
+ O(|δ1|3 M−2τ log2 X + M−2τ(1−b)|δ1|6 log5 X).
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Taking this together with (6.9) we have determined the M1(l) contribu-
tion to be

(6.13) 2Φ̌(0)

3ζ(2)

(
1 + 1 − (8X/π)−2τ

2τ log M

∫ b

0
M−2τ(1−x)

∣∣∣Q′(x)+ Q′′(x)
2δ1 log M

∣∣∣2dx
)

+ O(M−2τ(1−b)|δ1|6 log5 X).

The calculation of the M2(l) contribution to (6.2a) is entirely similar.
We obtain that this contribution equals

−2Φ̌(0)

3ζ(2)

(
8X

π

)−τ
(8X/π)δ − (8X/π)−δ

2δ log M

×
∫ b

0
M−2τ(1−x)

∣∣∣Q′(x)+ Q′′(x)
2δ1 log M

∣∣∣2dx

+ O(X−τM−2τ(1−b)|δ1|6 log5 X).

Inputing this and (6.13) into (6.2a), we obtain Proposition 2.4.
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