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Abstract. We construct a new solution operator for∂ on certain piecewise smoothq-convex
intersections.Lp estimates are obtained for the solution operators of∂-closed forms on such
domains.

Introduction

Great progress has been made recently in understanding the∂-Neumann problem
on piecewise smooth domains. Henkin–Iordan–Kohn [8], Michel-Shaw [15] ob-
tained subelliptic1

2-estimates for the∂-Neumann operator on piecewise smooth
intersections of strongly pseudoconvex domains. Henkin–Iordan, [7] showed com-
pactness of the∂-Neumann operator on bounded pseudoconvex domainsD with
B-regular boundary (i.e. there exists a continuous functionρ in a neighborhoodU
of ∂D such thatD ∩ U = {ρ < 0}, ddcρ ≥ ddc|z|2 wheredc = i

4π (∂ − ∂)).
Straube [17] obtained subellipticδ estimates(δ < 1

2) for piecewise smooth inter-
sections of finite 1-D’Angelo type domains. The key ingredient in the proof of all
of the results above is an exhaustion of the piecewise smooth domain by smooth
(or uniformly Lipschitz) strongly pseudoconvex domains on which the∂-Neumann
operators exist and satisfy uniformL2 or subellipticε-estimates.

Much less is known when the domains are not pseudoconvex. Due to its intimate
connection to the tangential Cauchy–Riemann operator operator it would be of great
interest to understand the∂-Neumann operator on more general piecewise smooth
domains that arise as piecewise smooth intersections of smoothq-convex domains.

Definition 1. A bounded smooth domain D in C
n is called strongly q-convex (resp.

weakly q-convex) if there exists a bounded neighborhood W of ∂D and a smooth
defining function r of D such that for every z ∈ ∂D the Levi form of r|∂D at z has
at least n − q positive (resp. non-negative) eigenvalues.
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In particular, a strongly 1-convex domain is strongly pseudoconvex.
The category ofq-convex domains whenq > 1 is still rather unexplored. In

contrast to the pseudoconvex case, there are major differences between 1-convex
andq-convex domains whenq > 1.

α) The intersection of any twoq-convex domains (q > 1) is not necessarilyq-
convex (that will lead to problems in smoothingq-subharmonic functions).

β) There are noL2-estimates for∂ with “good” constants on smooth stronglyq-
convex domains and there are no unweightedL2 estimates for∂ on smooth
weaklyq-convex domains.

γ ) There are no global holomorphic support functions for smooth stronglyq-
convex domains that can be used to construct global integral solution operators
for ∂ on such domains.

In this paper we shall study the∂ and∂-Neumann problem for the following
type of piecewise smooth domains:

Definition 2. A bounded domain� in C
n shall be called aC3 q-convex intersection

if there exists a bounded neighborhood W in C
n of � and a finite number of real

C3 functions ρ1, . . . , ρN where n ≥ N + 2 defined on W such that � = {z ∈
W |ρ1(z) < 0, . . . , ρN(z) < 0} and the following are true:

i) For 1 ≤ i1 < i2 < · · · < i� ≤ N the 1-forms dρi1, . . . , dρi� are R-linearly

independent on
⋂j=�

j=1{ρij ≤ 0}.
ii) For 1 ≤ i1 < · · · < i� ≤ N , for every z ∈ ⋂j=�

j=1{ρij ≤ 0}, if we set

I = (i1, . . . , i�), there exists a linear subspace T I
z of C

n of complex dimension
at least n − q + 1 such that for i ∈ I the Levi forms Lρi restricted on T I

z are
positive definite.

Condition ii) was introduced by Grauert [5]. It implies that at every “corner”
the Levi forms of the corresponding{ρi} have their positive eigenvalues along the
same directions.

Thiebaut–Leiterer [13] solved the∂-problem with Hölder estimates for piece-
wise smooth intersections ofq-convex domains where instead of condition ii) they
required that the Levi form of any nontrivial convex combination of{ρi}Ni=1 has at
leastn−q +1 positive eigenvalues. These type of domains were originally consid-
ered by Henkin [6]. However, their solution operators are not suitable for proving
L2(or more generallyLp,1 ≤ p ≤ ∞) estimates. In this paper we construct a dif-
ferent solution operator for∂ by means of Berndtsson–Andersson operators with
multiple weights. The idea of multiple weights appeared in a paper of Berndtsson
[3] on a division and interpolation problem inCn.

The main results are the following theorems:

Theorem 1.Let � ⊂⊂ C
n be a C3q-convex intersection. Let p, q, s ∈ N,1 ≤

q ≤ n,1 ≤ p ≤ ∞, s ≥ q. Given f ∈ L
p
0,s(�) ∂f = 0 in �, there exists

u ∈ L
p
0,s−1(�) such that ∂u = f in �. More precisely we have:

‖u‖Lp(�) ≤ c1‖f ‖Lp(�)

where the constant c1 is independent of f.
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Under the same assumptions as Theorem 1 we obtain:

Corollary 1. ∂ : L2
(0,s−1)(�) → L2

(0,s)(�) has closed range.

The above will imply theL2 existence of the∂-Neumann operator onq-convex
intersections.

In fact, one can prove more:

Theorem 2.Let �, f, u, p, s, q be as in Theorem 1. Then, there exists a ν ∈ N
+

(which depends on the maximal number of nonempty intersections of
{ρi = 0}Ni=1) such that

‖u‖Lr
(0,s−1)(�) ≤ C‖f ‖L

p

(0,s)(�),

where
1

r
= 1

p
+ 1

λ
− 1, where 1 ≤ λ <

2n + 2ν

2n − 1 + 2ν
.

More precisely,

i) For any 1 < p < 2n + 2ν, there exists cp(�) positive constant such that

‖u‖L
q

(0,s−1)(�) ≤ cp(�)‖f ‖L
p

(0,s)(�)

with 1
q

= 1
p

− 1
2n+2ν .

ii) For p ≥ 2n + 2ν, we have ‖u‖L∞
(0,s−1)(�) ≤ Ap(�)‖f ‖L

p

(0,s)(�) for some

positive constant Ap(�).

The paper is organized as follows: In Sect. 1, we present the generalized
Berndtsson–Andersson [2] formula with multiple weights. In Sect. 2, we use the
B-A formula to obtain homotopy formulas on special subdomains of ourq-convex
intersections for smooth(0, s) forms with s ≥ q. To show theLp estimates –
which form Sect. 3 – we have to overcome the difficulties caused by the existence
of the characteristic points, at which∂ρi1(z)∧· · ·∧∂ρil (z) vanishes for some multi-
indices(i1, . . . , il). To do this we use certain affine transformations with respect to
the variablesζ which depend on the pointz. The crucial point is that the constants
obtained in the estimates do not depend onz. We first solve the local∂-problem
with goodLp-estimates, then we obtain the global solution to the∂-closed form
which also satifies anLp estimate. This is done in Sect. 4. Section 5 is devoted to
proving Theorem 2.

1. Generalized Berndtsson–Andersson formula with multiple weights

We shall use the following notation: Forξ, η ∈ C
n, ξ = (ξ1, . . . , ξn), η =

(η1, . . . , ηn) we denote by

〈ξ, η〉 =:
n∑

j=1

ξjηj , |ξ |2 =: 〈ξ, ξ〉 .
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For anyC1
C

n-valued mapsξ, η : X → C
n whereX is a smooth manifold inCn

we define the differential forms

ω′(ξ) =:
n∑

j=1

(−1)j−1ξj ∧
∧
j �=i

dξi,

ω(η) =: dη1 ∧ · · · ∧ dηn.

Let D ⊂ R
n be an open set andf be a differential form of degrees on D.

Then forx ∈ D, we denote by‖f (x)‖ the euclidean length of the vector of the
coefficients off (x) with respect to the canonical coordinatesx1, . . . , xn in R

n, that
is if

f (x) =
∑

1≤i1<···<is≤n

fi1...is dxi1 ∧ · · · ∧ dxis , x ∈ D

then

‖f (x)‖ =:
( ∑

1≤i1<···<is≤n

|fi1...is |2
) 1

2
, x ∈ D

‖f (x)‖ is called the norm off atx.
Whenever we use the notationA � B we shall mean that there exists an absolute

constantc (independent ofz) such thatA ≤ cB.
Let � = {z ∈ W ; ρ1 < 0, . . . , ρN < 0} ⊂⊂ C

n be a piecewise smooth
bounded domain inCn such that the following conditions are satisfied:

α) There exists aC1
C

n-valued map

s =: (s1, . . . , sn) : � × � → C
n

such that for allL ⊂⊂ �, there exist constantsC, c > 0 such that for all
ζ ∈ �, z ∈ L we have

i) |sj (ζ, z)| ≤ C|ζ − z|,
ii) | 〈s, ζ − z〉| ≥ c|ζ − z|2. (*)

β) For i = 1, . . . , N there existC1-maps

Qi =: (Qi
1, . . . ,Q

i
n) : � × � → C

n.

Let {Gi}i=N
i=1 be functions in one variable, holomorphic in a simply connected

domain that contains the image of� × � under the map(ζ, z) �→ 1 + 〈
Qi(ζ, z) ,

z − ζ 〉.
We shall use the same symbolss,Qi to define the following(1,0) forms:

s =
n∑

j=1

sj (ζ, z)d(ζj − zj ), Qi =:
n∑

j=1

Qi
j (ζ, z)d(ζj − zj ).
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We set:

K =: −
∑

a0+a1+···+aN=n−1

(n − 1)!
a1! . . . aN !G

(a1)
1 (1 + 〈Q1, z − ζ 〉) . . .

G
(aN )
N (1 + 〈QN, z − ζ 〉) ∧

∧ s ∧ (ds)a0 ∧ (dQ1)a1 ∧ · · · ∧ (dQN)aN

< s, ζ − z >a0+1

P =:
∑

a1+···+aN=n

(n − 1)!
a1! . . . aN !G

(a1)
1 (1 + 〈Q1, z − ζ 〉) . . .

G
(aN )
N (1 + 〈QN, z − ζ 〉) ∧

∧ (dQ1)a1 ∧ · · · ∧ (dQN)aN

whereG(k) denotes thekth derivative ofG.
The assumption ons imply thatK is integrable inζ ∈ � uniformly for z in a

compact setL ⊂ � and continuous off the diagonal.
By direct calculation we have the following:

Lemma 1.1.Away from the diagonal 6 of C
n × C

n we have dζ,zK = P .

Proposition 1. Let � ⊂⊂ C
n be a piecewise smooth domain that satisfies assump-

tions α), β) mentioned in the beginning of this section. Let 0 ≤ p ≤ n,1 ≤ r ≤ n.
Let f ∈ C1

(p,r)(�). Then we have (in the sense of currents) for z ∈ �:

cnf (z) =
∫
ζ∈∂�

f (ζ ) ∧ K(ζ, z) + (−1)p+r

{
∂z

∫
ζ∈�

f (ζ ) ∧ K(ζ, z)

−
∫
ζ∈�

∂f (ζ ) ∧ K(ζ, z)

}
−

∫
ζ∈�

f (ζ ) ∧ P(ζ, z)

where cn = (−1)
n(n−1)

2 (2πi)n.

Proof. The proof is similar to that of Theorem 1 in Berndtsson–Andersson [2].��

2. Homotopy formulas for local q-convex intersections

2.1. Preliminaries

Let D ⊂ C
n be a domain andρ be a realC3 function onD. We denote byLρ(ζ )

the Levi form ofρ at ζ ∈ � and byFρ(., ζ ) the Levi polynomial ofρ at ζ ∈ D,
i.e.

Lρ(ζ )t =
n∑

j,k=1

∂2ρ

∂ζj ∂ζ k

(ζ )tj tk
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for z ∈ D, t ∈ C
n

Fρ(ζ, z) =: 2
n∑

j=1

∂ρ

∂ζj
(ζ )(ζj − zj ) −

n∑
j,k=1

∂2ρ

∂ζj ∂ζk
(ζ )(ζj − zj )(ζk − zk)

for ζ ∈ D, t ∈ C
n. By Taylor’s expansion theorem we shall have forζ, z ∈ �, ζ, z

close to each other

ReFρ(ζ, z) = ρ(ζ ) − ρ(z) + Lρ(ζ )(ζ − z) + o(|ζ − z|2).
Let � ⊂⊂ C

n be a q-convex intersection, described by� = {z ∈ W ; ρ1 <

0, . . . , ρN < 0}, � ⊂⊂ W . For 1≤ i1 < · · · < i� ≤ N, I = (i1, . . . , i�) we set

�I = {z ∈ W ; ρi < 0 for i ∈ I } SI = {z ∈ W ; ρi = 0 for i ∈ I }
For ξ ∈ SI there existsD∗ smoothly bounded strongly pseudoconvex domain

described byD∗ = {z ∈ W ; ρ∗ < 0} such that∂D∗ intersects real transversally
{z ∈ W ; ρi1 = 0}, . . . , {z ∈ W ; ρi� = 0} andξ ∈ D∗.

We set̃I =: (i1, . . . , i�, ∗)and we define�Ĩ =: {z ∈ W ; ρj < 0 for j ∈ Ĩ }.�Ĩ

will still be a q-convex intersection and shall be called a localq-convex intersection.

2.2. Construction of the local kernels

Since�I is a q-convex intersection, for everyz ∈ �I there exists by definition
an (n − q + 1)-linear subspaceT I

z of C
n such that the Levi formsLρi for i ∈ I

restricted onT I
z are positive definite. Let(T I

z )⊥ denote its orthogonal complement
in C

n. Then dimC(T I
z )⊥ = q − 1. Let ΘI

z : C
n → (T I

z )⊥ be the orthogonal
projection fromC

n to (T I
z )⊥. ThenΘI

z can be described by an(n × n) matrix
ΘI

z = ((ΘI
z )kj )n×n.

Since�I is a q-convex intersection if we consider the Levi polynomials of the
defining functionsρi we shall haveζ, z ∈ �, ζ, z close to each other

ReFρi
(ζ, z) ≥ ρi(ζ ) − ρi(z) + c|ζ − z|2 − C

∣∣ΘI
z (ζ − z)

∣∣2.
Fork = 1, . . . , �, j = 1, . . . , n we define

w
ik
j (ζ, z) =: ∂ρik

∂ζj
(ζ ) −

n∑
µ=1

∂2ρik

∂ζµ∂ζj
(ζ )(ζµ − zµ) + C

n∑
µ=1

(ΘI
z )µj (ζµ − zµ).

We also set

w∗
j (ζ, z) =: ∂ρ∗

∂ζj
(ζ )Hj (ζ, z) + O(|ζ − z|) = @j(ζ, z),

where{@j(ζ, z)} are holomorphic inz. The existence ofHj ’s follows from Heffer’s
decomposition theorem for smooth strongly pseudoconvex domains.Hj ’s areC2

functions such that 0< A0 ≤ |Hj | ≤ A1 < ∞ for some positive constantsA0, A1.
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We set forν = i1, . . . , i�, ∗
Aν(ζ, z) = 〈wν(ζ, z), ζ − z〉, Fν(ζ, z) =: Aν(ζ, z) − ρν(ζ ).

Let ε > 0. We define

Qν =:

n∑
j=1

wν
j (ζ, z)d(ζj − zj )

Fν(ζ, z)
, Qε

ν =:

n∑
j=1

wν
j (ζ, z)d(ζj − zj )

Fν(ζ, z) + ε
,

s(ζ, z) =: ζ − z = (ζ1 − z1, . . . , ζn − zn), s =:
n∑

j=1

sj (ζ, z)d(ζj − zj ).

Then we have 1+ 〈Qε
ν(ζ, z), z − ζ 〉 = −ρν(ζ ) + ε

Fν(ζ, z) + ε
.

Let Gi1(α) = · · · = Gi�(α) = G∗(α) = αn wheren ∈ N.
It follows easily from the Taylor expansion ofρi ’s that we have the following

estimates:

Lemma 2.1.For (ζ, z) ∈ � × � close to each other, ν = 1, . . . , �, ∗ we have:

2ReFν(ζ, z) ≥ −ρν(ζ ) − ρν(z) + b|ζ − z|2

where b is a positive constant.

Remark. The singularities of{Fν}ν=i1,...i�,∗ appear only whenρν(ζ ) = 0 = ρν(z)

andζ = z.

We are ready now to define the kernelsK,P for the local q-convex intersection
�Ĩ .

Without loss of generality we shall assumẽI = (1,2, . . . , � + 1). Then we
define for(ζ, z) ∈ � × � in an analogous way as in Sect. 1:

Kε

Ĩ
= −

∑
a0+a1+···+a�+1=n−1

(n − 1)!
a1! . . . a�+1!G

(a1)
1 (1 + 〈Qε

1, z − ζ 〉) · · ·

· G(a�+1)

�+1 (1 + 〈Qε
�+1, z − ζ 〉)

∧ s ∧ (ds)a0 ∧ (dQε
1)

a1 ∧ · · · ∧ (dQε
�+1)

a�+1

(ε+ < s, ζ − z >)a0+1 ,

P ε

Ĩ
=:

∑
a1+···+a�+1=n

(n − 1)!
a1! . . . a�+1!G

(a1)
1 (1 + 〈Qε

1, z − ζ 〉) · · ·

· G(a�+1)

�+1 (1 + 〈Qε
�+1, z − ζ 〉)

∧ (dQε
1)

a1 ∧ · · · ∧ (dQε
�+1)

a�+1.
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From Proposition 1, of section 1, we have for everyf ∈ C1
(p,r)(�Ĩ ) andz ∈ �Ĩ

(in the sense of currents):

cnf (z) =
∫
ζ∈∂�Ĩ

f (ζ ) ∧ Kε

Ĩ
(ζ, z) + (−1)p+r∂z

∫
ζ∈�Ĩ

f (ζ ) ∧ Kε

Ĩ
(ζ, z)

− (−1)p+r

∫
ζ∈�Ĩ

∂f (ζ ) ∧ Kε

Ĩ
(ζ, z)

−
∫
ζ∈�Ĩ

f (ζ ) ∧ P ε

Ĩ
(ζ, z)

wherecn = (−1)
n(n−1)

2 (2πi)n.

Remarks. i) The coefficients ofKε

Ĩ
(ζ, z)

∣∣
∂�Ĩ×�Ĩ

are of typeO(ε) and therefore
the boundary integrals will vanish asε → 0.

ii) Taking into account condition ii) in the definition of a q-convex intersection, we
see thatP ε

Ĩ
will have at mostq − 1dz ’s. Hence if we examine the part ofP ε

Ĩ
of

bidegree(0, s) in z with s ≥ q we obtain forf ∈ C1
(0,s)(�Ĩ ), z ∈ �Ĩ∫

ζ∈�Ĩ

f (ζ ) ∧ P ε

Ĩ
(ζ, z) = 0.

Proposition 2. Let�Ĩ be a local q-convex intersection defined as in the introduction
of Sect. 2. Then for all f ∈ C1

(0,s)(�Ĩ ), s ≥ q we have for z ∈ �Ĩ (in the sense of
currents):

f (z) = cn,s
{
∂z

∫
ζ∈�Ĩ

f (ζ ) ∧ KĨ (ζ, z) −
∫
ζ∈�Ĩ

∂f (ζ ) ∧ KĨ (ζ, z)
}

where cn,s is a positive constant.

Proof. It follows from Proposition 1, the remarks i), ii) and the fact that the kernels
{K�Ĩ

} are actually absolutely integrable kernels inζ ∈ �Ĩ uniformly forz ∈ L ⊂⊂
�Ĩ . ��
Corollary 2. Let �Ĩ be as in Proposition 2. Given any f ∈ C1

(0,s)(�Ĩ ), s ≥ q,

such that ∂f = 0 in �Ĩ there exists u ∈ C0
(0,s−1)(�Ĩ ) such that ∂u = f in �Ĩ .

More precisely we have for z ∈ �Ĩ u(z) = 1
cn,r

∫
ζ∈�Ĩ

f (ζ ) ∧ KĨ (ζ, z).

3. Lp estimates

This section is devoted to the proof of the following Proposition:

Proposition 3. Let �Ĩ be our local q-convex intersection, p, q, s as in the Theo-
rem 1. Given f ∈ L

p

(0,s)(�Ĩ ) such that ∂f = 0 in �Ĩ there exists u ∈ L
p

(0,s−1)

(�Ĩ ) ∂u = f in �Ĩ . More precisely we have

‖u‖Lp(�Ĩ )
≤ c‖f ‖Lp(�Ĩ )

where c is a constant independent of f and small C3 perturbations of ∂�Ĩ .



Lp estimates for the Cauchy–Riemann operator 421

It will be sufficient to prove Proposition 3 forf ∈ C1
(0,s)(�Ĩ ), since the general

case will follow by a standard regularization argument. To prove theLp-estimates
we shall use the following lemma:

Lemma 3.1.Let (X, dµ), (Y, dν) be two measured spaces, H(x, y) be a kernel
defined on X × Y such that∫

X

∣∣H(x, y)
∣∣dµ(x) ≤ C, y ∈ Y∫

Y

∣∣H(x, y)
∣∣dν(y) ≤ C, x ∈ X

for some positive constant C.
Let Tf (y) =: ∫

x∈X
f (x)H(x, y)dµ(x). Then for all p,1 ≤ p ≤ ∞, there

exists Ap > 0 (independent of f ) such that∥∥Tf ∥∥
Lp(Y )

≤ Ap

∥∥f ‖Lp(X).

Proof. The reader may look at Appendix C in Range[16].��
Remark. In what follows, byEj (ζ, z) we shall denote a double differential form in
(ζ, z) such that its coefficients are ofO(|ζ − z|j ) (i.e.. there exists an “absolute”
constantc > 0 such that

∣∣Ej (ζ, z)
∣∣ ≤ c|ζ − z|j .

We wish to show that our kernelKĨ (ζ, z)satisfies the following two inequalities:∫
ζ∈�Ĩ

∣∣KĨ (ζ, z)
∣∣dV (ζ ) ≤ C, z ∈ �Ĩ ,∫

z∈�Ĩ

∣∣KĨ (ζ, z)
∣∣dV (z) ≤ C, ζ ∈ �Ĩ .

Without loss of generality we shall assume thatĨ = (1, . . . , �+1). Then our kernel
KĨ can be written as finite sum of terms of the following form

E1

|ζ − z|2(n−a1−···−a�+1)

�+1∧
j=1

( E0

F
aj
j

+ aj

Xj

F
aj+1
j

)
where {

X
ζ
j = E2 + E1∂ζ ρj (ζ ) − E1∂ζ ρj (ζ ) + ∂ζ ρj (ζ ) ∧ ∂ζ ρj (ζ )

a1 + · · · + a�+1 ≤ n − 1.

We shall denote by

Xz
j =: E2 + E1∂ρj (z) − E1∂ρj (z) + ∂ζ ρj (z) ∧ ∂ζ ρj (z). (*)

Using the fact that∂ζ ρj (ζ )−∂ζ ρj (z) = E1 for (ζ, z) in some convex neighborhood

of �Ĩ × �Ĩ we can replaceXζ
j in the above expression withXz

j .
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Thus using the multilinearity of the wedge product we shall obtain thatKĨ shall
be a finite sum of terms of the form

E1

|ζ − z|2(n−a1−···−a�+1)

{ E0

F
a1
1 . . . F �+1

a�+1

+
�+1∑
j=1

aj

Xz
j

F
a1
1 . . . F

aj+1
j . . . F

a�+1
�+1

+
∑

2≤k≤�

∑
|J |=k

1≤ji<···<jk≤�+1

aj1 . . . ajk

Xz
j1

∧ · · · ∧ Xz
jk∏

j∈J

F
aj+1
j

∏
j /∈J

F
aj
j

+ a1 . . . a�+1
Xz

1 ∧ · · · ∧ Xz
�+1

�+1∏
j=1

F
aj+1
j

}

wherea1 + · · · + a�+1 ≤ n − 1.
Let us consider an arbitrary term in the above sum, for example

E1Xz
j1

∧ · · · ∧ Xz
jk

|ζ − z|2(n−a1−···−a�+1)
∏
j∈J

F
aj+1
j

∏
j /∈J

F
aj
j

where 1≤ k ≤ � + 1, J = (j1, . . . , jk) ⊂ {1, . . . , � + 1}.
ReplacingXz

j by the right-hand side of (*) and using once again the multilin-
earity of the wedge product, we obtain that

Xz
j1

∧ · · · ∧ Xz
jk

=
∑

i1,...,is )⊂{j1,j1,...,jk,jk}
E2k−sωi1 ∧ · · · ∧ ωis

where

if

{
iν ∈ {j1, . . . , jk}, ωiν = ∂ζ ρiν (z)

iν ∈ {j1, . . . , j k}, ωiν = ∂ζ ρiν (z).

Therefore the arbitrary term of the kernelKĨ can be written as a finite sum of
terms of the following form

E1

|ζ − z|2(n−a1−···−a�+1)

E2k−sωi1 ∧ · · · ∧ ωis∏
j∈{j1,...,jk}

F
aj+1
j

∏
j∈{1,...,�+1}\J

F
aj
j

where{j1, . . . , jk} ⊂ {1, . . . , � + 1} any multiindex with strictly increasing com-
ponents and{i1, . . . , is} ⊂ {j1, j1, . . . , jk, jk} and we use the same convention for
ωiν as before.

Then we wish to estimate forz ∈ �Ĩ andδ > 0 small, the following integral∫
ζ∈�Ĩ∩B(z,δ)

E1E2k−s‖ωi1(z) ∧ · · · ∧ ωis (z)‖ ∧ V2n(ζ )

|ζ − z|
2(n−

�+1∑
i=1

ai ) k∏
j=1

F
aj+1
j

∏
j /∈J

F
aj
j

. (3.1)
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Without loss of generality we shall examine the case whereJ = {1, . . . k},
{i1, . . . , is} = {1, . . . , s}, s ≤ k. The remaining cases will follow in a similar
manner.

We shall use the following lemma:

Lemma 3.2.If we set F ∗
j (ζ, z) = Fj (z, ζ ) then there exist positive constants c1,

c2 independent of (ζ, z) such that for (ζ, z) ∈ �Ĩ × �Ĩ sufficiently close to each
other we have

c1|Fj (ζ, z)| ≤ |F ∗
j (ζ, z)| ≤ c2|Fj (ζ, z)|.

Proof. It is based on the following observations:

F ∗
j (ζ, z) + Fj (ζ, z) = E2 − ρj (ζ ) − ρ(z),

ReFj (ζ, z) ≥ (−ρj (ζ ) − ρj (z) + |ζ − z|2)

for ζ, z ∈ �Ĩ and close to each other.��
Remarks. 1. Lemma 3.2 allows us to replace|Fj | in the above estimates by|F ∗

j |
which is bounded from below in its turn by

|F ∗
j (ζ, z)| ≥ (|〈∂ρj (z), ζ − z〉| + |ρj (ζ )| + |ρj (z)| + |ζ − z|2)

for ζ, z ∈ �Ĩ sufficiently close to each other.

2. There is a relation between the dimension of the ambient space (in our casen)
and the numberN of intersecting domains. More precisely we haven ≥ N + 2.

Lemma 3.3.Let n, d ≥ 1, be integers. Then there exists a constant C = C(n, d) <

∞ such that the following statement is true: Let p1(x), . . . ps(x), (1 ≤ s ≤ n) be
real-valued polynomials of degree ≤ d , defined on R

n, let ε, µ, ν, δ, γ ≥ 0 and let
D ⊂ R

n. Then,∫
x∈D

‖dp1(x) ∧ · · · ∧ dps(x)‖dx1 . . . dx2n

[ε +
s∑

j=1
|pj (x)| + γ (|x| +

s∑
j=1

|pj (x)|µ)]δ[|x| +
s∑

j=1
|pj (x)|]ν

≤ C

∫
t∈T (D)

dt1 . . . dtn

(ε +
s∑

j=1
|tj | + γ |t |)µ|t |ν

(**)

where

T (D) =: {(|p1(x)|, . . . , |ps(x)|) x ∈ D} if s = n,

=:
⋃

1≤i1<...i2n−s≤n

{(|p1(x)|, . . . , |ps(x)|, |xi1|, . . . , |xin−s |) : x ∈ D}

if s < n.
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Proof. Lemma 3.3 is Proposition 4 in Appendix 1, of [9]. The key idea of its proof
shall be used repeatedly in our estimates. Therefore we shall present the argument
in detail. From the definition of‖dp1 ∧ · · · ∧ dps‖ it follows that

‖dp1(x) ∧ ∧dps(x)‖ ≤ max
1≤j1<···<js≤n

|[det(
∂p�(x)

∂xjk

)sk,�=1]|.

If 1 ≤ j1 < · · · < js ≤ n and 1≤ i1 < · · · < in−s ≤ n such that{j1, . . . , js}∪
{i1, . . . , in−s} = {1, . . . , n} then

|dp1(x) ∧ . . . dps(x) ∧ dxi1 . . . dxin−s | = |det[(∂p�(x)

∂xjk

)sk,�=1]dx1 ∧ · · · ∧ dxn|.

This implies that

‖dp1(x) ∧ · · · ∧ dps(x)‖dV (x)

≤ max
1≤i1<···<in−s

|dp1(x) ∧ . . . dps(x) ∧ dxi1 ∧ · · · ∧ dxin−s |.

Therefore the left-hand side of the above integral can be estimated by the max-
imum over all collections 1≤ i1 < · · · < in−s ≤ n of

∫
x∈D

dp1(x) ∧ · · · ∧ dps(x) ∧ dxi1 ∧ · · · ∧ dxin−s |
[ε +

s∑
j=1

|pj (x)| + γ (
s∑

j=1
|pj (x)| +

n−s∑
k=1

|xik |)µ]δ[
s∑

j=1
|pj (x)| +

n−s∑
k=1

|xik |]ν
.

For every collection 1≤ i1 < · · · < in−s ≤ n, the integrand of the last integral
is the pull-back of the integrand on the right-hand side of (**) with respect to the
map:

ai1...in−s (x) = (|p1(x)|, . . . , |ps(x)|, |xi1|, . . . |xin−s |).
It is a corollary of Bezout’s theorem that for everyy ∈ R

n, there are no more thands

pointsx ∈ R
n such that(p1(x), . . . , ps(x), xi1, . . . , xin−s ) = y. Consequently, for

everyy ∈ R
n there are no more than 2nds pointsx ∈ R

n such thatai1...in−s (x) = y.
��

So we need to estimate forz ∈ �Ĩ , δ > 0

∫
ζ∈�Ĩ∩B(z,δ)

|ζ − z|1+2k−s‖∂ζ ρ1(z) ∧ · · · ∧ ∂ζ ρs(z)‖dV (ζ )

|ζ − z|2(n−∑�+1
i=1 ai )

k∏
j=1

|F ∗
j |aj+1

�+1∏
j=k+1

|F ∗
j |aj

. (3.2)
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We shall have

(3.2) ≤
∫
ζ∈�Ĩ∩B(z,δ)

|ζ − z|1+2k−s‖∂ζ ρ1(z) ∧ · · · ∧ ∂ζ ρs(z)‖dV (ζ )

|ζ − z|2(n−∑�+1
i=1 ai )

s∏
j=1

|F ∗
j |aj+1|ζ − z|2(

∑�+1
i=s+1 ai+k−s)

≤
∫
ζ∈�Ĩ∩B(z,δ)

|ζ − z|s+1‖∂ζ ρ1(z) ∧ · · · ∧ ∂ζ ρs(z)‖dV (ζ )

|ζ − z|2(n−∑s
j=1 ai )

s∏
j=1

|F ∗
j |aj+1

≤
∫
ζ∈�Ĩ∩B(z,δ)

‖∂ζ ρ1(z) ∧ · · · ∧ ∂ζ ρs(z)‖dV (ζ )

|ζ − z|2(n−∑s
i=1 ai )−1

s∏
j=1

|F ∗
j |aj+ 1

2

.

Using an argument similar to the proof of Lemma 3.3 we have

(3.2) ≤
∫ ‖∂ζ ρ1(z) ∧ · · · ∧ ∂ζ ρs(z)‖dV (ζ )

|ζ − z|2(n−∑s
i=1 ai )−1

s∏
j=1

(| < ∂ζρj (z), ζ − z > | + |ζ − z|2)aj+ 1
2

.

We setζj − zj = x2j−1 + ix2j for j = 1, . . . , n.
We define fork = 1, . . . , � + 1

wk(ζ, z) =: 〈
∂ζ ρk(z), ζ − z

〉 = Rewk(ζ, z) + iImwk(ζ, z).

Then,

dζwk(ζ, z) = ∂ζ ρk(z) = dζ Rewk(ζ, z) + idζ Imwk(ζ, z).

Thus

∂ζ ρ1(z) ∧ · · · ∧ ∂ζ ρs(z)

= (dζ Rew1(ζ, z) + idζ Imw1(ζ, z)) ∧ · · · ∧ (dζ Rews(ζ, z) + idζ Imws(ζ, z))

=
∑

0≤τ≤s

cτ dζ Rewj1(ζ, z) ∧ · · · ∧ dζ Rewjτ (ζ, z)

∧ dζ Imwjτ+1(ζ, z) ∧ · · · ∧ dζ Imwjs (ζ, z)

wherecτ ∈ C are absolute constants,{j1, . . . , jτ } ⊂ {1, . . . , s}, {jτ+1, . . . , js} ⊂
{1, . . . , s} \ {j1, . . . , jτ }.

Hence the above integral can be split into finite sum of terms of the form (3.3)∫ ‖dζ Rewj1(ζ, z) ∧. . .∧ dζ Rewjτ (ζ, z) ∧ dζ Imwjτ+1(ζ, z) ∧. . .∧ dζwjs (ζ, z)‖dV (ζ )

|ζ − z|2(n−∑s
i=1 ai )−1

s∏
j=1

(|Rewj (ζ, z)| + |Imwj (ζ, z)| + |ζ − z|2)aj+ 1
2

.
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Using the real coordinates{xj }2n
j=1 we can write

Rewk(ζ, z) = 1

2

2n∑
j=1

(
∂ρk(0)

∂x2j−1
x2j−1 + ∂ρk(0)

∂x2j
x2j ) =: pk(x,0),

Imwk(ζ, z) = 1

2

2n∑
j=1

(
∂ρk(0)

∂x2j−1
x2j − ∂ρk(0)

∂x2j
x2j−1) =: qk(x,0)

wherepk(x,0), qk(x,0) are real-valued polynomials inx of degreed = 1.
Without loss of generality we shall estimate the case whereτ = s, {j1, . . . ,

js} = {1, . . . , s}. The other cases will follow similarly. Hence we need to estimate∫
|x|<δ

‖dxp1(x,0) ∧ · · · ∧ dxps(x,0)‖dV2n(x)

|x|2(n−∑s
i=1 ai )−1

s∏
j=1

(|pj (x,0)| + |x|2)aj+ 1
2

. (3.4)

Arguing in a similar manner as in Lemma 3.3 the last integral can be majorized by

C

∫
t∈T (B(0,δ))

dt1 . . . dtsdV2n−s(t)

|t |2(n−∑s
i=1 ai )−1

s∏
j=1

(|tj | + |t |2)aj+ 1
2

, (3.5)

where T (B(0, δ)) = ⋃
1≤i1<···<i2n−s≤2n{(|p1(x,0)|, . . . , |ps(x,0)|, |xi1|, . . .

|xis |) : |x| < δ} if s < 2n. In our case of course,s ≤ k ≤ � + 1 ≤ N + 1 ≤ n.
It is not hard to check thatT (B(0, δ)) is a relatively compact, open neighborhood

of 0.
Hence, if we setr2 = t2

s+1 + · · · + t2
2n, (3.5) can be majorized by∫

dt1 . . . dtsr
2n−s−1dr

r2(n−∑s
i=1 ai )−1

s∏
j=1

(|tj | + r2)aj+ 1
2

≤
∫

r2n−s−1dr

r2(n−∑s
i=1 ai )−1r2(

∑s
i=1 ai− s

2 )

∫
r2n−s−1dr

r2n−s−1 ≤
∫

dr ≤ c1δ,

wherec1 is a positive constant that depends on max{‖ρk‖C3}.

4. Globalization

This section is devoted to the proof of the main theorem.
In his thesis [11], N. Kerzman, developed a method to obtain global solvability

and regularity results for the∂-operator, in theLp and Hölder category for smoothly
bounded strongly pseudoconvex domains, once he had resolved the local∂-problem
with good estimates. The method usually involves 3 steps, which for our case can
be summarized as follows:

Step I. We enlarge our domain�, slightly into�1 and “extend”f into f1 such
that
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i) f1 is defined in�1, is ∂ closed there andf1 = f − ∂ψ in �.

ii) ‖f1‖Lp(�1) ≤ C‖f ‖Lp(�).

iii) ‖ψ‖Lp(�) ≤ C‖f ‖Lp(�).

Step II. We try to fit into�1, a stronglyq-convexC3 domain�̂ such that

� ⊂⊂ �̂ ⊂⊂ �1.

Step III. We apply the global solvability and regularity results for the∂-problem
on strongly q-convex domains withC3 boundary in [14] in conjunction with Step
I to obtain the global solution and the estimates mentioned in the main theorem.

Step I is based on Proposition 4. Letξ ∈ ∂�. Then there existsIξ a multiindex of
maximal length such thatξ ∈ SIξ . Let�Ĩξ

denote the localq-convex intersection on

which we can solve∂ with Lp estimates. We may assume�Ĩξ
= {ρξ

i1
, . . . ρ

ξ
i�
, ρ

ξ∗ <

0}. Then
∂� ⊂⊂

⋃
ξ∈∂�

{ρξ∗ < 0}.

Since∂� is compact there will exist finitely many{ξi}Mi=1 such that∂� ⊂⊂⋃M
i=1{ρξi∗ < 0}. Let θi ∈ C∞

0 ({ρξi∗ + εξi < 0}), εξi > 0 sufficiently small 0≤
θi ≤ 1,

∑M
i=1 θi = 1 in a neighborhoodV∂�. We chooseV ′

∂� ⊂⊂ V∂� ⊂⊂ W . We
enlarge successively ourq-convexC3 intersection in the following way: Forδ > 0
sufficiently small to be chosen appropriately later on, we define

�δ
0 =: �

�δ
i =: {z ∈ � ∪ V ′

∂�; ρ1 < δ

i∑
k=1

θk, . . . ρN < δ

i∑
k=1

θk} for i = 1, . . .M.

Claim. Givenfi ∈ L
p

(0,r)(�
δ
i ) 1 ≤ p ≤ ∞ such that∂fi = 0 in �δ

i for 0 ≤ i ≤
M − 1 there existfi+1, ψi such that the following are true;

α) fi+1 ∈ L
p

(0,r)(�
δ
i+1), ∂fi+1 = 0 in �δ

i+1.

β) fi+1 − fi = ∂ψi in �δ
i .

γ ) ‖fi+1‖Lp(�δ
i+1)

≤ c‖fi‖Lp(�δ
i )

‖ψi‖Lp(�δ
i )

≤ c‖fi‖Lp(�δ
i )
.

Proof. Similar to the proof of Lemma 2.2.1 in [11].��
Remark. We shall chooseδ = δ0 > 0 sufficiently small such that we can apply
Proposition 3 to small perturbations of ourq-convex intersection).

Thus we can find�M =: �1 ⊂⊂ C
n,� ⊂⊂ �1 f1 ∈ Lp(�1), ∂f1 = 0 in

�1 andψ = ∑M−1
i=0 ψi ∈ Lp(�) such thatf1 − f = ∂ψ in �.

Step II, is validated by the following lemma.
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Lemma 4.1.Let V ′′
∂� ⊂⊂ V ′

∂�. Let � be as in Theorem. Let τ > 0 and define
�τ =: {z ∈ � ∪ V ′′

∂� : ρ1 < τ, . . . , ρN < τ }. Then, there exists a strongly

q-convex domain �̂ ⊂⊂ C
n with C3 defining function such that

� ⊂⊂ �̂ ⊂⊂ �τ .

Proof. Forγ > 0 we define

φ1 =: max
γ

(ρ1, ρ2), φ2 = max
γ

(φ1, ρ3), . . . , φN = max
γ

(φN−1, ρN),

where maxγ (., .)=: the regularized max-function introduced byAndreotti–Hill.��
Definition. For γ > 0 let χγ ∈ C∞(R), convex such that

i) χγ (t) = χγ (−t),
ii) |t | ≤ χγ (t) ≤ |t | + γ ,
iii) |χ ′

γ (t)| < 1 if |t | < γ
2 ,

iv) χγ (t) = |t | if |t | ≥ γ
2 .

For t1, t2 ∈ R we set

max
γ

(t1, t2) = t1 + t2

2
+ χγ

(
t1 − t2

2

)
.

Then some of the key properties of the regularized max function can be summarized
in the following lemma

Lemma 4.2.For φ,ψ ∈ Ck(k ≥ 2) functions defined in C
n we have

i) max(φ, ψ) ≤ maxγ (φ, ψ) ≤ max(φ, ψ) + γ ,
ii) maxγ (φ, ψ) = max(φ, ψ) if |φ − ψ | > γ ,
iii) d maxγ (φ, ψ)(z) = λ(z)dφ(z) + (1 − λ(z))dψ(z) for λ(z) ∈ [0,1], z ∈ C

n,
iv) If φ and ψ are strictly q-convex functions in C

n such that they have at least
n − q + 1 positive eigenvalues in the same directions then maxγ (φ, ψ) is a
strictly q-convex function (as smooth as φ,ψ).

Proof. See Lemma 4.13, Corollary 4.14, p. 64 in [10] for the proof of i), ii), iii),
iv) follows by direct calculation.

Givenτ > 0 we can choose 0< γ =: τ
2(N+1) sufficiently small and 0< α =

(N + 1)γ = τ
2 , V

′′′
∂� ⊂⊂ V ′′

∂� such that

� ⊂⊂ �̂ =: {z ∈ � ∪ V ′′′
∂�;φN − α < 0} ⊂⊂ �τ .

Then�̂ is a stronglyq-convex domain withC3 defining function and by choos-
ing τ sufficiently small we can even guarantee that� ⊂⊂ �τ ⊂⊂ �1.

Lemma 4.3.Let G ⊂⊂ C
n be a strongly q-convex domain with C3 defining func-

tion. Then for every f ∈ L
p

(0,r)(G), ∂f = 0, r ≥ q, p ∈ N,1 ≤ p ≤ ∞, there

exists u ∈ L
p

(0,r−1)(G) such that
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α) ∂u = f in G (in the distribution sense)

β) ‖u‖Lp(G) ≤ K‖f ‖Lp(G)

where K is a positive constant independent of f .

Proof. Satz 1.7.1 in [14].
Let f̂ = f1|�̂. Thenf̂ is ∂ closed in�̂. By Lemma 4.3 there existsυ such

that∂υ = f̂ . But then we shall havef = ∂(ψ + υ)in the distribution sense in�.
Henceu =: ψ + υ is a global solution that satisfies the estimates in Theorem 1.
��

5. Improved Lp-estimates

The proof of Theorem 2 shall be based on the following Lemmas:

Lemma 5.1 (GeneralizedYoung inequality).Let (X, dµ), (Y, dν) be two measured
spaces, H(x, y) be a measurable function defined on X × Y such that∫

X

∣∣H(x, y)
∣∣τ dµ(x) ≤ Mτ for almost all, y ∈ Y∫

Y

∣∣H(x, y)
∣∣τ dν(y) ≤ Mτ for almost all x ∈ X

for some positive constant M < ∞, τ ≥ 1. Then the linear operator defined ν-a.e.
by

Tf (y) =
∫
X

f (x)K(x, y)dµ(x)

is bounded from Lp(X) to Lq(Y ) with norm ≤ M for all 1 ≤ p, q ≤ ∞ with

1

q
= 1

p
+ 1

τ
− 1

with the usual conventions in the case q, or p are ∞.

Proof. See Appendix B in Range [16].

Lemma 5.2.The local solution operators TĨ f (z) =: ∫
ζ∈�Ĩ

f (ζ )∧KĨ (ζ, z) satisfy

the following estimates: For 1 ≤ p ≤ ∞, f ∈ L
p

(0,s)(�Ĩ ) we have

‖TĨ f ‖Lr
(0,s−1)(�Ĩ )

≤ cp(�)‖f ‖L
p

(0,s)(�Ĩ )

with
1

r
= 1

p
+ 1

λ
− 1,

where 1 ≤ λ <
2n+2µ

2n−1+2µ,µ = the maximal number of nonempty intersections of

{ρi = 0}i=�+1
i=1 and cp(�) a positive constant that depends on max{‖ρi‖C3 i =

1, . . . � + 1} and �,p.



430 L. Ma, S. K. Vassiliadou

Proof. We shall apply Lemma 5.1 forH = KĨ , τ ≥ 1, to be determined later on.
An arbitrary term of the kernelKĨ can be written as a finite sum of terms of the

following form

E1

|ζ − z|2(n−∑�+1
i=1 ai )

E2k−sωi1 ∧ · · · ∧ ωis∏
j∈{j1,...,jk}

F
aj+1
j

∏
j∈{1,...,�+1}\J

F
aj
j

,

where{j1, . . . , jk} ⊂ {1, . . . , � + 1} any multiindex with strictly increasing com-
ponents and{i1, . . . , is} ⊂ {j1, j1, . . . , jk, jk} and we use the same convention for
ωiν as in Sect. 3. ��

Then we wish to estimate forz ∈ �Ĩ andδ > 0 small, the following integral∫
ζ∈�Ĩ∩B(z,δ)

E (2k−s+1)τ‖ωi1(z) ∧ · · · ∧ ωis (z)‖ ∧ dV2n(ζ )

|ζ − z|2(n−∑
ai )τ

k∏
j=1

F
(aj+1)τ
j

∏
j /∈J

F
aj τ

j

. (5.1)

Without loss of generality we shall examine the case whereJ = {1, . . . k},
{i1, . . . , is} = {1, . . . , s}, s ≤ k. The remaining cases will follow in a similar
manner.

So we need to estimate forz ∈ �Ĩ , δ > 0∫
ζ∈�Ĩ∩B(z,δ)

|ζ − z|(1+2k−s)τ‖∂ζ ρ1(z) ∧ · · · ∧ ∂ζ ρs(z)‖dV (ζ )

|ζ − z|2(n−∑�+1
i=1 ai )τ

k∏
j=1

|F ∗
j |(aj+1)τ

�+1∏
j=k+1

|F ∗
j |aj τ

. (5.2)

We shall have

(5.2) ≤
∫
ζ∈�Ĩ∩B(z,δ)

|ζ − z|(1+2k−s)τ‖∂ζ ρ1(z) ∧ · · · ∧ ∂ζ ρs(z)‖dV (ζ )

|ζ − z|2(n−∑�+1
i=1 ai )τ

s∏
j=1

|F ∗
j |(aj+1)τ |ζ − z|2(

∑�+1
i=s+1 ai+k−s)τ

≤
∫
ζ∈�Ĩ∩B(z,δ)

|ζ − z|(s+1)τ‖∂ζ ρ1(z) ∧ · · · ∧ ∂ζ ρs(z)‖dV (ζ )

|ζ − z|2(n−∑s
j=1 ai )τ

s∏
j=1

|F ∗
j |(aj+1)τ

≤
∫
ζ∈�Ĩ∩B(z,δ)

‖∂ζ ρ1(z) ∧ · · · ∧ ∂ζ ρs(z)‖dV (ζ )

|ζ − z|2(n−∑s
i=1 ai )τ−τ

s∏
j=1

|F ∗
j |(aj+ 1

2 )τ

.

Using an argument similar to the proof of Lemma 3.3 we have

(5.2) ≤
∫
ζ∈�Ĩ∩B(z,δ)

‖∂ζ ρ1(z) ∧ · · · ∧ ∂ζ ρs(z)‖dV (ζ )

|ζ − z|2(n−∑s
i=1 ai )τ−τ

s∏
j=1

(| < ∂ζρj (z), ζ − z > | + |ζ − z|2)(aj+ 1
2 )τ

.
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We setζj − zj = x2j−1 + ix2j for j = 1, . . . , n.
We define fork = 1, . . . , � + 1

wk(ζ, z) =:< ∂ζρk(z), ζ − z >= Rewk(ζ, z) + iImwk(ζ, z).

Then,

dζwk(ζ, z) = ∂ζ ρk(z) = dζ Rewk(ζ, z) + idζ Imwk(ζ, z).

Thus

∂ζ ρ1(z) ∧ · · · ∧ ∂ζ ρs(z)

= (dζ Rew1(ζ, z) + idζ Imw1(ζ, z)) ∧ · · · ∧ (dζ Rews(ζ, z) + idζ Imws(ζ, z))

=
∑

0≤σ≤s

cσ dζ Rewj1(ζ, z) ∧ · · · ∧ dζ Rewjσ (ζ, z) ∧ dζ

· Imwjσ+1(ζ, z) ∧ · · · ∧ dζ Imwjs (ζ, z),

wherecσ ∈ C are absolute constants,{j1, . . . , jσ } ⊂ {1, . . . , s}, {jσ+1, . . . , js} ⊂
{1, . . . , s} \ {j1, . . . , jσ }.

Hence the above integral can be split into finite sum of terms of the form (5.3)∫ ‖dζ Rewj1(ζ, z) ∧. . .∧ dζ Rewjσ (ζ, z)∧dζ Imwjσ+1(ζ, z) ∧. . .∧ dζ Imwjs (ζ, z)‖dV (ζ )

|ζ − z|2(n−∑s
i=1 ai )τ−τ

s∏
j=1

(|Rewj (ζ, z)| + |Imwj (ζ, z)| + |ζ − z|2)(aj+ 1
2 )τ

.

Using the real coordinates{xj }2n
j=1 we can write

Rewk(ζ, z) = 1

2

2n∑
j=1

(
∂ρk(0)

∂x2j−1
x2j−1 + ∂ρk(0)

∂x2j
x2j ) =: pk(x,0),

Imwk(ζ, z) = 1

2

2n∑
j=1

(
∂ρk(0)

∂x2j−1
x2j − ∂ρk(0)

∂x2j
x2j−1) =: qk(x,0),

wherepk(x,0), qk(x,0) are real-valued polynomials inx of degreed = 1.
Without loss of generality we shall estimate the case whereσ = s, {j1, . . . , js}

= {1, . . . , s}. The other cases will follow similarly. Hence we need to estimate∫
|x|<δ

‖dxp1(x,0) ∧ · · · ∧ dxps(x,0)‖dV2n(x)

|x|2(n−∑s
i=1 ai )τ−τ

s∏
j=1

(|pj (x,0)| + |x|2)(aj+ 1
2 )τ

. (5.4)

Arguing in a similar manner as in Lemma 3.3 (5.4) can be majorized by

C

∫
t∈T (B(0,δ))

dt1 . . . dtsdV2n−s(t)

|t |2(n−∑s
i=1 ai )τ−τ

s∏
j=1

(|tj | + |t |2)(aj+ 1
2 )τ

, (5.5)
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where

T (B(0, δ))

=
⋃

1≤i1<···<i2n−s≤2n

{(|p1(x,0)|, . . . , ps(x,0)|, |xi1|, . . . |xis |) : |x| < δ}

if s < 2n. In our case of course,s ≤ k ≤ � + 1 ≤ N + 1 ≤ n − 1.
It is not hard to check thatT (B(0, δ)) is a relatively compact, open neighborhood

of 0.
Hence, if we setr2 = t2

s+1 + · · · + t2
2n, (3.5) can be majorized by∫

dt1 . . . dtsr
2n−s−1dr

r2(n−∑s
i=1 ai )τ−τ

s∏
j=1

(|tj | + r2)(aj+ 1
2 )τ

≤
∫

r2n−s−1dr

r2(n−∑s
i=1 ai )τ−τ r2(

∑s
i=1 aiτ− s

2τ)−2s

≤
∫

r2n−s−1dr

r2nτ−2s−τs−τ
≤

∫
r2n−2nτ+τ−τs+s−1dr < ∞

if and only if 2n − 2nτ + τ − τs + s > 0 i.e. if τ < 2n+s
2n−1+s

.

Taking into account that 0≤ s ≤ 2k ≤ 2µ and choosingτ = 2n+2µ
2n−1+2µ <

2n+s
2n−1+s

we can obtain the finiteness of the above integral.��
Remark. In the case where we have a smooth strongly pseudoconvex domain sim-
ilar estimates were obtained by Krantz [12].

We need also a stronger version of Lemma 4.3 of the previous section.

Lemma 5.3.Let G be a bounded smooth strongly q-convex domain in C
n with C3

defining function. Let 1 ≤ p ≤ ∞, f ∈ L
p

(0,s)(G), ∂f = 0 in G, s ≥ q. Then there

exists u ∈ L
p

(0,s−1(G), ∂u = f in G such that

i) If 1 < p < 2n + 2, u ∈ Lr
(0,s−1)(G) with 1

r
= 1

p
− 1

2n+2 .

ii) If p = 1, u ∈ L
2n+2
2n+1−η

(0,s−1) (G) for any η > 0.
iii) If p = 2n + 2, u ∈ Lr

(0,s−1)(G) where p < r < ∞.

iv) If 2n + 2 < p ≤ ∞, u ∈ C
0,ε
(0,s−1)(G) with ε = 1

2 − n+1
p

.

Proof. The proof is based on Theorem 1 in Bonneau–Diederich [4] (which gives
local estimates) and standard arguments based on ideas in Lemmas 2.3.1–2.3.5 of
Henkin–Leiterer [9].

Using Lemmas 5.2, 5.3 and arguing along the same lines as in Sect. 4 we can
show Theorem 2.
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