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Abstract. We construct a new solution operator foon certain piecewise smoajRconvex
intersectionsL? estimates are obtained for the solution operatofs@bsed forms on such
domains.

Introduction

Great progress has been made recently in understandirdgNieemann problem

on piecewise smooth domains. Henkin—lordan—Kohn [8], Michel-Shaw [15] ob-
tained subelliptic%—estimates for thé@-Neumann operator on piecewise smooth
intersections of strongly pseudoconvex domains. Henkin—lordan, [7] showed com-
pactness of th@-Neumann operator on bounded pseudoconvex donfainsth
B-regular boundary (i.e. there exists a continuous fungtigma neighborhood/

of 9D such thatD N U = {p < 0},dd°p > dd°|z|*> whered® = ;- (3 — 9)).
Straube [17] obtained subellipticestimatess < %) for piecewise smooth inter-
sections of finite 1-D’Angelo type domains. The key ingredient in the proof of all
of the results above is an exhaustion of the piecewise smooth domain by smooth
(or uniformly Lipschitz) strongly pseudoconvex domains on whictbtiNeumann
operators exist and satisfy uniforb? or subelliptice-estimates.

Much less is known when the domains are not pseudoconvex. Due to its intimate
connection to the tangential Cauchy—Riemann operator operator it would be of great
interest to understand tlleNeumann operator on more general piecewise smooth
domains that arise as piecewise smooth intersections of smamhvex domains.

Definition 1. A bounded smooth domain D in C" iscalled strongly g-convex (resp.
weakly g-convex) if there exists a bounded neighborhood W of 9 D and a smooth
defining function r of D such that for every z € a D the Levi formof r|yp at z has
at least n — g positive (resp. non-negative) eigenvalues.
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In particular, a strongly 1-convex domain is strongly pseudoconvex.

The category of;-convex domains wheg > 1 is still rather unexplored. In
contrast to the pseudoconvex case, there are major differences between 1-convex
andg-convex domains wheaq > 1.

«) The intersection of any twg-convex domainsg > 1) is not necessarily-
convex (that will lead to problems in smoothiggsubharmonic functions).

B) There are nd.?-estimates fob with “good” constants on smooth strongjy
convex domains and there are no unweightédestimates fod on smooth
weakly g-convex domains.

y) There are no global holomorphic support functions for smooth stropgly
convex domains that can be used to construct global integral solution operators
for 3 on such domains.

In this paper we shall study thieandd-Neumann problem for the following
type of piecewise smooth domains:

Definition 2. Abounded domain 2 in C” shall becalled a C2 g-convexintersection
if there exists a bounded neighborhood W in C” of © and a finite number of real
€3 functions p1, ..., py Wheren > N + 2 defined on W such that @ = {z €
Wlp1(z) <0,..., py(z) < 0} and thefollowing are true:

i) Forl<ip<ips<--- <iyg <N thelformsdp;,,...,dp; areR-linearly

independent on ﬂj:_gl{p,»j <0}.

i) Forld <i; < -+ < iy < N, for every z € ﬂj:ji{pi,- < 0}, if we st
I =(i1,...,1), thereexistsalinear subspaceTZ’ of C" of complex dimension

atleast n — g + 1 such that for i € I the Levi forms Lp; restricted on TZ’ are
positive definite.

Condition ii) was introduced by Grauert [5]. It implies that at every “corner”
the Levi forms of the correspondirig; } have their positive eigenvalues along the
same directions.

Thiebaut—Leiterer [13] solved theproblem with Holder estimates for piece-
wise smooth intersections gtconvex domains where instead of condition ii) they
required that the Levi form of any nontrivial convex combinatior{,az;i}f\’:l has at
leastn — g + 1 positive eigenvalues. These type of domains were originally consid-
ered by Henkin [6]. However, their solution operators are not suitable for proving
L?(or more generally.?, 1 < p < oo) estimates. In this paper we construct a dif-
ferent solution operator far by means of Berndtsson-Andersson operators with
multiple weights. The idea of multiple weights appeared in a paper of Berndtsson
[3] on a division and interpolation problem @r'.

The main results are the following theorems:

Theorem 1.Let @ cc C" bea C3q-convex interse(ition. Let p,g,s € N,1 <
g <nl<p<oos>gq.GvenfelLfi(Qaf =0ing, there exists
u e Ly, () suchthat ou = f in Q. More precisely we have:

lullLr@) < cill fliLr)

where the constant ¢1 isindependent of f.
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Under the same assumptions as Theorem 1 we obtain:

Corollary 1. 3 : L(ZO,Sil)(Q) — L(ZO’S)(Q) has closed range.

The above will imply the.? existence of th@-Neumann operator aprconvex
intersections.
In fact, one can prove more:

Theorem 2.Let Q, f, u, p, s, g be asin Theorem 1. Then, there existsa v € N*
(which depends on the maximal number of nonempty intersections of
{pi = O}}Y_;) such that

<
e,y = ClIFlL o

where
1 1 1 2n + 2v
- =—+-—-—-1, wheel<i< ———.
rop A 2n—1+2v

More precisely,
i) Foranyl< p < 2n+4 2v, there exists ¢, (R2) positive constant such that

u < cp(R2 p
” ||L‘(10.S_1)(Q) = p( )”f”L(O,s)(Q)

withi=22__21_

. —p 2n+2v-°

i) For p > 2n + 2v, we have ||u||L(o&sil)(Q) < A”(Q)”f”Lf’os)(Q) for some
positive constant A ,(2).

The paper is organized as follows: In Sect. 1, we present the generalized
Berndtsson—Andersson [2] formula with multiple weights. In Sect. 2, we use the
B-A formula to obtain homotopy formulas on special subdomains ofyecmnvex
intersections for smootkD, s) forms withs > ¢. To show theL? estimates —
which form Sect3 — we have to aercome the difficulties caused by the existence
of the characteristic points, at whiéja;, (z) A - - - Adp;, (z) vanishes for some multi-
indices(i, ..., i;). To do this we use certain affine transformations with respect to
the variableg which depend on the poiat The crucial point is that the constants
obtained in the estimates do not depend;oWe first solve the locad-problem
with good L?-estimates, then we obtain the global solution todkeosed form
which also satifies af? estimate. This is done in Sect. 4. Section 5 is devoted to
proving Theorem 2.

1. Generalized Berndtsson—Andersson formula with multiple weights

We shall use the following notation: F@rn € C", & = (61,....&), n =
(1, - .., ny) We denote by

&) =) &y, €17 =:(£,8).
j=1
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For anyC! C"-valued mapg, n : X — C" whereX is a smooth manifold irT”
we define the differential forms

o (§) =Y (177 A N d&i,
j=1 J#i

o(m) =:dn - Ndny.

Let D c R”" be an open set angl be a differential form of degree on D.
Then forx € D, we denote by f(x)| the euclidean length of the vector of the
coefficients off (x) with respect to the canonical coordinatgs. . ., x, in R”, that
is if

f =Y faidxg Ao Adxi,x €D

1<ii<-<ig<n

then

NI=

= ( > uasl?)xeD

1<iy<--<ig<n

|| f(x)|l is called the norm off atx.

Whenever we use the notatidn< B we shall mean that there exists an absolute
constant (independent of) such thatA < ¢B.

LetQ = {z € W;p1 <0,...,onv < 0} cc C" be a piecewise smooth
bounded domain if©” such that the following conditions are satisfied:

«) There exists @1 C"-valued map
S=1(S1,...,5):QxQ—>C"

such_that for allL cc €, there exist constants, ¢ > 0 such that for all
. € Q,z € Lwehave

i) Isj (¢, )| < Cl¢ —zl,
i) (s, ¢ — ) =clt —z% *)

B) Fori =1,..., N there exisC1-maps
0 = (0),....,0): QxQ—C"

Let {G,»}fﬁz’lv be functions in one variable, holomorphic in a simply connected
domain that contains the image@fx & under the mayz, z) — 1+ (0'(¢, 2),
z—&).

We shall use the same symbelgQ’ to define the following 1, 0) forms:

s=Y 8¢, dg; —z), 0 =Y 05 d —z)

j=1 j=1
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We set:

- 1!
K=- Y UZYgeait-o)...
ai!...an! 1

ap+ay+--+ay=n—1

GV A+ QN z— ) A
SA(d)OAdODHYI Ao A dON)W
AN
<s,¢ —z>a0+l

T

P= 2 %GS”(H(Q%Z—;»...
ar+ Ty =n 41 an!

GUV @+ (0N, z—H A

/\(dQl)“1 A AdONHYW

whereG® denotes théth derivative ofG.

The assumption onimply that X is integrable inc € Q uniformly for z in a
compact seL C © and continuous off the diagonal.

By direct calculation we have the following:

Lemma 1.1.Away fromthe diagonal A of C" x C" we haved; ;K = P.

Proposition 1. Let @ cc C" be a piecewise smooth domain that satisfies assump-
tions«), B) mentioned in the beginning of thissection. Let0 < p <n,1<r <n.

Let f € C(lp’r)(ﬁ). Then we have (in the sense of currents) for z € Q:

cnf(z>=/ f(<:>AK<c,z>+<—1>”+’{5z/ f@)AK(E,2)
£ed2 reQ

—/{ Qﬁf(mm,o}— £ AP@.2)

145191
nn—1)

wherec, = (=D~ 2z (27i)".

Proof. The proof is similar to that of Theorem 1 in Berndtsson—Andersson [2].

2. Homotopy formulas for local g-convex intersections
2.1. Preliminaries

Let D c C" be a domain ang be a realC? function onD. We denote by.p(¢)
the Levi form ofp at¢ € © and byF,(., ¢) the Levi polynomial ofp at € D,
ie.

292 _
L@t = Y~ ()1

Jok=1 ¢ 98,
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forze D,t e C"

n 2

NP 8% N —
Fp(;,z>—.2j§a§j(c)(;, zj) Zagag ()¢ — 2 (& — %)

for¢ € D, € C". By Taylor's expansion theorem we shall havefor € , ¢, z
close to each other

ReF,(¢,2) = p(¢) — p(2) + Lo(2) (¢ — 2) + o(| — z[?).

Let Q@ cc C" be a g-convex intersection, described®y= {z € W; p1 <
0,....,o0n <0}, QCccW.Forl<iy<---<ig <N,I=(,...,i¢) weset

={zeW;p, <0foriel} S;={zeW,p;,=0 foriel}

For& € S; there existd, smoothly bounded strongly pseudoconvex domain
described byD, = {z € W; p, < 0} such thath D, intersects real transversally
{zeW;piy =0},...,{z € W; p;, =0} and¢ € D,.

We setl =: (il,.. ,ig, %) andwe defin®@y =: {z € W; p; <Oforj e 1. Q7
will still be a g-convex intersection and shall be called a lgeabnvex intersection.

2.2. Construction of the local kernels

Since; is a g-convex intersection, for everye Q; there exists by definition
an(n — g + 1)-linear subspac@z’ of C" such that the Levi formg&p; fori € 1
restricted orTZ’ are positive definite. Le(trz’ )* denote its orthogonal complement
in C". Then dim:(T/)t = ¢ — 1. Let®! : C* — (T/)* be the orthogonal
projection fromC" to (TZ’)L. Then @ZI can be described by a@m x n) matrix
@I = ((@ )k Ynxn-

SinceQ; |s a g-convex intersection if we consider the Levi polynomials of the
defining functionsp; we shall have:, z € @, ¢, z close to each other

ReF,,(£,2) = pi(¢) — pi(2) +clt — 22— Clol ¢ — ).

Fork=1,...,¢,j=1,...,nwedefine

lk ,Olk n 82pik ~ n , ~
@ =g @ ;aguag(;m zu>+c#§(@z>w<cu Z0)-

We also set

wi¢,2) =

=1I1;(¢, 2),

8;1
where(I1; (¢, z)} are holomorphicin. The existence aff;'s follows from Heffer's
decomposition theorem for smooth strongly pseudoconvex domH;nsareCZ
functions such that & Ag < |H;| < A1 < oo for some positive constants, Ax.



LP? estimates for the Cauchy—Riemann operator 419

We set forv = iq, ..., ip, *

(¢, 2) = (w2, ¢ —2), Fu( 2 =P, 2) — pu(0).

Lete > 0. We define

= =

QV _ Fv({’z) Ql) =: Fv(§7 Z)+6
SCD=C-T=@Q1— 20 ... 0 —2n). s= Y _5;(0.2d(; —z).
j=1
—,0\)(;)_'_6
Then we h v T R@ate
enwehave & (0, 2).2 =0 = 2 e

LetGy (@) = - = Gj, (@) = G«(a) = o wheren € N.
It follows easily from the Taylor expansion of’s that we have the following
estimates:

Lemma 2.1.For (¢, z) € Q x Q closeto each other, v =1, ..., ¢, = we have:

2ReF,(¢,2) = —pu(§) — pu(2) + bl — 2
where b is a positive constant.

Remark. The singularities of F\,},=i,....i,,« appear only whem, (¢) = 0 = p,(z)
and¢ = z.

We are ready now to define the kern&ls P for the local g-convex intersection
Q7.
Without loss of generality we shall assume= (1,2,...,¢ + 1). Then we
define for(¢, z) €  x Q in an analogous way as in Sect. 1:

n— 1!
KS = — E ¥G(1“1)(1+(Qi,z_§))...
1 ail...apy1!
ap+ay+--+agy1=n—1

G A+ Q41,2 )

S A (SO A QD™ A -+ A(dQS,
(e+ < 5,8 —z >)dotl

)

D .
D D e LI RTINS

al...a
ar+--+agy1=n 1 t+1

CGEEP A+ Q41,2 — )
AEOD™ A - A(dQG )"
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From Proposition 1, of section 1, we have for evgrye C(lp r)(Q_T) andz e Qy
(in the sense of currents):

af@= [ FOAKHCD+ D[ 0 AR
;edQy ¢

eQy

—or [0 ARG
teQy

| r@o AP

;eQy

nn-1)
2

wherec,, = (—1) 2mi)".

Remarks. i) The coefficients 017(;(;, Z) ’3Q~><§2~ are of typeO (¢) and therefore
1 1

the boundary integrals will vanish as— 0.

i) Taking into account condition ii) in the definition of a g-convex intersection, we
see thatP»; will have at mosty — 1dz 's. Hence if we examine the part dﬂlf of

bidegre&(0, s) in z with s > ¢ we obtain forf c(loﬁs)(sz_;), 7€ Q5

| ronrca=o
eQy

Proposition 2. Let 7 bealocal g-convexintersection defined asintheintroduction
of Sect. 2. Then for all f € Cfy (7). s = ¢ wehavefor z € Qj (in the sense of
currents):

f(Z) = Cn,s {52/

teQy

f(g“)AKf(;“,z)—/

ceQ

Af (&) A K7L, D))
7

where ¢, 5 iSa positive constant.

Proof. It follows from Proposition 1, the remarks i), ii) and the fact that the kernels
{Kq;} are actually absolutely integrable kernelg ia 27 uniformlyforz € L CC

Qy. O

Corollary 2. Let Q7 be as in Proposition 2. Given any f € C(lo’s)(sz_;), s >gq,
such that 3 f = 0in Q7 there existsu € C ;) (Q7) such that du = f in Q7.
More precisely we havefor z € Q7 u(z) = -1 fgegrf(é) A K7(E, 2).

Cn,r

3. LP estimates

This section is devoted to the proof of the following Proposition:

Proposition 3. Let €25 be our local g-convex intersection, p, ¢, s asin the Theo-
rem 1. Given f e Lfos)(Q;) such that 9 f = 0in Qj there existsu € Lfos—l)

(Q7) du = fin Q7. More precisely we have
lullr@p < el fllLr@p

where ¢ is a constant independent of f and small C2 perturbations of Q7.
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It will be sufficient to prove Proposition 3 fof € C(l0 s)(§,~), since the general
case will follow by a standard regularization argument. To provd thestimates
we shall use the following lemma:

Lemma 3.1.Let (X,du), (Y, dv) be two measured spaces, H (x, y) be a kernel
defined on X x Y such that

/X |H(x, y)|dux) <C, yeY
/ |H(x, »)|dv(y) <C, xeX
Y
for some positive constant C.

Let Tf(y) = [,cx f()H(x,y)du(x). Thenfor all p,1 < p < oo, there
exists A, > 0 (independent of f ) such that

|77]

Proof. The reader may look at Appendix C in Range[16H

Loy < Apll e

Remark. Inwhat follows, by’ (¢, z) we shall denote a double differential formin
(¢, z) such that its coefficients are 6f(|¢ — z|/) (i.e.. there exists an “absolute”
constant > 0 such that&’ (¢, z)| < c|¢ — zV.

We wish to show that our kern&l;(¢, z) satisfies the following two inequalities:
/ |K7(¢, 2)|dV () <C, zeQ,
ey
f K72, 2)|dV(2) <C, ¢ eQy.
2€Q5

Without loss of generality we shall assume that (1,...,2+1). Thenour kernel
K7 can be written as finite sum of terms of the following form

£l ‘7\1< £, X )
_ ,|2(n—ay—--—ag+1) aj J _aj+1
1§ —zl RAV F;’

where

X5 = E2+4 %0, pj () — EX: pj(0) + 9 pj (§) ADgpj (©)
ar+---+a1 <n-—-1

We shall denote by
Xj = &%+ Sla,oj(z) - Slg,oj(z) + 0:0j(2) /\5§pj(z). *)

Using the fact thad, p; (¢) —9; pj (2) = Elfor (¢, z) in some convex neighborhood
of Q5 x Q5 we can replace& f in the above expression witki:.



422 L. Ma, S. K. Vassiliadou

Thus using the multilinearity of the wedge product we shall obtainkhathall
be a finite sum of terms of the form

1 £o0 e+l z
¢ +Ya o
_ ~|2(n—a1—-—ae+1) (+1 aj a aj+1 a
Z 1 J 0+1
[Sad 'Ry R ...Fj L F
XZ A - AXZ
+ Y ) aneap
25k=t  |I=k 1 FiILE
1<ji<-<jr<t+1 jeJ jeJ
Z
Xin-ANXGy
+a1...a5+1—
1 g
H F}!

whereay + -+ +ag+1 <n— 1.
Let us consider an arbitrary term in the above sum, for example

51XZ. A AXE

1
|¢ — z|2n—ar1——art1) I1 FJ”JJ" I1 F
jeJ jéJ

wherel<k<¢+1,J=1,...,jx) C{l, ..., £+ 1}
Replacinng by the right-hand side of (*) and using once again the multilin-
earity of the wedge product, we obtain that
4 2k —
le/\---/\Xik: Z EN  wi A AN
i15eesds) L T oo ko k)
where
|f il) S {]179]](}1 a)iv = a(piv(z)
ive{jlv""jk}v a)iu:a{piv(z)-
Therefore the arbitrary term of the kernié} can be written as a finite sum of
terms of the following form
£t EXSwy A Ay,
— |2(n—a1—--—ag+1) aj+1 a;
¢ —z BRI | F
J€litse ji} JE(L . +INJ

where{j, ..., jk} C {1, ..., £+ 1} any multiindex with strictly increasing com-
ponents andli1, ..., i} C {]1, j1» -+ jk» jx) @nd we use the same convention for
w;, as before.

Then we wish to estimate fare Q5 andé > 0 small, the following integral

/ gngk—s”a)l.l(Z) A A (2 A V2, (2)
+1 ’
£eQNB(z,8) 2(n—Y"a;)) k 1
It —z] = 1_[ FI I FY
Jgd

(3.1)
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Without loss of generality we shall examine the case where {1, ...k},
{ir,...,is} = {1,...,s},s < k. The remaining cases will follow in a similar
manner.

We shall use the following lemma:

Lemma 3.2.1f we set F7(¢,z) = Fj(z, ¢) then there exist positive constants c1,
c2 independent of (¢, z) such that for (¢, z) € Q7 x Q7 sufficiently close to each
other we have

c1lFi(¢, | < |F; (¢, 2| < c2l Fj (g, 2)I.
Proof. It is based on the following observations:
F(&,2)+ Fj(£,2) = €2 = pj(0) — p(2),
ReFj(§,2) = (=pj(§) = pj (@) + 15 — 2
for ¢, z € Q7 and close to each othero

Remarks. 1. Lemma 3.2 allows us to replagg;| in the above estimates bi}ﬂ
which is bounded from below in its turn by

IF7 @21 = (00p(2), £ = 2+ 1o (O] + 1pj )] + 1t — 2

for ¢, z € Q7 sufficiently close to each other.

2. There is a relation between the dimension of the ambient space (in oufr)case
and the numbeN of intersecting domains. More precisely we have N + 2.

Lemma 3.3.Letn, d > 1, beintegers. Thenthereexistsaconstant C = C(n, d) <
oo such that the following statement istrue: Let p1(x), ... ps(x), (1 < s < n) be
real-valued polynomials of degree < d, defined on R”, let e, u, v, 8, y > Oand let
D c R". Then,

/ ldp1(x) A --- Adpg(x)lldx1 ... dxz,
€D e 4 3 [pi )] + v (x4 X Ipi P+ X Ipj ol
j=1 j=1 j=1
< C[ Sdtl...dtn *4)
fdee+;yn+mmMm
]:
where
T(D) =: {(Ip1®)l, ..., |ps®)]) x € D} ifs=n,

= U el Ips@L Ixigl, - 1xi, D) x € D)

1<iy<...igy—s<n

ifs <n.
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Proof. Lemma 3.3 is Proposition 4 in Appendix 1, of [9]. The key idea of its proof
shall be used repeatedly in our estimates. Therefore we shall present the argument
in detail. From the definition ofdp1 A - - - A dpy]|| it follows that

3Pe(X)
ldp1(x) A Adps(X)|| < max I[dei( )H I
1<ji<--<js<n
fl<ji<---<js<nandl<ii <--- <iy_sy <nsuchtha{j,..., j}U
{in, ..., in—s} =1{1,...,n}then
ope(x)

l[dp1(x) A ...dps(x) Adxi, ...dx;, | =|de 1[( )k s ldxi A - A dxy).
Xjk

This implies that

ldp1(x) A -+ - Adps(xX)||dV (x)
< max  |dpi(x) A...dps(x) Adxiy A--- Adx;, .

1<ii<-<ip—g

Therefore the left-hand side of the above integral can be estimated by the max-
imum over all collections K i1 < -+ < i,_y < nof

/ dp1(x) A+ Adps(x) Adxig A+ ANdx, |

le + Z )] +y(2 1pj ()] + Z b AP 17 o) +ki‘1|xl~k|1v
j: =

/_

For every collection Xk i1 < --- < iy—s < n, the integrand of the last integral
is the pull-back of the integrand on the right-hand side of (**) with respect to the
map:

Qiy...iy_ (X) = (Ip1(O)], s [ps O, xig Ly - i, D

Itis a corollary of Bezout’s theorem that for everye R”, there are no more thati
pointsx € R”" such thai(p1(x), ..., ps(x), xiy, ..., x;,_,) = y. Consequently, for
everyy € R" there are no more thafi@’® pointsx € R" such thats;; ;. (x) = y.
O

So we need to estimate fore Q7,8 > 0

_ o 142k—s . 8
£e€QNB(z,8)

k 41
{+1
¢ — 2P Tize) T] [ Friett T |Ff1
j=1 j=k+1
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We shall have

@32 < / £ = 220 pa(2) A - A B ps(2)NIAY (6)
= N RS VAE BN , e P
¢eQNB(z,0) |€. _ Z|2(n Zi:l a;) ]I;[l |Fj<|aj+l|é. _ Z|2(Z,:S+la,+k s)

- f 1€ — 218 p1(2) A+ A Beps (DA V (£)
= : 5
¢eQNB(z,0) Ic — Z|2(”*Zj=1ai) 1‘[ |F;f|aj+l
j=1
- / 10; 01(2) A -+ A dgps(2)1AV(E)
e

- S 1
SO (¢ — 72X @)=L [T |Fr|ait2
j=1

Using an argument similar to the proof of Lemma 3.3 we have

a A---AD av
32) < f I {pl(SZ) ¢ s () IdV(§) -
¢ — 2P Xia® I T (| < 30 (). & —2 > | +1¢ — 2Dtz
j=1
Weset;; —z; =xpj_1+ixpjforj=1,... n.

We definefork =1,...,¢+1

wi (¢, 2) =: (9 0k (2), ¢ — 2) = Rewi (¢, 2) + ilmuwy (2, 2).

Then,
drwi (¢, 2) = 0 px(2) = de Rew (¢, 2) + idy Imwy (¢, 2).
Thus

9 p1(D) A+ A0 ps(2)
= (d;Rew1(¢, 2) + id Imw1(Z, 2)) A A (deRewy (g, 2) + id Imwg (£, 2))
= Y crdiRew;;(¢,2) A+ AdcRew), (£, 2)
O<t<s

Adelmwj (&, 2) A Adelmw ;i (8, 2)

wherec; € C are absolute constantg, ..., j:} C {1, ...,s}, {jr+1,---, Js} C

1,....s3\ {1, ..., je}-
Hence the above integral can be split into finite sum of terms of the form (3.3)

/ ld;Rew;, (¢, 2) A.. . AdeRew; (&, 2) Adelmw; (6, 2) A oA drw; (8, 2)IIdV(E)

e — 2[20=Xi1a0=1 ] (IRew (¢, )| + [Imw; (£, 2)| + | — 2|22
j=1



426 L. Ma, S. K. Vassiliadou

Using the real coordinatds j}§”: 1 We can write

2n
1 0pr (0 dpr (0
Rew (¢, 2) = 52(35’; )1x2j—1+ gfci 2 = pi(x, 0),
j=1 J— J
2n
dpr (0 00r (0
Imu (¢, 2) = Z(afz()l B
J J

wherepy (x, 0), g (x, 0) are real-valued polynomials inof degreed = 1.
Without loss of generality we shall estimate the case whete s, {1, ..

Js} = {1, ..., s}. The other cases will follow similarly. Hence we need to estimate
/ lldx p1(x,0) A - - A dy ps(x, 0)[ld V2n (x) 1 (3.4)
x| <8 |x|2(nfz',-r=1a,-)fl I (Ipj(x, 0] + |x|2)4i*2
j=1

Arguing in a similar manner as in Lemma 3.3 the last integral can be majorized by

dty...dtgdVo,_(t
C/ 1 ss 2n—s (1) ’ (35)
ETBON) (20X =1 [ (Jt] + 1[4+ 2
j=1
Where T(B(O’ 8)) = U15i1<~--<i2,1_x52n{(|p1(X, O)|a ey |pé(x7 O)|1 |xi1|’

lxi ) 1 |x] < 8}if s < 2n.Inour case of course, <k <{+1<N+1<n.

Itis nothard to checkth&t(B(0, §)) is arelatively compact, open neighborhood
of 0.

Hence, if we set? = s+1 +- tzzn, (3.5) can be majorized by

/ dn ...dtr? =g </ 2n—s=1qy

j=1
r2n—s—1dr - U < ers
pon—s=1 — =,

wherecy is a positive constant that depends on ffjax || -3}

4. Globalization

This section is devoted to the proof of the main theorem.

In his thesis [11], N. Kerzman, developed a method to obtain global solvability
and regularity results for thieoperator, in the.” and Holder category for smoothly
bounded strongly pseudoconvex domains, once he had resolved thie fwoblem
with good estimates. The method usually involves 3 steps, which for our case can
be summarized as follows:

Step I. We enlarge our domaig®, slightly into 21 and “extend”f into f1 such
that
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) f1is defined iy, isd closed there angy = f — 3y in Q.
i) fillzr@ < ClfllLr@)-
i)y ¥llzr < ClifllLre)-

Step Il.  We try to fit into21, a stronglyg-convexC? domain$ such that

QccQcc.

Step Ill.  We apply the global solvability and regularity results for thproblem
on strongly g-convex domains with® boundary in [14] in conjunction with Step
| to obtain the global solution and the estimates mentioned in the main theorem.

Step lis based on Proposition 4. ket 92. Then there existg a multiindex of
maximal length such thgte S, . LetQ;g denote the locaj-convex intersection on

which we can solvé with L? estimates. We may assurﬂeE = {pi, .. pi, pf <
0}. Then
02 cc | (of <0
E€dQ

Sinced Q2 is compact there will exist finitely manﬁgi}if‘il such thabQ cc
UM {ps < 0O} Let6; € CP(Ups + €5 < O}, €5 > 0 sufficiently small 0<
6; <1, Zi"il 6; = 1linaneighborhood/s. We choose/;, CC Vo CC W.We
enlarge successively ogrconvexC? intersection in the following way: Far > 0
sufficiently small to be chosen appropriately later on, we define

Q) =:Q
i i

QL ={z€QUVjgip1 <8 Or...oy <8 O)fori=1,...M.
k=1 k=1

Claim. Given f; € LfO,r)(Q?) 1<p<oosuchthabfi =0inQl for0<i <
M — 1 there existf; 1, ¥; such that the following are true;

a) fir1€ LfO,r)£Q§+1)’ 0fiy1=0inQ0, ;.

B) fiv1— fi =i in Q).

v) Ifi+allogs, ) < clfill s
% ||Lp(9f) <clfi ||L17(Q;_3)~

Proof. Similar to the proof of Lemma 2.2.1in [11].0

Remark. We shall choosé = 89 > 0 sufficiently small such that we can apply
Proposition 3 to small perturbations of agconvex intersection).

Thus we can find2y =: Q1 cc C", Q cc € fi e LP(Q1),3f1 =0in
Qiandy = Y M1y, € LP(Q) such thatfi — f = 3y in Q.

Step Il, is validated by the following lemma.
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Lemma4.1.Let V;, CC Vj. Let Q beasin Theorem. Let ¢ > 0 and define
Q = {z € QUVj, : p1 < 1,...,on < 7}. Then, there exists a strongly

g-convex domain € cc C" with C2 defining function such that
QccQcc..
Proof. Fory > 0 we define

1 =: myax(pl, 02), $2 = mya)(le» P3)s .. PN = man(¢N—1, ON),

where max (., .)=: the regularized max-function introduced by Andreotti—Hilt
Definition. For y > Olet x,, € C*°(R), convex such that

i) Xy (0) = Xy (1),

i) ] < xy (@) < ltl+y,
i) |x, (0 <1 if |7l <5,
V) X, (1) =lt| if || > 4.

Forry, 1 € R we set

e ol %) n—1n
max(ty, tp) = .
yx(l 2) 2 +Xy< 2 )

Then some of the key properties of the regularized max function can be summarized
in the following lemma

Lemma 4.2.For ¢, ¥ € C*(k > 2) functions defined in C" we have

) max(¢, ¥) < max, (¢, ¥) < max¢o, ¥) +v,

i) max, (¢, ¥) =max@, ¥) if[p — | >y,

iii) d max, (¢, ¥)(2) = AM(2)de(2) + (1 — L(2))d¥ (2) for A(z) € [0, 1],z € C",

iv) If ¢ and ¢ are strictly g-convex functions in C" such that they have at least
n — g + 1 positive eigenvalues in the same directions then max, (¢, ) isa
strictly g-convex function (as smooth as ¢, ).

Proof. See Lemma 4.13, Corollary 4.14, p. 64 in [10] for the proof of i), ii), iii),
iv) follows by direct calculation.

Givent > 0 we can choose & y =: m
(N + Dy = 5, Vy, CC Vyq such that

sufficiently small and O< o =

QccQ={zeQUVIb ¢y —a <0} CC Q.

Then$2 is a stronglyy-convex domain withC3 defining function and by choos-
ing T sufficiently small we can even guarantee that C Q, CC Q1.

Lemma 4.3.Let G CC C" beastrongly g-convex domain with C? defining func-
tion. Then for every f € L{,)(G),df = 0,r = g,p € N,1 < p < oo, there

existsu € LfO,rfl)(G) such that
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@) du = f inG (inthedistribution sense)

B) lullLr) < Kl fllLr)
where K is a positive constant independent of f.

Proof. Satz1.7.1in[14]. .
Let f = filg- Then f is d closed inQ2. By Lemma 4.3 there exists such

thatov = f. But then we shall havg = 3(y + v)in the distribution sense if.
Henceu =: ¢ + v is a global solution that satisfies the estimates in Theorem 1.
|

5. Improved LP?-estimates

The proof of Theorem 2 shall be based on the following Lemmas:
Lemma 5.1 Generalized Young inequalitet (X, du), (Y, dv) betwo measured
spaces, H (x, y) be a measurable function defined on X x Y such that
/ |H(x, y)|Td;L(x) <M" foralmostall, yeY
X
/ﬁHwmemogM’fmmmﬂmlxex
Y
for some positive constant M < oo, > 1. Thenthelinear operator defined v-a.e.
by
r10) = [ F@KE )
isbounded from L7 (X) to L4(Y) withnorm < M for all 1 < p, g < oo with
1 1 1

—Z4-_1
q p T

with the usual conventionsin the case ¢, or p are co.
Proof. See Appendix B in Range [16].

Lemma 5.2. Thelocal solution operators 75 f (z) =: fzegrf(g)AKT({, 7) satisfy
the following estimates: For 1 < p < oo, f € L‘(”O’Av)(sz;) we have

||T1~f||L£OJ71)(Q,~) = C])(Q)”f”[‘ézls)(ﬁf)

with
1 1 1
-—=—+-=-1,
r p A
wherel < < szﬁgﬂ = the maximal number of nonempty intersections of

{pi = 0}i=t"1 and ¢, () a positive congtant that depends on max{||;llcs i =
1,...¢+1}and Q, p.
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Proof. We shall apply Lemma 5.1 fa = Ky, t > 1, to be determined later on.
An arbitrary term of the kernet 7 can be written as a finite sum of terms of the
following form

et EXSwy A Ay,

Nl a;+1 a;’
¢ — Z|2(n Yitia) 1—[ Fj] 1—[ FY
JE{1sees i} jeld, . e+1\T

where{ji, ..., jk} C {1 ..., £+ 1} any multiindex with strictly increasing com-
ponents andli1, ..., is} C {11, J1s s Jko Jk} and we use the same convention for
w;, asin Sect. 3. O

Then we wish to estimate fare Qy ands > 0 small, the following integral

/ 6@“H”WwwmA-~Awu@nAdWAo_ 5.1)
£eQ5NB(z,68) |§_ Z|2(n Sar 1—[ F(aj+l)t l_[ F
Jj=1 2
Without loss of generality we shall examine the case where {1,...k},
{ir,...,is} = {1,...,s},s < k. The remaining cases will follow in a similar
manner.
So we need to estimate fore Q7,8 > 0
/‘ IC — z|(1+2k_5)’||34/?1(1) A N0 ps(2) 1AV (§) (5.2)
C€QINB(Z,8)

41
_ 12(n— 1g; )T *1(a;i+D)t *1a;T
¢ — 2P [] prsve T jpre
j=1 j=k+1

We shall have

62)</' £ = M2 pr@) -2 DIV )

= ¢€QNB(z,8) It _Z|2(nle 1a,)t 1—[ |F*|(aj+1)r|§- _Z|2(Z, r+1al+k 5)T
j=1

/‘ IC—zW*Dquu@)A~'A3uA@MdV@)

eQNB(z,8)

It — Z|2(n Z, 1G)T 1—[ |F*|(a]+l)r
j=1
<f 10z p1(z) A -+ A g ps(D)NAV (§)
= 5 .
{€QiNB(z,6) 2= _qa)Tt—T | (a;+3)T
P Ig gt I 1F |t

<

Using an argument similar to the proof of Lemma 3.3 we have

635[
¢€QFNB(z,9)

19; p1(2) A -+ A3 ps(2)IAV (D)

: s Tl
lc — Z|2(nfz,-=1a,-)r7r 10 < dpi(), ¢ —z> |+ — Z|2)(a/+2)r
j=1
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Weset;; —z; =xpj_1+ixpjforj=1...,n
We definefork =1,...,£+1

wi (¢, 2) =< 9 pk(2), ¢ — 2 >= Rewy (¢, 2) + ilmwy (g, 2).
Then,
drwi (8, 2) = 0 pxk (2) = deRewy (¢, 2) + ide Imwy (¢, 2).
Thus

9 p1(D) A+ A0 ps(2)
= (d;Rew1(¢, 2) + ide IMw1(, 2)) A -+ - A (deRewy (¢, 2) + ide Imuwg (¢, 2))
= Z CUdCRewjl(é‘s Z) AR Ad@'Reu}]a(Cv Z) N dg'
O<o<s

Amwj (62D A Adelmw (8, 2),

wherec, € C are absolute constantsy, ..., jo} C {1, ..., s} {jot1, -+, Js} C

{1,....s}\ {1, -+, Jo}
Hence the above integral can be split into finite sum of terms of the form (5.3)

/‘lld;Raujl({ DA AdeRew; (&, ) Adelmw; (8, 2) A A deImw; (8, 2)]1dV(E)

S
220 XiaT= [T (|Rew; (¢, 2)] + Imw; (¢, 2)] + ¢ — /D)@ +2T
j=1

Using the real coordinates ]} ", We can write

2n
1 apx (0 dpr (0
Rewi (¢, z) = EZ(aik( )x2j71+ gii )xzj) =: pk(x,0),
2n
apk (0 9ok (0
Imwy (¢, 2) = 22(82( )1 2j — g)i;)XZJ—l) =:qx(x, 0),
J J

wherepy (x, 0), gx (x, 0) are real-valued polynomials inof degreed = 1.

Without loss of generality we shall estimate the case whetes, {j1, ..., Jjs}
={1,...,s}. The other cases will follow similarly. Hence we need to estimate
/ ldx p1(x, 0) A - Y A dy ps(x, 0)||d Von (x) 1 (5.4)
M P T Uy, O xR
j:

Arguing in a similar manner as in Lemma 3.3 (5.4) can be majorized by

C/ dty...dtgdVo,_s(t)
t

ETBOM) |20-Yimaa)t= [] (|t;] + [¢[2)@ D"
j=1

, (5.5)
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where

T(B(0, 8))
= U {Up1(x, O)s s ps G, O vy oo i D) 2 1] < 8)

1<ii<-<ipp—s<2n

if s <2n.Inourcaseofcourse, <k <f+1<N+1l<n-1.

Itis nothard to checkth&(B(0, §)) is arelatively compact, open neighborhood
of 0.

Hence, if we set? = A+1 +- 4 té’-n, (3.5) can be majorized by

/ dmy ...dtr? =" dr

s
F2n=31_qa)t—t l—[ (|fj| +r2)(a.,~+%)t
j=1

2n—s ld}”
< - "
- r2(n—2f=1a,-)r—r’,.Z(Zlea,-rfizr)fZS

2n—s—1
/ r dr < /an—2n1+r—rs+s—1dr < 00

pont—2s—ts—1 —

IA

ifandonlyif2n —2nt + 7 — s +s5 > Oi.e.ift < Z,LZT{L

Taking into account that &< s < 2k < 2u and choosing =

>2H— we can obtain the finiteness of the above integral.

2n+2u
2n—1+42u

Remark. In the case where we have a smooth strongly pseudoconvex domain sim-
ilar estimates were obtained by Krantz [12].

We need also a stronger version of Lemma 4.3 of the previous section.

Lemma 5.3.Let G be a bounded smooth strongly g-convex domainin C" with c3
defining function. Let 1 < p < o0, f € L(OA)(G), df =0inG,s > q. Thenthere

existsu € Lfo,s_l(G)’ du = f in G such that

i) |f1<p<2n+2 ue L, 1)(G)With1:%_T£rz_

i)y fp=Lue ngtl 1"(G) for any n > 0.
i) Ifp=2n+2,uc L(o,s—n(G) where p < r < oo.
1

V) If2n+2 < p < 00, u € Cggly_y)(G) withe = § — L.

Proof. The proof is based on Theorem 1 in Bonneau—Diederich [4] (which gives
local estimates) and standard arguments based on ideas in Lemmas 2.3.1-2.3.5 of
Henkin—Leiterer [9].

Using Lemmas 5.2, 5.3 and arguing along the same lines as in Sect. 4 we can
show Theorem 2.
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