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Abstract. Coupled population oscillators are investigated with the use of
coupled logistic maps. Two forms of coupling are employed, reproductive and
density. Three biologically distinct situations are investigated: populations
independently oscillating in a two point cycle, populations independently
chaotic, and populations independently approach a stable point. Both en-
trained and phase reversed patterns are observed along with complicated
forms of chaos as the coupling parameters are varied.
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1 Introduction

Coupled oscillators have been central to developments in non-linear dyna-
mics (Abrahams and Shaw, 1988; Arrowsmith and Place, 1990; Jackson, 1991),
from the classic problem of coupled electronic oscillators (van der Pol and van
der Mark, 1927) to biological circadian rythms (Winfree, 1967). In phenomena
as diverse as simple coupled pendula and neural signals in slime molds
(Sachsenmaier, Remy and Plattner-Schobel, 1972) complicated chaotic
patterns can result from linking oscillators. While biological populations
frequently illustrate oscillatory tendencies (Huffaker, 1958; May, 1981,
Naeem, personal communication), only recently has the behavior of popula-
tion models been examined from the point of view of coupled oscillators
(Vandermeer, 1993, 1994, 1996), although other biological oscillations have
been so examined, ranging from cardiac cells (Torre, 1976) to firefly flashes
(Buck and Buck, 1976).

Modeling fluctuating populations with differential equations is a standard
technique in ecology, but such an approach is frequently augmented by the
use of 1D maps since the latter frequently lay bare the qualitative nature of the
underlying biological dynamics more easily or at least more heuristically than
continuous models. Furthermore, many biological systems are inherently
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discrete and more appropriately modeled with discrete systems. Thus 1D map
forms of the classic exponential and logistic differential equation are now
commonly found in ecology texts and the Nicolson-Baily version of the
relationship between predator and prey is routinely used in place of the Lotka
Volterra equations in many applications (e.g., Hassel et al., 1991).

Following this tradition, it seems appropriate to explore the behavior of
coupled oscillators when the parent oscillator is a simple 1D population
model. As a rough model of a two dimensional predator—prey oscillator, the
humped 1D map has already been used (May, 1977), and it does not take
a great deal of qualitative argument to see why (If predator is large this year,
the prey will be rarer next year; If prey is abundant this year, predator will be
more abundant next year; a very large population of either predator or prey
probably results in a smaller population thereof next year, while a small
population of either probably becomes larger next year, etc. . .). Using the 1D
approach we can either look at prey dynamics or predator dynamics through
time, presuming first that the dynamics of predator and prey together drive
the emergent dynamics of either population examined separately, and second
that we can describe those emergent dynamics approximately with a 1D map.

In particular we here investigate the behavior of coupling two 1D logistic
models together, exploring the resulting patterns of phase locking, chaos
generation, and chaos abatement. Such results are of interest not only to the
simple problem of two populations linked together, but possibly provide
insights into the spatial distribution of populations, as suggested in the
discussion. There is already a significant literature on this topic, much of
which we refer to in the course of the following discussion, but a systematic
treatment has yet to appear (Jackson, 1991: p. 434).

We shall be concerned with the simple logistic 1D map,

X1 =1x (1 — X)) (la)

where x is the biomass of population 1, and r the rate of population increase.
The dynamics of this map are very well known (e.g. Devany, 1986: Feigen-
baum, 1979; May, 1976), and will not be discussed.

2 Phase locking in the uncoupled system

We begin by defining a second population as having the same dynamics,

Yier =11 =y, (1b)

where y is the biomass of population 2 and r is as before. In this study the
value of r remains constant from population to population, that is, the system
is always symmetrical.

With the proper choice of ¥ (3 < r < 3.449) there is a permanent two point
cycle which we take to be a model of a permanently cycling system, either
because of a predator/prey relationship, or for any other reason. Restricting
our analysis in this section to only those maps exhibiting stable 2 point cycles,
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we make the obvious observation that two independent (uncoupled) popula-
tions exhibiting this behavior must be either perfectly in phase or perfectly out
of phase, the initiating values determining whether the phase locking is in or
out of phase. In Fig. 1 we illustrate the obvious criterion for whether trajecto-
ries will be in or out of phase, Fig. 1a illustrating two trajectories that will
remain entrained (in phase) and Fig. 1b illustrating two trajectories that will
reverse their oscillations to become phase reversed (we shall follow the
convention henceforth of refering to populations in phase as “entrained” and
populations out of phase as “phase reversed”).

We define a set of points A on the interval x = 0, 1, such that any two
trajectories which are initiated in A will eventually become entrained, what we
call the “uniform trajectory set.” Let a; be the equilibrium point (the value of
x that satisfies x = rx(1 — x), namely a, = (r — 1)/r). Let a} =~ *(a,). Since
we are dealing specifically with the logistic map, we can define the inverse
function as the two roots of the equation considering x,;; as an input
variable, or

X, =g(x;+1) = 0.5+ [0.25 — x,1/r]°> .
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Substituting a; for the input variable, we thus compute,

Ay, dy = g(ay)"

where the superscript indicates iterations rather than exponentiation. Then
the uniform trajectory set is delimited by

xe{a,, a,}

where n is either always even or always odd. Thus there are two uniform
trajectory sets, one defined by ay,d’; as, a5, as, ds; . . . the other by a,, d5;
dy, dy, . .. . Plotting these two sets on both x and y axis we can thus
analytically plot the uniform trajectory sets for the two populations taken
together, even though they are completely independent of one another. Such
a plot is pictured in Fig. 2.

The delimited areas in Fig. 2 represent basins of attraction — any two
trajectories initiated in the shaded area (i.e. in the same uniform trajectory set)
will entrain, whereas any two trajectories initiated in an unshaded area
(i.e. opposite uniform trajectory sets) will come to be phase reversed. These
basins give a complete picture of the relative phase behavior of the uncoupled
system and provide a springboard for studying the changes induced by
coupling.

X(t+1)
or Y(t+l

x(t) (or y(t))

Yi(t)

Fig. 2. Construction of phase rever-
sed and entrainment basins based on
the simple logistic map. Projections in
top graph define limits on the various
basins illustrated in bottom graph.
Shaded areas are entrainment basins,
unshaded areas are phase reversal
basins

X(t)
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3 Entrainment and reversal basins in the coupled system

If x and y are the state variables of two populations, both of which are
oscillating identically, but not necessarily either in or out of phase, we now
wish to weakly couple them and study their joint behavior. Biologically this
implies that if the two populations are predators oscillating in reponse to two
other unseen prey species, we allow the predators to occasionally eat the
alternate prey. Or if they are simply two identical populations but islolated
from one another (fish populations in neighboring lakes, insect populations
on neighboring mountains, etc. . .), coupling might imply a small amount of
migration between the populations (the lakes connected by a swamp that
allows some small interchange between the fish populations, or a corridor of
appropriate vegetation connecting two mountain top insect populations). The
two populations together form a “meta population.”

When dealing with such idealized populations as those represented by the
logistic map there are a limited number of qualitatively distinct ways in which
the populations may become coupled. We distinguish between the case in
which individuals switch populations for the purpose of reproduction only
(reproductive coupling) from the case in which the migrant individuals affect
the density response of the receiving population but do not contribute to the
reproductive effort of their adopted homeland (density coupling).

Allowing a fraction b of the populations to exchange each time unit, we
can write,

X;+1 =7[x,(1 —b) + by,] (1 —x,) (2a)
Verr =ry(1 —b) + bx] (1 — y) (2b)
as the model for reproductive coupling, and
Xi+1 =1rx(1 — x,(1 —b) — by) (3a)
Ver1 =1Vl = y(1 — b) + bx)) (3b)

as the model for density coupling.
We consider first reproductive coupling, Egs. (2a) and (b). Equation (2a)
can be rewritten as,

Xer1 = 1X(1 —x) —rb(x, — y)(1 — x,) , 4)

which makes clear that it consists of two parts, the first term being the original
map and the second term being that which is subtracted from the original
model to form the “effective” return map for the variable x. We can thus
explore the qualitative behavior of Eq. (4) as if it were a deviation from the
original logistic map.

First note that if the population is in a perfectly entrained state, y, = x, and
Eq. (4) reverts to the original logistic map. Thus the entrained state (if one
exists in the 2D model) will have a two point cycle that is identical to the
original map.
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Second, note that if the population is phase reversed, y, + x,, the new
apparent map will be either above or below the original logistic map, depend-
ing on the value of y. In Fig. 3 we illustrate both the original logistic map and
Eq. (4), for arbitrary values of y, under the assumption that high x implies low
y and vice versa, the basic idea behind phase reversal. As illustrated in Fig. 3,
the basin of attraction must become distorted, the first main consequence of
coupling the equations.

We note that empirically it is clear that reproductive coupling leads to the
gradual decomposition of the entrainment cycle, as illustrated by the series of
basin maps in Fig. 4. Note the gradual disappearance of the entrainment basin
(except for the principal diagonal), and the slight deformity along the principal
diagonal axis.

If we now consider density coupling, we have,

Xer1 = rx(1 —x)) +rbx,(x, — y) , (%)

which also can be interpreted as the original logistic plus a modifier, but this
time the modifier is added to the original map. As before, the addition will be
zero when the system is in phase, and either greater than zero (for large x) or
less than zero (for small x) when the system is out of phase. Following the
same logic applied to the case of reproductive coupling, we similarly conclude
that as coupling becomes more intense, the basins themselves should become
deformed. In Fig. 5 we illustrate the series of basins deforming until the phase
reversed basin completely disappears.

It is thus possible to conclude qualitatively that the basins become
deformed, and that reproductive coupling eventually leads to complete phase
reversal while density coupling eventually leads to complete entrainment.

We can determine the precise point of loss of either the entrainment or
reversal basins by analyzing the doubly iterated map, namely, for reproduc-
tive coupling,

Xi+2 = Vz[{xt(l —b)+ by:} 1 - xt)(1 - b) + b{Yt(l - b) + by:}(l — vl
x [(1 —=r{x/(1 = b) + by, j(1 — x,)] (6)

= Original trajectory

X(t+1)

\\\ \\Trajectory after

coupling

Necessary

starting point for
trajectory of

coupled system\
to iterate exactly
where it was on

first iteration T

Basin distortion

Fig. 3. Qualitative depiction of basin distortion due to slight shift in the shape of the logistic
map, as dictated by Eq. (4)
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Fig. 4. Deformation of basins due to reproduc-
tive coupling. Shaded areas represent entrain-
ment basins and clear areas phase reversal
basins. As coupling increases, the entrainment
basins tend to disappear

and setting x,; , = x,. Performing the same operation on the other population
we can plot Eq. (6) in x, y space and examine the position of the roots at
various values of b. By inspection it is obvious that Eq. (6) has eight roots, four
of which correspond to the four equilibrium points in the coupled system (two
points for the entrained cycle and two points for the phase reversed cycle). In
Fig. 6 we plot all real positive values for Eq. (6) (along with the equivalent
equation for y) for three values of b, illustrating how the intersection of these
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b = .035 . . .
Fig. 5. Deformation of basins due to density
coupling. Shaded areas represent entrainment
basins and clear areas phase reversal basins. As
coupling increases, the phase reversal basins tend
to disappear

equations stipulates both the phase reversed and entrained cycle, and how the
entrainment points disappear as b approachs 15.

If the coupling is managed through the density connection, we obtain
Egs. (3a) and (b), the first of which can be rewritten as,

Xev1 =Xl —x;) + rx;b(x, — y,) (7)
The doubly iterated map is simply,
Xi+2 = rzxt(l —x) +1rx,b(x; — y) (1 —rx,(1 — x;) + rx, b(x, — y,))

+rlrx, (1 —x,) +rx, b(x, — y)1b(rx,(1 — x,) + rx, b(x, — y) — y.) .
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Fig. 6. Graph of Eq. (6) illustrating the
changes in intersection points (and loss of
entrainment cycle) following changes in
coupling values

As before, the isoclines for density coupling are presented in Fig. 7 for various
values of b, illustrating the loss of the reversed cycle at approximately
b = 0.035.

4 The initial Hopf bifurcation and its deformation

Considering the reproductive coupling form only, as coupling strength in-
creases both points undergo a Hopf bifurcation at approximately b = 0.1181
(in all of this we retain the value of r = 3.2 as representative of the 1D system
being in a two point cycle). The behavior for values of b slightly greater than
the Hopf bifurcation value can be most easily studied with the doubly iterated
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Fig. 7. Graph of Eq. (7) illustrating the cha-
nges in intersection points (and loss of phase
reversed cycle) following changes in coupling
values

map (Eq. (6)), in which case each successive point on the attractor appears in
a regular sequence, as illustrated in Fig. 8 for two representative values of b.
This sequence is reminiscent of the pattern obtained by the simple circle/sin
map (Cvitanovic et al., 1990; Bohr et al., 1984), and thus suggests an appropri-
ate analytical framework for its study.

Letting y* and x* represent the mean values of x and y obtained from
iterating Eq. (6), we convert to polar coordinates arround the point {x*, y*},

p=[(x = +(y =y
0 = sin ™" [(x = x*)/p]

For b = 0.134, we plot 0(t + 1) against 0(¢) after eliminating transients, as
illustrated in Fig. 9. The outlines of the standard circle map can be easily
discerned in Fig. 9.
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Fig. 8. Sequence of points visited in a 9 point cycle resulting from a coupling value of 0.134
(left graph) and a 24 point cycle resulting from a coupling value of 0.142165. Lines
connecting the points illustrate the sequence of visitation of points every other time interval
(since these are representations of only half of the qualitatively phase-reversed cycle). The
sequence in both cases is qualitatively consistent with expectations from a circle map
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Fig. 9. Approximate circle map for
reproductively coupled logistics with
| . a 9 point cycle (see Fig. 8)
e, " 2

t

Using polar coordinates we illustrate the transformation of the Hopf-
bifurcated attractor as the connection of the two systems is increased. In
Fig. 10 we show the bifurcation diagram for 0 as the coupling parameter
increases. Note the period doubling-like behavior, interspersed with
quasiperiodic trajectories.

Referring to Fig. 10, the point at which the torus-like behavior clearly
breaks down is about ¢ = 0.157. We illustrate one side of the attractor for this
value of ¢ in Fig. 11. Note that at this point the attractor remains formally
a torus, with the points seemingly dense. Thus, as we move from ¢ = 0.134 (at
the Hopf bifurcation) to ¢ = 0.157, the original torus of the Hopf bifurcation
undergoes various transformations, all of which appear to be topologically
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Fig. 10. Bifurcation diagram of the transformed variable (x refers to the angular polar
coordinate) illustrating a complicated range of behaviors for the system. The 9 point cycle
illustrated in Fig. 8 is clearly visible at the 0.134 parameter value, as is the initiation of
breakup of torroidal behavior near 0.157, followed by complicated changes in strange
attractors and an apparently infinite number of periodic windows both before and after the
breakup

homeomorphic. In Fig. 12 we illustrate how these changes procede beyond
¢ = 0.157 with graphs of 6 versus p. It is clear that the mean and variance in
p over this particular region offers a quantitative estimate of the deformation
of the original torus that emerged at the time of the Hopf bifurcation. This
pattern is quite similar to the detailed analysis of Kaneko (1983) who sum-
marizes changes in the torus in four steps: (i) the torus appears through
a Hopf bifurcation; (ii) the torus becomes distorted (as can be seen in the
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Fig. 11. Details of one half of the attractor
(reproductive coupling) at b = 0.161, during
the breakup of toroidal behavior
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Fig. 12. Changes in one half of the attractor, represented in polar coordinates, during
breakup of torroidal behavior, illustrating most of the qualitatively distinct forms of
attractors (compare to the bifurcation diagram in Fig. 11)
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Fig. 13. Bifurcation diagram for
the coupling parameter b in the
case of r = 3.2 for reproductive

coupling

various graphs in Fig. 12); (iii) regions of frequency lockings increase (forming
a devil’s staircase); and (iv) chaos appears through a period-doubling or
tangent bifurcation of some frequency-locked cycle at some value of the
bifurcation parameter. Yuan et al. (1983) made similar observations, and
suggested that the deformations of the torus (e.g. Figs. 11 and 12) was evidence
that the Ruelle-Takens-Newhouse scenario of chaos formation was operative.

The deformation of what had been the original Hopf bifurcation continues
in a complicated fashion as the coupling strength continues as shown in
Fig. 12. The bifurcation diagram is illustrated in Fig. 13 and a series of
attractors shown in Fig. 14. Note how the two sections of the attractors,
corresponding to the original circular arrangement that arose from the Hopf
bifurcation, enlarge, become more complicated, and eventually merge to
a large and very complicated attractor, as illustrated in Fig. 14.

Thus, the overall pattern as reproductive coupling strength increases, is
phase locking in either an entrained or reversed form, followed by the loss of
the entrainment cycle, the phase reverse situation remaining. Subsequently the
two fixed points of the phase reversed cycle undergo a Hopf bifurcation
followed by a series of complex deformations, eventually resulting in complex
strange attractors.

The interesting and complex behavior of the system under reproductive
coupling is not repeated in the case of density coupling (Eq. (3)), in which the
loss of the reversal basins simply results in entrainment, and furthur coupling
leads to no other qualitatively distinct behavior.

5 Coupling chaotic systems

The question naturally arises as to what pattern will be formed if the parent
equations are themselves chaotic, a point to which we now turn. Using the
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Fig. 14. A sampling of phase reversed attractors resulting from increasing coupling strength
in the reproductively coupled system with r = 3.2
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running example of r = 3.6, it is relatively simple to delimit the boundaries of
the attractor that represents the two unconnected systems as a lower limit of
4-r and and upper limit of r/4. Thus the attractor in x, y space will be a more-
or-less random distribution of points within the square defined by y =4 —r,
r/4dand x =4 —r, r/4.

Reproductive coupling of these equations in the chaotic zone produces
a splitting of the initial attractor, such that chaotic analogues of entrainment
and phase reversal are created. Thus, loosely coupling the two equations
produces two distinct and alternative attractors, one of which is qualitatively
entrainment the other phase reversal, both of which are presented in Fig. 15.
As with entrained or phased-reversed stable oscillations, one can compute
basins of attraction, which, in this case appear qualitatively identical to the
basins obtained for the stable points (see Figs. 4 and 5).

Increasing the degree of coupling causes the entrainment attractor to
further split, such that four zones are systematically visited, but within each
zone the system remains chaotic (Figs. 16a and b). On the other hand, the
same increase in the coupling strength causes the phased reverse attractor to
simply become larger. With further increases in coupling strength, the four
sections of the entrainment attractor eventually emerge as four tori (Fig. 16c¢),
still chaotic in the sense that no point on the attractor is ever repeated (in the
present case we note only that no point is repeated after a very long run). Each
of these tori appears qualitatively similar to the structures observed earlier
following the Hopf bifurcation (see Figs. 11 and 12). These tori continue to
become smaller and smaller, until they eventually undergo a reverse Hopf
bifurcation and become single points, at which point the attractor is no longer

T Entrainment
>attractor

Reversal
attractor

X

Fig. 15. The two alternative attractors in the very weakly coupled chaotic system (repro-
ductive coupling parameter = 0.01, r = 3.6)
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Fig. 16a—d. Changes in the chaotic attractor resulting from coupling (reproductive). Parts
a and b are similar to Fig. 15 with slightly larger couplings (b = 0.05). Part c illustrates the
effective reconstruction of torroidal-like behavior from the originally chaotic system,
through coupling (b = 0.1). Part d shows both attractors superimposed on the basins of
attraction, just at the point of crisis (wWhere a strange attractor intersects the basin of an
alternative attractor)

chaotic, but represents a simple four point cycle, each point in the cycle the
image of the former four part chaotic attractor shown in Fig. 16a.

Finally, with further increases in coupling, the area of the phase reversed
attractor increases to the point that the basins of the entrainment attractor are
intersected by the reversed attractor, the implications of which are, of course,
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Fig. 16. Continued

that the phase reversed attractor is no longer a stable attractor. All trajectories
within it will eventually escape into the basin of the four point attractor. This
situation is illustrated for the case just before the reverse Hopf bifurcation in
Fig. 16d. It is an interesting situation globally in that the eventual behavior of
the system is a four point cycle, but, obviously, a chaotic attractor also exists.
The latter is in principle impossible to actually see since it is unstable. It
appears to be something analogous to a saddle point in that any system
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initiatied in a reversal basin will become established in this strange attractor,
but since the attractor itself overlaps with the entrainment basins, any traject-
ory in the strange attractor will eventually become entrained in the four point
entrainment cycle. Thus trajectories are first attracted to it yet later must
diverge from it, making it like a saddle point, except that it is a chaotic
attractor. This sort of behavior has been termed “crisis” and is discussed by
Gu et al. (1984). We expect other examples of such “chaotic saddle attractors”
will emerge in other contexts, and note the potential importance of a system
that remains chaotic for potentially long periods of time, but eventually
converges on a stable period.

All of the above behavior is conveniently summarized in bifurcation
diagrams, both of which are shown in Fig. 17. Figure 17a shows the bifurca-
tion diagram generated by initiating the system near its entrained state, while

Fig. 17a, b. Bifurcation dia-
grams for r = 3.6 (both parent
logistics in the chaotic realm)
beginning near the entrainment
cycle (top graph) or near the
phase-reversed cycle (bottom
graph). Clearly, after the point of
crisis both bifurcation diagrams
are equal
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Fig. 18a—d. Examples of attractors with relatively high levels of coupling in the chaotic
parent system (r = 3.6), a and b lower couplings (b = 0.05 and 0.055), ¢ and d with relatively
higher values (b = 0.07 and 0.08)

Fig. 17b shows the bifurcation diagram generated by initiating the system
near its phased reversed state. Most of the behavior patterns described above
are easily seen in the left half of the bifurcation diagram, including the original
switch from the attractor with just two areas to that of four through the
reverse Hopf bifurcation to a four point cycle (see Fig. 17b). Also what may
appear unusual behavior initially where the chaotic reversed phase attractor
suddently converts to a four point cycle (see Fig. 17a), makes sense in the light
of the type of bifurcation in which a chaotic attractor intersects the basin of
attraction of a stable cycle (i.e. a crisis).

With further increases in coupling strength, the four point cycle bifurcates
repeatedly into very high periodicity (Figs. 18a, b, and c), and eventually takes
a peculiar shape symmetrical around the principal diagonal (Fig. 18d), and in
two large patches more or less located in the position of the original patches
(recall Fig. 16). Note that by the time coupling strength is 0.08 (Fig. 18d), there
is a statistical concentration of all points near the principal diagonal.

Proceeding to yet further increases in coupling strength, a rather unusual
behavior emerges, in which both populations are clearly chaotic, but track one
another quite completely. To see this we simply form the measure d = xt — yt
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Fig. 19. The difference between the two systems, (population density of one minus popula-
tion density of the other) over time. Note the tendency towards tracking especially evident
when b = 0.09, and completely synchronous with b = 0.12

and plot d over time. As shown in Fig. 19, for this range of coupling strength,
d tends towards zero, with bursts of deviations near to 1 and — 1, except when
the coupling strength reaches a critical value, in which d appears to be zero for
all times. It should be emphasized that both populations are exhibiting
chaotic behavior, nevertheless, their behavior is perfectly synchronized, a
phenomenon previously noted in models of coupled lazers and dubbed
“synchronized chaos” (Winful and Rahman, 1990).
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6 Consequences of coupling non-oscillating populations

While the purpose of this study in the first place was to mimic the behavior of
two coupled oscillators, an interesting pattern emerges from the coupling of
extremely stable populations. Setting the value of r equal to 2.8, each parent
population exhibits a stable one point cycle, well known in the literature
(Lauwerier, 1986). Coupling such populations together would not a priori be
expected to generate anything unusual. However, coupling the two popula-
tions at the level of b = 0.1, a strange attractor is generated, as illustrated in
Fig. 20. The complete bifurcation diagram for r = 2.8 is illustrated in Fig. 21.

Fig. 20. Strange attractor gener-
ated by coupling (reproductive)
non-oscillating populations
(r=238)

Fig. 21. Bifurcation diagram for
r = 2.8 (reproductive coupling)
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7 Discussion

The model discussed here is one special case of coupled logistic maps, for
which there is a growing literature (e.g. Froyland, 1983; Paulus et al., 1989;
Harikrishnan and Nandakumaran, 1989; Gu et al., 1984; Yuan et al., 1983).
The general behavior of a Hopf bifurcation followed by distortion of the torus,
quasiperiodic behavior, crisis, and further complicating effects has been
frequently observed. Our treatment specifically examines the behavior of the
system in three biologically relevant phases, first, when the two populations
are independently oscillating in a two point cycle, second when the two
populations are independently chaotic, and third, when the two independent
populations are independently stable.

The details of bifurcation and chaos generation presented herein are only
slightly different from that reported for similar coupled maps previously
(e.g. Yuan et al., 1983; Harikrishnan and Nandakumaran). Especially evident is
the qualitative similarity of the breakup of the torus following the Hopf
bifurcation, discussed fully by Kaneko (1984). The “crisis” behavior discussed
by Gu et al. (1984) is also seen in the present model for a variety of parameter
choices. Gu et al., observe two qualitatively distinct crises, a “boundary crisis”
and an “interior crisis” (also see Grebogi et al., 1983). The former occurs when
a strange attractor collides with an unstable fixed point, clearly resulting in the
global instability of the system in general. Such behavior appears to occur
at high values of coupling in the present model. An interior crisis is observed
(see Fig. 16) for several parameter values and accounts for the sudden loss of
one of two alternative attractors. Such behavior might be very interesting
biologically in that a population’s behavior could easily change quickly from
an erratic form to a highly controlled form. For example, with reference to
Fig. 16, two coupled populations may be locked into a chaotic pattern that is
statistically phase reversed (i.e. Fig. 16b), and with gradual increase in the
coupling parameter exhibit no perceptible change in the time series until crisis
(Fig. 16d), at which point they move into a highly regular four point cycle.

A variety of ecological situations might mimic such a pattern. For
example, two subpopulations of a metapopulation may gradually grow closer
together, reaching a crisis point in which their behavior at the metapopulation
level dramatically changes from chaotic to regular. Another example might be
two consumer resource systems weakly connected through the common
consumption of the consumers (e.g. Vandermeer, 1993; 1994). As evolution of
generalization procedes (i.e. as the two consumers feed more on each others
resources through some selection mechanism), a crisis point will be reached in
which phase reversed chaos might quickly and dramatically change to regular
behavior (see Fig. 16).

At a general ecological level we report behaviors similar to that reported
for coupled consumer resource systems (Vandermeer, 1993; 1994), with either
entrainment or phase reversal, followed eventually by chaos, although the
exact approach to chaos is substantially different in the maps than in differen-
tial equations. But the biological conclusions remain substantially congruent



Models of coupled population oscillators using 1-D maps 201

whether dealing with differential equations or 1D maps, the populations tend
to be locked together at low levels of coupling, becoming chaotic as the
coupling intensity increases.

Observations that chaotic populations can be induced to behave non-
chaotically through coupling are cited here for the first time, to our knowledge
(but see Hastings, 1992). This observation is of interest especially in the
growing field of metapopulation modeling. Coupling two maps can be
thought of as coupling two subpopulations in a metapopulation together, and
the observation that chaos can be abetted through such coupling is of
substantial interest. However, such an observation is not a rule, and complic-
ated patterns of chaos, quasiperiodicity, and intermittent chaos are easily
generated as a consequence of the coupling phenomenon.

Reproductive coupling promoting phase-reversal has another implication
for metapopulations. In contrast to conventional wisdom, increased dispersal
under certain conditions could lead to asynchrony among subpopulations,
possibly increasing persistence of the metapopulation as a whole. This result
has been supported for a metapopulation model composed of 4 subpopula-
tions as well.

Perhaps most surprising in this study is the observation that two popula-
tions that are completely stable, that is, characterized by a single fixed point,
can be driven into chaotic behavior through the process of coupling. While the
observation that coupling can reduce chaos fits in nicely with the general
popular idea that metapopulations tend to be stable even when their sub-
populations are erratic, the observation that the subpopulations can be stable
when isolated, but erratic (chaotic) when linked together is counter intuitive to
say the least. We know of no attempt to generate a similar sort of behavior
with differential equations, although such a demonstration would be of
considerable interest.

References

Abraham, R. H., Shaw, C. D., 1988. Dynamics — The Geometry of Behavior. Part 4:
Bifurcation Behavior. Aerial Press, Santa Cruz, CA. 196 pp

Arrowsmith, D. K., Place, C. M., 1990. An introduction to Dynamical Systems. Cambridge
Univ. Press. 423 pp

Bohr, T., Bak, P., Hggh Jensen, M., 1984. Transition to chaos by interaction of resonances in
dissipative systems. I1. Josephson junctions, charge-density waves, and standard maps.
Physical Review A 30: 1970-1981

Buck, J., Buck, E., 1976. Synchronous Fireflies. Scientific American 234: 74-85

Cvitanovic, P., Gunaratne, G. H., Vinson, M. J., 1990. On the mode-locking universality for
critical circle maps. Nonlinearity 3: 873-885

Devaney, R. L., 1986. An introduction to chaotic dynamical systems. W. H. Benjamen

Feigenbaum, M. J., 1979. The universal metric properties of nonlinear transformations.
J. Stat. Phys. 19: 25-52

Frgyland, J., 1983. Some symmetric, two-dimensional, dissipative maps. Physica 8D. 423-434

Grebogi, C., Ott, E.,, Yorke, J. A., 1983. Physica (Utrecht) 7D, 181

Gu, Y., Tung, M., Yuan, J., Feng, D. H., Narducci, L. M., 1984. Crises and hysteresis in
coupled logistic maps. Physical Review Letters 52: 701-704



202 J. Vandermeer, A. Kaufmann

Harikrishnan, K. P., Nandakumaran, V. M., 1989. An analogue of the logistic map in two
dimensions. Physics Letters A 142: 483-489

Hassel, M. P., Comins, H. N., May, R. M.. 1991. Spatial structure and chaos in insect
population dynamics. Nature 353: 255-258

Hastings, A., 1992. Complex interactions between dispersal and dynamics: Lessons from
coupled logistics, MS

Huffaker, C. B., 1958. Experimental Studies on Predation: Dispersion Factors and
Predator-Prey Oscillations. Hilgardia 27: 343-383

Jackson, E. Atlee.. 1991. Perspectives of nonlinear dynamics. Vols I and II. Cambridge Univ.
Press, Cambridge, 496 pp and 633 pp

Kaneko, K., 1983. Transition from torus to chaos accompanied by frequency lockings with
symmetry breaking. Progress of Theoretical Physics, 69: 1427-1442

Lauwerier, H. A., 1986. Two-dimensional iterative maps. In A. V. Holden ed., Chaos,
pp 58-95. Princeton University Press, Princeton, N.J.

May, R. M.. 1977. Thresholds and breakpoints in ecosystems with a multiplicity of stable
states. Nature 269: 471-477

May, R. M., 1976. Simple mathematical models with very complicated dynamics. Nature
261: 459-467

May, R. M., 1981. Models for Two Interacting Populations. in May. R. M. (ed.) Theoretical
Ecology: Principles and Applications. Sinauer Assoc. Inc., Sunderland, Mass

Paulus, M. P.,, Gass, S. F., Mandell, A. J., 1989. Physica D 40: 135-155

Sachsenmaier, W., Remy, U., Plattner-Schobel, R., 1972. Initiation of Synchronous Mitosis
in Physarum polycephalum. Experimental Cell Research 73: 41-48

Torre, V.. 1976. A Theory of Synchronization of Heart Pace-Maker Cells. J. Theor. Biol. 61:
55-71

van der Pol, B,, van der Mark, J., 1927. Frequency demultiplication. Nature 120: 363-364

Vandermeer, J. H.. 1993. Loose coupling of predator prey cycles: entrainment, chaos, and
intermittency in the classic MacArthur consumer-resource equations. American
Naturalist 141: 687-716

Vandermeer, J. H.. 1994. The qualitative behavior of coupled predator prey oscillations as
deduced from simple circle maps. Ecol. Modelling 73: 135-148

Vandermeer, J. H., 1996. Seasonal isochronic forcing of Lotka—Volterra equations. Prog.
Theor. Phys. 96: 13-28

Winfree, A. T., 1967. Biological rhythms and the behavior of populations of coupled
oscillators. J. Theor. Biol. 16: 15-42

Winful, H. G, Rahman, L., 1990. Synchronized chaos and spatiotemporal chaos in arrays of
coupled lasers. Physical Review Letters 65: 1575-1578

Yuan, J,, Tung, M., Feng, D. H., Narducci, L., 1983. Instability and irregular behavior of
coupled logistic equations. Physical Review A 28: 1662-1666



