Distributed Ada
on a

Loosely Coupled Multiprocessor

Russell M. Clapp
Trevor Mudge

Department of Electrical Engineering and Computer Science
The University of Michigan
Ann Arbor, Michigan

January 1988

Center for Research on Integrated Manufacturing

Robot Systems Division

College of Engineering

The University of Michigan

Ann Arbor, Michigan 48109-2110

cer\gn
UMPN16

RSD-TR-3-88

Abstract

This paper examines the design and implementation of run-time support for distributed Ada
on a loosely coupled multiprocessor. First, loosely coupled architectures are defined and some
examples given. The programming model associated with such multiprocessors, particularly
large scale ones, is then examined. Discussion and rationale for suitable program units of
distribution is addressed for this particular style of architecture. The requirements of the run-
time support are then presented together with discussions of their relationship to a loosely
coupled architecture. An overview is then given for a subset of the run-time system that
has been implemented on a large scale loosely coupled multiprocessor available to us — an
NCUBE hypercube machine. Prospects for expanding the support to a full distributed Ada
run-time system are also included as well as concluding remarks on the general problem of
putting parallel programming languages on large scale loosely coupled multiprocessors.

Distributed Ada 1

RSD-TR-3-88

Contents
1 Introduction
2 Loosely Coupled Multiprocessors

2.1 The Hypercube Architecture

Programming Model

3.1 Single Code Paradigm
3.2 Distnibuted Language

Language Units of Distribution

41 Background
4.2 Target Dependencies
4.3 Proposal . .‘
4.4 Ramifications

Run-Time System Components

5.1 Task Elaboration and Activation

53 TaskDelay
5.4 Task Synchronization

541 EntwyCall

542 Accept Statement
5.5 Dynamic Task Creation
56 TaskMigration.
5.7 Collective Task Termination
5.8 Exception Handling

5.9 Support for the Shared Memory Model

5.9.1 Remote Object Reference

~

Distributed Ada

RSD-TR-3-88

592 POINEIS . . v v v v v e 16

593 Remote Subprogram Call 17

5.10 System Dependent Features 17
S.00.1 /O . . o e e e e e e 17

5.10.2 Dynamic Memory Allocation 17

5.10.3 The Packages STANDARD, SYSTEM, and CALENDAR 18

5.104 Attributes L. L e 19

5.11 Additional Features« i it 19
S.A1.1 Prioritieso e e e e e e e e 19

5112 Generics v e e e e e e e e e e e e e e 20

6 Status of Current Implementation 20
7 Future Directions 21

Distributed Ada i1i

RSD-TR-3-88

1 Introduction

It is apparent from statements in the Ada Language Reference Manual (LRM) [LRM83] that
Ada is not just intended for execution on shared memory multiprocessors but also on loosely
coupled processors that do not share memory. Accordingly, the LRM provides some ex-
planations of language constructs that consider the distributed program case. Unfortunately,
the semantics are not clear for the distributed case. As a result, there have been several
investigations into the issues and feasibility of distributing Ada. The results of these investi-
gations can be found in [VMBS88], [VMNS5], [Ard84], and [Cor84a]. Related discussions of
run-time support for distributed Ada can be found in [Wea84a], [Wea84b], [FiW86], [Ros87],
and [Ard86].

The advent of inexpensive commercial multiprocessors has made loosely coupled systems
an attractive alternative to monolithic supercomputers. Their design and operation raises
several issues, especially with respect to the Ada programming model and specification of
language units for distribution over multiple processors. In order to provide some insight
into the approach and feasibility of targeting Ada to a distributed memory multiprocessor, we
have implemented a partial run-time system for distributed Ada targeted to an NCUBE/ten.
This hypercube machine is configured here with 64 processors and serves as a model for
a generic loosely coupled multiprocessor. The kemnel implemented runs together with the
existing operating system and includes support for executing Ada tasks in parallel. In order
to expand this core run-time system, the issues concerning the Ada programming model and
the language units of distribution need to be addressed.

This paper is organized as follows. First, a definition of what we mean by a loosely cou-
pled multiprocessor architecture is given as well as a discussion of programming paradigms
that are currently preferred by their users. Issues conceming this particular type of target
architecture will also be discused, especially their interaction with the shared memory pro-
gramming model of the Ada language. Following that, examination of potential language
units of distribution is presented, and a proposal of suitable units of distribution is made
based on their impact on the run-time system. The components of the distributed run-time
system will then be presented with an implementation approach given for each. An overview
of a subset of this system that has been implemented is also given. Finally, consideration
is given to the expansion of the run-time system and to the feasibility of retargeting an Ada
compiler to our hypercube machine.

Distributed Ada 1

RSD-TR-3-88

Processor 1
and

Memory

Processor 2 Processor n

and and

Memory Memory
Processor |
|
Interconnect |
Processor 3 Processor 6

and and

Memory SCheme Memory

Processor 4

Processor §

and

Memory Memory

Figure 1: Generic loosely coupled multiprocessor.

2 Loosely Coupled Multiprocessors

The term /oosely coupled is one commonly used to refer to multiprocessors where there is
no shared memory, i.e., each processor of the computer has its own private store. This type
of multiprocessor has also been called a distributed memory muitiprocessor. Multiprocessors
which have memory units that can be accessed by all processors are referred to as tightly
coupled. Figure 1 shows a diagram of a generic loosely coupled multiprocessor.

Since loosely coupled processors share no memory, there is more freedom in designing
their interconnect scheme. Tightly coupled multiprocessors must provide a path from each
processor to the shared memory, which is usually done with a shared bus or a crossbar switch.
There are physical limits to the number of processors that can be connected this way, as well
as diminishing retums on throughput as more processors are added due to congestion at the
shared memory. For loosely coupled multiprocessors, any interconnect scheme that provides
a path from one processor to any other is allowable. Since these paths may pass through

2 : Distributed Ada

RSD-TR-3-88

intermediate nodes, it is possible to configure a loosely coupled multiprocessor with a very
large number of processors. Thus, it is often the case that distributed memory machines are
large scale multiprocessors.

Because there is no shared memory, loosely coupled multiprocessors communicate be-
tween nodes by sending messages. Each processor runs a message passing communications
kemel along with the code it is executing in addition to any other run-time support that is
needed. It is possible for the communications kemel to be a store and forward one. This
allows intermediate processors on a communications path to read messages from a directly
connected processor and then forward them to another connected processor in the direction
of the ultimate destination.

In some cases, loosely coupled machines are made up of heterogeneous processors. Het-
erogeneous systems usually have peripherals private to each processor as well as memory.
In these cases, the system is referred to as a multicomputer instead of a multiprocessor. The
scope of this paper, though, is limited to consideration of loosely coupled homogeneous mul-
tiprocessors. These machines are normally used in a manner where the multiple processors
cooperate in solving a single problem. A closer look at one such architecture, the one used
for an initial implementation here, is given below.

2.1 The Hypercube Architecture

A hypercube computer consists of several microprocessors interconnected by communication
links. A hypercube of dimension n is a multiprocessor with N = 2" processors. Each
processor is directly connected via communication links to n neighbors. An operating system
kemnel supports store and forwarding of messages so that processors that are not neighbors
can still send messages to each other through intermediate processors. The maximum number
of distinct communication links that must be used to transfer a message between any two
processors is n, the dimension of the hypercube.

In the case of the NCUBE machine, each processor has its own local memory (128 K-
bytes) and the hypercube array is managed by a host computer (an Intel 80286 based system).
The configuration used in our work at the University of Michigan is an NCUBE/ten which
is partially configured with 64 processors but has the capacity to hold 1024 processors. The
processors are Vax-like 32-bit microprocessors with IEEE standard floating point capability.
Each processor runs an operating system to support communications called Vertex, as noted
above. The host runs a multi-user Unix-like operating system called Axis. Axis allows
the hypercube array to be partitioned into subcubes that may be allocated to different users.
More details on the NCUBE architecture can be found in [HMS86] and more information
on Vertex can be found in [MBAS6].

Distributed Ada 3

RSD-TR-3-88

Considering the issues associated with an implementation of Ada on a hypercube mul-
tiprocessor subsumes those relevant to an Ada implementation on some other architectures.
For instance, the hypercube can be used as a model for a generic system of loosely coupled
homogeneous processors. The number of processors used in the hypercube can be varied,
and the kemel operating system shields the run-time system from details of the processor
interconnect scheme. Considering the complete hypercube simply adds the issue of how to
effectively use a large number of processors with a distributed Ada language. The various
programming issues are considered below.

3 Programming Model

3.1 Single Code Paradigm

The programming of large scale multiprocessors usually involves writing a single program
and running an exact copy of it on each node in the system. The program may have data
dependent branches that result in different nodes executing different parts of the program at
different times. The data affecting the execution path of a node may come from messages
passed between nodes and the location of the processor in the network. Such a programming
style has been referred to as single code multiple data (SCMD) [Buz88]. Sometimes several
different programs are written to run on the various nodes. This style is referred to as
multiple code multiple data (MCMD). However, in the MCMD case, it is unlikely that a
large number of distinct programs will be written. What is more apt to occur, is that the
number of distinct programs written will be small, and the number of copies of each program
running on different nodes will be high in order to exploit the large number of processors
available. In this case, MCMD begins to appear to be more like SCMD. In any case,
the communication between nodes in these programming styles involves use of low-level
operating system primitives and the overall level of cohesion in the system is low since each
processor is executing its own complete program. This style of programming can be difficult
to debug and requires considerable coding effort to interface the several programs.

3.2 Distributed Language

There are several advantages to a distributed language for parallel programming of a loosely
coupled multiprocessor. They are summarized in the following points.

e Strong Type Checking: Implementing software for a multiprocessor as a single pro-
gram in a distributed language allows for extensive compile time type checking. This

4 Distributed Ada

RSD-TR-3-88

checking includes user defined types and type checking across the boundaries of dis-
tributed program units, greatly reducing run-time errors.

o Inter-task Communication: Inter-task communication across nodes in a distributed
system is simplified with a distributed language. Programmers are relieved of pack-
ing and unpacking message buffers and performing type coercions on raw data. The
predefined communication mechanism of the language is used instead, effectively trans-
ferring the low-level details of communication to the run-time system. This also has
the advantage of making inter- and intra-nodal task communication appear the same
to the programmer. In the case of Ada, the rendezvous task communication scheme is
synchronous, and can be implemented on a system with asynchronous communication
primitives in a straightforward manner (as we will show in Sec. 5).

e Shared Memory Model: In the case of Ada, the scope and visibility rules provide
for a shared memory model. Executable units can access variables and subprograms
imported by a with clause on a package. Also, tasks can access these items in the
address space of their ancestor tasks. To implement the memory model of Ada, support
for shared memory must be included in the run-time system, even when the hardware
has no shared memory.

The run-time system, then, must provide a mechanism for remote variable access and
remote subprogram calls. In the case of referencing items in packages, the fact that
they are remote can be determined at compile time if the package contents are bound
to a node statically. Task references are more complex, as they include variables in a
task’s address space as well as its entries. By carefully specifying the language units
of distribution, it is possible to eliminate remote references to a task’s variable space
(discussed in Sec. 4). As for a task’s entries, it is necessary to incorporate a processor id
into all task references, so that the run-time system can immediately determine where
messages concerning entries are to be sent. Approaches for implementing run-time
support for the Ada shared memory model are outlined in Sec. 5.

Supplying run-time support for the shared memory model allows existing Ada pro-
grams to be compiled and run without modification on multiprocessors without shared
memory. Although careful consideration of the distributed target may provide for
more efficient programs, the shared memory support does allow a programmer to write
programs as he or she would in the uniprocessor case.

o SCMD Support: In order not to limit the programming options with distributed Ada
on a large scale multiprocessor, it is necessary that the distributed language provide
support for the SCMD programming style. Including support for SCMD allows many
existing algorithms to be programmed in distributed Ada and to benefit from the above
mentioned advantages of a distributed language.

Distributed Ada 5

RSD-TR-3-88

The hypercube architecture is appropriate for programs with a large number of tasks,
since a large number of processors are available. An example of such a program
appears in [CMV86], where a parallel solution to the n Queens problem is presented.
This solution requires n” identical tasks, one for each square on the chess board. In
the case where n = 8, the full configuration of our NCUBE/ten could be used with
one task running on each processor, with the main program unit sharing one processor
with one of the tasks. This example demonstrates how Ada’s ability to replicate tasks
of a specific task type can support the SCMD programming style.

The notion of running different tasks of the same program on different processors raises
the issue of distributable program units. This is discussed in the following section.

4 Language Units of Distribution

4.1 Background

The choice of which language units to distribute is an important one and a decision that
greatly impacts the form and function of a resulting distributed system. In spite of this fact,
it is often ignored or under emphasized in much of the literature concerning distributed Ada
systems. However, there are some papers that address this issue, most notably [Cor84b],
[VMBS88], [Jes82].

Various approaches to distributing Ada program units are surveyed in [Cor84b]. These
approaches to distribution range from writing separate programs for each processor to al-
lowing any construct of a single source program to be distributed. Also, extending the Ada
language to make it more appropriate for distribution is considered.

Intuitively, it seems desirable to limit the number of distributable units in an Ada program.
This has the benefit of reducing the demands on the run-time system. On the other hand,
allowing only separate programs to be written for each processor has all the disadvantages
associated with the current state of SCMD programming. In [VMBS88], a proposal is made
to limit the units of distribution to library packages and library subprograms. The reference
demonstrates how such limitations can greatly reduce the complexity of the run-time system.

4.2 Target Dependencies

The most effective uses of a loosely coupled multiprocessor involve running programs that
require the use of a large number of processors. In order to support this situation with

6 Distributed Ada

RSD-TR-3-88

distributed Ada, the units of distribution must allow many packages, subprograms, and tasks
(of the same and different types) to reside on the many processors available. Since the number
of processors may be quite large and the SCMD programming style is to be supported, it is
also necessary to have provisions for loading identical code on several processors.

These goals are somewhat difficult to meet if the units of distribution are limited to
library subprograms and library packages. With these distributable units, the only way to
replicate code for many different processors is to use a generic package, or to define a unique
package containing the same code for each node used. This creates an inconvenience, in
that each instantiation of a generic package and each uniquely defined package has its own
distinct name. If a memory object or task in each package instantiation is to be referenced,
a different name may have to be used in each reference. This precludes the use of a loop,
and is a definite annoyance if the number of unique packages, both generic instantiations
and otherwise, is large. It is possible, however, to have an array of system wide pointers so
that dynamically created tasks and objects can reside on remote processors and be referenced
in a loop. This scheme, though, does not prevent the need for a distinct package for each
processor, and requires the task or object to be dynamically allocated.

One way to avoid this problem is to extend Ada to include a package type as suggested in
[Jes82]. This would allow packages to be referenced by pointers or array references instead
of names. This would require, however, that arrays of packages be distributable.

4.3 Proposal

The units of distribution proposed here are based on the above discussion and a desire to
comply with the Ada standard. Therefore, the language units of distribution proposed are
library subprograms, library packages and tasks, where a task’s specification is declared in
a package specification. It is also proposed that arrays be distributable whenever the array
index references a task object or an access variable that points to a task object, as long
as the task or task type specification and the array are declared in a package specification.
This approach follows the advice of [VMB88], but also allows tasks to be distributed. This
is done so that the multiple copies of identical code requirement can be met with simple
naming, while also allowing statically allocated tasks to be distributed without requiring a
unique package for each processor.

4.4 Ramifications

In choosing these language units for distribution, the question arises as to what extra require-
ments are placed onto the run-time system above and beyond those imposed by the library

Distributed Ada 7

RSD-TR-3-88

subprograms and library packages approach. In [VMB288], it is shown that their approach to
distributable units requires no cross processor dynamic scope management, but the problem
of distributed sibling task termination must still be considered. However, using the units of
distribution proposed in [VMB88] or the ones proposed here, the distributed task termination
problem is greatly simplified. This is discussed in Sec. 5.7 below.

The strategy adopted here for dynamically created tasks is the same as that in [VMB88],
that is, the created task is located on the processor performing the allocation. In addition, with
tasks allowed as distributable units, it is possible for statically declared tasks to be located on
separate processors if their specification appears in a package specification. However, outside
of this scenario, it is not possible for parent and child tasks to reside on separate processors.
This is due to the restriction that only tasks whose specification is declared in a package
specification can be distributed. If any tasks are nested within such a task, their specification
must be declared in the body of the parent task, which by language definition must occur
in the body of the containing package. Therefore, even though it is possible for tasks to be
nested indefinitely within an outer scope, the distribution strategy ensures that all of these
tasks will reside on the same node. This simplifies the termination algorithm for these tasks
and makes references to variables declared in parent tasks local memory references.

There is one area, though, where the distribution of tasks allows for more remote variable
references. This occurs when a task refers to a variable that is declared in a package body.
If that task is distributed to a remote processor, it then has the ability to refer to a package
variable that is not visible through the package specification. All types of remote references
are carried out by the run-time system. The situation described here can potentially increase
the number of these references. The strategy for supporting all types of remote references is
discussed in Sec. 5.9 below.

In short, it can be said that the language units for distribution proposed here require little
more of the run-time system than those proposed in [VMB88]. However, the units proposed
here do provide for more flexibility in specifying code to be replicated on a large number of
processors as described above.

S Run-Time System Components

The various components of a distributed Ada run-time system are outlined below along with
approaches for their implementation. For more details on the language features supported by
this run-time system, the reader is referred to [Bar84] and the LRM.

8 Distributed Ada

RSD-TR-3-88

5.1 Task Elaboration and Activation

The operations of task elaboration and activation can be implemented in two run-time system
routines, one for elaboration and one for activation. The elaboration routine changes the state
of a task to allow it to execute its declarative part. The activation routine will allow the
calling task to become active if all of its children are active. If the task becomes active, a
message indicating this is sent to its parent. Otherwise, the task is suspended until it receives
messages indicating active status from all of its children. This enforces the parent-child rules
regarding elaboration and activation.

5.2 Normal and Abnormal Task Termination

For these run-time operations, two routines are needed. One is for normal termination and
the other is for abnormal termination. When a task is finished with its execution, the routine
for normmal termination is called. The requesting task becomes completed and, if all of its
children are in the terminated state, it also becomes terminated. If any of its children are
still active, it stays in the completed state and waits for a message from each child indicating
that the child is terminated. Whenever a task enters the terminated state, it sends a message
to its parent to allow the parent to terminate.

The above approach for supporting completion and termination covers the simple case
where a task reaches the end of its executable statements. The case of tasks waiting to
terminate at a terminate alternative of a select statement is more complex to implement,
especially for a distributed system with no shared memory. An approach to solving this
problem is discussed in Sec. 5.7 below.

When a task wants another task to abort execution, a routine is called to perform the
abnormal termination. The aborted task stops any rendezvous or delay in progress, enters the
abnormal state and sends an abort message to all of its children. If the task has no children or
its children are already terminated, the task enters the terminated state and sends a message
indicating this to its parent.

5.3 Task Delay

There are several ways to implement task delay, but the one usually used is dictated by the
target architecture. Ideally, the processor would have an interval timer dedicated solely to
implementing task delays. The timer could be given a value that it would count down and
then interrupt the processor to indicate that the specified delay had passed. Such a timer is
used in a similar way to implement time slicing of tasks. If time slicing is to be supported

Distributed Ada 9

RSD-TR-3-88

and only one such timer exists, another strategy must be adopted.

There is only one interval timer on each processor in the hypercube computer used as our
initial target [CMV87]. Since time-slicing is to be supported, an alternative implementation
of task delay is used. When a task is to delay, an entry for it is inserted into a linked list
of task names and expiration times that is sorted in increasing order of time. When a time
slice expires or a system call is made, a check is performed to determine if any delays have
expired. If so, the appropriate entries are removed from the list and the specified tasks are
processed. This method is used to implement time limits on inter-task rendezvous as well.
It is possible in this scheme for delays to last longer than specified by the program. This is,
however, consistent with the LRM statements regarding task delays.

5.4 Task Synchronization

The Ada language provides for task synchronization through the rendezvous construct. The
interface between the tasks involved in a rendezvous looks much like a procedure call. There
are variations as to how these calls can be requested and accepted. Run-time system routines
to implement this construct are discussed below.

54.1 Entry Call

A task wishing to rendezvous with another task executes an entry call. This call specifies a
particular entry in the task receiving the call. There are three types of entry calls, the simple
entry call, the conditional entry call, and the timed entry call. For a simple entry call, the
calling task suspends execution until the entry call is accepted. A timed entry call requests
the entry but withdraws its request if the rendezvous cannot be started within the specified
duration. If the time bound specified is zero, a conditional entry call is implemented where
the rendezvous occurs only if it can be accepted immediately. (Actually, there are problems
with considering a zero delay to mean immediate. The check to determine if the entry can
be accepted immediately takes time. Also, it may have been the intent of the task to not
attempt the entry call based on a zero delay value. For more details on this issue and the
interpretation of the Ada Language Maintenance Committee, see [VoM87a]).

The three types of entry calls can be implemented with a straightforward message passing
scheme. This is appropriate for loosely coupled processors, since there is no shared memory.
In the case of a simple call, a message is sent and the calling task blocks and waits for a reply
indicating that the rendezvous is complete (Fig. 2). For a conditional call, a check is made
of the request queue for the called entry to see if the rendezvous is immediately possible.
If it is, a call message is sent and a reply is awaited as described above. However, if the
conditional call is to a remotely located task, a special conditional call message is sent. When

10 Distributed Ada

RSD-TR-3-88

Calling Task Accepting Task

Simple Entry Call Wait for Call
Simple Call Message

Suspend Critical Section
Return Message
Resume Execution Resume Execution

Figure 2: Message passing for simple entry call.

this message is received, a check is made on the request queue as before, and a message
is retumed to the caller is an immediate rendezvous is not possible. If the rendezvous is
possible, a return message is not sent until the rendezvous is completed. In the case of a
timed entry call, a call message is sent and a timer node inserted in the list (described in Sec.
5.3 above). When the call message is received, a reply is sent to allow the rendezvous to
proceed. If this reply is received before the timeout condition occurs, a message is sent to the
serving task to begin the rendezvous (Fig. 3). If a timeout does occur, an abort rendezvous
message is sent by the caller (Fig. 4). After a successful rendezvous, a return message is sent
to the caller to allow it to resume execution. This scheme of message passing for the timed
entry call was originally proposed in [Wea84a] for all types of entry calls. The schemes
presented here for simple and conditional calls are an optimization of that general case.

The entry call routine itself performs the actions necessary to initiate the rendezvous.
After the first message has been sent, the run-time system dispatches another task that is
ready. When the reply messages are received, the run-time system communications kerel
processes the rest of the rendezvous based on system data structures and data contained in
the messages. Rendezvous parameters are passed in the appropriate messages exchanged
between the two tasks involved.

5.4.2 Accept Statement

There are variations of the accept statement just as there are for the entry call. An accept
statement may be simple and occur by itself, or it may be embedded in a select statement.
A simple accept waits indefinitely for a call on that entry, but a select statement is used
to wait for a number of entries that may be guarded. A select may also have a delay or

Distributed Ada 11

RSD-TR-3-88

12

Calling Task Accepting Task
Timed Entry Call ;
ry Timed Call Message Wait for Call
Delay Accept

Confirm Message

>
—

Suspend Retum Message Critical Section
Resume Execution Resume Execution

Calling Task Accepting Task

Timed Entry Call ;
Timed Call Message Wait for Calil

\o

Time Out Accept Message Accept

JR

Abort Message

— s

Resume Execution Resume Execution

Figure 3: Message passing for successful timed entry call.

Figure 4: Message passing for unsuccessful timed entry call.

Distributed Ada

RSD-TR-3-88

else alternative, which places a time limit on the accept or specifies that the accept must
occur immediately. There is also the possibility of a terminate altemative in the select. The
strategy for handling this case is discussed in Sec. 5.7 below.

The accept statement can be handled by the run-time system with two routines, one to
begin the rendezvous and one to complete it. To start the rendezvous on the receiving end of
the call, the run-time system is given a list of open entries to which calls may be currently
accepted. If this list indicates that the timer should be set, the value passed to the run-time
system is used in inserting a node into the timer list (as described in Sec. 5.3 above). If a call
is pending on an open entry, the next step in the message passing protocol described above is
taken. Otherwise, the task is suspended until a call is received or a timeout occurs, unless an
else alternative occurs in place of a delay alternative. In this case, if the rendezvous cannot
be started immediately, the code specified in the else branch is executed and the task is not
blocked.

When the code for the rendezvous is completed, the run-time system is called so that a
return message can be sent with parameters to the calling task. The state of the accepting
task is also changed so that it no longer is recognized as being in a critical section.

5.5 Dynamic Task Creation

Ada provides for dynamic task creation through the use of access variables that point to
objects of a particular task type. There are several possibilities for specifying the processor
location of a dynamically created task, and they are discussed in [VMB88]. The recommen-
dation made there is to load the task on the node that executes the allocating statement. This
provides the most flexibility, since it allows any number of nodes to allocate tasks of the
same type.

In order to support this operation, a copy of the code must be made available to the
allocating node. A system wide unique task name must also be determined. Part of this
name should indicate which processor the task is executing on. This name can then be the
value of the access variable. After the code is loaded, the new task can proceed with its
elaboration and activation by calling the routines described above. Once active, the access
variable can be formally assigned a value and the thread of control that executed the allocating
statement can proceed.

5.6 Task Migration

While task migration may be a desirable feature to support in order to achieve effective
load balancing, there are many issues that should be considered, especially in the distributed

Distributed Ada 13

RSD-TR-3-88

memory multiprocessor case. For instance, pointers to a task would have to be updated
when a task moves, or a scheme to hunt down the location of a moved task would have
to be implemented. (One such scheme is presented in [Ros87]). In either case, additional
overhead would be incurred. Another problem with allowing tasks to migrate arbitrarily is
that it could violate the scope and visibility restrictions set forth by the allowed language
units of distribution. This would require support for more types of remote references and
complicate the implementation of collective task termination. For these reasons, it appears
that a policy of disallowing task migration for distributed memory multiprocessor implemen-
tations is reasonable. After an initial run-time system is completed, future work aimed at
resolving these issues may be undertaken.

5.7 Collective Task Termination

The Ada language has specific rules regarding the order of termination of tasks in a program.
These rules state that no task may be terminated and no block or subprogram exited until
all of the tasks dependent on that task, block, or subprogram have terminated. These rules
are complicated somewhat by the provision for collective task termination. This involves
the terminate alternative in a select statement. In this case, the parent task, block, or
subprogram may terminate or exit if all dependent tasks are terminated or waiting at a
terminate alternative. If this condition is met, the waiting tasks are terminated and the
parent task terminates or the parent block or subprogram is exited.

Tasks may also be dependent on library units or packages, if they are declared in one of
those units. Since these units are passive and not active, the termination of the dependent
tasks is not defined by the language. The main program may terminate while these tasks are
waiting to terminate or even waiting for an entry call.

A message passing scheme for implementing the task termination protocol of the simple
case is discussed in Sec. 5.2 above. These scheme is easily implemented on a distributed
system. In general, supporting the collective termination protocol on a distributed system
with no shared memory is not so straightforward.

However, the problem here is greatly simplified by the allowable language units of
distribution proposed in Sec. 4. As for the simple case of task termination, it is discussed in
Sec. 4.4 that tasks dependent on other tasks, blocks, or subprograms will always reside on
the same node as their parent. The only way for a task to be dependent on a parent located
on a remote processor is for the parent to be a library package. In this case, the termination
of the task is not defined by the language, and no coordination of termination with the remote
parent is necessary. In short, the entire task termination problem, both the simple case and
the collective termination case, is reduced to that of the problem in the uniprocessor situation.

14 Distributed Ada

RSD-TR-3-88

The simple case of task termination is supported by the simple message passing scheme
discussed in Sec. 5.2 above. As for collective task termination, a parent task, block, or sub-
program must call the run-time system in order to terminate or exit. (A block or subprogram
need only call if it is possible for a task to depend on it. This can be determined at compile
time). The run-time system then checks the status of dependent tasks before dispatching
any new tasks to execute. If the dependent tasks are terminated or waiting to terminate, the
waiting tasks are terminated and the parent is terminated or allowed to exit. Otherwise, the
task, block, or subprogram is completed and must wait for terminate messages from its still
active children (messages from the terminated and waiting to terminate children will have
already been received). When these messages arrive, another check is made to see if all the
children are in one of the two allowable states, since it is possible for a waiting to terminate
task to become active again. When the conditions are met, the parent task is terminated, the
parent block is exited, or the parent subprogram is allowed to return.

5.8 Exception Handling

With the specified units of distribution, any thread of execution that has an exception handler
will have it on the same processor that the thread is executing on. This allows exceptions
to be handled in the same way that they are in the uniprocessor case. If a block that
experiences an exception does not have a handler, that exception must be propagated up
the dynamic chain. It is possible in this case that the exception must be propagated across
processor boundaries. This can be implemented in a straightforward manner by indicating
the exception in the return message of a remote subprogram call.

It is also possible for exceptions to occur during the synchronous activation and termi-
nation of tasks as well as during inter-task rendezvous. In such cases, when an exception
is required to be propagated to one of the involved tasks, a message is sent to it indicating
this situation instead of the usual message the task expects. The semantics of task activa-
tion, synchronization, and termination are quite clearly defined, so that such a scheme of
propagating exceptions can be implemented in a straightforward manner.

5.9 Support for the Shared Memory Model

The issue here is determining where an object, subprogram, or task is located at run-time.
With the units of distribution proposed here, objects, subprograms, and tasks in packages
can be bound to a processor at compile time, and reference to them is achieved through
a run-time system call. The only objects that may not be bound to a processor statically
are dynamically created ones, including tasks. These objects are referenced by pointers that

Distributed Ada 15

RSD-TR-3-88

indicate processor location. Dereferencing these pointers must be handled by the run-time
system.

5.9.1 Remote Object Reference

This area is straightforward and involves the details of specifying the various types of local
and remote references. In the case of accessing variables in remotely located packages, a run-
time system call requesting the reference replaces the normal reference. A message is then
sent by the run-time system to the node containing the object. Unlike the suggestion made in
[LeB82], the remote reference results in a scheduling point for the referencing processor, so
that other useful work may take place. This appears to be a better approach than suspending
the processor in the case of the NCUBE, since the current amount of overhead involved in
Vertex message passing can be high, especially in the case where the remote reference is
to a processor which is several communication links away. The strategy then, is to have
the run-time system send a message (including the new value if the reference is on the left
hand side of an assignment) and suspend the referencing task to await a reply. If the remote
variable is being read, the reply contains its value. Write operations on remote variables
also block the referencing task to force the same conditions for the following statements as
would occur in the uniprocessor case. Also, this operation can be implemented simply, since
non-local references to statically allocated objects can be determined at compile time.

5.9.2 Pointers

The strategy for implementing task pointers is discussed above in Sec. 5.5, but the issue of
system wide pointers to memory objects must be addressed. Although some distributed lan-
guage proposals recommend that passing pointers between processors be disallowed [Lis82],
it appears that employing this strategy in the case of Ada is in violation of the language
standard. A system wide pointer scheme for tasks and other memory objects can be imple-
mented as processor—address pairs. For each pointer reference, a check must be made to see
if the processor is remote. This can be handled as part of the code generator. In the case
of a remote reference, the run-time system is called as in the strategy outlined above for
non-local memory references.

5.9.3 Remote Subprogram Call
The scheme for implementing remote subprogram call is a straightforward one. The calling
task simply blocks, and the run-time system on the caller’s node passes a message containing

the activation frame. The run-time system kemel receiving the message places the frame on

16 Distributed Ada

RSD-TR-3-88

some stack space and passes control to the subprogram as if it were a task. Upon completion,
a call to the run-time system is made so that the results in the frame can be passed back to
the calling node. This scheme is similar to the implementation described in [BiN84].

5.10 System Dependent Features

The following four sections describe the requirements of the run-time system to support the
mentioned system dependent features. Since their implementation is so closely related to the
target machine, the discussions that follow consider the NCUBE multiprocessor in particular.

5.10.1 IO

The environment for I/O provided by Ada consists of the predefined package TEXT IO as
well as several predefined generic packages. These packages provide variables and subpro-
gram interfaces for performing file I/O. In order to provide the Ada I/O environment, these
packages must be implemented. Because they are packages, they are not part of the run-time
system, and therefore are not replicated on each processor in the network. Instead, a site can
be specified for TEXT_IO as well as each individual instantiation of any of the generic I/O
packages. This will provide for some remote variable access and subprogram calls, but as is
discussed below, file I/O in the case of the NCUBE is handled through the host processor,
which is remote to all node processors.

The operations provided by the I/O packages are common ones that can be implemented
easily on top of existing operating system primitives. In the case of the NCUBE hypercube,
the host processor is needed to provide the interface to the file subsystem through Axis. The
nodes running the I/O routines simply forward their file I/O requests through Vertex to the
host processor.

5.10.2 Dynamic Memory Allocation

Dynamic non-stack allocation of blocks of memory is a common feature in languages and
is usually supported at the operating system level. The node operating system Vertex is no
exception, as it provides memory allocation and deallocation services. The code generator
can insert calls to the run-time system along with code to initialize the newly allocated object.
The size of the object is a parameter to the run-time system, which then passes it on to the
allocation routine.

In the implementation discussed above, the run-time system plays an intermediary role
between the program and the operating system. In some implementations, calls to the oper-

Distributed Ada 17

RSD-TR-3-88

ating system are made less frequently, with a large block of memory being allocated each
time. These large blocks then form a heap that is managed by the run-time system. This
scheme is used to avoid the large amount of overhead associated with an operating system
call. However, this scheme is not appropriate for use with Vertex, because it is not a large
scale time shared operating system. Rather, it is more an extension of the run-time system,
providing low level operations and communications only. The run-time system is invoked
to provide run-time error checking on the amount of memory requested, and to raise STOR-
AGE_ERROR if necessary. For error free requests, the call to the Vertex allocation code is
made, but at this assembly language level, the call is relatively inexpensive.

5.10.3 The Packages STANDARD, SYSTEM, and CALENDAR

There are three required predefined packages in Ada in addition to those used to implement
I/O. They are the packages STANDARD, SYSTEM, and CALENDAR. These packages
provide type definitions and subprograms (no objects) that provide basic operations. For this
reason, we believe that these packages should be viewed as user interfaces to the run-time
system routines. This implies that each processor that can view these packages should have a
copy of them resident in its memory. In other words, every processor should have a copy of
packages STANDARD and SYSTEM, and processors holding a section of code containing
a with CALENDAR clause should have a copy of that package as well. This strategy is
implied in [VMBS88].

This approach to supporting these predefined packages in a distributed system causes no
problems in the case of packages STANDARD and SYSTEM. However, this approach to
implementing the CALENDAR package has a major pitfall. That pitfall is the need for each
processor to provide a CLOCK function that retumns a system wide valid value of the current
time. This requires synchronization among the various CLOCK functions. This is not a
problem if the underlying hardware clocks are synchronized, but this is not usually the case
in any distributed architecture. In the case of the NCUBE, there is only one interval timer
per processor and no time-of-day clock. This interval timer is used in our run-time system
for time-slicing, but a count of the total number of clock ticks that have elapsed since the
start of execution on that particular node is maintained. This count of ticks varies from node
to node, as it is updated only when a new value is about to be loaded into the timer. Also,
each node does not necessarily begin execution at the same time.

There are several possible approaches to solving this problem. One possibility is to
provide the CLOCK function on only one processor. This maintains a consistent clock,
but requires variable network delay in reading the clock that may be significant. Another
possibility is to synchronize the start of each processor, and then work from the assumption
that a clock value read on any processor is potentially a time slice behind the real current

18 Distributed Ada

RSD-TR-3-88

time. This scheme, however, requires significant start up overhead to synchronize the starting
times. Also, such a synchronization may not even be possible.

The best solution to this problem is support in hardware for two timers per processor. In
addition to the interval timer, a time-of-day clock is also provided. This allows time-slicing
and the event queue to be managed as described above, but the time-of-day is provided by a
separate clock. A similar solution that is proposed in [VoM87b] utilizes a time-of-day clock
along with a readable/writable compare register. The compare register contains an absolute
time value that indicates the next timer interrupt. In the case of either solution, though, the
time-of-day clocks for all processors must be synchronized. This can be achieved by driving
all ticks from the same line, as is currently done with the interval timers on the NCUBE.

5.10.4 Attributes

The Ada language provides attributes whose evaluation yields a predefined characteristic of
a named entity. An example of an attribute is P’"COUNT where P denotes a task entry and
P’COUNT evaluates to a universal integer equal to the number of tasks currently queued and
waiting for that entry. Clearly this attribute, as well as several others, require a call to the
run-time system in order to be evaluated. Simple functions can be inserted into the run-time
system, one to evaluate each necessary attribute. The call to the run-time system is inserted
in the code where the attribute occurs.

5.11 Additional Features
5.11.1 Priorities

Although support for priorities is not required by the Ada language definition, their inclu-
sion in the run-time system is desirable, particularly for real-time systems. Fortunately,
implementing priorities is a straightforward task.

The Language Maintenance Committee has interpreted the language definition regarding
priorities to mean that no task can execute on a given processor if another local task of
higher priority is runnable. This requires a preemptive scheduling strategy where, if a higher
priority task becomes runnable while a lower priority task is executing, the lower priority
task must be preempted. This is not difficult to implement, however, since a change in a
task’s state making it runnable can only occur by action of the run-time system. All that
is necessary then, is to schedule the highest priority available task at every exit from the
run-time system.

Task priorities in Ada are static values. They are simply stored in a location reserved in a

Distributed Ada 19

RSD-TR-3-88

task’s task control block. A task’s priority changes temporarily, however, when it is engaged
in a rendezvous with a higher priority task. In this case, the value in the task control block
is altered and the old value saved in another location in the block. Because of the possibility
of cross processor rendezvous, priority values should be embedded in rendezvous messages
so that they are readily available to the run-time system.

5.11.2 Generics

Although the instantiation of generics can be supported at run-time, it is preferred that
they be supported at compile time. A possible run-time issue occurs if one copy of a
generic piece of code is to be shared among several instantiations at once. This would
only be considered for groups of instantiations that reside on the same processor. Such
sharing would in general require some run-time type checking and execution of different
code branches depending on types. This run-time support though can be achieved through
code insertions and modifications and need not involve the run-time system.

6 Status of Current Implementation

This section provides an overview of a subset of the above described run-time system that has
been implemented on our NCUBE machine. The run-time systems routines are implemented
in C, with the exception of the extensions to the operating system which are coded in assembly
language. C was used since it is a high-level language with a compiler for it that is targeted
to the NCUBE node processor. Using a high-level language allows for rapid implementation
and easy modification in this development stage of the run-time system. When complete,
the code can be converted to assembly language.

The features currently supported by the run-time system implementation are those de-
scribed in Sec. 5.1 through Sec. 5.4 above, namely task elaboration, activation, normal and
abnormal termination, delay, and rendezvous. These features were implemented with the
simple assumption that tasks in an Ada program would be allowed to reside on separate pro-
cessors. The issues associated with specifying language units of distribution did not affect
the implementation of these simple run-time system primitives.

In addition to the routines directly called to support the above stated features, several
other routines were needed to perform the behind the scenes but necessary basic operations.
These routines include support for timing management, scheduling of tasks, and reception
and processing of messages. Modifications to the operating system were also necessary to
support context switching and interrupt processing. These low-level functions form the core

20 Distributed Ada

RSD-TR-3-88

environment necessary upon which all the run-time system functions described in Sec. 5 can
be implemented. '

One advantage to implementing the Ada run-time system on this target is that a dupli-
cation of run-time functions is avoided. Vertex is basically a communications and interrupt
processing kernel that assumes one process per processor. The existing features of Vertex
were used as building blocks for the run-time system. Where necessary, Vertex was modified
to help implement the run-time system and support multitasking on a node. This situation is
in sharp contrast to several current Ada compilers that run on top of complex time-sharing
operating systems and do not or cannot use all of the operating system’s primitives. Al-
though performance figures for the run-time system implemented are not yet available for
the NCUBE implementation, it is expected that they will be favorable in comparison to
those obtained from commercially available compilers. Performance figures for the features
already implemented can now be measured using the algorithms proposed in [CDV86], and
a comparison to existing compilers made.

More intricate details of the system and its interface to the architecture and operating sys-
tem are given in [CMV87]. This reference also contains some code listings that demonstrate
the use of the system.

7 Future Directions

At this point, a partial distributed run-time system for Ada on the NCUBE machine has
been implemented. This portion of the run-time system supports core operations and was
developed somewhat independently of the language issues addressed in this paper. Now that
these issues and their impact on run-time system components has been considered, work to
implement the additional run-time system features may proceed.

The features to be incorporated into the system next are named in Sec. 5. Initial im-
plementation strategies have been discussed, and an attempt to realize these features will
proceed. If unreasonable overhead results from the implementation of these constructs, it
will most likely be associated with implementing the shared memory model. Performance
measurement of these features must be used to help evaluate the efficiency of their imple-
mentation. Various implementation strategies must be considered, so that one with favorable
performance can be uncovered.

The next step after completing the run-time system is the retargeting of an Ada compiler to
the NCUBE multiprocessor. This is a large undertaking, and must be carefully considered. A
key factor in the decision to proceed in this direction will be the performance of the run-time
system. It may be the case that some areas will suggest that modifications to the language
are necessary for this architecture. Although this breaks away from the Ada standard, it may

Distributed Ada 21

RSD-TR-3-88

very well provide an efficient high level parallel language for loosely coupled multiprocessors
that incorporates most of the advantages discussed in Sec. 3 above.

Certainly it is desirable to have a high level parallel language running on a multiprocessor.
We would like to see this accomplished in the form of Ada running on our NCUBE machine.
However, if circumstances suggest that this is unwise, our approach can still be used to
implement a similar high level parallel language on a hypercube or some other loosely
coupled homogeneous architecture.

References

[Ard84]

[Ard86]

[Bar84]
[BiN84]

[Buz88]

[CDV86]

[CMV86]

[CMV8T]

[Cor84a]

22

Ardo, A., “Experimental Implementation of an Ada Tasking Run-Time System on
the Multiprocessor Computer Cm*,” Proceedings of the 1st Annual Washington
Ada Symposium, pp. 145-153, March 1984.

Ardo, A., “Efficiency Aspects on Ada Run-Time Support for Multiprocessors
with Shared Memory,” Technical Report, Department of Computer Engineering,
University of Lund, March 1986.

Bames, J.G.P., Programming in Ada, Addison-Wesley, Reading, Mass., 1984.

Birrell, A.D. and B.J. Nelson, “Implementing Remote Procedure Calls,” ACM
Transactions on Computer Systems, vol. 2, no. 1, pp. 39-59, February 1984.

Buzzard, G.D. “High Performance Communications on Hypercube Multiproces-
sors,” Ph.D. Thesis, The University of Michigan, (work in progress).

Clapp, R.M., L. Duchesneau, R.A. Volz, T.N. Mudge and T. Schultze, “Toward
Real-Time Performance Benchmarks for Ada,” Communications of the ACM, vol.
29, no. 8, pp. 760-778, August 1986.

Clapp, R.M., T.N. Mudge and R.A. Volz, “Solutions to the n Queens Problem
Using Tasking in Ada,” ACM SIGPLAN Notices, vol. 21, no. 12, pp. 99-110,
December 1986.

Clapp, R.M,, T.N. Mudge and R.A. Volz, “Distributed Run-Time Support for Ada
on the NCUBE Hypercube Multiprocessor,” Technical Report RSD-TR-10-87,
Robotics Research Laboratory, The University of Michigan, 1987.

Comhill, D. “Partitioning Ada Programs for Execution on Distributed Systems,”
1984 Computer Data Engineering Conference, 1984.

Distributed Ada

[Cor84b]

[FiW86]

[HMS86]

[Jes82]

[LeB82]

[Lis82]

[LRM83]

[MBAB86]

[Ros87]

[VMB3&8]

[VMNS5]

[VoM87a]

RSD-TR-3-88

Comhill, D. “Four Approaches to Partitioning Ada Programs for Execution on
Distributed Targets,” IEEE Computer Society 1984 Conference on Ada Applica-
tions and Environments, pp. 153-162, October 1984.

Fisher, D.A. and R.M. Weatherly, “Issues in the Design of a Distributed Oper-
ating System for Ada,” IEEE Computer, pp. 38-47, May 1986.

Hayes, J.P., T.N. Mudge, Q. Stout, S. Colley and J. Palmer, “A Microprocessor-
based Hypercube Supercomputer,” I[EEE Micro, pp. 6-17, October 1986.

Jessop, W.H., “Ada Packages and Distributed Systems,” ACM SIGPLAN Notices,
vol. 17, no. 2, February/March 1982.

LeBlanc, T.J., “The Design and Performance of High-Level Language Primi-
tives for Distributed Programming,” Ph.D. Thesis, TR-492, Computer Science
Department, University of Wisconsin, December 1982.

Liskov, B., “On Linguistic Support for Distributed Programs,” IEEE Transactions
on Software Engineering, vol. SE-8, no. 3, pp. 203-210, May 1982.

Ada Programming Language (ANSI-MIL-STD-1815A). Washington, D.C. 20301:
Ada Joint Program Office, Department of Defense, OUSD (R&D), January 1983.

Mudge, T.N., G.D. Buzzard and T.S. Abdel-Rahman, “A High Performance
Operating System for the NCUBE,” Proceedings of the 1986 SIAM Conference
on Hypercube Multiprocessors, pp. 90-99, September 1986.

Rosenblum, D.S., “An Efficient Communication Kernel for Distributed Ada
Run-Time Tasking Supervisors,” ACM Ada Letters, vol. 7, no. 2, pp. 102-117,
March/April 1987.

Volz, R.A., T.N. Mudge, G.D. Buzzard and P. Krishnan, “Translation and Ex-
ecution of Distributed Ada Programs: Is It Still Ada,” IEEE Transactions on
Software Engineering, (to appear).

Volz, R.A., T.N. Mudge, A.W. Naylor and J.H. Mayer, “Some Problems in Dis-
tributing Real-Time Ada Programs Across Machines,” Ada in use, Proceedings
of the 1985 International Ada Conference, pp. 72-84, May 1985.

Volz, R.A. and T.N. Mudge, “Timing Issues in the Distributed Execution of Ada
Programs,” IEEE Transactions on Computers, vol. C-36, no. 4, pp. 449-459,
April 1987. '

Distributed Ada 23

RSD-TR-3-88

[VoM87b] Volz, R.A. and T.N. Mudge, “Instruction Level Mechanisms for Accurate Real-
Time Task Scheduling,” IEEE Transactions on Computers, vol. C-36, no. 8, pp.
988-992, August 1987.

[Wea84a] Weatherly, R.M., “Design of a Distributed Operating System for Ada,” Ph.D.
Thesis, Clemson University, August 1984.

[Wea84b] Weatherly, R.M., “A Message-Based Kemel to Support Ada Tasking,” IEEE
Computer Society 1984 Conference on Ada Applications and Environments, pp.
136-144, October 1984.

24 Distributed Ada

IIHI!llll!Hlllllllll()llllllIl!IIHHIIII/I!IWINHIIHIIHI

5 02829 5122

