RSD-TR-12-86

TOWARD REAL-TIME
PERFORMANCE BENCHMARKS

FOR ADA!?2

(Second Edition)

Russell M. Clapp
.Louis Duchesneau
Richard A. Volz
Trevor N. Mudge
Timothy Schultze

" Department of Electrical Engineering and Computer Science
The University of Michigan
Ann Arbor, Michigan 48109

NIV ~
THE UNIVERSITY U ICHIRAN
July 1986 F{\fﬂiﬁ{fj“;‘\,gixg[\ | e SARIATA:
SUIRELIGNG LIBRARY
4PV

CENTER FOR RESEARCH ON INTEGRATED MANUFACTURING

Robot Systems Division

COLLEGE OF ENGINEERING
THE UNIVERSITY OF MICHIGAN

ndaisa registered trademark of the Department of Defense.
9This work was partially sponsored by Land System Division of General Dyanmics and NASA.

UmKI199

3. Measurement Techniques

3.1
3.2
3.3

3.4

4. Features to be Measured

4.1
12
13
4.4
4.5
4.6
4.7

4.8

TABLE OF CONTENTS

Isolation of Featuresccccoeeeviiiiiiiieeieeeeeeinn,
Basic Measurement Accuracyccoeeveveveeeeeeeeeennnnn..
Operating System Interferencecc.ooeeeeveeevueeeennnnn..

Resolution of Measurementsccceeeveeeeeeeeeeeeeeeeeenn,

Subprogram Overheadcccooeeeviiieiiiiiieeeeeenn
Dynamic Allocation of Objectsccoeevvveverieeeveeeannnnn.,
EXCeptionscocuiiiiiiiiiieeeee e e,
Task Elaboration, Activation, and Termination
Task Synchronizationccccoovviievuieiereeeeeieeeenn.
Clock Function Overhead
Arithmetic for types TIME and DURATION
Scheduling Considerationsccccoocuvevvivneeeruerenennnn.
4.8.1 Delay and Scheduling Measurements R

4.8.1.1 Minimum Delay Overhead

...

...

..

RSD-TR-12-86

..

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

...............

4.8.1.2 Fixed Interval vs Preemptive Delay Scheduling

4.8.1.3 Compensation for Minimum Delay Overhead

..............

12

13

13

14

15

15

16

16

17

17

19

19

20

20

RSD-TR-12-86

4.9 Memory Deallocation and Garbage Collectionoccceeeeieee. 21
4.10 Interrupt Response Timecoomiiiiiiiiiiiiiiiiiiiiiiirece e, 22

8. ReSUIES oo e 23
5.1 Subprogram Overheadcccceeviiiiiiiiiiiiiiiiiiiieeiee e, 24

5.2 Dynamic Allocation of Objectscccccceviiiiiiiiiniiiiiiiiiniiiirreeenenn. 25

5.3 EXCePtiOnSccooiiiiiiiiiiiiiiiiiiitrr e 26

5.4 Task Elaboration, Activation, and Terminationc.ccccccceee... 26

5.5 Task Synchronizationccccccoovvviiiiiiiiiiiiiiinieeniinnerciieeee e, 26

5.6 Clock Function Overhead and Resolutionccccccccooviiniiinnannnnis, 27

5.7 Arithmetic for types TIME and DURATIONccccciiiinnnnnnn. 27

5.8 Delay and Scheduling Measurementscccccceviviiiinunienccinnennnnns 27

5.9 Storage Deallocation and Garbage Collectioncccccevevvvveneneee. 28

6. Summary and ConcluSIONceveeiiiiiiieeiiiiriieiiiiieieeereereeeeeeere e e e 28
7. Acknowledgementsoouoiiiiiiiiiiiiiiiiiiieieter e ereeerr e seeeeeeeeaaeeen 29
8. References ..ottt 30
FIGURES ..ottt ettt e escaesesese st tsae e sttt sesenesesensnns 31
APPENDIX A oottt e e e ettt e e e e e e nvee e I 33
CAPPENDIX B ..ot ctneeeeisse st ctsesssesesesss s sessase s ensnns 37
APPENDIX C ..ottt ettt et e s st e s e vee e s e s st e e e s 55
APPENDIX D oottt 7
PN 32503150 5' R %0
APPENDIX F ...ttt e sete e seeneee s s s srnress s ssnne e e sesasaaeeaanans 103
APPENDIX G oottt ettt et e e st e e e s snr e e e e s e e s s nanneaas 120

TOWARD REAL-TIME PERFORMANCE BENCHMARKS
FOR ADA'

by

Russell M. Clapp
Louis Duchesneau
Richard A. Volz
Trevor N. Mudge
Timothy Schultze

The Robotics Research Laboratory
The College of Engineering
The University of Michigan
Ann Arbor, Michigan 48109

Abstract

This paper addresses the issue of real-time performance measurements for the Ada
programming language through the use of benchmarks. First, the Ada notion of time is
examined and a set of basic measurement techniques are developed. Then a set of Ada
language features believed to be important for real-time performance are presented and
specific measurement methods discussed. In additicn, other important time related
features which are not explicitly part of the language but are part of the run-time sys-
tem are also identified and measurement techniques developed. The measurement tech-
niques are applied to the language and run-time system features and the results are
presented.

1. Introduction

“Ada is the result of a collective effort to design a common language for program-
ming large scale and real-time systems.” So states the foreword to the Ada Language
Reference Manual [1]. Examples of real-time systems include the avionic system in an
airplane, the system that controls and commands a robot, and even the controller for a
video game. The common denominator among these applications is the need to meet a
variety of real-time constraints. While Ada was intended for such applications, there is
nothing in the Language Reference Manual (LRM) which ensures that Ada programs,
regardless of processor speed, will have the performance to accommodate the real-time
constraints of particular applications. The Ada Compiler Validation Capability (ACVC)
suite of programs was established to validate the form and meaning of programs written
in Ada, but was not intended to specify the size or the speed of their object code, or the
precise nature of their task scheduling mechanisms, all of which are critical to real-time
performance. The language contains mechanisms intended for real-time applications but

1Ada is a registered trademark of the Department of Defense.

®This work was partially sponsored by Land System Division of General Dynamics and NASA.

RSD-12-88

leaves performance issues to supplemental measurement. This paper addresses the issue
of real-time performance measurement, particularly the issues of time measurement and
scheduling for which adequate requirements for real-time applications are not explicitly
stated in the LRM.

Benchmarks provide a direct way to measure performance. This paper will explore
the design and use of a set of benchmarks suitable for measuring the real-time perfor-
mance of the code produced by an Ada compiler. Benchmarking can be approached in
two ways:

e develop a composite benchmark, such as the Whetstone or the Dhrystone |2, 3],
or,

o develop a set of benchmarks, each measuring the performance of a specific
feature of the implementation, [4].

The former is easier to apply, but no single composite can capture all of the information
required for even a modest spectrum of real-time applications. Moreover, detailed
knowledge of the performance of individual features is often required for applications
planning. In addition, such knowledge will be useful in understanding the relation
between real-time performance, language constructs, and compiler implementation.
Therefore, our approach will concentrate on techniques for measuring the performance of
individual language features.

The development of benchmarks to measure the performznce of individual language
features involves a number of complex operations, including:

e isolation of the feature to be measured;

e achieving measurement accuracy;

e achieving measurement repeatability;

e eclimination of underlying operating system interference from
. time slicing,

° daemons,

e paging.
Each of these operations is considered in this paper. In addition to the performance of
individual language features there are other real-time performance measurements that
are associated with the run-time system. These include measurements of the scheduling
and storage management algorithms.

This paper focuses on features from the language and run-time system believed to
be important for real-time performance, concentrating not only on the benchmarks, but
on the basic measurement techniques used. A comprehensive effort to acquire bench-
mark programs and provide an extensive database of comparative results on all major
Ada compilers is being conducted under the auspices of the ACM Special Interest Group
in Ada [5]. Most of the benchmark tests presented in this paper were contributed to
that effort during the summer of 1985. The remainder of the tests, those developed dur-
ing Fall of 1985, were contributed in Winter of 1986.

The development and interpretation of measurement techniques for real-time pro-
gramming is based upon the Ada notion of time. Section 2 reviews this notion. Section
3 presents techniques for achieving basic measurement accuracy, isolating the features to
be measured, and determining the interference of operating system functions. Section 4

2 Benchmarks-Ada

RSD-12-88

presents the set of features believed to be important for real-time performance, discusses
why they are considered to be important, and describes the measurements to be made
by the benchmark. Particular focus is given to scheduling operations and time measure-
ments. Section 5 then presents the results of the benchmark tests for several compilers:
Verdix Versions 4.06, 5.1 and 5.2, running with Unix 4.2 bsd on a VAX 11/780, DEC
VAX Ada Version 1.1 running with Micro VMS 4.1 on a Microvax I, DEC VAX Ada
Version 1.3 running with VMS 4.4 on a VAX 11/780, and Alsys Version 1.0 running with
Aegis Version 9.2 on an Apollo DN 660. It should be noted that these versions of the
compilers are intended for time-shared use, not for real-time applications. Therefore the
results should not be interpreted with real-time performance in mind. At the time of
this writing, however, these were the principal Ada compilers available to the authors
and the results do help illustrate the methods presented. The parameters obtained also
give an indication of the areas in which users should look for improvements in cross-
compilers intended for real-time applications.

2. Review of Ada Time Units

The Ada LRM defines several entities that relate to time, its representation within
Ada programs, and the execution of Ada programs. These include:

(1) The data type TIME, objects of which type are used to hold an internal representa-
tion of an absolute point in time.

(2) The data type DURATION, objects of which type are used to hold values for inter-
vals of time.

(3) A predefined package, CALENDAR, which provides functions to perform arith-
metic on objects of type TIME or DURATION.

(4) A predefined function, CLOCK, which returns a value of type TIME corresponding
to the current time.

(5) DURATION'SMALL, which gives an indication of the smallest interval of time
which can be represented in a program. It is required to be less than or equal to 20
milliseconds, with a recommendation that it be as small as 50 microseconds.

(8) The value SYSTEM.TICK, which is defined as the basic system unit of time.
(7) The operation delay which allows a task to suspend itself for a period of time.

The semantics associated with the first three of these entities are clear. Those of the last
four warrant some discussion.

Values of type DURATION are fixed point numbers, and thus are integer multiples
of the constant DURATION’SMALL. DURATION objects are only data representations
of time. They do not imply in any way actual performance of a system for time meas-
urements or scheduling. There is no required relation between the clock resolution time
and DURATION'’SMALL. For example on the Verdix and Telesoft compilers for a VAX
Unix system, DURATION'’SMALL is 61 microseconds, while the timer resolutions are 10
milliseconds and 1 second respectively. '

The CLOCK function generally presumes an underlying clock or timer which is
periodically updated at some rate undefined by the LRM. We call this period the reso-
lution time of the system. CLOCK simply returns the value of time associated with the
current value of the underlying timer. If the execution time of CLOCK is less than the
time resolution, successive evaluations of CLOCK may return the same value.

Benchmarks-Ada 3

RSD-12-86

The term ‘‘basic system unit of time’’ is not very specific. One might think that it
means the basic CPU clock cycle. However, the constant SYSTEM.TICK is used by
several compiler vendors to hold the value of the resolution of time measurements avail-
able from the CLOCK function.

In addition to the above, an implementation may have other important time
related parameters which are not identified in the LRM. For example, some validated
Ada implementations frequently insert sizable delays in conjunction with the delay
statement which are neither directly specified by the programmer, nor caused by system
load, but are present simply for convenience in the implementation of the complier and
run-time system. Parameters in this category will be identified in the discussion that
follows and techniques for measuring them will be presented.

3. Measurement Techniques

There are two basic techniques for measuring the time to perform an operation.
The first is to isolate the operation and make time measurements before and after per-
forming it. For this to be adequate, the time resolution of an individual measurement
must be considerably less than the time required by the operation to be measured.
Unfortunately, this is typically not the case and an alternative method must be used.
The second technique, and tke one used here, is to execute the operation a large number
of times, taking time readings only at the beginning and the end, and obtaining the
desired time by averaging.

While this sounds simple and straightforward, there are a number of complications
which must be handled carefully if the results obtained are to be meaningful:

. isolation of the feature to be measured and avoidance of compiler optimizations
which would invalidate the measurement;

° obtaining sufficient accuracy in the measurement;
° avoidance of operating system distortions;
° obtaining repeatable results.

These issues are dealt with in the subsections below.

3.1. Isolation of Features

The basic technique for isolating a specific feature to be measured from other
features of the language is to use two execution frames, a control loop and a test loop
which differ only by the feature whose execution time is to be measured. Thus, a differ-
ence of execution times between the control loop and the test loop theoretically yields
the time of the function being measured. Code optimization, however, can distort
benchmark results by removing code from test loops, eliminating procedure calls or per-
forming folding. The benchmark programs, therefore, must utilize techniques to thwart
code optimizers.

The key to avoiding these problems is to not let the compiler see constants or
expressions in the loops whose times are being measured. For example, instead of using
a for loop with a constant iteration limit, a while loop is used with the termination
condition being the equality of the index variable to an iteration variable. The index
variable is incremented by a procedure, the body of which is defined in the body of a
separate package. The iteration variables are declared and initialized in the specifica-
tion of a library package. Since the iteration values are kept in variables (not

4 Benchmarks-Ada

RSD-12-88

constants), and the body of the increment procedure is hidden in the body of the pack-
age, there is no way the benchmark loops can be removed by optimization as long as the
package specification and body are compiled separately with the body being compiled
after the benchmarking unit.

Similarly, the compiler must be prevented from removing the execution of the
feature being tested from the loop or eliminating the loop entirely from the control loop
which does not contain the feature. To ensure that these problems do not happen, con-
trol functions are inserted into both loops and the feature being measured is placed in a
subprogram called from a library unit [8]. Again, if the bodies of these subprograms are
compiled separately, and after the benchmark itself, there is no way for a compiler to
determine enough information to perform optimization and remove anything from either
the control or test loops. These techniques will be evident in the benchmarks described
below.

The loops must each be executed N times, as discussed in the next section, to pro-
duce the desired accuracy. The form of the test loop is

T1 := CLOCK;

while I < N loop
control functions;
DO_SEPARATE_PROC_F ; - the function F whose time is being measured
INCREMENT(I); (L1)

end loop;

T2 := CLOCK;

- T™ :=T2-TIl,;

The control functions and subprogram call to increment I are included to thwart code
optimizers. The control frame would be identical to this except that a separately com-
piled function DO_SEPARATE_PROC_NULL would replace
DO_SEPARATE_PROC_F.

3.2. Basic Measurement Accuracy

Knowledge of both the resolution of a time measurement and the variability of the
time needed to make a time measurement are required to determine the number of itera-
tions needed to obtain a parameter measurement within a given tolerance. Let 7 be the
basic time resolution unit in terms of which all time measurements are made. Then, the
value returned by the CLOCK function at time ¢ is

L'—”—‘,—iiJ

T, (1)

where |z] is the “floor” function (the largest integer less than or equal to z), 7, is the
nominal time required to perform the CLOCK function,.and 7, is a variable indicating a
(hopefully) small random variation in the time required to perform the CLOCK function.
Since a difference of CLOCK measurements will be used, r, will subtract out of the
equations to be developed and can be ignored. It is assumed in all of the equations that
follow that r, is small in comparison to 7 and can also be ignored. In any application,
however, this assumption must be verified. One of the tests described in the Sec. 4 can
be used for this verification.

Benchmarks-Ada 5

RSD-12-88

If the time required to execute the loop excluding F is T, and the time required to
perform function F is Tp, i.e., Tp is the time we are trying to ascertain, then the differ-
ence between the values returned by the two calls to the CLOCK function above will be

T™ =N - (To+ Tp)xé-1, (2)
where
0<§< 1.
Then Tf is given by
T" -1
Tp=—— T+ 2T .
F N Y, (3)
Thus, the accuracy of the measurement is determined by
-1 T
N N (4)

Once the time resolution unit, 7, is determined, the number of iterations can be chosen
to provide the accuracy desired. However, one must be aware of cumulative error
buildup, and if T, is obtained by a similar type of measurement, one must increase N
for both measurements. “

In order to measure 7, a call to the CLOCK function is placed in a loop which is
executed a large number of times. Each value of time obtained is placed in an array.
We will now show that the second difference of the values obtained will evaluate either
to zero or to the time resolution unit.

Let the time to complete one execution of the loop be

Tipop(1) =n -7+ 6 -7 where n is an integer and 0 < 6 < 1. (5)

Without loss of generality consider that the first execution of the loop begins at time
zero. Then the time at the end of the k& th iteration will be

Tiopk)=Fk -n -7+ k -6-71 (6)
and the measured time will be
T™(k)=k n -7+ k-6 -7 (7)

since the times returned are a multiple of the CLOCK resolution, 7. The first difference
of the measured times can be written,

AT™(k)=T™"(k +1)-T™(k)=n -7+ {[(k +1)-68] -k - 6]} -7 . (8)
We note that since k is an integer and § lies in [0,1) we have,
(4 +1)-8] -]k -6 =00r 1 . (9)

In the second difference of the times measured by the CLOCK function the n - 7 in (8)
will subtract out to yield,

H(k)= AT™(k)- AT™(k-1) = {|(k+1)- 6] =2 - |k - 6] + |(k-1) -8]} - r(10)

Now, if H (6, k) is plotted as a continuous function of ¥ with § as some fixed constant in
the interval [0,1), the periodic waveform of Fig. 1 is obtained with 1/ § as the period.

8 Benchmarks-Ada

RSD-12-86

The value z in Fig. 1 is the interval of k for each period where H (4, k) is equal to 7 or
-r. The function is equal to zero when it is not r or -7, so for each period, this interval
of kisy =1/6-2-2z. The value of y for H(4, k) is dependent on the value of 4.
To determine y consider the three floor function terms that comprise H (8, k). Observe
that, because of the coefficient of -2 on the second term, the function is equal to zero
only when all three terms evaluate to the same value or three consecutive integers. This
implies that H (6, k) is equal to 7 or -7 only when two of the terms are equal and the
third term is one greater or one less. Rewriting the three terms in H (4, k) as follows:

Lk -6+6, k-6, |k-6-6 |, (10.1)

it is easy to see that for all three terms to be equal, it is necessary that § < 1/ 2. Also,
it can be observed that for all three terms to have different values it is necessary that
6§ > 1/ 2. If § = 1/ 2, neither case applies, and two of the three terms are always equal.
Therefore, there are three cases to consider when determining the value of y. The sim-
ple case is when 6§ =1/2. Since H(6, k) is never equal to zero in this case,
y=1/6-2-2z =0, implyingthat z =1/2-§ = 1.

The second case to consider is when § <1/ 2. To find the interval of £ for which
all three terms in (10.1) are equal, let k - § — § equal some integer m. Then, since
6§<1/2, |k -6+¢ =mand |k -8 =m. Tofind y let (k +y)-6+6=m +1
i.e. the point where the function steps up by 7 When this is true,
lk +y) 6-6 =m and |(k + y) -8 = m and H(§, k) is no longer equal to zero.
So,

k+y) 6+6=m +1 (10.2)

e (k-6-8)+y -b=m+1-2-§ (10.3)
ie., m+y-b=m+1-2-§ (10.4)
e y=1/6-2 (10.5)

and theny =1/6-2 -z =1/ 6 - 2 implying that z = 1.

A similar analysis is performed for the third case when § > 1/2. In this case
H(6, k) is zero when the terms of (10.1) evaluate to three consecutive integers. Let
k-6+86=m so that |k -§] =m -1 and |k -6-6 =m -2. Again, let

=1/6-2-2 and then let (k +y)-6-6=m -1. When this is true,
(k +y)-6 =m -1and |[(k +y)-6+ 6 = m and the function is no longer equal
to zero. So

(k+y) b6-6=m -1 (10.8)

e (k-04+08)+y-6=m-1+2-6 (10.7)
ie., m+y-6=m—l-;2-6 (10.8)
e y=2-1/6 (10.9)

and then y =1/6-2-2=2-1/6 implying that z = 1/ § - 1. This completes the
analysis of H(§, k) when k is a continuous variable. However, the function in (10) is
not continuous, but discrete for integer values of k. The second difference then, is a
sampling of the waveform in Fig. 1. This sampling yields one of the following sequences,

Benchmarks-Ada 7

RSD-12-86

.y 0,7-10..,07-10,..,071-70, .. (11a)
when § < 1/ 2, or
vy 0,-1,10,..,0-7r,70..0-7,70, .. (11b)

when § > 1/ 2. When § = 1/ 2, there are no zeros in the sequence. Also the number of
zeros between any two (7, —r) pairs can vary by 1.

To see how the sequences of (11) are obtained, consider the period of the waveform
in Fig. 1 and the values of z and y. Since § < 1, the period of the waveform, 1/ 4, is
greater than 1. In the case where § < 1/2, z =1 and it is easy to see how sampling
the waveform for integer values of k produces the sequence of (11a).

To demonstrate that the sequence of (11b) is obtained when § > 1/ 2, it will be
shown that a sample value of 0 can never follow a sample value of 7. Also, it is not
possible to sample two consecutive values of -7 or two of 7.

Consider the values associated with the waveform in Fig. 1 as discussed above.
Since, 1/ 2 < § < 1, the period is bounded by 1 < 1/6§ < 2. The value of z is
1/6-1,and y is 2 - 1/ 6. Recall that y is the length of the period where the function
is zero. Also, note that z + y = 1. This ensures that, if a value of r is sampled at
some point on the curve, the next point where the curve is equal to r is a distance
greater than z + y away or a distance less than z away. Since z <1,z + y =1,
and the curve is sampled at integer points, a sample of r may not immediately follow a’
sample of 7. The same is true for samples of -7. Similar reasoning also shows that a
sample of 0 may not follow a sample of -7. Because the sample interval is 1 and
z + y =1, a sample of -7 is always followed by a sample of . However, a sample of 0
or -7 may follow a sample of 7 depending on the relative values of z and y.

The approximate number of zeros between the (r, -7) pairs in (11) can also be
determined. In the case where §< 1/ 2, the number of zeros is

Lo=1/6—2 . (123)

This follows because 1/ § > 2 and L, is the number of samples in one period, less the
two samples for 7 and -r.

For the § > 1/ 2 case, we show that H(8, k) = -H(1 - 6, k). First note that if j
is an integer and € > 0, | s -¢] =35 -1-|¢]. Now let vy =1 -§ implying that
6§ =1-~. Forthe§ > 1/ 2 case then, ¥ < 1/ 2. Substituting for § in each of the three
terms in (10.1) yields

ay =Lk +1)-6]=L(k+1)-(1-7)] (12.1)
=l(k+1)-(k+1)-7] (12.2)
=k+1-1-|(k+1)-4] , (12.3)

and ’

ag=Lk - 6] =Lk -(1-1)] (12.4)

=lk-k- 7] (12.5)
=k-1-Lk-v] , (12.6)
and

8 Benchmarks-Ada

RSD-12-86

ay=L(k-1) 7] =Lk-1) (-] (12.7)
=k -1)-(k-1) 4] (12.8)
=k-1-1-|(k+1)-~] . (12.9)

Combining (12.3), (12.6) and (12.9) we get

H(b k)=a, -2ay+ a_ (12.10)

=k-l(k+1)-v]-2-k+2+2 -k -v]+k-2-|(k -1)-~] (12.11)
=-Lk+)-v]+2Lk -] -L(k-1)-~] (12.12)
=-H(1-6k) . (12.13)

Thus, from (12a), the number of zeros in this case is simply
Ly= l—i—a -2 . (12b)

The above result also explains why the sequence of (11a) is the negative of the sequence
of (11b).

Ly, then, can be controlled empirically by adding instructions to the loop calling
the CLOCK function. This procedure adjusts the value of 6.

We note that if n in the above equations is zero, then a first difference measure-
ment will suffice, yielding a string of zeros with r appearing occasionally. The only pur-
pose of taking the second difference was to eliminate n .

This second differencing procedure gives a reliable technique for measuring the reso-
lution time of the CLOCK function. As will be seen below, this technique is also useful
for measuring a number of other parameters associated with the real-time performance
of a system.

3.3. Operating System Interference

The isolation of the feature to be measured from other language features and code
optimization is not the only isolation which must be achieved. The timing of the feature
to be measured must also be isolated from times of other user processes or of the operat-
ing system itself. Since the CLOCK function measures absolute time, any other
processes executing during the test, e.g., in a time shared mode, would contribute to the
measured time and thus distort the results. Some operating systems, e.g., Unix, provide
a timing function which nominally measures only the time of the processes being tested,
excluding the times of the operating systems or other user processes. Not all operating
systems can be expected to have this function, however, and even for those that do,
there is a question of how precisely this calculation is made. Therefore, benchmark tests
should be run on a system with no other user processes in concurrent execution and with
all daemon processes disabled. A consequence of this requirement is that no output
should be generated by a benchmark until all timing is completed because a request for
output could create an independent process that runs concurrently with the benchmark.

Even with this disabling of daemon processes and running on a single user system,
there are still timing anomalies to be detected and measured, most notably time sharing
activities of the operating system. The operating system can still be expected to inter-
rupt the benchmark periodically, check the queue for other processes waiting to run, and
return control to the benchmark process. Also, for sufficiently high use of memory,

Benchmarks-Ada 9

RSD-12-88

operating system paging functions may be invoked. However, except for memory
allocation/deallocation tests, benchmarks can usually be designed to use less memory
than the size which. will cause paging activity. The frequency and duration of these
operating system actions must be determined and taken into account in the timing cal-
culations.

We begin by analyzing the effect of a function F,, which periodically intrudes on
the operation of the benchmark. Let the function F,, require a constant T,, seconds
and occur with period T,. Make the following definitions:

T, = actual time required to execute the control loop N times,
T,; = actual time required to execute the control loop and F', N
times,
n, = number of times F,, is executed during T, ,
n.; = number of times F,, is executed during T,
T = measured time for T,,
¢y = measured time for T/,

It then follows that

T. =N-To+n. T, (13)
T,y =N-(To+ Tp) + ny Ty, ’ (14)

Since the measured times must be multiples of the time resolution 7, we have
T*P=T, +6,r1 (15)

T} =Ty + 61 (16)

where -1<é,,5,; <1. Then, letting the calculated time difference be Ty = T} - T,",
it is straightforward to obtain

Ty (ney -n)

=< _ ¢ <’ - - T
TF N N Tu (61:[6:) N (17)

Next, we observe that n, and n,; must be integers and hence that

T,
n, = —17; + €, | (18)

T
ng ==L +e¢, (19)

?

for some -1<¢,,6.; <1. And then
1

R — N =? : [N ‘Tp +(nc! '”c)'Tos]'*'fc[- € - (19.1)

4

10 Benchmarks-Ada

RSD-12-86

T
Let 8 = —= , and simplify to get
T,
N ¢ TF

T,

By — B = + ("cl -n)- A+ €y — € - (19.2)

Solving for n,;, — n, yields
N ° Tp 1
= + . -
Tp '(l-ﬂ) l‘ﬂ (fc[C¢:)

(nc[- ”c) (19.3)

Combine with (17) to get
T, T, T, - (écl — €)

To =8 _T. - - ~ (6,4 -6.) — 19.4
F™N " °F 1, (1-5) N -(1-8) (8)y (1949)
" which can be simplified to
__é_l. =1{_Tol'(fcf_fc)_ _ _1'
[1+ 1-8 Tr N N '(l—ﬂ) (6cl 6c) N (19.5)
Since 1 + lﬂ ;= 11 » multiply both sides by 1 - 4 to get.
Td Too T
=_2% .(1- P . 5-(1-8) -2 0
Tr N (1-8)+2-¢ N +2-6-(1-59) N (20)

for some -1<§, ¢<1 where

The two right most terms in (20) can be made arbitrary small by choosing N sufficiently
large. The effect of # shows that the results previously obtained in (3) are pessimistic
and that a correction can be applied if T, and T,, can be determined.

Estimates of T, and T,, can be obtained by the same second differencing tech-
nique described above for obtaining the resolution time of the CLOCK function.
Assume, for the moment, that T,, satisfics the relation T,, >> 7, and that T, = m - r
for m >>1, and that é in (5) is zero. The latter assumption means that the contribu-
tion to the second difference from the resolution time, r, itself is also zerc, and the fol-
lowing analysis will reflect only the effects of T,,. From a filtering point of view, the
time measurements are simply a staircase input to the simple second difference filter.
The output string, then, is just

., 0,7,,-T,,0..,0T7T,,-T,,0, ... (21)

This directly yields T,,, and periodicity of the sequence gives the frequency of the opera-
tion, T, .

If § 7 0, then the above sequence will have the sequence of (11) superimposed upon
it, which may occasionally distort the value of T,, by + r. Further, if T,, is not an
integral multiple of 7, the values in the sequence will only be within r of T,,. If
T,, >> t, reasonable estimates of the parameters should still be obtainable. Theoreti-
cally, it is possible to derive the precise value of T,, based upon the number periods in

Benchmarks-Ada 11

RSD-12-83

(21) between fluctuations of size r in the values. In practice this will be difficult to
detect because of the length of sequence required and the distortion from the (7 ,-7)
occurrence as in (11).

If T,, < itis again theoretically possible to obtain the measurements, but a bit
more difficult in practice. In this case, we begin by examining the sequence of (11) and
determining the length of the string of 0's between every (r,-7) pair. If T, = 0, then
this length may not vary by more than 1. Any deviation by more than 1 indicates an
occurrence of F,,. For T,, < 7, this will be reflected by a shortening of the length of
the string of zeros. The amount by which the string is shortened is a measure of T,
(measured in multiples of the loop time), and the period with which this is repeated indi-
cates T, .

Minor extensions of this technique allow multiple periodic operating system func-
tions of differing service times to be detected and evaluated. However, it is generally
very difficult to fit the execution time and period of more than a single function to the
sequence of (11). Nevertheless, by accumulating the shortening of the strings of zeros
and dividing by total time, it is typically possible to get an overall estimate of the
operating system overhead involved.

Actual tests with this approach revealed another difficulty. Some implementations
of the CLOCK function involve the dynamic allocation of records, which in turn may
involve the invocation of a run-time. system function. As will be discussed in Sec. 5.2,
the time required to perform this operation can vary quite widely. This variation in
storage allocation time will give the appearance of operating system overhead. To avoid -
these problems, the Ada CLOCK function should not be used for tests to determine the
operating system overhead. Instead, an implementation dependent subprogram is
required which can read the system timer without invoking any variable time system
functions such as storage allocation. Such a system dependent subprogram was written
and used in our tests. It should be noted, however, that for all of the other tests to be
described, the CLOCK function is evaluated only at the beginning and the end of a loop
iterated a large number of times, and the effect of the dynamic storage allocation is
effectively eliminated, as shown in (20). Thus, except for determining the operating sys-
tem overhead, the Ada CLOCK function may be safely used.

3.4. Resolution of Measurements

The result of (20) was based upon a periodically occurring function which always
took the same time to execute. In practice this assumption may not be entirely true.
Repeated executions of the benchmark can provide both a test of the validity of the
assumptions and improve the accuracy of the results obtained.

The distribution of the estimates can be observed by running a repeated set of tri-
als. One can then average the results obtained from each trial. The variance of the
resultant estimate is reduced by N; if N, trials of the benchmark are made.

An alternative strategy is to use the minimum of the values obtained. However, in
this case, one must be careful to determine the minimum of T,; and T, separately and
use these values in the computation of T;. Otherwise, one is likely to use a larger than
average value of T in combination with a smaller than average value of T,; and pro-
duce a result which is distorted on the side of being too small.

12 Benchmarks-Ada

RSD-12-86

4. Features to be Measured

This section of the paper describes features which are relevant to real-time execu-
tion and whose performance should be measured. A motivation is given for each test as
well as a precise statement of what is being measured. Where the measurement requires
techniques beyond those described in Sec. 3, specific details are given.

The specific features discussed are:
e subprogram calls;
e object allocation;
e exceptions;
e task elaboration, activation, and termination;
e task synchronization;
e CLOCK evaluation;
e TIME and DURATION evaluations;
e DELAY function and scheduling;
e object deallocation and garbage collection;
e interrupt response time.
All but the last three are clearly measurements of features specified in the LRM.

In the areas of tasking, timing and storage management, the compiler implementors
have been given a great deal of implementation latitude. Consequently, it is difficult to
develop a priors a set of benchmarks which completely characterize these areas since the
range of implementation techniques which may be used is open ended. Knowledge of the
type of disciplines implemented is important before it can be determined what parame-
ters it is relevant to measure. Thus, measurement techniques in these areas are oriented
toward determining the general nature of the implementation techniques used.

4.1. Subprogram Overhead

With today’s software systems running into sizes that exceed one million lines,
modular programming is a necessity. Such a programming style, however, leads to an
increase in procedure and function calls. In a recent study, Zeigler and Weicker found
that 26.8% of a typical Ada program as implemented in the iMAX 432 system was sub-
program calls [7]. Shimasaki, et al., obtained a range of 26.5% to 41.4% for typical
Pascal systems [8]. The overhead associated with a subprogram call and return should
not deter software producers from using a structured programming style. A possible
way to avoid the cost of this increased overhead is to have the compiler generate an in-
line expansion of the code of the subprogram where the call to it occurs. There is a
trade-off here, however, in that as the call/return overhead is eliminated, the size of the
object module is increased. Ada provides for a method of in-line expansion with the
INLINE pragma, but a compiler is not required to implement this or any other
pragma. By measuring both subprogram overhead and the time needed (if any) to exe-
cute code generated by an in-line expansion, one can determine whether or not the
language/computer will encourage real-time systems programmers to use good program-
ming techniques.

Several tests were designed to provide insight to different aspects of subprogram
calls. The first test measures the raw overhead involved in entering and exiting a

Benchmarks-Ada 13

RSD-12-86

subprogram with no parameters. Next various numbers of INTEGER and ENUMERA-
TION parameters are passed to determine the overhead associated with simple parame-
ter passing. Composite objects may be passed either by copy or reference. Another test
will determine which method is used because, if the parameters are passed by reference,
the time required will be independent of the number of components of the object. The
final case involving parametzars is the one in which the formal parameters of the subpro-
gram are of an unconstrained composite type. The test in this case is designed to meas-
ure the additional overhead present in passing constraint information along with the
parameter itself. All of the tests include passing the parameters in the modes in, out,
and in out.

All of the tests involve two different types of subprogram calls, one to a subpro-
gram that is a part of the same package as the caller, and the other to a subprogram in
a package other than the one in which the caller resides. These two sets of tests deter-
mine if there is any difference overhead between intra- and inter-package calls. In the
case of intra-package calls, all of the tests are repeated with the addition of the INLINE
pragma to determine if the INLINE pragma is supported and, if it is, the amount of
overhead involved in executing code generated by an in-line expansion as opposed to exe-
cuting the same set of statements originally coded without a subprogram call.

The final aspect of the tests involves the use of package instantiations of generic
code. All of the tests for both inter-package and intra-package calls are repeated with
the subprograms being part of a generic unit. This test is designed to determine the
additional overhead involved in executing generic instantiations of the code.

4.2. Dynamic Allocation of Objects

Writing software without distinct bounds on the size of arrays and records, or the
number of tasks or variables offers the advantage of portability and ease of support for
the software as the application changes. Moreover, the ability to dynamically allocate
objects is important to the development of some algorithms. However, in the case of
embedded real-time systems, the time required to dynamically allocate storage may
make it an undesirable feature. In order to determine if dynamic allocation of objects is
feasible in a real-time application, the associated overhead must be measured.

Three types of allocation are considered. The first case is that of allocating a fixed
amount of storage by either entering a subprogram or a declare block with the objects
declared locally. Although the amount of storage needed is known at compile time, it is
allocated at run time. The second case is the allocation of a variable amount of storage
not known at compile time by entering either a subprogram or declare block. An exam-
ple of such an object would be an array with variable bounds. The third case of
dynamic allocation is that done explicitly with the new allocator. This allocator can be
used to allocate a single object of a particular type.

The tests presented measure the overhead associated with each type of dynamic
allocation. In the case of fixed length allocation, the times to allocate various numbers
of objects of types INTEGER and ENUMERATION are measured as well as the times
to allocate various sizes of arrays, records, and STRINGs. The objective is to determine
the allocation overhead involved, and if there is any difference in the overhead based on
the type of object allocated. In the variable length case, arrays of various dimensions
bounded by variables are allocated. This test is designed to determine if allocation time
is dependent on size of the object. In particular, it is expected that many compilers will

14 Benchmarks-Ada

RSD-12-86

allocate small objects on the stack assigned to the task, and larger objects off the heap
(which will typically take a much longer time). Finally, in the case of the new alloca-
tor, allocation time of objects of type INTEGER and ENUMERATION as well as com-
posite type objects of various sizes are measured. This test will again show if allocation
time is dependent on size (in the composite type object case). Also, these measurements
will give an idea as to the relative efficiency of this method of allocation as opposed to
the fixed length case.

4.3. Exceptions

Embedded real-time systems require extensive error-handing and recovery so that
errors may be isolated and reported without bringing the whole system down. Also,
modular programming encourages the abstraction of abnormal error reporting. Since
many real-time systems must function in the absence of human intervention (space
ships, satellites, etc.), the ability to provide extensive exception handling is of great
importance. In order for these real-time systems to operate properly, efficient exception
handling must be available.

Four types of exception handling routines are interesting since they represent dif-
ferent ways in which exceptions are raised: NUMERIC_ERROR,
CONSTRAINT_ERROR, TASKING_ERROR, and user-defined exceptions. The
NUMERIC_ERROR exception is first discovered by the hardware and the exception is
propagated back to the run-time system by an interrupt signal from the hardware. The
CONSTRAINT_ERROR is raised by the Ada run-time system. The
TASKING_ERROR is raised during task elaboration, task activation, or certain condi-
tions of conditional entry calls. And, the user-defined exception is raised by the pro-
grammer. Except for the user-defined exception, the method of raising the exceptions
can be done both by forcing the relevant abnormal state in the code and by using the
raise statement.

In order to gauge the efficiency of exception handling, measurements of time to
both respond to and propagate exceptions must be examined. The response time for an
exception is the time between the raising of the exception and the start of the execution
of the exception handler. When an exception is raised in a unit and no handler is
present, the exception is propagated by raising the exception at the point where the unit
was invoked. The time between raising an exception in a unit and its subsequent raising
at the point where the unit was invoked is the time necessary to propagate the excep-
tion. In the tests presented here, both of these times are determined for three of the
four types of exceptions mentioned above. Where applicable, the exceptions in the tests
are raised both by the raise statement and by forcing the abnormal state to occur in the
code.

4.4. Task Elaboration, Activation, and Termination

The tasking function provides the heart of the real-time power and usefulness of
Ada. Many algorithms, such as buffering algorithms, involve the creation and execution
of tasks, e.g., the reader-writer scheme described in Barnes [9]. Nevertheless, task ela-
boration, activation and termination are almost always suspect operations in real-time
programming and programmers often allocate tasks statically to avoid run-time execu-
tion time. It is, therefore, of special interest to explore the efficiencies of task elabora-
tion and activation.

Benchmarks-Ada : 15

RSD-12-86

The time measured in this test is the time to elaborate a task’s specification,
activate the task, and terminate the task. This composite value gives an indication of
the overhead involved in the use of the tasking function. Of course, individual values
for each component of this metric would provide more detailed information about the
efficiency of tasking overhead. However, the coarse resolution of the CLOCK function
currently available prevented measurement of the individual values, due to the large
number of iterations needed to get a precise measurement. Iterating through a loop a
large number of times where tasks are created without being terminated causes the run-
time system to thrash and prevents an accurate measurement. When higher resolution
clocks are available, the source code of the test can easily be changed to time each indi-
vidual part of the metric.

Some additional information can be determined about the time for task activation,
however. The test for measuring the composite of elaboration, activation, and termina-
tion is run for the two possible cases of task activation: 1) entering the non-declarative
part of a parent block and 2) by using the new allocator. The first case can be further
divided into two categories. The task to be activated can either be declared directly in
the declarative part of a block, or it can be an object declared to be of a task type. In
the case of task activation using the mew allocator, an access type object is allocated
that is a pointer to an object of a task type. The difference in the times provided by
these three tests gives some insight into the relative efficiency of the two types of task
activation.

4.5. Task Synchronization

Important in multi-tasking is the ability of tasks to synchronize. In Ada, synchron-
ization is supported in the rendezvous mechanism. This mechanism allows tasks to pass
information to one another at key points during their execution. To start, the rendez-
vous involves at least two context switches: one to the run-time system and then
another to the acceptor if it is ready to accept the rendezvous. The run-time system
must check if the acceptor is indeed ready to receive the rendezvous and this adds to
the overhead associated with the context switches. If the overhead associated with a
rendezvous is too great, then the efficiency of execution in a multi-tasking environment
will suffer.

The synchronization test measures the time to complete a rendezvous between a
task and a procedure with no additional load present. This method, then, gives a lower
bound on rendezvous time because no extraneous units of execution are competing for
the CPU. This test is also repeated for rendezvous where various numbers, types and
modes of parameters are passed.

4.8. Clock Function Overhead

In a real-time application, the CLOCK function provided in the CALENDAR pack-
age may be used extensively. The overhead associated with calling the CLOCK function
can be an important contribution to the speed limit with which timed loops can be
coded. The benchmark test measures the overhead associated with a call to and a
return from the CLOCK function provided in the package CALENDAR. The method
used is essentially the same as the one used to measure the overhead associated with a
entry and exit of a do-nothing subprogram in a separate package.

16 Benchmarks-Ada

RSD-12-86

4.7. Arithmetic for types TIME and DURATION

Dynamic computation of values of types TIME and DURATION is frequently a
necessary component of real-time applications. An example of such a computation is the
difference between a call to the CLOCK function and a calculated TIME value which is
often used as the value in a delay statement. If the overhead involved in this computa-
tion is significant, the actual delay experienced will be somewhat longer than antici-
pated. This could be critical in the case of small delays.

The objective of the test in this case is to measure the overhead associated with a
call to and return from the “+’ and “-” functions provided in the package CALEN-
DAR. Times are measured for computations involving just variables and both constants
and variables. Although both “+” functions are essentially the same (only the order of
parameters reversed), both are tested. This is done because a discrepancy in the time
needed to complete the computation will occur if one of the functions is implemented as
a call to the other.

4.8. Scheduling Considerations

Two requirements of many real-time programs are the need to schedule tasks to
execute at particular points in time and the need to allow execution to switch among
tasks. Ada provides the delay statement to allow programmers a mechanism for han-
dling the former. The latter can be achieved through a variety of mechanisms. The
scheduler provided by the run-time system is entered at certain synchronization points
in a program, at which time other tasks may be placed into execution. Also, the underly-
ing system may implement a time slice mechanism. Great freedom is provided Ada
implementors in realizing these mechanisms, however, and as a result the schemes used
can have a greater impact on the suitability of a particular implementation for real-time
applications than the raw execution speed of many other constructs.

The principal issue involved, from a real-time perspective, is the mechanism by
which tasks are placed into execution. The LRM states that the order of scheduling
among tasks of equal priority, or among tasks of unstated priority, is undefined. Fair
scheduling is presumed. Synchronization points are the beginning and end of task
activations and rendezvous. These are the only points at which a user can be sure that
the scheduler will be entered in a system which does not implement priorities. The issue
that arises is determining when a task becomes eligible for execution after the expiration
of a delay. An implementation may elect to only check for expiration of the delay
periodically, at synchronization points, or in a variety of other ways.

To illustrate the problem consider an embedded system in which the programmer
" has control over all nonsystem tasks to be executed, and consider a simple polling loop
whose purpose is to receive messages from a network device and post them to a local
mailbox. While it would undoubtedly be desirable to have such a function interrupt
driven, assume for this example that the underlying system precludes this possibility,
hence the need for the polling loop. The basic loop, ignoring the need to allow other
tasks to run, might reasonably have the form:

loop (L2)
if DEVICE_HAS_MESSAGE then
RECEIVE(MESSAGE); -- May be entry or procedure call

Benchmarks-Ada 17

RSD-12-88

DEPOSIT(MESSAGE); -- May be entry or procedure call
end if;
end loop;

The problem is how to allow other tasks to occasionally obtain service from the CPU,
and still have the polling loop execute frequently enough that messages do not remain
pending for long periods of time. The basic loop given above must be modified to ensure
that this occurs.

As a first strategy, suppose that a delay 0.05 statement is inserted before the if
statement to provide an opportunity for other tasks to execute. One would expect that
if all tasks have equal or undefined priority this strategy would allow other tasks to have
a chance to run every time the message task runs, and that the message task would have
a chance to run in accordance with underlying fair scheduling system. Further, if only
the message task is ready to run, one would expect it to run approximately once every
50 milliseconds. However, if, as is the case in some validated compiler systems, the
expiration of this delay is only checked periodically, say at 1 second intervals, to see if
any delayed tasks are ready to be reactivated, the polling loop may only be executed
once a second, in spite of the fact that there are no other tasks ready to run. We call
this type of scheduling fized interval delay scheduling. It may be performed quite
independently from time slicing or other task scheduling which may be part of the same
scheduling system.

If priorities are supported, one might also place a PRIORITY pragma before the
loop to give the polling loop a higher priority and ‘“‘ensure’ that it will run in preference
to other tasks, if ready. Even in this case, however, it is not clear when the implementa-
tion will check to determine if the delay has expired. This matter is presently under
-consideration of the Language Maintenance Committee, and it is thus wise to have a
method for testing the scheduling algorithm used.

Even if fixed interval delay scheduling is used, acceptable performance may still be
achieved under some circumstances if an implementation checks for tasks to schedule at
points in addition to synchronization points. For example, if the loop given above is
modified as shown below, other tasks may still obtain CPU service sf the scheduler is
entered to choose a new task to run each time a select is encountered.

loop
select
when DEVICE_HAS_MESSAGE =>
accept RECEIVE(MESSAGE) do -- MESSAGE is an out parameter
DEPOSIT(MESSAGE); -- procedure call
end do; '
else
null;
end select; (L3)
end loop;

Given a fair scheduler, some other task would then have an opportunity to execute each

18 Benchmarks-Ada

RSD-12-88

time around the loop. Of course, either the other tasks must relinquish control suffi-
ciently often or the scheduler must time share with sufficient frequency so that the pol-
ling loop can regain control often enough. The price for the use of additional scheduling
points is extra scheduling overhead.

In order to develop many real-time Ada programs it is thus clearly necessary to
have supplemental information about the scheduling strategies used by an implementa-
tion. A method for determining the time slice interval was described earlier. In the next
subsection, techniques for determining the scheduling discipline related to delay expira-
tion are described.

4.8.1. Delay and Scheduling Measurements

This section proposes a test which allows information regarding preemptive or fixed
interval scheduling to be obtained. The test is based upon embedding a simple delay
statement inside of a loop executed a large number of times, for example:

T1: = CLOCK;

while I < N loop (L4)
delay DEL;
INCREMENT(I);

end loop;

T2 : = CLOCK;

- The interpretations desired will require running this test for several different ranges of
values of DEL. Typically, the proper value ranges will not be known a priors, and might
range over five orders of magnitude. The correct set of ranges must be determined
empirically for each implementation. It will generally also be necessary to execute the
test as the only process running on the CPU. Based upon this test several useful
interpretations can be obtained by plotting d(DEL) vs. DEL where

dDEL) = (T2 - T1)/N - TL |,

and TL is the loop overhead time. That is, d(DEL) is the actual delay time achieved.
Ideally, the points of this plot should lie on a straight line, with slope one, as shown in
Fig. 2. The deviation of the plot from this ideal provides useful information about the
scheduler.

4.8.1.1. Minimum Delay Overhead

First, it is necessary to determine some information about the behavior of the
scheduler for small values of DEL. Some implementations are smart enough to recognize
situations in which the requested DEL is smaller than the overhead required by the
delay function, and simply do a return to the calling unit immediately. To study this,
let T be the time required to perform the delay operation exclusive of any time the
task is on a delay queue and the processor is performing work for another task, i.e., it is
the overhead associated with delays. Typically, T ; will depend upon DEL. For example,
the overhead associated with returning to the calling program if DEL is below some
threshold would be different from the overhead associated with placing the task in a
delay queue. :

Benchmarks-Ada 19

RSD-12-88

Beginning with DEL = DURATION’SMALL make a series of runs of (L4) for
increasing values of DEL, and generate the plot described above. Suppose d(DEL)
remains constant for small values of DEL as shown in Fig. 3. This suggests that for
DEL less than some components of T the system does an immediate return to the cal-
ling program (or immediate rescheduling of the calling program). The threshold used
can be obtained by increasing DEL until the curve ceases to be a straight line of slope
zero. Care must be taken in choosing the values of DEL since the range of values
required may well exceed an order of magnitude.

If, on the other hand, d(DEL) shows a slope of 1, even for small values of DEL,
then it is likely that the system always puts the calling task on a delay queue for the
specified duration. In this case, a straight line passed through the sample points will
intercept the ordinate at the value of T ; for small values of DEL. Unfortunately, this
latter effect may be difficult to observe if scheduling is nonpreemptive.

4.8.1.2. Fixed Interval vs Preemptive Delay Scheduling

Next, we try to determine if fixed interval delay scheduling or true preemptive
scheduling based upon interrupts from a programmable clock are used. If for DEL > T
the points of the plot lie on a straight line of slope 1, preemptive scheduling is indicated.

If the straight line with a slope of one is not achieved, it is suggestive that true
preemptive scheduling is not being used. The plot is then likely to be a staircase func-
tion if fixed interval delay scheduling is being used. To see this consider that only this
task is executing and that after the first iteration of the loop, the delay statement will
be encountered very shortly after the expiration of one of the fixed scheduling intervals.
If the DEL specified does not exactly reach the end of the next scheduling interval, suffi-
cient extra delay will be inserted implicitly to reach the end of the scheduling interval.
Thus, after the first loop, the actual delay will be approximately some multiple of the
scheduling interval. If the scheduling interval is large compared to TL, then the size of
the step in the plot will be approximately the interval of the scheduler as illustrated in
Fig. 4. Again, obtaining a sufficient set of values for d(DEL) is not entirely straightfor-
ward. Some compilers are known to have a scheduling interval more than five orders of
magnitude larger than DURATION'SMALL. Therefore, some cleverness is required in
selecting the values of DEL to use, e.g., a coarse to fine search strategy.

There is one additional characteristic to a scheduling strategy which might compli-
cate the interpretation somewhat. If the implementation does do preemptive scheduling
but with a time resolution element larger than DURATION’SMALL, a staircase plot will
also result. Distinguishing between these cases can be difficult. If the measurement
clock resolution, 7, is relatively small compared to T 1-T 2 for N =1, the two cases can
be distinguished by rerunning the experiment for a fixed DEL with randomized starting
times. In the case of true preemptive scheduling, T 2-T 1 should remain relatively fixed
while for fixed interval delay scheduling, T 2-T 1 will vary randomly with the range of
variation corresponding to the size of the interval of the scheduler.

4.8.1.3. Compensation for Minimum Delay Overhead

Finally, if preemptive scheduling has been used and DURATION'SMALL is signifi-
cantly less than T, further information can be obtained. Theoretically, d(DEL) will be
a straight line having slope 1 and passing through the origin. It will actually do so only
if the system has compensated the delay time by T; An offset of the line so that it

20 Benchmarks-Ada

RSD-12-88

does not pass through the origin is indicative of either no compensation for T or
incorrect compensation. More generally, due to the dependence of T ; upon DEL, the
plot might be composed of several line segments, and one could examine each line seg-
ment as described above. If a fixed interval delay scheduler has been used this effect will
be dominated by the extra delays introduced by the scheduler, and will not be visible.

While the data obtained in the test described above must be analyzed in several
different ways, this test does provide information which allows a great deal of useful
information to be determined about an implementation.

4.9. Memory Deallocation and Garbage Collection

Memory allocation and dellocation processes are often critical to the operation of
real time systems. Systems can fail because there is insufficient (virtual) memory avail-
able, because the allocation or deallocation times are too large, or because a deallocation
process (garbage collector) is implicitly called at times not under control of the applica-
tions program. (The authors are painfully aware of the latter possibility through per-
sonal experience.)

There are two reasons why insufficient memory failures might occur. First, there
might just intrinsically be too little space available in the pool of storage from which
allocations are made. For most systems, this problem will probably not occur. More
importantly for real-time systems, however, is the fact that the LRM does not require an
immediate return to the storage pool of the deallocated storage, and a validated compiler
has been found which does not return storage to the pool even if
UNCHECKED_DEALLOCATION is called. Embedded systems are often expected to
run for long periods of time, and while the total amount of storage in use at any one
time may not be large, if deallocation does not take place, the system will eventually run
out of storage unless the applications program takes over storage allocation responsibil-
ity. Further, storage deallocation for real-time systems should be under explicit control
of the applications program. Some systems implicitly call a garbage collector, either
periodically, or when the amount of allocated or unallocated storage reaches some thres-
hold level. Garbage collection can then take a substantial length of time, and unless it is
run at the lowest possible priority (and priorities need not be supported), it can disrupt
the operation of the system. For example, imagine a tight 1 millisecond control loop on
an aircraft suddenly put into abeyance for a couple of seconds.

There are also interesting run-time system or operating system effects which one
might wish to observe. For any virtual memory system, the amount of memory allo-
cated can eventually reach the point where paging takes place. Both the amount of
memory for which this occurs and the paging times required may be of interest. For
example, it has been found that in a Unix system, when the allocation storage
approaches the virtual storage limit, overhead times of several seconds occur. (This is
probably not a problem, however, since the virtual size limit is so large that rarely, if
ever, would one run into this problem.)

The basic idea in building tests to measure the effects mentioned above is to use
the new allocator in a loop with various controls on whether it is or is not possible for
deallocation to take place. The second differencing techniques described in Sec. 3.2 can
be used to measure the relevant times which occur.

Benchmarks-Ada 21

RSD-12-86

For one test, a large array of pointers to a sizable array of data is declared. Then
each time through the loop, a pointer to a newly allocated data array is placed in the
pointer array, as shown below.

type INT_ARRAY is array(1..10,1..10) of INTEGER,;
type ARRAY_PTR is access INT_ARRAY;
PTR_ARRAY: array(1..MAX) of ARRAY_PTR;
TIME_ARRAY: array(1..MAX) of TIME;
begin
for I in 1.MAX loop
PTR_ARRAY(I) := new INT_ARRAY;
TIME_ARRAY(I) := CLOCK; (L5)
end loop;

This forces the storage acquired to be kept and not deallocated since the pointer to it
remains throughout the run. By making the loop counter sufficiently high, more storage
will eventually be requested than is available in the system, and the exception
STORAGE_ERROR will be raised. A second difference analysis on the time array will
yield the results on the storage allocation and paging times.

A second test uses the same loop structure, but only two access variables. Each
time around the loop, the content of one access variable is shifted to the second, and the
newly acquired data is assigned to the first access variable, thus implicitly freeing the
storage allocated two iterations previous to the current one. (This shifting structure is
used to break up the possibility of an optimizer avoiding the actual allocation of
storage.) If the exception STORAGE_ERROR is also raised on this loop, lack of any
implicit deallocation is indicated. If a garbage collector is implicitly called, this will be
detected by the second difference analysis on the array of clock times.

The third test is similar to the second except that a call to
UNCHECKED_DEALLOCATION is added to the loop to try to force deallocation. If
the exception STORAGE_ERROR is still raised, either
UNCHECKED_DEALLOCATION does not function properly or there is some global
limit on the amount of storage which can be allocated which is independent of the avai-
lability of storage to be allocated (a strange and unlikely occurrence).

These tests provide basic information on the storage allocation and deallocation
mechanisms used by an Ada system.

4.10. Interrupt Response Time

Interrupt response time is clearly critical for many real-time embedded systems.
Techniques for measuring it, however, are difficult to develop since, in general, hardware
external to the CPU must be involved, i.e., the test cannot be based only on program-
ming. Second, the times which must be measured will be at substantively different
points in the test program and the use of iteration to improve accuracy of measurement,
as shown in (4), can not be expected to work in this situation.

22 Benchmarks-Ada

RSD-12-86

The first problem to be faced is the generation of the interrupt signal in a con-
trolled and time measurable fashion. This can be accomplished by adding a parallel
interface to the system to be tested and writing a special driver for the interface which
must be directly accessible from the benchmark program. The output from the parallel
interface is treated as a logic signal to cause an interrupt to the processor. The pro-
cedure for outputting a signal through this interface must be written to be directly call-
able, and hence time measurable, from the benchmark program. The procedure must
not have to go through the underlying run-time or operating system. Then, using tech-
niques described earlier it will be possible to obtain an accurate measure of the time
required to output a signal to the interface.

Two program segments are required for the benchmark. The first is a loop which
repeatedly records the clock and outputs a signal to the parallel interface.

TIME_ARRAY: array(1..MAX) of TIME;

begin
for I in 1..MAX loop (L8)
TIME_ARRAY(I) := CLOCK;
SEND_SIGNAL; - to parallel interface & create interrupt
end loop;

The second program segment is an interrupt handler which simply records the time at
which it is invoked and returns from the interrupt. If possible, the interrupt handler
should be set at a higher priority than the main loop.

The output procedure call and clock recording overhead can be calculated by the
techniques described above. Let T,, be this time. Next calculate the average time
difference between the times recorded in the main loop and the corresponding times
recorded in the interrupt handler. Denote this average by T,,.. Then, one can calcu-
late the interrupt response time as T,,, - T,,.

5. Results

In this section we illustrate the application of the benchmarks by their use with
several compilers: Verdix Versions 4.0, 5.1 and 5.2, running with Unix 4.2 bsd on a
VAX 11/780, DEC VAX Ada Version 1.1 running with Micro VMS 4.1 on a Microvax II,
DEC VAX Ada Version 1.3 running with VMS 4.4 on a VAX 11/780, and Alsys Version
1.0 running with Aegis Version 9.2 on an Apollo DN 660. All user and daemon processes
were disabled (except for the swapper and page daemon, which can never be disabled).
The tests described in Sec. 3 were run to determine the operating system overhead
injected into the measurements for Unix on the VAX. The components to overhead
individually required significantly less than the resolution of the time measurement, r.
Thus, as indicated in Sec. 3.3, it was difficult to get an accurate value for the overhead.
Nevertheless, by examining the amount by which the string of zeros is shortened we
were able to obtain a crude estimate of the overhead. With this approach, we estimated
the overhead to be 5%. Due to the coarseness of this estimate, we present the rest of
the results without modifying them to reflect the operating system overhead for time
slicing.

Benchmarks-Ada 23

RSD-12-86

The number of iterations used in the test and control loops was chosen to produce
results theoretically accurate to the nearest tenth of a microsecond or tenth of a mil-
lisecond (except where noted) depending on the size of the quantity being measured.
The results were very repeatable. Raw control and test results were usually repeatable
within 0.1 or 0.2 microseconds (per iteration) for tests with similar target accuracies.
This allowed us to see the effects of single instruction differences between two different
situations and exposed a number of interesting implementation variations.

We found that similar, but not absolutely identical, situations, e.g., passing one
parameter versus passing several parameters, resulted in slightly different code sequences
for some compilers. We even found positional dependencies in which the timing varied
among identical functions on the basis of the relative position of units within a package
or their position relative to double word boundaries in memory (related to the number of
memory fetches required). With the assistance of some of the compiler vendors, we
tracked down exactly what was happening in a number of such cases just to be sure that
our benchmarks were correct. We will describe some of these below as illustrations of
the differences which can occur.

A consequence of such minor variations is that it is difficult to place meaning on
results any closer than a couple of microseconds, even though theoretically more accu-
rate results have been obtained. There are two reasons for this. First, the number of
special cases to track down is sufficiently large as to require a very large effort to be
complete. Second, even if one did track down each situation completely, there would be
so many separate cases to report that one could not reasonably try to use all of the data
anyway.

A summary of the test results is presented in the tables in Appendix A. Highlights
are discussed here; a complete list is given in Appendicies B thru G.

5.1. Subprogram Overhead

A summary of the results of making procedure calls of various kinds is given in
Table A.1. There are several surprises in this table. First, it is evident that simply
checking one kind of procedure call is inadequate. For some compilers, the differences
among different kinds of calls (generic, non-generic, intra or interpackage) can be as
much as two to one. Detailed investigation of DEC VAX compiler outputs showed that
there were differences in certain elaboration and stack checks between the generic and
non-generic versions of the code.

A second characteristic, not obvious from the table, is the effect of code optimiza-
tion. The DEC compiler, in particular, will in-line procedures for small procedure sizes
automatically as a time optimization even if INLINE is not used. While this improves
performance substantially, it makes it difficult to test procedure calling time, and raises
a question of interpretation of the results. The numbers not available for procedure calls
in Table A.1 indicate circumstances in which the compiler INLINEd the test procedure,
reducing the time to near zero.

As a second illustration of minor code differences, consider the procedure call times
with 1 or 10 integer arguments (not shown in detail due to size of data). For a single
integer argument, the calling time was less for in out mode parameters than for out
mode parameters. This relative timing was reversed when 10 parameters were passed.
The reason was that the DEC peep-hole optimizer could see that a single in out formal
did not receive an assignment (in our benchmark) and therefore optimized the exiting

24 Benchmarks-Ada

RSD-12-86

assignment out of the code, while for 10 parameters in the parameter list, the window
was too small for that observation to be made and the exiting assignment was done for
all parameters. That optimization was not performed for the out mode case.

The per argument times associated with procedure calls were checked for lists of 1,
10 and 100 arguments of INTEGER and ENUMERATION types, except for the Alsys
and VAX Version 1.3 compilers, which would not handle argument lists of length 100.
The differences in times among the modes seem to indicate copying associated with pass
by value and initialization of variables. Variations also occurred in the number of regis-
ters used, and therefore saved and restored, as a function of the number of parameters
passed. The “+" in the per argument table indicates that a fraction of a microsecond
was added to each argument passed, depending upon the number of registers used.

Although we did obtain repeatable results with the Alsys compiler, the results did
not fit a linear formula well, and are thus not reported that way. The values were in
the range of 4-7 microseconds per argument. ‘

5.2. Dynamic Allocation of Objects

The memory allocation tests, shown in Table A.2, are divided into two categories,
allocations performed in a declarative region on entering a procedure, and allocations
performed via the new allocator.

The time required for fixed size storage allocation in a declarative region was small
(a few microseconds) and roughly constant for each of the compilers. Thus, this was not
shown in the table. The time required for dynamically bounded arrays varied approxi-
mately as a linear function of the number of dimensions, which had been expected (con-
sidering the formulas typically used for computing array dope vectors). The times were
in the 10-20 microsecond per dimension range for all compilers except the Verdix 5.1 and
Alsys compilers, which were appreciably larger. All of the ranges used in these tests
were kept small in order to avoid other storage effects, such as allocating from the heap
for objects above some size threshold.

Two significant effects were discovered that had to be taken into account in order
to obtain useful results in dynamic allocation via the new operator. First, for the Ver-
dix 4.06 compiler, problems arose with the underlying memory management mechanism.
This version never deallocated storage. Thus, as the amount of storage allocated across
a large number of iterations began to grow, the operating system began to swap memory
pages onto disk. This paging time was sufficient to distort the test results. To eliminate
this difficulty, a sequence of pretests were run to determine the number of iterations
that could be included in the test before paging became a significant problem. The tests
were then run with this number of iterations. This reduced the precision somewhat, but
useful results were still obtained. Versions 5.1 and higher did deallocate storage, which,
while they eliminated the paging problem, did increase slightly the storage times
recorded.

Second, most of the compilers used a multi-level storage allocation scheme. Small
objects were allocated from some locally held storage pool, while for larger objects, calls
were made to the underlying system for more storage. The latter were quite evident
since they typically required near an order of magnitude larger time than objects allo-
cated from the local pool. To make these results evident, the dynamic storage requests
via new were run several times with some object sizes from 4 to 4,000 bytes. The wide
range of times shown in table A.2 simply reflects the fact that small objects were

Benchmarks-Ada 25

RSD-12-86

allocated locally while large objects required a system call.

The multilevel nature of dynamic storage allocation was also found (though it was
not easy to detect) in the CLOCK function. The Verdix CLOCK function dynamically
allocates a record each time it is called. The time to allocate this record from the local
pool is only a few 10's of microseconds. However, every once in a while the local pool
becomes exhausted, and a system call must be made to obtain more storage. The time
to obtain a new chunk of storage is on the order of 3 milliseconds. Thus, the time to
allocate any one object can be quite variable. The possibility of a CLOCK call occasion-
ally taking a long time due to the need to acquire more storage can have a devastating
effect on real-time programs, as CLOCK will be used in many, if not most, real-time
scheduling loops. Since the system call for more storage doesn’t happen very often, it
will be difficult to isolate the problem. Consequently, it is important to identify all
implementation supplied procedures or functions which allocate storage.

65.3. Exceptions

The exception handling tests are divided into two sets. In the first set an exception
is raised within a declare block, and the exception handled by a handler at the end of
the block. In the second set an exception is raised from within a procedure which does
not have an explicit handler. The exception is then propagated to the calling block,
which handles the exception at the end of the block from which the procedure was
called. Exceptions were raised by three methods, explicitly with the raise statement,
violation of a subtype range, and INTEGER overflow.

The results of the exceptions tests are shown in Table A.3. In general, the com-
pilers ‘all take little or no time for exceptions that are not raised, which is an important
characteristic for real-time applications. However, all of the exception handing times are
significantly longer than would be required for condition testing and subprogram calls.
When very fast response is required, users may find it necessary to explicitly handle
exceptional situations in the body of their program rather than relying upon the Ada
exception mechanism. The much larger times associated with implicitly raising
NUMERIC_ERROR are associated with the fact that this kind of error is first trapped
by the operating system, which then passes control back to the exception handler. In an
embedded system with a dedicated real-time operating system, this time could be signifi-
cantly less than occurred in our test results on a time-shared system.

5.4. Task Elaboration, Activation, and Termination

This test was run for the three different types of task elaboration and activation
explained in Sec. 4.4. Table A.4 shows the task elaboration, activation and termination
times for the compilers tested. For each individual compiler the differences between ela-
boration and activation in a declarative region or via the new operator did not differ by
more than 15% and thus are not reported separately. The table shows that efficient
techniques for task elaboration, activation, and termination are possible.

5.56. Task Synchronization

The test here was rather straightforward. The test involved entering a block where
a task was activated and a subprogram called that executed a rendezvous with that task
repeatedly in a loop. The control for this test is of the same structure, except that the
loop is iterated with no rendezvous. The results are also shown in Table A.4. The ren-
dezvous times varied significantly, again indicating that as development continues on

26 Benchmarks-Ada

RSD-12-88

successive versions of compilers, the rendezvous times can be decreased. Entry calls with
parameters showed that the additional time to pass parameters was negligible.

6.8. Clock Function Overhead and Resolution

Table A.5 shows the overhead associated with the CLOCK function. The numbers
reported are averages obtained over several test runs. There is a large variation in the
length of time required by the different compilers. The large increase in overhead
required by the Verdix 5.1 and 5.2 compilers is due to a change in the data structure for
objects of type TIME and an increase in the number of procedure and function calls
within the CLOCK function. Unix system routines are called by CLOCK to get the
time and compensate for the time zone. Daylight savings time is also taken into account
and the time is normalized with respect to Greenwich Meridian Time. Since TIME
objects are represented as Julian days and seconds, an Ada function in the CALENDAR
package is also called to compute the Julian day. We were able to determine this infor-
mation about the CLOCK function by examining the source code of the body of the
CALENDAR package. While useful for some applications, these extensive computations
are too time-expensive for many real-time applications, and some additional clock like
function will be required for real-time applications. A CLOCK resolution of 10 mil-
liseconds is marginal for many real-time applications. '

5.7. Arithmetic for types TIME and DURATION

The TIME math tests measure overhead involved in addition and subtraction
operations involving the types TIME and DURATION. All possible combinations
involving variables and constants of each type are tested. Table A.8 shows the results.
It appears that constant expressions are evaluated at compile time in all of the com-
pilers. The difference of more than an order of magnitude between operations on the
type TIME and the type DURATION is probably due to the representation of TIME as
a record, while DURATION is fixed point. The variation in the results between the ver-
sions of the Verdix compiler for expressions involving type TIME is due to a change in
the record used to represent TIME.

5.8. Delay and Scheduling Measurements

This test involved the measurement of time elapsed during the execution of a
delay statement. The results appear in Table A.5.

For the Verdix 4.08 compiler, a minimum delay value of 1.4 milliseconds was
detected. This delay occurred for requested delays between zero and slightly less than 1
millisecond (actually, the upper bound is 16 times DURATION'’SMALL, the greatest
model number less than 1 millisecond). This value corresponds to the part of the curve
before the jump in Fig. 4. For the Verdix 5.2 and DEC compilers the minimum actual
delay was 10 milliseconds, and while for the Alsys compiler it was 1 second.

The actual delay values in other cases were more difficult to isolate, due to the
nature of the scheduling systems. Verdix Versions 4.06 and 5.1 use fixed interval delay
scheduling with a delay value of 1 second. Thus, for a requested delay of 1 millisecond or
greater, the actual delay was for the remainder of the one second time slice in which the
delay expired. Since it is impossible to see this effect when a large number of iterations
are run, the test was run repeatedly with the loop executed only once on each test. A
delay generated by executing a statement a random number of times was inserted before
the delay statement to vary the value remaining in the time slice. This test confirmed

Benchmarks-Ada 27

RSD-12-86

that requested delays between 1 millisecond and less than 10 milliseconds resulted in
actual delays between 10 milliseconds and 1.01 seconds, that is, the value remaining in
the 1 second time slice plus 10 milliseconds. As the requested delay was increased, the
staircase function of Fig. 4 was obtained, with the step size being 1.01 seconds. The
extra 0.01 seconds corresponds to one clock resolution time and appears to be time spent
in the scheduler before the basic 1 second time slice is reset.

Both the Verdix Version 5.2 and the DEC compiler used preemptive scheduling
with a time resolution of 10 milliseconds. Due to the 1 second time resolution of the
Alsys compiler, it was neither practical nor useful to test its scheduling algorithms
further.

5.9. Storage Deallocation and Garbage Collection

The storage deallocation tests provided an insight to the type of deallocation facili-
ties provided for objects declared dynamically with the new allocator. The object used
for allocation throughout this test was a omne dimensional array consisting of 1000
INTEGERs. The size of the virtual memory space available is approximately 32 mega-
bytes, the limit imposed by the operating system. This is the size at which
STORAGE_ERROR should be raised by (L5).

By modifying the test loop to use only two access variables, instead of the array of
access variables in (L5), we found that the Version 4.08 run-time system does not per-
form garbage collection, since STORAGE_ERROR was still raised at the same point.
Further, by explicitly calling UNCHECKED_DEALLOCATION after every allocation
and observing that STORAGE_ERROR was still raised at the same point, we concluded
that the UNCHECKED_DEALLOCATION procedure does not reclaim storage in that
version of the compiler.

The Version 5.1 and 5.2 compilers also do not perform garbage collection, but
UNCHECKED_DEALLOCATION does reclaim storage for scalar types, records, strings
and statically bounded array types. Storage is not reclaimed for unconstrained array
types. Due to improper setting of system parameters on the Microvax II, the DEC VAX
Ada Version 1.1 tests (performed by a third party) were ill behaved for large amounts of
storage allocation, and the tests were not performed on this version.

6. 'Summary and Conclusion

This paper has developed a series of benchmarks to test the real-time performance
of an Ada compiler and run-time system together with a set of analysis tools to aid in
the interpretation of the test results. In order to obtain accurate results, the tests
should be run as the sole application on the machine being used with as many system
daemons disabled as possible. To verify the quality of the environment in which the
tests are being run, a simple test of repeatedly reading the system clock and analyzing
the results to identify the frequency and size of operating system activity should be per-
formed before running the tests.

Although the benchmarks are intended for testing real-time performance, the only
Ada systems available to us at the time of development were intended for time-shared,
and not real-time, use. Time shared systems often place less emphasis on the real-time
performance than on general program development and execution support, and the
results of applying our tests bore this out. However, by the same token, the results
point to areas in which users should expect significant performance improvements in

28 Benchmarks-Ada

RSD-12-88

systems intended for real-time applicztions. Among the areas so noted are: improved
performance of the task scheduler, the incorporation of pragma INLINE, improved
storage management facilities, higher speed operations with respect to TIME, and a
reduction in tasking and CLOCK overhead.

There are also a small number of real-time relevant tests which we were not able to
perform on the systems available to us, i.e., the interrupt response time and the behavior
of the system with respect to task scheduling upon I/O requests. A test was proposed
for the former, and the time-shared operating system determines the behavior of the
latter at a level above the tasking level of the Ada program. Further work is required in
these areas when suitable testing facilities are available.

Finally, we make several observations based upon our experience in developing
these benchmarks. First, so many implementation dependent variations are validateable
that it is not safe, in our opinion, to use an Ada compiler for real-time applications
without first checking it with performance evaluation tools. Characteristics such as time
management, scheduling and memory mangement can have validated implementations
that will devastate a real-time application. Real-time performance evaluation is difficult.
Due to the great variety of implementation dependencies allowed, it typically requires
interpretation and benchmark changes for each individual compiler tested. And, real-
time performance evaluation is really only meaningful for dedicated embedded systems.

7. Acknowledgements

The authors wish to thank Chuck Antonelli for sharing his knowledge of the Unix
operating system and his help in obtaining and interpreting direct time readings from
Unix, and Ron Theriault, Jarir Chaar, and Sue Hsieh for numerous late nights in helping
run the benchmark tests. We are also grateful to Bill Meier of Digital Equipment Cor-
poration for running our benchmarks on a VAX 11/780 and assisting us in deciphering
some of the minor anomalies that occurred. We are also appreciative of assistance from
Rob Bedichek and Steve Ziegler of Verdix.

Benchmarks-Ada 29

RSD-12-88

8. References

1]

(2]

8]

(4]

(5]

(6]

[7]

(8]

[9]

30

Ada programming language (ANSI/MIL-STD-1815A). Washington, D.C. 20301:
Ada Joint Program Office, Department of Defense, OUSD(R&D), Jan. 1983.

H. J. Curnow and B. A. Wichmann, “A synthetic benchmark,” The Computer
Jour., vol. 19, no. 1, pp. 43-49, Feb. 1979.

R.P. Weicker, “Dhrystone: a synthetic systems programming benchmark,” Com-
munications of the ACM, vol. 27, no. 10, pp. 1013-1030, October 1984.

P.J. Jalics, “Comparative performance of cobol vs pl/1 programs,” Computer
Performance Evaluation Users Group 16th Meeting, Oct. 20-23, 1980.

J. Squire, ‘‘Performance issues workshop,” ACM SIGADA Users Committee Per-
formance Issues Working Group, July 15-16, 1985.

M.J. Bassman, G.A. Fisher,Jr., and A. Gargard, “An approach for evaluating the
performance efficiency of Ada compliers,” Ada tn Use, Proc. of the Ada Int’l
Conf., May 14-16, 1985.

S.F. Zeigler and R.P. Weiker, ‘‘Ada language statistics for the iMAX 432 operat-
ing system,” Ada Letters, vol. 2, no. 6, pp. 63-67, May 1983.

M. Shimasaki, S. Fukaya, K. Ikeda, and T. Kiyono, “‘An analysis of pascal pro-
grams in compiler writing,”” Software Practice and Ezperience, vol. 10, no. 2, pp.
149-157, Feb. 1980.

J.G.P. Barnes, Programming in Ada. London: Addison-Wesley Publishing Co.,
1984. :

Benchmarks-Ada

H(6, k)

-7

RSD-12-86

—

Benchmarks-Ada

Actual delay time

- XP>et—Yy —>et+X—>

Figure 1. H(é, k) v. k

Ideal Curve

Command delay time

Figure 2. The Ideal Delay Curve

31

RSD-12-88

Actual delay time

Command delay time

Figure 3. The Delay Curve for Small Values of DEL
Showing Minimum Delay Overhead.

[} L B B]

E

> g

s

% I | I I] /\/ u

F

E S Large time, possibly as much as 1s

Small minimum
delay, possibly
~1ms /\/

Command delay time

Figure 4. The Delay Curve for Fixed-Interval Scheduling

32 Benchmarks-Ada

APPENDIX A

Benchmark Results
The following tables summarize the results of the benchmark tests run. All values are
reported in microseconds except where noted. The compiler/hardware combinations
tested are:

Compiler Machine Operating System
Verdix 4.08 Vax 11/780, 4M real memory Unix bsd 4.2
Verdix 5.1 Vax 11/780, 4M real memory Unix bsd 4.2
Verdix 5.2 Vax 11/780, 4M real memory Unix bsd 4.2
Alsys 1.0 Apollo DN660, 4M real memory Aegis Version 9.2
DEC VAX Ada, V.1.1 DEC Microvax II, 5M real memory Micro VMS 4.1
DEC VAX Ada, V.1.3 DEC VAX 11/780 VMS 4.4

Table A.1

Procedure Calls, no arguments

~Compiler Inter- Intra- Inline Generic Generic
package package Interpackage Intrapackage

Verdix 4.08 17.7usec 27.7usec 28.8usec 25.9usec 30.5usec
Verdix 5.1 17.6 16.8 04 18.5 17.6
Verdix 5.2 18 17 0.0 18 20
Alsys 1.0 14 12 31 8 27
DEC VAX Ada, V.1.1 46.1 x! 3.0 45.9 x!
DEC VAX Ada, V.1.3 27.0 x! o 15 x!

Additional overhead per integer argument

Compiler __ in out in out
Verdix 4.08 ~1.5usec ~3.0usec ~3.0pusec
Verdix 5.1 ~1.5 ~3.0 - ~3.0
Verdix 5.2 ~1.5 ~30 ~3.0
Alsys 1.0 ~4.2 ~2.8 ~4.7
DEC VAX Ada, V.1.1 ~1.3 ~3+ ~8+
DEC VAX Ada, V.1.3 ~1.5 ~3+ ~6+

1Compiler INLINED the call reducing value to sero. DEC has supplied a value of 15.1usec for this call.

Benchmarks-Ada 33

RSD-12-86

Table A.2

Dynamic Storage Allocation

Dynamically bounded arrays! in Declarative Region

Compiler _ 1-D Array 2-D Array 3-D Array
Verdix 4.06 31lpusec 48usec 54pusec
Verdix 5.1 143 149 161

Verdix 5.2 19 31-32 43 - 46
Alsys 1.0 28 - 41 74 - 84 145 - 168
DEC VAX Ada, V.1.1 9-18 22 - 25 37-38
DEC VAX Ada, V.1.3 13-18 21 - 31 46 - 48
Dynamically bounded arrays? allocated via new

Compiler 1-D Array 2-D Array 3-D Array
Verdix 4.06 221 - 284usec 309 - 1200usec 326 - x3usec
Verdix 5.1 200 - 260 280 - 1140 300 - 3,370
Verdix 5.2 220 - 280 290 - 1300 300 - 3,350
Alsys 1.0 2,249 - 2,185 2,191 - 2,217 2,300 - 2,334
DEC VAX Ada, V.1.1 410 - 450 430 - 870 490 - 4,830
DEC VAX Ada, V.13 290 - 300 280 - 300 370
Compiler Fixed length objects (small, no arrays) located via new
Verdix 4.06 133 - 300usec

Verdix 5.1 227 - 270

Verdix 5.2 130 - 239

Alsys 1.0 1,963 - 1,985

DEC VAX Ada, V.1.1 310 - 510

DEC VAX Ada, V.1.3 250

Ynteger arrays with range 1 along each dimension.

2T'wo tests each, integer arrays with ranges 1 and 10 along each dimension.

3Storage errors resulted when we attempted to allocate larger amounts of storage.

34

Benchmarks-Ada

RSD-12-88

User Defined, not Raised Numeric Error,

Block Procedure

Table A.3

Exception Handling

in Procedure

Other Exceptions
implicitly raised Handled

in Block

Propagated to
Calling Procedur

Compiler
Verdix 4.06 OQusec
Verdix 5.1 0
Verdix 5.2 0
Alsys 1.0 0

DEC VAX Ada, V.1.1 4
DEC VAX Ada, V.1.3 3

Ousec
1

1

0

16

12

2.47ms
2.55
2.72
17.95
0.89
0.60

345 - 402usec
315 - 372usec
396 - 448usec
8.8 - 9.8ms

667 - 836usec
414 - 541pusec

614 - 671usec
544 - 613usec
718 - 783usec
19 - 20ms
736 - 894pusec
482 - 619usec

Table A.4
Tasking Times

Compiler Rendezvous Task Elaborate,
Activate,
Terminate

Verdix 4.06 3.50ms 19.6ms

Verdix 5.1 3.40 20.4

Verdix 5.2 0.82 - 0.89 3.6

Alsys 1.0 9.55 14.2

DEC VAX Ada, V.1.1 1.85 8.2

DEC VAX Ada, V.1.3 1.1 6.6

Benchmarks-Ada

35

Table A.6

RSD-12-88

Timing & Scheduling

Compiler Clock Clock Delay Scheduling Effective Delay
Call Resolution Method Resolution
Verdix 4.06 570usec 10ms fixed interval Variable 10ms - 1sec
Verdix 5.1 3,550 10ms fixed interval Variable 10ms - 1sec
Verdix 5.2 3,644 10ms preemptive 10ms
Alsys 1.0 1,500 1sec ? 1sec
DEC VAX AdaV.l.1 95 10ms preemptive 10ms
DEC VAX Ada. V.1.3 89 10ms preemptive 10ms
Table A.6
Time
Compiler TIMEs DURATIONs DURATION := TIME - TIME;
only only
Verdix 4.0 188 - 241pusec 7.2 - 7.8usec 111psec
Verdix 5.1 716 - 812 6.3 50
Verdix 5.2 816 - 889 6.0 75
Alsys 1.0 88 - 105 1-2 189
DEC VAX Ada, V.1.1 98 - 109 x! 118
DEC VAX Ada, V.1.3 91 - 94 1 94

IReliable data unavailable.

36

Benchmarks-Ada

RSD-12-88

APPENDIX B

The following pages contain result tables for all of the tests run. These results
are for the Verdix Compiler Version 4.08 running with Unix 4.2 bsd on a Vax 11/780.
Some values contain explainatory footnotes.

Benchmarks-Ada 37

38

Compiler Time Related Values:

System Tick= 0.0099048730468750 Seconds
Duration Small= 0.000061035156250 Seconds

RSD-12-88

Benchmarks-Ada

RSD-12-86

Subprogram Overhead (non-generic)

10
10

|
I
I
I
I
I
I
|
|
|
I
|
I
|
I
I
I
|
I
I
|
|
|
I
|
100 |
100 |
100 |
10000 |
10000 |
10000 |
I

I

|

I

|

|

|

|

I

I

|

I

I

I

I

I

I

I

I

I

|

100
100
100

100
100
100
10000
10000
10000
1

1

1

100
100
100

croseconds .
croseconds .
croseconds .
croseconds.
croseconds .
croseconds.
croseconds .

mi
mi
mi
mi
mi
mi
mi

Number of Iterations = 10000 ¢ 10
Time Direction|# Passed Type |
(microsec.) Passed |in Call Passed
[27.7 | 0 I
30.3 1 [1	INTEGER		
81.1	o [1	INTEGER	
31.9	1_0	1	INTEGER
43.1	1	10	INTEGER
[58.1 o	10	INTEGER	
s8.7 1_0	10	INTEGER	
182.1 I	100	INTEGER [
330.8(1)	O 100	INTEGER	
445.7(2)	1_0 100	INTEGER	
29.8 I 1	ENUMERATION		
31.0 o 1	ENUMERATION		
31.9 1_0 1	ENUMERATION		
43.7 I 10	ENUMERATION		
58.2 (o)	10	ENUMERATION	
58.1 1_0	10	ENUMERATION	
182.8 1 100	ENUMERATION		
353.7(3)] O 100	ENUMERATION		
601.4(4)	I1_O 100	ENUMERATION	
30.3	1	ARRAY of INTEGER	
33.0 o 1	ARRAY of INTEGER		
33.0 1_0 1	ARRAY of INTEGER		
52.6(5)] 1 1	ARRAY of INTEGER 1		
31.0 (o) 1	ARRAY of INTEGER		
31.2 1_0 1	ARRAY of INTEGER		
©30.5	1 1	ARRAY of INTEGER	
] 30.6 o 1	ARRAY of INTEGER		
30.7 1_0 1	ARRAY of INTEGER		
31.8	1 1	ARRAY of INTEGER	
31.2 (o) 1	ARRAY of INTEGER		
31.4 1_0 1	ARRAY of INTEGER		
30.2	1 - 1	RECORD of INTEGER	
31.7	O 1	RECORD of INTEGER	
31.9	1_0 1	RECORD of INTEGER	
s1.1	1 1	RECORD of INTEGER	
31.1	o 1	RECORD of INTEGER	
31.1	1_0 1	RECORD of INTEGER	
32.2	1 1	UNCONSTRAINED ARRAY	
32.2 o 1	UNCONSTRAINED ARRAY		
32.1 1_0 1 UNCONSTRAINED ARRAY			
32.6 | 1 1 |UNCONSTRAINED ARRAY |
32.4 o 1 |UNCONSTRAINED ARRAY
32.4 1_0 1 |UNCONSTRAINED ARRAY
32.3 | 1 |UNCONSTRAINED ARRAY
32.3 (0] 1 |UNCONSTRAINED ARRAY
32.2 1_0 1 UNCONSTRAINED ARRAY
30.5 I 1 |UNCONSTRAINED RECORD
31.8 | O 1 |UNCONSTRAINED RECORD
31.0(6)] I_O 1 UNCONSTRAINED RECORD
30.2 I 1 |UNCONSTRAINED RECORD |
31.8 o 1 |UNCONSTRAINED RECORD
30.9(7)| 1_O 1 |UNCONSTRAINED RECORD
(1) - Results for this test have ranged from 330 to 300
(2) - Results for this test have ranged from 336 to 665
(3) - Results for this test have ranged from 340 to 361
(4) - Results for this test have ranged from 352 to 601
(8) - Other runs have indicated that this value is 30.8
(6) - Other runs have indicated that this value is 31.7
(7) - Other runs have indicated that this value is 31.8
Benchmarks-Ada

39

P o~ o~ o~ o~
N DN
N N S N e " et

Number of

(microsec.)|

182.

347.

o

[¢)

o}

1

o

o

o

(@]

o

[e]

e}

o]

o

10000

100
100
100

—

10

|

| INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER

| ENUMERAT ION
| ENUMERAT 1ON
| ENUMERAT 10N
| ENUMERAT ION
ENUMERAT ION
ENUMERAT ION
| ENUMERAT 1ON
ENUMERAT ION
ENUMERAT ION

Subprogram Overhead (inline)
Iterations

ARRAY of INTEGER
ARRAY of INTEGER
ARRAY of INTEGER

| ARRAY of INTEGER
| ARRAY of INTEGER
ARRAY of INTEGER
ARRAY of INTEGER
ARRAY of INTEGER
ARRAY of INTEGER

|ARRAY of INTEGER
| ARRAY of INTEGER
|RECORD of INTEGER
|RECORD of INTEGER
|RECORD of INTEGER

o

o

[e]

@]

NN NN NNWWWODNWMMM WO N EONO WWWRINDOO ™ W OONI~adWdJoOooOoO
QO Q== Q== O == Q== Q= Q=== Q=m Q=== Q== =—=Q0==0==0Q==0

(@)

Pt ot b puk et d ik Pud et bk (ke Pk Gt Gt b pd ft bt (et ped Pt pd bt et et b Pk pd et et P

indicated that this
test
test

UNCONSTRAINED
UNCONSTRAINED
UNCONSTRA INED
UNCONSTRA INED
UNCONSTRA INED
UNCONSTRA INED
UNCONSTRA INED
UNCONSTRAINED
UNCONSTRAINED
UNCONSTRA INED
UNCONSTRA INED
UNCONSTRA INED
UNCONSTRA INED
UNCONSTRA INED
UNCONSTRAINED

I
I
|
I
I
I
I
I
I
I
I
I
I
|
|
I
I
I
I
I
|
ARRAY of INTEGER |
I
I
|
|
I
I
|
|
|
I
I
|
I
I
I
|
I
I
I
I
I
I
I

RECORD of INTEGER
RECORD of INTEGER
RECORD of INTEGER

ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
RECORD |
RECORD |
RECORD |
RECORD |
RECORD |
RECORD |

185 to
330 to
363 to
335 to
342 to

value is 58.1
have ranged from
have ranged from
test have ranged from
test have ranged from
test have ranged from
indicated that this value is 32.0

242
348
378
375
405

RSD-12-88

|Direction|# Passed
]in Call

10
10 |
10 |
100 |
100
100
10000 |
10000
10000

100
100
100

100 |
100
100
10000 |
10000 |
10000 |
1

1

1

100 |
100
100

microseconds .
microseconds .
microseconds.
microseconds.
microseconds .
microseconds .
microseconds.

Benchmarks-Ada

RSD-12-86

Subprogram Overhead (genmeric)
Number of Iterations = 10000 ¢ 10

to
to
to
to
to
to

190
397
393
200
§50
471

10

10

10
100
100
100
10000
10000
10000
1

1

1

100
100
100

microseconds.
microseconds.
microseconds.
microseconds.
microseconds.
microseconds.

Time Direction|# Passed| Type
(microsec.) Passed |in Call | Passed
| 30.5 | 0
34.6 I | 1 | INTEGER
35.7 o | 1 | INTEGER
35.8 1_0 | 1 INTEGER
48 .2 1 | 10 INTEGER
63.3 o | 10 | INTEGER
63.5 1_0 | 10 INTEGER
165.3(1) I | 100 | INTEGER
355.3(2) o | 100 | INTEGER
303.5(3) 1.0 | 100 | INTEGER
| 34.3 | I | 1 | ENUMERATION
35.9 o | 1 |ENUMERATION
35.8 1_0 | 1 |ENUMERATION
48.0 I | 10 |ENUMERATION
62.8 | o | 10 |ENUMERATION
63.4 [1.0 | 10 |ENUMERATION
199.9(4) | I | 100 |ENUMERATION
369.3(5) o 100 |ENUMERATION
350.9(6) 1_0 100 |ENUMERATION
35.0 I 1 |ARRAY of INTEGER
36.6 (o) 1 |ARRAY of INTEGER
36.3 1_O0 1 |ARRAY of INTEGER
35.7 1 I 1 |ARRAY of INTEGER
35.4 (o) 1 |ARRAY of INTEGER
35.8 1_O 1 |ARRAY of INTEGER
35.86 1 1 |ARRAY of INTEGER
35.86 | (o] 1 ARRAY of INTEGER
35.6 | 1_O0 1 |ARRAY of INTEGER
| 35.3 | I 1 |ARRAY of INTEGER
35.3 (o) 1 |ARRAY of INTEGER
35.4 1_0 1 |ARRAY of INTEGER
| 35.0 | 1 |RECORD of INTEGER
36.5 o 1 |RECORD of INTEGER
36.5 1_0 1 |RECORD of INTEGER
35 .4 | 1] 1 |RECORD of INTEGER
35.8 o | 1 |RECORD of INTEGER
35.4 1_0 | 1 |RECORD of INTEGER
(1) - Results for this test have ranged from 165
(2) - Results for this test have ranged from 355
(3) - Results for this test have ranged from 344
(4) - Results for this test have ranged from 186
(5) - Results for this test have ranged from 321
(6) - Results for this test have ranged from 350
Benchmarks-Ada

41

RSD-12-88

Subproghram Overhead (cross package, non-generic)
Number of Iterations = 10000 ¢ 10

- ———— - - ——— ————— . ——— - — ———— — — — —— — ——— - ————————— —— ———

Time Direction|# Passed| Type | Siszse of |
{microsec.) Passed |[in Call | Passed |Passed Var|
17.7 o | I |
19.4 1 1 | INTEGER | |
21.0 0 1 | INTEGER | |
21.2 1_0 1 | INTEGER | |
31.6 I 10 | INTEGER | |
16.6 | O 10 | INTEGER | |
46.7 | 1_o 10 | INTEGER ; |
196.4(1)] 1 100 | INTEGER | |
323.6(2) o 100 | INTEGER | |
324.5(3) 1_0 100 | INTEGER | |
19.6 | I 1 | ENUMERATION | |
20.6 (o) 1 |ENUMERATION | |
20.6 1_0 1 |ENUMERATION | |
31.5 I 10 |ENUMERATION | |
50.9(4)| O 10 |ENUMERATION | |
46.6 | 1_0 10 |ENUMERATION (|
170.1(5)] I 100 |ENUMERATION [|
322.4(6) o 100 |ENUMERATION | |
335.6(7) 1_0 100 |ENUMERATION - [|
19.9 I | 1 |ARRAY of INTEGER | 1
21.1 | o 1 |ARRAY of INTEGER | 1]

20 .4 | 1_0 1 |ARRAY of INTEGER | 1|
19.6 | I 1 |ARRAY of INTEGER | 10 |
19.6 o 1 |ARRAY of INTEGER | 10 |
19.6 1_0 1 |ARRAY of INTEGER | 10 |

| 19.2 [I 1 |ARRAY of INTEGER | 100 |
19.6 o] 1 |ARRAY of INTEGER | 100 |
19.6 1_0 1 |ARRAY of INTEGER [100 |
19.6 I 1 |ARRAY of INTEGER | 10000 |
19.1 o 1 |ARRAY of INTEGER 10000 |
19.1 1_0 1 |[|ARRAY of INTEGER 10000 |
20.6 I 1 |RECORD of INTEGER | 1|
21.2 o 1 |RECORD of INTEGER | 1]
21.1 1_0 1 |RECORD of INTEGER | 1 |

19.8	I 1	RECORD of INTEGER 100
19.6	o 1	RECORD of INTEGER 100
19.6	1_0 1	RECORD of INTEGER 100
23.2 I 1 |UNCONSTRAINED ARRAY 1 |
23.4 (o) 1 |UNCONSTRAINED ARRAY 1 |
23.3 1_0 1 |UNCONSTRAINED ARRAY 1 |

| 23.8 I | 1 |UNCONSTRAINED ARRAY | 100 |
23.3 o 1 |UNCONSTRAINED ARRAY 100 |
23.3 1_0 1 |UNCONSTRAINED ARRAY 100 |
28.2 I | 1 |UNCONSTRAINED ARRAY 10000 |
23.3 (o] | 1 |UNCONSTRAINED ARRAY 10000 |
23.3 1.0 | 1 |UNCONSTRAINED ARRAY 10000 |
20.5 1 1 |UNCONSTRAINED RECORD| 1 |

22 .4 o 1 |UNCONSTRAINED RECORD | 1]

22 .4 1_0 1 |UNCONSTRAINED RECORD | 1 |
20.4 I 1 |UNCONSTRAINED RECORD | 100 |
22.2 (o] 1 |UNCONSTRAINED RECORD | 100 |
22.3 1_0 1 |UNCONSTRAINED RECORD | 100 |

- Results for this test have ranged from 170 to 196 microseconds.
- Results for this test have ranged from 323 to 347 microseconds.
- Results for this test have ranged from 323 to 380 microseconds.
Other runs have indicated that this value is 46.6 microseconds.
- Results for this-test have ranged from 170 to 182 microseconds.
- Results for this test have ranged from 322 to 391 microseconds.
- Results for this test have ranged from 331 to 360 microseconds.

P o~ o~ —

N W

N N e i e e e
L

Benchmarks-Ada

RSD-12-88

Subprogram Overhead (gemeric, cross package)

Number of Iterations = 10000 ¢ 10
Time |[Direction|# Passed| Type | Size of |
(microsec.)| Passed |in Call | Passed |Passed Var|
25.9 | 0 | | |
30.9 I | 1 | INTEGER | |
32.38 o | 1 | INTEGER | |
32.6 1o | 1 | INTEGER | |
43.8 I | 10 | INTEGER | }
57.6 o | 10 INTEGER | |
58.3 1.0 | 10 | INTEGER [|
185.2 1 | 100 INTEGER | |
| 335.9 o | 100 | INTEGER | |
| 360.1(1) 1.0 | 100 | INTEGER | |
31.3 I | 1 |ENUMERATION | |
31.8 o 1 |ENUMERATION | |
32.8 1_0 1 |ENUMERATION | |
| 44.3 | 1 10 |ENUMERATION | |
5§8.0 (o) 10 |ENUMERATION | |
59.0 1_0 10 |ENUMERATION | |
183.8 | 100 |ENUMERATION | |
338.6 (o) 100 |ENUMERATION | |
334.7(2) 1_0 100 |ENUMERATION | |
31.4 I 1 |ARRAY of INTEGER | 1|
33.2 o 1 |ARRAY of INTEGER i 1]
3.2 1_0 1 |ARRAY of INTEGER | 1]
s1.2	I	1	ARRAY of INTEGER	10
81.1 o 1	ARRAY of INTEGER [10			
31.2 1_0 1	ARRAY of INTEGER	10		
81.5 1	1	ARRAY of INTEGER	100	
$1.5 o 1 |ARRAY of INTEGER | 100 |
31.5 1_0 1 |ARRAY of INTEGER 1 100 |
31.0 | I | 1 |ARRAY of INTEGER | 10000 |
31.0 o 1 |ARRAY of INTEGER | 10000 |
31.0 1_0 1 |ARRAY of INTEGER | 10000 |
31.4 | I | 1 |RECORD of INTEGER | 1|
33.3 o) 1 |RECORD of INTEGER | 1|
33.3 1_0 1 |RECORD of INTEGER | 1]
31.3 I | 1 |RECORD of INTEGER | 100 |
31.3 o | 1 |RECORD of INTEGER | 100 |
31.2 1.0 | 1 |RECORD of INTEGER | 100 |
(1) - Results for this test have ranged from 335 to 360 microseconds.
(2) - Results for this test have ranged from 334 to 346 microseconds.

Benchmarks-Ada 43

RSD-12-88

Number of Iterations = 10000 s 10

Dynamic Allocation in a Declarative Region

Time |# Declared Type | Size of |
(microsec.)| Declared | Object |
2.8 | 1 Integer |
7.4 | 10 Integer |
6.3 100 |Integer |
3.9 1 String | 1 |
3.7 1 String | 10 |
4.5 | 1 |String | 100 |
2.2 1 Enumeration |
0.8(1) 10 Enumeration |
18.9(2)	100	Enumeration	
3.6 1 Integer Array	1		
5.4 1 Integer Array	10		
5.5 1 Integer Array	100		
8.2(3) 1 Integer Array | 1000 |
-12.2(4) 1 Integer Array | 10000 |
0.1(5) 1 Integer Array |100000 |
5.2 1 Integer Array |1000000 |
30.9 1 1-D Dynamically bounded Array | 1 |
30.7 1 |1-D Dynamically bounded Array | 10 |
45.8 1 2-D Dynamically bounded Array | 1 |
45.6 1 2-D Dynamically bounded Array | 100 |
59.2 1 3-D Dynamically bounded Array | 1 |
59.0 1 3-D Dynamically bounded Array | 1000 |
2.1 1 Record of Integer | 1 |
2.7 1 Record of Integer | 10 |
2.6 | 1 Record of Integer | 100 |

Note: Times reported include any deallocation required upon leaving the sc
of the declared variables.

) - Other runs have indicated that this value is 1.9 microseconds.

) - Other runs have indicated that this value is 1.9 microseconds.

) - Other runs have indicated that this value is 6.1 microseconds.

)(5) - These tests conmsistently report low values.

Benchmarks-Ada

RSD-12-88

Number of Iterations = 10000

Dynamic Allocation with NEW allocator

—————— ——— - ——— ———— — ————— - — - — - - — - - — - ———————————— —————————————————————————

Time # Declared | Type | Sise of |
(microsec.) | Declared | Object |
134 1 |Integer | 1 I

133 1 |Enumeration | 1 |

140 1 Record of Integer | 1 |

211 1 Record of Integer	5
293 1 Record of Integer	10
435 1 Record of Integer	20
1924(1) 1 Record of Integer | 50 |
4847(2) 1 Record of Integer | 100 |

| 139 | 1 String | 1 |
157 1 String | 10 |

393 1 String | 100 |

139	1 Integer Array	1
263	1 Integer Array	10
4948(3) 1 Integer Array	100	
221 1 1-D Dynamically Bounded Array	1	
284 1	1-D Dynamically Bounded Array	10
309 1	2-D Dynamically Bounded Array	1
4782(4) 1 2-D Dynamically Bounded Array	100	
326	1 3-D Dynamically Bounded Array	

Note: Storage is not reclaimed by calling UNCHECKED_DEALLOCATION, this
results in excessive disk paging for the noted cases. Runs with fewer
iterations result in more accurate results with less precision.

(1) - When run with only 100 iterations this test yields 700 microseconds
(2) - When run with only 100 iterations this test yields 1200 microseconds
(3) - When run with only 100 iterations this test yields 1100 microseconds
(4) - When run with only 100 iterations this test yields 1200 microseconds

Benchmarks-Ada 45

46

Number of

(1)

Iterations = 10000

Exception Handler Tests

Exception

0 uSEC.
345 wSEC.
372 uSEC.
356 uSEC.

(1)

391 uSEC.
402 uSEC.

Exception

0 uSEC.
614 uSEC.
654 uSEC.
626 .uSEC.

2469 uSEC.
670 uSEC.
671 uSEC.

This case

raised and handled in a block
User Defined, Not Raised
User Defined

Constraint Error,
Constraint Error,
Numeric Error,
Numeric Error,
Tasking Error,

RSD-12-88

Implicitly Raised
Explicitly Raised
Implicitly Raised
Explicitly Raised
Explicitly Raised

raised in a procedure and handled in the calling unit
User Defined, Not Raised
User Defined

Constraint Error,
Constraint Error,
Numeric Error,
Numeric Error,
Tasking Error,

not handled

correctly by the

Implicitly Raised
Explicitly Raised
Implicitly Raised
Explicitly Raised
Explicitly Raised

compiler.

Benchmarks-Ada

RSD-12-88

Task Elaborate, Activate, and Terminate Time: Declared Object, No Type

Number of Iterations = 100
For test number 1
Task elaborate, activate, terminate time: 19.6 milliseconds.

Task Elaborate, Activate, and Terminate Time: Declared Object, Task Type

Number of Iterations = 100
For test number 1
Task elaborate, activate, terminate time: 19.6 milliseconds.

Task Elaborate, Activate, and Terminate Time: NEW Object, Task Type

Number of Iterations = 100
For test number 1
Task elaborate, activate, terminate time: 17.4 milliseconds.

Benchmarks-Ada 47

48

RSD-12-88

Rendesvous Time: No Parameters Passed
Number of Iterations = 100

Task Rendesvous Time: 3.5 milliseconds

Benchmarks-Ada

RSD-12-86

Number of

Clock
Clock
Clock
Clock
Clock
Clock
Clock
Clock
Clock
Clock
Clock
Clock
Clock
Clock
Clock
Clock
Clock
Clock

funct
funct
funct
funct
funct
funct
funct
funct
funct
funct
funct
funct
funct
funct
funct
funct
funct
funct

ion
ion
ion
ion
ion
ion
ion
ion
ion
ion
ion
ion
ion
ion
ion
ion
ion
ion

Benchmarks-Ada

Iterations =

calling
calling
calling
calling
calling
calling
calling
calling
calling
calling
calling
calling
calling
calling
calling
calling
calling
calling

10000

overhead
overhead
overhead
overhead
overhead
overhead
overhead
overhead
overhead
overhead
overhead
overhead
overhead
overhead
overhead
overhead
overhead
overhead

568
5§72
569
569
5§75
578
585
577
563
5§75
563
569
567
675
568
573
571
§62

microseconds
microseconds
microseconds
microseconds
microseconds
microseconds
microseconds
microseconds
microseconds
microseconds
microseconds
microseconds
microseconds
microseconds
microseconds
microseconds
microseconds
microseconds

49

60

Number of

Microseconds
188.
231.
226.
241.
111.

VRN NARARNVWWONOWONm

N i I R JEC IR IR

Iterations =

RSD-12-86

10000 + 10

TIME and DURATION math

Time
Time
Time
Time
Duration
Duration
Duration
Duration
Duration
Duration
Duration
Duration
Duration

[

[RER R RN

Operation
Var_
Var_
Var_
Var_

time + Var_duration

time - Var_duration

duration 4+ Var_time

time - Const_duration

Var_time - Var_time
Var_duration + Var_duration
Var_duration - Var_duration
Var_duration + Const_duration
Var_duration - Const_duration
Const_duration + Var_duration
Const_duration - Var_duration
Const_duration + Const_duration
Const_duration - Const_duration

Benchmarks-Ada

RSD-12-86

Delay Statement Test
Number of Iterations

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number

Minimum Delay Value

10000 + 10

.000061035156250 seconds.
.001403808593750 seconds.

2

.000122070312500 seconds.
.001403808593750 seconds.

3

.000183105468750 seconds.
.001403808593750 seconds.

4

.000244140625000 seconds.
.001403808593750 seconds.

5

.00038305175781250 seconds.
.001403808593750 seconds.

6

.000366210937500 seconds.
.001403808593750 seconds.

7

.000427246093750 seconds.
.001403808593750 seconds.

.000488281250000 seconds.
.001403808593750 seconds.

.000549316406250 seconds.
.001403808593750 seconds.

10

Desired delay time: 0.000610351562500 seconds.
Actual delay time: 0.001403808593750 seconds.
For case number 11

Desired delay time: 0.000671386718750 seconds.
Actual delay time: 0.001403808593750° seconds.
For case number 12

Desired delay time: 0.000732421875000 seconds.
Actual delay time: 0.001403808593750 seconds.
For case number 13

Desired delay time: 0.000793457031250 seconds.
Actual delay time: 0.001403808593750 seconds.
For case number 14

Desired delay time: 0.000854492187500. seconds.
Actual delay time: 0.001403808593750 seconds.
For case number 15

Desired delay time: 0.0000155278343750 seconds.
Actual delay time: 0.001403808593750 seconds.
For case number 16

Desired delay time: 0.000976562500000 seconds.
Actual delay time: ~ 0.001403808593750 seconds.

Benchmarks-Ada

RSD-12-88

The following results areconsistent with the analysisgiven inthe report.

Requested delays between 1 millisecond and less than 10milliseconds resulted
inactual delays between 10milliseconds and 1.01 seconds, that is, the value
remaining in the 1l second time sliceplus 10milliseconds. Ingeneral, a

requested delayof Dseconds results inanactual delay between D seconds and
D+1 seconds. Inall cases the actual delay is always greater thanor equal to
the requesteddelay, as required by the LRM.

Delay Statement Test

Number of Iterations =1

For case mumber 1 TTTTTTT
Desired delay time: 0.001037597656250 seconds.
Actual delay time: .000000000000000 seconds.
For case number 2

Desired delay time: .002075195312500 seconds.
Actual delay time: .729080468750000 seconds.
For case number 3

Desired delay time: .003112792968750 seconds.
Actual delay time: .750000000000000 seconds.
For case number 4

Desired delay time: .004150390625000 seconds.
Actual delay time: .250048730468750 seconds.
For case number 5

Desired delay time: .005187988281250 seconds.
Actual delay time: .339965820312500 seconds.
For case number 6

Desired delay time: .006225585937500 seconds.
Actual delay time: .6999051171875000 seconds.
For case number 7

Desired delay time: .007263183593750 seconds.
Actual delay time: .859985351562500 seconds.
For case number 8

Desired delay time: .008300781250000 seconds.
Actual delay time: .009048730468750 seconds.
For case number 9

Desired delay time: .009338378906250 seconds.
Actual delay time: .669982910156250° seconds .

For case number

10

0.010375976562500 seconds.
0.469970703125000 seconds.

Desired delay time:
Actual delay time:

For case number 11
Desired delay time: 0.011413574218750 seconds.
Actual delay time: 0.599975585937500 seconds.

For case number 12
Desired delay time: 0.012451171875000- seconds .
Actual delay time: 0.549987792968750 seconds.

For case number 13
Desired delay time: 0.013488769531250 seconds.
Actual delay time: 0.779968261718750 seconds.

For case number 14

Desired delay time: 0.014526367187500 seconds.
Actual delay time: 0.8690995117187500 seconds.

Benchmarks-Ada

RSD-12-88

Delay Statement Test
Number of Iterations

For case number

Desired delay time: 0.097656250000000 seconds.
Actual delay time: .000000000000000 seconds.
For case pumber 2

Desired delay time: .195312500000000 seconds.
Actual delay time: .719970703125000 seconds.
For case number 3

Desired delay time: .292968750000000 seconds.
Actual delay time: .750000000000000 seconds.
For case number 4

Desired delay time: 0.390625000000000 seconds.
Actual delay time: .250048730468750 seconds.
For case number 5

Desired delay time: .488281250000000 seconds.
Actual delay time: .3399065820312500 seconds.
For case number 6

Desired delay time: .585937500000000 seconds.
Actual delay time: .7099609037500000 seconds.
For case number 7

Desired delay time: .683593750000000 seconds.
Actual delay time: .8599085351562500 seconds.
For case number 8

Desired delay time: .781250000000000 seconds.
Actual delay time: .949951171875000 seconds.
For case number 9

Desired delay time: .878906250000000 seconds.
Actual delay time: .729980468750000 seconds.
For case number 10

Desired delay time: 0.976562500000000 seconds.
Actual delay time: 1.469970703125000 seconds.
For case number 11

Desired delay time: 1.074218750000000 seconds.
Actual delay time: 1.509975585937500 seconds.
For case number 12 :
Desired delay time: 1.171875000000000 seconds.
Actual delay time: 1.549087792968750 seconds.
For case number 13

Desired delay time: 1.269531250000000 seconds.
Actual delay time: 1.7799068261718750 seconds.
For case number 14

Desired delay time: 1.367187500000000° seconds.
Actual delay time: 1.869995117187500 seconds.
For case number 15

Desired delay time: 1.464843750000000 seconds.
Actual delay time: 1.5899065820312500 seconds.
For case number 16

Desired delay time: 1.562500000000000 seconds.
Actual delay time: 2.269958496093750 seconds.

Benchmarks-Ada

64

Delay Statement Test
Number of Iterations

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

0.213623046875000

.000000000000000

2
.427246093750000
.7390900234375000

3
.640869140625000
.750000000000000

4
.854492187500000
.269058496093750

5
.068115234375000
.330065820312500

6
.2817388281250000
.690051171875000

7
.495361328125000
.8590085351562500

8
.708984375000000
.930041406250000

9
.922607421875000
.720980468750000

10

2.136230468750000
2.469970703125000

11

2.349853515625000
2.609985351562500

12

2.563476562500000
3.550007558593750

13

2.777099609375000
2.779968261718750

14

2.990722656250000°
3.859085351562500

15

3.204345703125000
3.589965820312500

16

3.417068750000000
4.269958496093750

seconds.
seconds.

seconds .
seconds .

seconds.
seconds .

seconds.
seconds.

seconds.
seconds.

seconds.
seconds.

seconds .
seconds .

seconds .
seconds .

seconds.
seconds.

seconds .
seconds.

seconds.
seconds .

seconds.
seconds .

seconds .
seconds.

seconds .
seconds.

seconds .
seconds.

seconds.
seconds .

RSD-12-86

Benchmarks-Ada

RSD-12-86

APPENDIX C

The following pages contain result tables for all of the tests run. These results
are for the Verdix Compiler Version 5.1 running with Unix 4.2 bsd on a Vax 11/780.
Some values contain explainatory footnotes.

Benchmarks-Ada ' 65

68

Compiler Time Related Values

System Tick= 0.000048730468750 Seconds
Duration Small= 0.000061035156250 Seconds

RSD-12-886

Benchmarks-Ada

RSD-12-88

Subprogram Overhead (non-generic)

Number of Iterations = 10000 * 10
Time |[Direction|# Passed]| Type | Sisze of |
(microsec.)| Passed |in Call | Passed |Passed Var|
I 16.8 | l o | I l
[16.8 | 1 1 | INTEGER | |
20.1 o 1 | INTEGER | |
19.2 1_0 1 | INTEGER | |
29.3 1 | 10 | INTEGER | |
42.2 (o) 10 | INTEGER | |
45.3 1_0 10 | INTEGER | |
168 .4 I | 100 | INTEGER | |
325.1 o 100 | INTEGER | |
329.3 1_0 100 | INTEGER | |
16.5 1 [1 |ENUMERATION | 1
17.6 o 1 |ENUMERATION | |
18.5 1_0 1 |ENUMERATION | |
| 20.7 |1 [10 |ENUMERATION | |
56.9 o | 10 |ENUMERATION | |
59.5 1_0 | 10 |ENUMERATION | |
168.3 I | 100 |ENUMERATION | |
320.0 o 100 |ENUMERATION | |
326.6 1_0 100 |ENUMERATION | |
16.9 | 1 1 |ARRAY of INTEGER |) S
20.2 (o] 1 |ARRAY of INTEGER | 1|
19.2 1_0 1 |ARRAY of INTEGER | 1|
| 19.2 I 1 |ARRAY of I[NTEGER | 10 |
17.7 o 1 |ARRAY of INTEGER | 10 |
18.9 1_0 1 |ARRAY of INTEGER | 10 |
| 19.6 |1 | 1 |ARRAY of INTEGER | 100 |
18.6 | o 1 |ARRAY of INTEGER | 100 |
18.6 | 1_0 1 |ARRAY of INTEGER | 100 |
| 19.1 | 1 | 1 |ARRAY of INTEGER | 10000 |
[17.7 o 1 |ARRAY of INTEGER | 10000 |
| 19.4 1_0 1 |ARRAY of INTEGER | 10000 |
18.7 | 1 |RECORD of INTEGER | 1 |
19.2 o 1 |RECORD of INTEGER | 1 |
19 .4 1_0 1 |RECORD of INTEGER | 1|
17 .4 I 1 |RECORD of INTEGER | 100 |
19.8 (o] | 1 |RECORD of INTEGER | 100 |
17.8 1_0 | 1 |RECORD of INTEGER | 100 |
21.2 I | 1 |UNCONSTRAINED ARRAY | 1|
21.1 o) 1 |UNCONSTRAINED ARRAY | 1
21.2 1_0 1 |UNCONSTRAINED ARRAY | 1
21.2 I 1 |UNCONSTRAINED ARRAY | 100 |
21.1 (o] 1 |UNCONSTRAINED ARRAY | 100
21.2 1_O 1 |UNCONSTRAINED ARRAY | 100
21.1 | 1 |UNCONSTRAINED ARRAY | 10000 |
21.1 o 1 |UNCONSTRAINED ARRAY 10000 |
21.1 1_0 1 |UNCONSTRAINED ARRAY 10000 |
19.3 1 1 |UNCONSTRAINED RECORD | 1
19.2 (o) 1 |UNCONSTRAINED RECORD 1
20.5 I_O 1 |UNCONSTRAINED RECORD 1
19.3 I 1 |UNCONSTRAINED RECORD 100
19.1 o 1 |UNCONSTRAINED RECORD 100
20.4 1_0 1 |UNCONSTRAINED RECORD 100

Benchmarks-Ada

RSD-12-88

Subprogram Overhead (inline)

Number of Iterations = 10000 ¢ 10

Time |[Direction|# Passed| Type | Sise of |
(microsec.)| Passed |in Call | Passed |Passed Var|
0.4 | 0 | |
1.4 | 1 1 | INTEGER | |
2.6 | (o 1 INTEGER | |
2.2 | 1_0 1 | INTEGER | |
15.2 | 1 10 | INTEGER | |
29.3 | o 10 | INTEGER |
30.4 | 1_0 10 INTEGER |
152.8 | I | 100 | INTEGER | |
315.0 | o | 100 | INTEGER |
381 .4 | 1_0 | 100 INTEGER |
| 1.6 | 1 | 1 |ENUMERATION | |
2.5 | o | 1 |ENUMERATION | |
2.5 | Ir_o | 1 |ENUMERATION | |
15.1 | I 10 |ENUMERATION |
30.0 o 10 |ENUMERATION |
30.0 1_0 10 |ENUMERATION |
| 153.2 1 100 |ENUMERATION | |
311.6 o 100 |ENUMERATION |
353.6 1_0 100 |ENUMERATION . |
-0.1 I 1 |ARRAY of INTEGER | 1|
1.0 o 1 |ARRAY of INTEGER 1|
0.0 1_0 1 |ARRAY of INTEGER 1 |
0.3	1 1	ARRAY of INTEGER	10
0.5 o 1	ARRAY of INTEGER 10		
0.5 1_0 1	ARRAY of INTEGER 10		
1 0.0 I	1	ARRAY of INTEGER	100
0.4 o [1	ARRAY of INTEGER	100	
0.4	1_0	1	ARRAY of INTEGER
1.1	I	1	ARRAY of INTEGER
0.9	o 1	ARRAY of INTEGER	10000
0.5	1_0 1	ARRAY of INTEGER 1 10000	
0.4 I	1	RECORD of INTEGER	1

0.0 (o} 1 |RECORD of INTEGER | 1

0.2 I_O0 1 |RECORD of INTEGER | 1
0.4 I 1 |RECORD of INTEGER 100 |

0.6 (o) 1 |RECORD of INTEGER 100

0.4 1_0 1 |RECORD of INTEGER 100
2.5 I 1 |UNCONSTRAINED ARRAY |

2.6 o 1 UNCONSTRAINED ARRAY 1

2.5 1_0 1 |UNCONSTRAINED ARRAY 1
2.6 I | 1 |UNCONSTRAINED ARRAY | 100 |
2.6 o 1 |UNCONSTRAINED ARRAY 100 |
2.5 1_0 1 |UNCONSTRAINED ARRAY 100 |
2.1 I | 1 |UNCONSTRAINED ARRAY | 10000 |
2.6 o) 1 |UNCONSTRAINED ARRAY 10000 |
1.1 1_0 1 |UNCONSTRAINED ARRAY 10000 |
2.7 | 1 |UNCONSTRAINED RECORD 1 |
2.8 o) 1 |UNCONSTRAINED RECORD 1|
2.7 1_0 1 |UNCONSTRAINED RECORD 1|
2.9 I 1 |UNCONSTRAINED RECORD | 100 |
2.7 (o) 1 |UNCONSTRAINED RECORD 100 |
2.7 1_0 1 |UNCONSTRAINED RECORD 100 |

Benchmarks-Ada

RSD-12-88

Subprogram Overhead (generic)

Number of Iterations = 10000 ¢ 10
Time |[Direction|# Passed| Type | Size of |
(microsec.)| Passed |in Call | Passed |Passed Var]|
| 18.5 I | 0 | l
| 21.6 | 1 | 1 | INTEGER | |
| 23.2 | o | 1 | INTEGER | [
| 24.9 | 1.0 | 1 | INTEGER | |
34.4 1 | 10 | INTEGER | |
48.9 o | 10 | INTEGER | |
49.1 1o | 10 | INTEGER | |
173 .4 | I | 100 | INTEGER | |
344.86 o | 100 | INTEGER | |
333.5 1.0 | 100 | INTEGER |]
| 21.4 I | 1 |ENUMERATION | |
24.86 o [1 |ENUMERATION | |
24.8 1_0 | 1 |ENUMERATION | |
| 34.4 1 | 10 |ENUMERATION | |
50.0 | o | 10 |ENUMERATION | |
51.0 | 1.0 | 10 |ENUMERATION | |
1738.1 | I | 100 |ENUMERATION | |
374.7 o | 100 |ENUMERATION | |
359 .4 1_0 | 100 |ENUMERATION | |
238.1 | I | 1 |ARRAY of INTEGER | 1
23.3 o | 1 |ARRAY of INTEGER | T
23.0 i_o | 1 |ARRAY of INTEGER | 1|
| 22.5 I | 1 |ARRAY of INTEGER 1 10 |
21.2 o 1 |ARRAY of INTEGER | 10 |
23.9 1_0 1 |ARRAY of INTEGER | 10|
26.3 | 1 | 1 |ARRAY of INTEGER | 100 |
22.2 (0} 1 |ARRAY of INTEGER | 100 |
21.7 1_0 1 |ARRAY of INTEGER | 100 |
23 .4 1 | 1 |ARRAY of INTEGER | 10000 |
22.0 o) 1 |ARRAY of INTEGER | 10000 |
21.5 1_0 1 |ARRAY of INTEGER | 10000 |
22.9	I 1	RECORD of INTEGER	1
23.8 o 1	RECORD of INTEGER	1	
23.1 1_0 1	RECORD of INTEGER	1	
23.0 1 1	RECORD of INTEGER	100	
22.3 o 1	RECORD ¢f INTEGER	100	
21.7 1_0 1	RECORD of INTEGER	100	

Benchmarks-Ada

69

RSD-12-86

Subprogram Overhead (cross package, non-generic)

Number of Iterations = 10000 ¢ 10
Time |[Direction|# Passed Type | Size of |
(microsec.)| Passed |in Call Passed |[Passed Var|
| 17.6 | | 0 I |
| 19.7 I | 1 | INTEGER | |
20.2 o | 1 | INTEGER 1 |
19.9 1_0 | 1 INTEGER | |
31.9 I | 10 | INTEGER | |
46 .3 o 10 INTEGER | |
46 .1 1_0 10 | INTEGER | |
170.0 I 100 | INTEGER] |
321.8 | o] 100 | INTEGER | |
322.0 | 1_0 100 INTEGER | |
19.86 | I 1 |ENUMERATION | |
20 .4 o 1 |ENUMERATION | |
20.2 1_0 1 |ENUMERATION | |
33.4	I	10	ENUMERATION	
46 .4	o 10	ENUMERATION		
46 .4	1_0 10	ENUMERATION		
189.8 1 100	ENUMERATION			
324.5 (o] 100	ENUMERATION			
821.1 1_0 100	ENUMERATION			
19.7 I 1	ARRAY of INTEGER	1		
20.7 o 1	ARRAY of INTEGER	1		
20.7 1_0 1	ARRAY of INTEGER	1		
19.6	I	1	ARRAY of INTEGER	10
19.1	o 1	ARRAY of INTEGER	10	
19.1	1_0 1	ARRAY of INTEGER	10	
19.6	I	1	ARRAY of INTEGER	100
19.1 o 1	ARRAY of INTEGER	100		
19.1 1_0 1	ARRAY of INTEGER	100		
19.7 1 1	ARRAY of INTEGER	10000		
19.1 o 1	ARRAY of INTEGER 10000			
19.2 1_0 1	ARRAY of INTEGER 10000			
19.9 I 1	RECORD of INTEGER 1			
20.5 o 1	RECORD of INTEGER 1			
19.9 1_0 1	RECORD of INTEGER 1			
19.8 I 1	RECORD of INTEGER 100			
19.1 o t	RECORD of INTEGER 100			
18.7 1_0 1	RECORD of INTEGER 100			
21.3 I 1	UNCONSTRAINED ARRAY 1			
20.7 o 1	UNCONSTRAINED ARRAY	1		
20.7 1_0 1	UNCONSTRAINED ARRAY	1		
21.2	I 1	UNCONSTRAINED ARRAY 100		
20.8 o 1 |UNCONSTRAINED ARRAY 100
20.8 1_0 1 |UNCONSTRAINED ARRAY 100
21.8 I 1 |UNCONSTRAINED ARRAY | 10000 |
20.8 o 1 |UNCONSTRAINED ARRAY | 10000 |
20.8 1_O 1 |UNCONSTRAINED ARRAY | 10000
20.38 1 1 |UNCONSTRAINED RECORD| 1
22.9 o) 1 |UNCONSTRAINED RECORD | 1
21.0 1_0 1 |UNCONSTRAINED RECCRD | 1
20.3 I 1 |UNCONSTRAINED RECORD | 100 |
21.0 o 1 |UNCONSTRAINED RECORD | 100
21.0 1_0 1 |UNCONSTRAINED RECORD | 100

Benchmarks-Ada

RSD-12-88

Subprogram Overhead (generic, cross package)
Number of Iterationms = 10000 ¢ 10

Time |[Direction|# Passed| Type | Size of |
(microsec.)| Passed |in Call | Passed |Passed Var|
| 22.2 | l 0 | | |
| 27.2 | I | 1 | INTEGER | |

27.8 | o) | 1 | INTEGER | |
27.5 | 1.0 | 1 | INTEGER | |
39.3 I [10 | INTEGER | |
53.8 o	10	INTEGER	
53.4 i_o	10	INTEGER	
180.1 I	100	INTEGER [
328.6 o 100 | INTEGER | |
330.3 1_0 100 | INTEGER | |
286.5 | 1 ENUMERATION | |
26.9 o 1 |ENUMERATION | |
27.0 1_O 1 |ENUMERATION | |
38.9 I 10 |ENUMERATION | |
54.3 o 10 |ENUMERATION | |
53 .4 1_0 10 |ENUMERATION | [

176.1 I | 100 |ENUMERATION | |

331.7 (o) 100 |ENUMERATION | |

337.3 1_0 100 |ENUMERATION | |

26.8 | I | 1 |ARRAY of INTEGER | 1|
27.7 o 1 |ARRAY of INTEGER | 1|
27.6 I_O 1 |ARRAY of INTEGER | 1 |
27.2 | 1 1 |ARRAY of INTEGER | 10 |
26.2 o 1 |ARRAY of INTEGER | 10 |
25.8 1_0O 1 |ARRAY of INTEGER | 10 |
| 27.1 | I 1 |ARRAY of INTEGER | 100 |
26.3 o 1 |ARRAY of INTEGER | 100 |
26.2 1_0 1 |ARRAY of INTEGER | 100 |
31.6 1 | 1 |ARRAY of INTEGER | 10000 |
27.9 (o) 1 |ARRAY of INTEGER | 10000 |
27.9 1_0 1 |ARRAY of INTEGER | 10000 |
27.2 I | 1 |RECORD of INTEGER | 1|
27.7 o | 1 |RECORD of INTEGER | 1
26.7 1o | 1 |RECORD of INTEGER | 1|
27.2 1 | 1 |RECORD of INTEGER | 100 |
26 .2 (o) | 1 |RECORD of INTEGER | 100 |
26.2 1.0 | 1 |RECORD of INTEGER | 100 |

Benchmarks-Ada

61

Number of Iterations 10000

10

RSD-12-886

100

100
1000

|
l
I
l
|
|
|
|
l
l
| 10
|
|
|
l
|
|
I
|
|

Dynamic Allocation in a Declarative Region
Time |# Declared Type
(microsec.) | Declared
0.0 1 Integer
-1.3 | 10 Integer
27.5(1) 100 Integer
0.0 1 String
0.0 1 String
0.1 | 1 |String
-0.5 1 Enumeration
-1.8 10 Enumeration
-1.5 100 Enumeration
0.1 1 Integer Array
1.0 1 Integer Array
1.3 | 1 |Integer Array
-0.4 1 Integer Array
143.0 1 1-D Dynamically bounded Array
779.0 1 1-D Dynamically bounded Array
148.9 1 2-D Dynamically bounded Array
160.6 1 3-D Dynamically bounded Array
-1.0 1 Record of Integer
-0.6 1 Record of Integer
-0.8 1 Record of Integer
Note: Times reported include any deallocation required upon
of the declared variables.
(1) - Other runs hace indicated that this value is too small

to measure.

Benchmarks-Ada

RSD-12-88

Number of Iterations = 1000

Dynamic Allocation with NEW allocator

Time |# Declared | Type | Size of |
{microsec.)| | Declared | Object |
230 1 Integer | 1 |
230 1 Enumeration)
240 | 1 Record of Integer 1|
260 | 1 Record of Integer 5
270 | 1 Record of Integer | 10 |
270 1 Record of Integer 20 |
310 1 Record of Integer 50 |
340 1 Record of Integer | 100 |
220 1 String 1 |
230 1 String 10 |
240 1 String 100 |
220 1 Integer Array | 1 |
260 1 Integer Array | 10 |
250 1 Integer Array | 100 |}
270 1 Integer Array | 1000 |
200 1 1-D Dynamically Bounded Array | . 1 |
260 1 1-D Dynamically Bounded Array | 10 |
280 1 2-D Dynamically Bounded Array | 1 |
1140 1 2-D Dynamically Bounded Array | 100 |
300 | 1 3-D Dynamically Bounded Array | 1 |
3370 | 1 3-D Dynamically Bounded Array | 1000 |

Note: The times reported include the time required to deallocate objects.
This version of the compiler does deallocate memory when
UNCHECKED_DEALLOCATION is called.

Benchmarks-Ada 63

64

Number of

(1)

RSD-12-88

Iterations = 10000

Exception Handler Tests

Exception

0
315
343
325

uSEC.
uSEC.
uSEC.
uSEC.

(1)

361
372

uSEC.
wSEC.

Exception

1
544
574
5§55

25561
599
613

This

uSEC.
uSEC.
eSEC.
wSEC.
uSEC.
uSEC.
wSEC.

case

raised and handled in a block

User Defined, Not Raised

User Defined

Constraint Error, Implicitly Raised
Constraint Error, Explicitly Raised
Numeric Error, Implicitly Raised
Numeric Error, Explicitly Raised
Tasking Error, Explicitly Raised

raised in a procedure and handled in the calling unit

User Defined, Not Raised

User Defined

Constraint Error, Implicitly Raised
Constraint Error, Explicitly Raised
Numeric Error, Implicitly Raised
Numeric Error, Explicitly Raised
Tasking Error, Explicitly Raised

not handled correctly by the compiler.

Benchmarks-Ada

RSD-12-86

Task Elaborate, Activate, and Terminate Time: Declared Object, No Type

Number of Iterations = 100
For test number 1
Task elaborate, activate, terminate time: 20.4 milliseconds.

Task Elaborate, Activate, and Terminate Time: Declared Object, Task Type

Number of Iterations = 100
For test number 1
Task elaborate, activate, terminate time: 20.5 milliseconds.

- - ——— - — - ——————— - — — - —— - —————————— —————————————————

Task Elaborate, Activate, and Terminate Time: NEW Object, Task Type

Number of Iterations = 100
For test number 1
Task elaborate, activate, terminate time: 17.5 milliseconds.

Benchmarks-Ada 85

RSD-12-88

Rendesvous Time: No Parameters Passed
Number of Iterations = 100

...

Benchmarks-Ada

RSD-12-86

Number of Iterations =

Clock function
Clock function
Clock function
Clock function
Clock function
Clock function
Clock function
Clock function

Benchmarks-Ada

calling
calling
calling
calling
calling
calling
calling
calling

10000

overhead
overhead
overhead
overhead
overhead
overhead
overhead
overhead

34886
3554
35886
3599
3608
3560
3565
3609

mi
mi
mi
mi
mi
mi
mi
mi

croseconds
croseconds
croseconds
croseconds
croseconds
croseconds
croseconds
croseconds

87

RSD-12-88

Number of Iterations = 10000 ¢ 10

TIME and DURATION math

Microseconds Operation

716.0 Time := Var_time + Var_duration

750.9 Time := Var_time - Var_duration

774.0 Time := Var_duration + Var_time

756.1 Time := Var_time + Const_duration

812.5 Time := Var_time - Const_duration

779.3 Time := Const_duration + Var_time

49 .86 Duration := Var_time - Var_time
6.3 Duration := Var_duration + Var_duration
9.0 Duration := Var_duration - Var_duration
6.8 Duration := Var_duration + Const_duration
6.3 Duration := Var_duration - Const_duration
6.3 Duration := Const_duration + Var_duration
7.3 Duration := Const_duration - Var_duration
1.1 Duration := Const_duration + Const_duration
1.6 Duration := Const_duration - Const_duration

Benchmarks-Ada

RSD-12-86

The following results are consistent withtheanalysisgiven inthe report.

Requested delays between 1 millisecond and less than10milliseconds resulted
inactual delays between 10milliseconds and 1.01 seconds, that is, the value
remaining in the 1 second time sliceplus 10milliseconds. Ingeneral, a

requested delay of Dseconds results inanactual delay betweenD seconds and
D+1 seconds. Inall cases the actual delay is always greater thanor equal to
the requesteddelay, as requested by the LRM.

Delay Statement Test

Number of Iterations =1

For case number 1

Desired delay time: 0.001037597656250 seconds.
Actual delay time: 0.930041406250000 seconds.
For case number 2

Desired delay time: 0.002075195312500 seconds.
Actual delay time: 0.659073144531250 seconds.
For case number 3

Desired delay time: 0.003112792968750 seconds.
Actual delay time: 0.679992675781250 seconds.
For case number 4

Desired delay time: .004150390625000 seconds.
Actual delay time: .069997558593750 seconds.
For case number 5

Desired delay time: .005187988281250 seconds.
Actual delay time: .5590036523437500 seconds.
For case number 6

Desired delay time: .006225585937500 seconds.
Actual delay time: .639953613281250 seconds.
For case number 7

Desired delay time: .007263183593750 seconds.
Actual delay time: .7799068261718750 seconds.
For case number 8

Desired delay time: .008300781250000 seconds.
Actual delay time: .8699034082031250 seconds.
For case number 9

Desired delay time: .009338378906250 seconds.
Actual delay time: .6590073144531250 seconds.

For case number

10

0.010375976562500 seconds.
0.400973144531250 seconds.

Desired delay time:
Actual delay time:

For case number 11
Desired delay time: 0.011413574218750 seconds.
Actual delay time: 0.539078027343750 seconds.

For case number 12
Desired delay time: 0.012451171875000 seconds.
Actual delay time: 0.489000234375000 seconds.

For case number 13
Desired delay time: 0.013488760531250 seconds.
Actual delay time: 0.709960937500000 seconds.

For case number 14

Desired delay time: 0.014526367187500 seconds.
Actual delay time: 0.789978027343750 seconds.

Benchmarks-Ada 89

70

Delay Statement Test
Number of Iterations

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

.097656250000000
.940002441406250

2
.195312500000000
.660095214843750

3
.292968750000000
.690063476562500

4
.390625000000000
.210083007812500

5
.488281250000000
.300048828125000

8
.585937500000000
.6400756835903750

7
.683593750000000
.790100097656250

8
.781250000000000
.880004882812500

9
.878906250000000
.660095214843750

10

0.976562500000000
1.420104980468750

11

1.074218750000000
1.5600585938750000

12

1.171875000000000
1.500061035156250

13

1.269531250000000
1.720092773437500

14

1.367187500000000
1.810058593750000

15

1.464843750000000
1.530090332031250

16

1.562500000000000
1.610046386718750

seconds.
seconds.

seconds.
seconds .

seconds .
seconds.

seconds.
seconds.

seconds.
seconds .

seconds.
seconds .

seconds .
seconds.

seconds .
seconds .

seconds .
seconds.

seconds.
seconds.

seconds.
seconds.

seconds.
seconds.

seconds.
seconds.

seconds.
seconds.

seconds.
seconds .

seconds.
seconds.

RSD-12-88

Benchmarks-Ada

RSD-12-88

Delay Statement Test
Number of Iterations

For case number
Desired delay time:
Actual delay time:

For case number 2
Desired delay time: .427246093750000 seconds.
Actual delay time: .8799902675781250 seconds.

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:

.213623046875000
.950012207031250

3
.640869140625000
.700012207031250

4
.854492187500000

seconds.
seconds.

seconds.
seconds.

seconds .

Actual delay time: .229980468750000 seconds.
For case number 5
Desired delay time: .068115234375000 seconds.
Actual delay time: .29090087792968750 seconds.
For case number 6
Desired delay time: .281738281250000 seconds.
Actual delay time: .650024414062500 seconds.
For case number 7
Desired delay time: .495361328125000 seconds.
Actual delay time: .7900877902068750 seconds.
For case number 8
Desired delay time: .708984375000000 seconds.
Actual delay time: .880004882812500 seconds.
For case number 9
Desired delay time: .922607421875000 seconds.
Actual delay time: 2.669082910156250 seconds.
For case number 10
Desired delay time: 2.136230468750000 seconds.
Actual delay time: 2.42990902675781250 seconds.
For case number 11
Desired delay time: 2.349853515625000 seconds.
Actual delay time: 2.5500075568593750 seconds.
For case number 12
Desired delay time: 2.563476562500000 seconds.
Actual delay time: 3.510000765625000 seconds.
For case number 13
Desired delay time: 2.777099609375000 seconds.
Actual delay time: 2.719970703125000 seconds.
For case number 14
Desired delay time: 2.9900722656250000- seconds .
Actual delay time: 8.800097558593750 seconds.
For case number 15
Desired delay time: 8.204345703125000 seconds.
Actual delay time: 3.530078027343750 seconds.
For case number 16
Desired delay time: 3.417968750000000 seconds.
Actual delay time: 4.2299080468750000 seconds.

Benchmarks-Ada

RSD-12-88

APPENDIX D

The following pages contain result tables for all of the tests run. These results
are for the Verdix Compiler Version 5.2 running with Unix 4.2 bsd on a Vax 11/780.

72 Benchmarks-Ada

RSD-12-86

Compiler Time Related Values:

System Tick= 0.000048730468750 Seconds
Duration Small= 0.000061035156250 Seconds

Benchmarks-Ada

73

RSD-12-88

Subprogram Overhead (non-generic)
Number of Iteratioms = 10000

Time Direction|# Passed]| Type | Sise of |
(microsec.) Passed |in Call | Passed |Passed Var|
| 17 | o | | l
| 18 I 1 | INTEGER | |

20 o 1 | INTEGER |
18 1_0 1 | INTEGER ;
29 1 10 | INTEGER | |
42 o 10 | INTEGER |
46 1_0 10 | INTEGER |
| 169 |1 100 | INTEGER 1
336 o 100 INTEGER |
161 1_0 100 | INTEGER |
16 I 1 |ENUMERATION |
18 o 1 | ENUMERATION |
19 1_0 1 |ENUMERATION |
30 I 10 |ENUMERATION |
43 (0] 10 |ENUMERATION |
43 1_0 10 |ENUMERATION |
171 I 100 |ENUMERATION |
328 | o 100 |ENUMERATION |
335 | 1_0 100 |ENUMERATION |
16 I 1 |ARRAY of INTEGER | 1|
20 o 1 |ARRAY of INTEGER [1]
19 1_0 1 [ARRAY of INTEGER | 1|
19 |1 1 |ARRAY of INTEGER | 10|
18 (o) 1 |ARRAY of INTEGER 10 |
19 1_0 1 |ARRAY of INTEGER 10 |
19 I 1 |ARRAY of INTEGER | 100 |
18 (o) 1 |ARRAY of INTEGER 100 |
19 1_0 1 |ARRAY of INTEGER 100 |
18 | 1 1 |ARRAY of INTEGER | 10000 |
18 (o) 1 ARRAY of INTEGER 10000 |
19 1_O 1 |ARRAY of INTEGER 10000 |
19 I 1 |RECORD of INTEGER | 1 |
19 o 1 |RECORD of INTEGER 1 |
19 1_0 1 |RECORD of INTEGER 1 |
17 1 1 |RECORD of INTEGER | 100 |
19 o | 1 |RECORD of INTEGER 100 |
18 1_0 | 1 |RECORD of INTEGER 100 |
21 I 1 |UNCONSTRAINED ARRAY | 1
22 o 1 |UNCONSTRAINED ARRAY 1 |
21 1_0 1 [UNCONSTRAINED ARRAY 1 |
21 1 1 |UNCONSTRAINED ARRAY 100 |
20 o 1 |UNCONSTRAINED ARRAY | 100 |
21 1_0 1 |UNCONSTRAINED ARRAY | 100 |
21 I 1 |UNCONSTRAINED ARRAY | 10000 |
21 o 1 |UNCONSTRAINED ARRAY | 10000 |
22 1_0 1 |UNCONSTRAINED ARRAY | 10000 |
19 | 1 1 |UNCONSTRAINED RECORD | 1 |
19 | o 1 |UNCONSTRAINED RECORD | 1]
21 | 1_0 1 |UNCONSTRAINED RECORD)| 1 |
20 | 1 1 |UNCONSTRAINED RECORD | 100 |
19 | O 1 |UNCONSTRAINED RECORD| 100 |
20 | 1.0 1 |UNCONSTRAINED RECORD | 100 |

Benchmarks-Ada

RSD-12-88

Subprogram Overhead (inline)
Number of Iterations = 10000

Time Direction|# Passed Type | Sizse of |
(microsec.) Passed |in Call Passed |Passed Var|
0 0 I l

1 I 1 | INTEGER | |

3 o 1 | INTEGER | |

3 1_0 1 INTEGER | |

15 1 10 | INTEGER | |

| 30 o | 10 | INTEGER |
| 30 1o | 10 | INTEGER |
159 1 100 | INTEGER | |

471 o 100 | INTEGER]

319 1_0 100 | INTEGER |

| 1 1 1 |ENUMERATION |
[2 | o 1 |ENUMERATION |
| 3 | 1_O 1 |ENUMERATION |
14 1 10 |ENUMERATION | |

31 o 10 |ENUMERATION |

31 1_O 10 |ENUMERATION |

| 153 [I 100 |ENUMERATION | |
316 o 100 |ENUMERATION |

311 1_0 100 |ENUMERATION |

0 1 | 1 |ARRAY of INTEGER 1 |

1 o | 1 |ARRAY of INTEGER 1

0 1o | 1 |ARRAY of INTEGER 1|

1 | 1 | 1 |ARRAY of INTEGER | 10 |

1 o | 1 |ARRAY of INTEGER | 10 |

0 1_0 | 1 |ARRAY of INTEGER | 10 |

1 1 | 1 |ARRAY of INTEGER | 100 |

1 o | 1 |ARRAY of INTEGER | 100 |

1 1_0 | 1 |ARRAY of INTEGER | 100 |

0 |1 | 1 |ARRAY of INTEGER | 10000 |

1 o | 1 |ARRAY of INTEGER | 10000 |

2 1.0 | 1 |ARRAY of INTEGER | 10000 |

0 I | 1 |RECORD of INTEGER | 1|

1 o 1 |RECORD of INTEGER | 1|

0 1_0 1 |RECORD of INTEGER | 1 |

0 | I | 1 |RECORD of INTEGER | 100 |

1 o 1 |RECORD of INTEGER | 100 |

1 1_0 1 |RECORD of INTEGER | 100 |

2 1 1 |UNCONSTRAINED ARRAY | 1|

3 (o) 1 |UNCONSTRAINED ARRAY | 1 |

3 1_0 1 |UNCONSTRAINED ARRAY | 1|

2 I 1 |UNCONSTRAINED ARRAY | 100 |

3 | o 1 |UNCONSTRAINED ARRAY | 100 |

3 | 1_0 1 |UNCONSTRAINED ARRAY | 100 |

2 | I 1 |UNCONSTRAINED ARRAY | 10000 |

1 (o) 1 |UNCONSTRAINED ARRAY | 10000 |

3 1_O0 1 |UNCONSTRAINED ARRAY | 10000 |

3 | 1 |UNCONSTRAINED RECORD | 1 |

3 o 1 |UNCONSTRAINED RECORD | 1 |

3 1_0 1 |UNCONSTRAINED RECORD | 1 |

2 1 | 1 |UNCONSTRAINED RECORD | 100 |

3 (o] 1 |UNCONSTRAINED RECORD | 100 |

3 1_0 1 |UNCONSTRAINED RECORD | 100 |

Benchmarks-Ada

76

Number of

10000

Subprogram Overhead (generic)
Iterations

RSD-12-88

176
538
318
24
23

22
21

23
22

24
23

23
23

23
23

o

o

o

o

o

o}

o

o

o

N TR Ve RN TN o LR, RURGY, QUi . Uy, SNy, S, SN, Sy Sy g
o

o

Passed

|in Call

10
100
100
100

1
1
1

10

10

10
100
100
100

—

Pt gt gt gt peb pud et b pmb ped b Pk ek b b ek s

Direction|# Passed]| Type
| Passed

I

| INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER

| ENUMERAT I ON
ENUMERAT ION
ENUMERAT ION
| ENUMERAT ION
ENUMERAT ION
ENUMERAT ION
| ENUMERAT 1ON
ENUMERAT I ON
ENUMERAT ION

ARRAY
ARRAY
ARRAY
ARRAY
| ARRAY
| ARRAY
ARRAY
ARRAY
ARRAY
| ARRAY
ARRAY
ARRAY
| RECORD
| RECORD
| RECORD
| RECORD
| RECORD
| RECORD

of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of

INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER

10
10

100
100
100
10000
10000
10000

100
100
100

Benchmarks-Ada

RSD-12-88

Subproghram Overhead (cross package, non-generic)

Number of Iterations = 10000
Time |[Direction|# Passed] Type Siszse of |
(microsec.)| Passed |in Call | Passed Passed Var|
| 18 0 l
20 I 1 | INTEGER |
20 o 1 | INTEGER | |
20 1_0 1 | INTEGER | |
| 32 I 10 | INTEGER |
47 (o] 10 | INTEGER |
46 1_0 10 | INTEGER |
170 I 100 | INTEGER |
324 o 100 | INTEGER |
323 1_0 100 | INTEGER |
20 I | 1 |ENUMERATION |
| 21 o | 1 |ENUMERATION |
| 20 1_0 | 1 |ENUMERATION |
31 I | 10 |ENUMERATION | |
48 (o] 10 |ENUMERATION | |
46 1_0 10 |ENUMERATION | |
171 | I [100 |ENUMERATION | |
324 (o) 100 |ENUMERATION |
328 1_0 100 |ENUMERATION] |
20 I | 1 |ARRAY of INTEGER 1 |
21 (o] 1 |ARRAY of INTEGER
21 1_0 1 |ARRAY of INTEGER 1 |
19 | I 1 |ARRAY of INTEGER 10 |
20 o 1 |ARRAY of INTEGER 10 |
19 1_0 1 |ARRAY of INTEGER 10 |
20 I 1	ARRAY of INTEGER	100		
20	o	1	ARRAY of INTEGER	100
19	I_O	1	ARRAY of INTEGER	100
19 [I [1	ARRAY of INTEGER (10000			
18	o	1	ARRAY of INTEGER	10000
18	1_0	1	ARRAY of INTEGER	10000
19	I	1	RECORD of INTEGER	1
21 o] 1	RECORD of INTEGER 1			
20 1_0 1	RECORD of INTEGER 1			
19 1 1	RECORD of INTEGER 100			
19 o] 1	RECORD of INTEGER 100			
19 1_0 1	RECORD of INTEGER 100			
22 I 1	UNCONSTRAINED ARRAY 1			
N 21 o 1	UNCONSTRAINED ARRAY 1			
21 1_0 1	UNCONSTRAINED ARRAY 1			
21 I 1	UNCONSTRAINED ARRAY 100			
20 (o] 1	UNCONSTRAINED ARRAY	100 I		
21 1_0 1	UNCONSTRAINED ARRAY	100		
21 [I 1 |UNCONSTRAINED ARRAY | 10000 |
21 o 1 |UNCONSTRAINED ARRAY 10000 |
21 1_0 1 |UNCONSTRAINED ARRAY 10000 |
20 | I | 1 |UNCONSTRAINED RECORD | 1|
21 O 1 |UNCONSTRAINED RECORD 1 |
21 1_0 1 |UNCONSTRAINED RECORD 1 |
20 1 1 |UNCONSTRAINED RECORD | 100 |
20 o 1 |UNCONSTRAINED RECORD 100 |
20 1_0 1 |UNCONSTRAINED RECORD 100 |

Benchmarks-Ada 77

RSD-12-86

Subprogram Overhead (generic, cross package)

Number of Iterations = 10000
Time |[Direction|# Passed Type | Sisze of |
(microsec.)| Passed |[in Call Passed |Passed Var|
18 0 l |
27 1 1 INTEGER | |
27 o 1 | INTEGER | [
27 1_0 1 | INTEGER | |
| 39 | 10 | INTEGER | |
54 o 10 | INTEGER | |
54 1_0 10 | INTEGER | |
178 I 100 | INTEGER | |
332 o 100 INTEGER | |
334 1_0 100 | INTEGER | |
28 [I 1 |ENUMERATION 1 |
27 | (o) 1 |ENUMERATION | |
27 | 1_0 1 |ENUMERATION | |
38 1 10 |ENUMERATION | |
54 o 10 |ENUMERATION [|
53 1_0 10 |ENUMERATION | |
176 1 100 |ENUMERATION | |
329 o 100 |ENUMERATION | |
334 1_0 100 |ENUMERATION | |
27 I 1 |ARRAY of INTEGER |
27 o 1 |ARRAY of INTEGER |)
27 1_0 1 |ARRAY of INTEGER | 1|
27 I 1 |ARRAY of INTEGER | 10 |
| 28 o 1 |ARRAY of INTEGER | 10 |
| 26 1_0 1 |ARRAY of INTEGER | 10 |
[27 I 1 |ARRAY of INTEGER | 100 |
28 o | 1 |ARRAY of INTEGER | 100 |
28 1.0 | 1 |ARRAY of INTEGER | 100 |
29 I | 1 |ARRAY of INTEGER [10000 |
29 o | 1 |ARRAY of INTEGER | 10000 |
29 1_0 | 1 |ARRAY of INTEGER | 10000 |
28 I | 1 |RECORD of INTEGER | 1|
28 o | 1 |RECORD of INTEGER | 1|
27 1o | 1 |RECORD of INTEGER | 1|
27 1 | 1 |RECORD of INTEGER | 100 |
26 o | 1 |RECORD of INTEGER | 100 |
28 1.0 | 1 |RECORD of INTEGER | 100 |

Benchmarks-Ada

RSD-12-868

Number of Iterations = 10000 + 10

Dynamic Allocation in a Declarative Region

Time # Declared Type | Size of |
(microsec.) Declared | Object |
0.0 1 Integer | |

-1.5 10 Integer | |
298.9 | 100 |[Integer | |

| 0.0 | 1 |String | 1 |
| -0.1 | 1 |String | 10 |
0.0 1 String | 100 |

0.0 1 Enumeration | |

-1.8 10 Enumeration | |
-0.5 100 |Enumeration | |

0.0 1 |Integer Array | 1 |

1.1 1 |Integer Array | 10 |

1.7 | 1 Integer Array | 100 |

1.6 1 Integer Array | 1000 |

0.8 1 Integer Array | 10000 |

0.9 1 Integer Array |100000 |

19.5 | 1 1-D Dynamically bounded Array | 1 !
19.3 | 1 1-D Dynamically bounded Array | 10 |
31.4 | 1 2-D Dynamically bounded Array | 1 |
32.5 1 2-D Dynamically bounded Array | 100 |
46.5 1 3-D Dynamically bounded Array | 1 |
43.7 | 1 3-D Dynamically bounded Array | 1000 |
-1.38 1 |[Record of Integer | 1 |

- -0.4 1 |Record of Integer | 10 |
| -0.8 | 1 |[Record of Integer | 100 |

Note: Times reported include any deallocation required upon leaving the scope
of the declared variables.

Benchmarks-Ada 79

RSD-12-88

Number of Iterations = 100

Dynamic Allocation with NEW allocator

Time |# Declared | Type | Siszse of |
(microsec.)| | Declared | Object |
130 1 Integer | 1 |

130 1 Enumeration |

140 1 Record of Integer | 1

160 1 Record of Integer | 5 |

160 1 Record of Integer | 10 |

| 170 1 |Record of Integer | 20 |
200 1 Record of Integer | 50 |

240 1 Record of Integer | 100 |

130 1 String	1		
140	1 String	10	
150	1 String	100	
140	1	[Integer Array	1
140 1 Integer Array	10		
150 1 Integer Array	100		
170 1	Integer Array	1000	
220 1	1-D Dynamically Bounded Array	1	
280 1	1-D Dynamically Bounded Array	10	
290	1	2-D Dynamically Bounded Array	1
1300 1	2-D Dynamically Bounded Array	100	
300 1	3-D Dynamically Bounded Array	1 !	
3350	1	3-D Dynamically Bounded Array	1000

Benchmarks-Ada

RSD-12-88

Number of Iterations

= 10000

Exception Handler Tests

Exception raised

-1
396
423
407

2370
441
4438

Excepti

1
718
737
730

2721
754
783

Benchmarks-Ada

uSEC.
uSEC.
uSEC.
uSEC.
uSEC.
uSEC.
uSEC.

on raised
uSEC.
uSEC.
uSEC.
wSEC.
uSEC.
uSEC.

‘uSEC.

and handled i
User Defined,
User Defined

Constraint Error,
Constraint Error,

Numeric Error,
Numeric Error,
Tasking Error,

in a procedure and handled

User Defined,
User Defined

Constraint Error,
Constraint Error,

Numeric Error,
Numeric Error,
Tasking Error,

n a block
Not Raised

Not Raised

Implicitly Raised
Explicitly Raised
Implicitly Raised
Explicitly Raised
Explicitly Raised

Implicitly Raised
Explicitly Raised
Implicitly Raised
Explicitly Raised
Explicitly Raised

calling unit

81

82

Task Elaborate,
Number of Iterations

Activate,
= 100

For test number 1
Task elaborate, activate, terminate

Task Elaborate,
Number of Iterations =

Activate,
100

For test number 1

Task elaborate, activate, terminate time:

Task Elaborate,
Number of Iterations =

Activate,
100

For test number 1
Task elaborate, activate, terminate time:

and Terminate Time:

and Terminate Time:

and Terminate Time:

RSD-12-886

Declared Object, No Type
3.6 milliseconds.

Declared Object, Task Type
3.7 milliseconds.

NEW Object, Task Type

3.1 milliseconds.

Benchmarks-Ada

RSD-12-88

Rendesvous Time: No Parameters Passed
Number of Iterations = 10000

Task Rendesvous Time: 838 microseconds.

Benchmarks-Ada

83

84

Number of

Clock
Clock
Clock
Clock
Clock

funct
funct
funct
funct
funct

ion
ion
ion
ion
ion

I[terations =

calling
calling
calling
calling
calling

10000

overhead
overhead
overhead
overhead
overhead

3658
3672
3644
3587
3681

RSD-12-88

microseconds.
microseconds.
microseconds.
microseconds.
microseconds .

Benchmarks-Ada

RSD-12-88

Number of Iterations

TIME

10000

and DURATION math

Microseconds
856
874
889
8186
75

N=- AN

Benchmarks-Ada

Operation

Var_time + Var_duration
Var_time - Var_duration
Var_duration + Var_time

Time
Time
Time
Time
Duration
Duration
Duration
Duration
Duration
Duration
Duration
Duration
Duration

Va

AR RERREN

r-

time - Const_duration

Var_time - Var_time
Var_duration + Var_duration
Var_duration - Var_duration
Var_duration + Const_duration
Var_duration - Const_duration
Const_duration + Var_duration
Const_duration - Var_duration
Const_duration + Const_duration
Const_duration - Const_duration

85

88

Delay Statement Test
Number of Iterations

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time: "

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

0.000610351562500
0.010070800781250

Minimum Delay Value

100

.000061035156250 seconds.
.010070800781250 seconds.

2

.000122070312500 seconds.
.010070800781250 seconds.

3

.000183105468750 seconds.
.010070800781250 seconds.

4

.000244140625000 seconds.
.010070800781250 seconds.

5

.000305175781250 seconds.
.010070800781250 seconds.

6

.000366210937500 seconds.
.010070800781250 seconds.

7

.000427246093750 seconds.
.010070800781250 seconds.

.000488281250000 seconds.
.010070800781250 seconds.

9

.000549316406250 seconds.
.010070800781250 seconds.

10

seconds.
seconds .

RSD-12-88

Benchmarks-Ada

RSD-12-88

Delay Statement Test

Number of Iterations = 100

For carse mamber 1 TTTTTTTTTTTTTTTTCT
Desired delay time: 0.006103515625000 seconds.
Actual delay time: 0.010009765625000 seconds.
For case number 2

Desired delay time: 0.012207031250000 seconds.
Actual delay time: 0.020080566406250 seconds.
For case number 3

Desired delay time: 0.018310546875000 seconds.
Actual delay time: 0.020080566406250 seconds.
For case number 4

Desired delay time: 0.024414062500000 seconds.
Actual delay time: 0.030029296875000 seconds.
For case number 5

Desired delay time: 0.030517578125000 seconds.
Actual delay time: 0.040100097656250 seconds.

Benchmarks-Ada

88

Delay Statement Test
Number of Iterations

—— - - ——— — - - —— — ——— - —— —— - . -~ — - - — — - - ——— — - - == - ——

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

oo

0
0

.000061035156250
.010009765625000

2
.000122070312500
.0100090765625000

3
.000183105468750
.010000765625000

4
.000244140625000
.010009765625000

3
.000305175781250
.010009765625000

8
.000366210937500
.000948730468750

7
.000427246093750
.009948730468750

8
.0004838281250000
.010009765625000

9
.000549316406250
.009948730468750

10

.000610351562500°

.000948730468750

seconds.
seconds .

seconds.
seconds.

seconds.
seconds.

seconds.
seconds.

seconds.
seconds.

seconds .
seconds.

seconds.
seconds.

seconds .
seconds .

seconds .
seconds .

seconds .
seconds .

RSD-12-88

Benchmarks-Ada

RSD-12-88

Delay Statement Test

Number of Iterations =1

For case mumber 1 T TTTTTTTTTTTo
Desired delay time: 0.006103515625000 seconds.
Actual delay time: 0.010009765625000 seconds.
For case number 2

Desired delay time: 0.012207031250000 seconds.
Actual delay time: 0.019058496093750 seconds.
For case number 3

Desired delay time: 0.018310546875000 seconds.
Actual delay time: 0.019958496093750 seconds.
For case number 4

Desired delay time: 0.024414062500000 seconds.
Actual delay time: 0.030029296875000 seconds.
For case number 5

Desired delay time: 0.030517578125000 seconds.
Actual delay time: 0.03909078027343750 seconds.
For case number 6

Desired delay time: 0.036621093750000 seconds.
Actual delay time: 0.039078027343750 seconds.
For case number 7

Desired delay time: 0.042724609375000 seconds.
Actual delay time: 0.0490877902968750 seconds .
For case number 8

Desired delay time: 0.048828125000000 seconds.
Actual delay time: 0.0499087792968750 seconds.
For case number 9

Desired delay time: 0.054931640625000 seconds.
Actual delay time: 0.059997558593750 seconds.
For case number 10

0.061035156250000 seconds.
0.070007324218750 seconds.

Desired delay time:
Actual delay time:

Benchmarks-Ada

RSD-12-88

APPENDIX E

The following pages contain result tables for all of the tests run. These results
are for the Alsys Compiler Version 1.0 running with Aegis Version 9.2 on an Apollo
DN660. Because of the coarse resolution of Alsys’ CLOCK function, an implementation
dependent subprogram was written that providled a CLOCK function with a 4
microsecond resolution. This finer resolution reduced the number of iterations necessary
to achieve the desired precision.

90 Benchmarks-Ada

RSD-12-86

Subprogram Overhead (mon-generic)

Number of Iterations = 100
Time |Direction|# Passed| Type | Sise of |
(microsec.)| Passed |in Call | Passed |Passed Var|
12		0		
10	1	1	INTEGER	
29	O 1 INTEGER			
a8	1_0 1	INTEGER	l	
53	1 10	INTEGER [
42 (o] 10	INTEGER			
103 1_0 10	INTEGER			
10 I 1	ENUMERATION			
29 o 1	ENUMERATION			
48 1_0 1	ENUMERATION			
80 I 10	ENUMERATION			
63 o 10	ENUMERATION			
146 1_0 10	ENUMERATION			
12	1	1	ARRAY of INTEGER	1
32 o 1	ARRAY of INTEGER	1		
31 1_0 1	ARRAY of INTEGER	1		
15	1	1	ARRAY of INTEGER	10
17	o	1	ARRAY of INTEGER	10
16	1_0	1 [ARRAY of INTEGER	10	
16 I [1	[ARRAY of INTEGER	100		
17 o 1	ARRAY of INTEGER	100		
186 1_0 1	ARRAY of INTEGER	100		
7 I 1	ARRAY of INTEGER	10000		
8 (o) 1	ARRAY of INTEGER	10000		
7 1_0 1	ARRAY of INTEGER	10000		
13 I 1	RECORD of INTEGER	1		
32 o 1	RECORD of INTEGER	1]		
31 1_0 1	RECORD of INTEGER	1		
7	1 1	RECORD of INTEGER	100	
7 o 1 |RECORD of INTEGER | 100 |
8 1_0 1 |RECORD of INTEGER | 100 i
38 | 1 1 |UNCONSTRAINED ARRAY | 1 |
37 o 1 |UNCONSTRAINED ARRAY | 1 |
37 1_0 1 |UNCONSTRAINED ARRAY | 1 |
21 I 1 |UNCONSTRAINED ARRAY | 100 |
19 o 1 |UNCONSTRAINED ARRAY | 100 |
19 1_0 1 |UNCONSTRAINED ARRAY | 100 |
31 I 1 |UNCONSTRAINED ARRAY | 10000 |
31 o 1 |UNCONSTRAINED ARRAY | 10000 |
31 1_0 1 |UNCONSTRAINED ARRAY | 10000 |
186 I 1 |UNCONSTRAINED RECORD | S
16 (o] 1 |UNCONSTRAINED RECORD | 1|
15 1_0 1 |UNCONSTRAINED RECORD | 1 |
7 I 1 |UNCONSTRAINED RECORD | 100 |
12 o 1 |UNCONSTRAINED RECORD | 100 |
12 1_0 1 |UNCONSTRAINED RECORD | 100 |

Benchmarks-Ada

RSD-12-86

Subprogram Overhead (inline)

Number of Iterations = 100
Time |[Direction|# Passed Type | Size of |
(microsec.)| Passed |in Call Passed |Passed Var]|
I 31 | 0 l I
25	I 1	INTEGER	
31 (o) 1	INTEGER		
50 1_0 1	INTEGER		
55 I 10	INTEGER		
43 o] 10	INTEGER		
105 1_0 10	INTEGER		
25 1 1	ENUMERATION		
32 o 1	ENUMERATION		
50 1_0 1	ENUMERATION		
85	I [10	ENUMERATION	
68	o	10	ENUMERATION ;
152	1.0	10	ENUMERATION [
[26	I 1	ARRAY of INTEGER 1]	
33	o 1	ARRAY of INTEGER 1	
33	1_0 1	ARRAY of INTEGER 1	
33	I	1	ARRAY of INTEGER
34 o 1	ARRAY of INTEGER 10		
32 1_0 1	ARRAY of INTEGER 10		
33 I 1	ARRAY of INTEGER	100	
33 o 1	ARRAY of INTEGER [100		
23 1_0 1	ARRAY of INTEGER 1 100		
23	I	1	ARRAY of INTEGER
23 o 1	ARRAY of INTEGER	10000	
23 1_0 1	ARRAY of INTEGER	10000	
238 I	1	RECORD of INTEGER	1
(33	o	1	RECORD of INTEGER
33 (1o	1 [RECORD of INTEGER	1	
22 |1 | 1 |RECORD of INTEGER | 100 |
22 (o] 1 |RECORD of INTEGER 100 |
24 1_O 1 |RECORD of INTEGER 100 |
55 I 1 |UNCONSTRAINED ARRAY | 1|
55 o] 1 |UNCONSTRAINED ARRAY 1 |
55 1_0 1 |UNCONSTRAINED ARRAY 1 |
33 | I | 1 |UNCONSTRAINED ARRAY | 100 |
33 (o) 1 |UNCONSTRAINED ARRAY 100 |
32 1_0 1 |UNCONSTRAINED ARRAY 100 |
33 I 1 |UNCONSTRAINED ARRAY | 10000 |
32 o 1 |UNCONSTRAINED ARRAY | 10000 |
32 1_0 1 |UNCONSTRAINED ARRAY | 10000 |
32 I 1 |UNCONSTRAINED RECORD | 1|
31 o [1 |UNCONSTRAINED RECORD | 1|
31 1_0 | 1 |UNCONSTRAINED RECORD | 1 |
22 i I 1 |UNCONSTRAINED RECORD | 100 |
29 o 1 |UNCONSTRAINED RECORD | 100 |
29 1_0 1 |UNCONSTRAINED RECORD | 100 |

Benchmarks-Ada

RSD-12-88

Subprogram Overhead (generic)

Number of Iterations = 100
Time Direction|# Passed Type | Sise of |
(microsec.) Passed |in Call Passed |Passed Var|
27 | 0 l I
238 I 1 | INTEGER | |
17 o 1 | INTEGER |
37 1_0 1 INTEGER |
80 | 1 10 | INTEGER | |
73 o 10 | INTEGER |
154 1_0 10 INTEGER |
| 24 1 1 |ENUMERATION [|
14 (o] 1 |ENUMERATION |
36 1_0 1 | ENUMERATION |
80 I 10 |ENUMERATION | |
65 (o] 10 |ENUMERATION |
147 1_0 10 |ENUMERATION |
| 30 I 1 |ARRAY of INTEGER | 1]
39 o 1 |ARRAY of INTEGER 1 |
39 1_0 1 |ARRAY of INTEGER 1 |
| 22 I 1 |ARRAY of INTEGER | 10 |
5 (o] 1 |ARRAY of INTEGER 10 |
5 1.0 1 |ARRAY of INTEGER 10 |
4 I 1 |ARRAY of INTEGER | 100 |
4 o 1 |ARRAY of INTEGER 100 |
4 1_0 1 |ARRAY of INTEGER 100 |
32	I 1	ARRAY of INTEGER	10000
11 o 1	ARRAY of INTEGER [10000		
11 1_0 1	ARRAY of INTEGER	10000	
30 I 1	RECORD of INTEGER	1	
39 o	1	RECORD of INTEGER	1
- 39 1.0	1	RECORD of INTEGER	1
33 I	1	RECORD of INTEGER	100
12 o 1	RECORD of INTEGER	100	
12 1_0 1	RECORD of INTEGER	100	

Benchmarks-Ada

RSD-12-88

Subproghram Overhead (cross package, non-generic)

Number of Iterations = 100
Time |Direction|# Passed Type | Sisze of |
(microsec.)| Passed |in Call Passed |Passed Var|
T 0 | |
19	I 1	INTEGER	
21	o 1	INTEGER	
38 I 1_0 1	INTEGER		
[59	1 10	INTEGER	
46	o 10	INTEGER	
[84	1_0 10	INTEGER g	
18 [I	1	ENUMERATION 1	
21	o 1	ENUMERATION	
38	1_0 1	ENUMERATION	
80 [I 10	ENUMERATION		
59	o 10	ENUMERATION	
108	1_0 10	ENUMERATION	
20	I	1	ARRAY of INTEGER
22 o	1	ARRAY of INTEGER [1	
22 1.0	1	ARRAY of INTEGER	1
16	I 1	ARRAY of INTEGER	10
18 o - 1	ARRAY of INTEGER	10	
18 1_0 1	ARRAY of INTEGER	10	
18 1 1	ARRAY of INTEGER	100	
17 o	1	ARRAY of INTEGER	100
17 1_0	1	ARRAY of INTEGER	100
14	1 1	ARRAY of INTEGER	10000
14 o 1	ARRAY of INTEGER 10000		
14 1_0 1	ARRAY of INTEGER 10000		
19 I 1 |RECORD of INTEGER 1
22 (o) 1 |RECORD of INTEGER 1 |
22 1_0 1 |RECORD of INTEGER 1 |
13 | I 1 |RECORD of INTEGER | 100 |
14 o 1 |RECORD of INTEGER | 100 |
14 1_0 1 |RECORD of INTEGER 100 |
46 1 | 1 |UNCONSTRAINED ARRAY 1 |
46 (o) 1 |UNCONSTRAINED ARRAY 1 |
46 I_0 1 |UNCONSTRAINED ARRAY 1 |
37 I 1 |UNCONSTRAINED ARRAY | 100 |
387 o 1 |UNCONSTRAINED ARRAY 100 |
37 1_0 1 |UNCONSTRAINED ARRAY 100 |
38 I | 1 |UNCONSTRAINED ARRAY | 10000 |
37 | o | 1 |UNCONSTRAINED ARRAY 10000 |
37 | i_o | 1 |UNCONSTRAINED ARRAY 10000 |
12 1 1 |UNCONSTRAINED RECORD | 1 |
17 o 1 |UNCONSTRAINED RECORD 1 |
19 1_0 1 |UNCONSTRAINED RECORD 1 |
9 1 1 |UNCONSTRAINED RECORD 100 |
9 o 1 |UNCONSTRAINED RECORD | 100 |
10 1_0 1 |UNCONSTRAINED RECORD | 100 |

Benchmarks-Ada

RSD-12-88

Subprogram Overhead (generic, cross package)

Number of Iterations = 100
Time |Direction|# Passed]| Type | Size of |
(microsec.)| Passed |in Call | Passed |Passed Var|
1 3 | 0 | |
| 13 1 1 | INTEGER | |
16 (o] 1 INTEGER | |
22 1_0 1 | INTEGER | |
| 59 | I | 10 | INTEGER | |
45 o] 10 | INTEGER | |
83 1_0 10 INTEGER | |
4 I 1 |ENUMERATION | |
7 | o 1 |ENUMERATION | |
11 | 1_0 1 |ENUMERATION | |
57 | I 10 |ENUMERATION | |
51 (o) | 10 |ENUMERATION | |
90 1_0 | 10 |ENUMERATION | |
17 | 1 | 1 |ARRAY of INTEGER | 1]
18 o 1 |ARRAY of INTEGER | 1 |
18 1_0 1 |ARRAY of INTEGER | 1 |
9 I 1 |ARRAY of INTEGER | 10 |
9 o [1 |ARRAY of INTEGER | 10 |
9 1.0 | 1 |ARRAY of INTEGER | 10 |
9 1 | 1 |ARRAY of INTEGER | 100 |
9 o 1 |ARRAY of INTEGER 100 |
9 1_0 1 |ARRAY of INTEGER 100 |
12 1 | 1 |ARRAY of INTEGER | 10000 |
13 o 1 ARRAY of INTEGER 10000 |
13 1_0 1 |ARRAY of INTEGER 10000 |
16 1 1	RECORD of INTEGER 1		
18	o 1	RECORD of INTEGER 1	
18	1_0 1	RECORD of INTEGER 1	
11	I	1	RECORD of INTEGER 100
12 (o] 1	RECORD of INTEGER 100		
11 1_0 1	RECORD of INTEGER 100		

Benchmarks-Ada

98

Number of Iterations

= 100

Dynamic Allocation in a Declara

RSD-12-86

tive Region

(microsec.)|

28
41
84
74
| 145
168
| 12
27
1

Note: Times

|# Declared Type | Size of
Declared | Object
1 Integer |
10 Integer |
100 Integer |
1 String | 1
1 String | 10
1 String | 100
1 Enumeration |
10 Enumeration |
100 |Enumeration |
1 Integer Array | 1
1 Integer Array | 10
1 |Integer Array | 100
1 Integer Array | 1000
1 1-D Dynamically bounded Array | 1
i 1-D Dynamically bounded Array | 10
1 2-D Dynamically bounded Array | 1
1 2-D Dynamically bounded Array | 100
| 1 8-D Dynamically bounded Array | 1
| 1 3-D Dynamically bounded Array | 1000
| 1 Record of Integer | 1
1 Record of Integer | 10
1 |Record of Integer | 100
reported include any deallocation required upon leaving the

of the declared variables.

Benchmarks-Ada

3C!

RSD-12-88

Number of Iterations = 100

Dynamic Allocation with NEW allocator

- ———— - —————— T —— ——— — ——— ——— — — ————————— - - ———————— ———————————————— - ———

Time # Declared | Type | Size of |
(microsec.) | Declared | Object |
1085 1	Integer	1
1978 1	Enumeration	1
1963 1	Record of Integer	1
1985 1	[Record of Integer	5
1980 1	[Record of Integer	10
1989 1	JRecord of Integer	20
1972 1 Record of Integer	50	
1965 1 Record of Integer	100	
1959 1 String	1	
1975 1 String	10	
1999 1 String	100	
1064 1 Integer Array	1	
1965 1 Integer Array	10	
2002 1 Integer Array	100	
2129	1 Integer Array	1000
2249 1 1-D Dynamically Bounded Array	1	
2185 1 1-D Dynamically Bounded Array	10	
21901 1 2-D Dynamically Bounded Array	1	
2217 1 2-D Dynamically Bounded Array	100	
2300 1 3-D Dynamically Bounded Array	1	
2334 1 38-D Dynamically Bounded Array	1000	

Benchmarks-Ada 97

Number of

RSD-12-88

Iterations = 10000

Exception Handler Tests

Exception

0
9270
8876
9760
9350
9780
9784

uSEC.
uSEC.
uSEC.
wSEC.
wSEC.
uSEC.
uSEC.

Exception

0
19481
19455
18982
179564
19008
199075

uSEC.
uSEC.
uSEC.
uSEC.
uSEC.
uSEC.
uSEC.

raised and handled in a block
User Defined, Not Raised
User Defined
Constraint Error, Implicitly Raised
Constraint Error, Explicitly Raised
Numeric Error, Implicitly Raised
Numeric Error, Explicitly Raised
Tasking Error, Explicitly Raised

raised in a procedure and handled in the calling unit
User Defined, Not Raised
User Defined
Constraint Error, Implicitly Raised
Constraint Error, Explicitly Raised
Numeric Error, Implicitly Raised
Numeric Error, Explicitly Raised
Tasking Error, Explicitly Raised

Benchmarks-Ada

RSD-12-86

Task Elaborate, Activate, and Terminate Time: Declared Object, No Type

Number of Iterations = 100
For test number 1
Task elaborate, activate, terminate time: 13.71 milliseconds.

Task Elaborate, Activate, and Terminate Time: Declared Object, Task Type
Number of Iterations = 100

For test number 1
Task elaborate, activate, terminate time: 15.06 milliseconds.

- ——— — ————— —— - - - - ————— — — . - - - - —— ————— - - - - ———

Task Elaborate, Activate, and Terminate Time: NEW Object, Task Type

Number of Iterations = 100
For test number 1
Task elaborate, activate, terminate time: 14.19 milliseconds.

- - - —— - - - — - G W - - - - - . W = W WS W M - . - ——— - - —

Benchmarks-Ada 99

RSD-12-86

Rendesvous Time: No Parameters Passed
Number of Iterations = 100

100 Benchmarks-Ada

RSD-12-88

Number of Iterations = 100

Clock function calling overhead : 1158 microseconds

Benchmarks-Ada 101

Number of

TIME

Iterations

and

10000 =

10

DURATION math

Microseconds
90
38
105
90
89
104
189

QO™ NN NNDIN

102

Operation
Var_time + Var_duration

Time
Time
Time
Time
Time
Time
Duration
Duration
Duration
Duration
Duration
Duration
Duration
Duration
Duration

Var_

time -

RSD-12-86

Var_duration

Var_duration + Var_time
Var_time + Const_duration

Var_

time -

Const_duration

Const_duration + Var_time

AR RN

Var_time -
Var_duration +
Var_duration -
Var_duration +
Var_duration -
Const_duration
Const_duration
Const_duration
Const_duration

Var_

time
Var_duration
Var_duration
Const_duration
Const_duration

+ Var_duration

- Var_duration

+ Const_duration
- Const_duration

Benchmarks-Ada

RSD-12-88

APPENDIX F

The following pages contain result tables for all of the tests run. These results
are for the DEC VAX Ada Compiler Version V.1.1 running with Micro VMS 4.1 on a
Microvax II.

Benchmarks-Ada 103

RSD-12-86

Compiler Time Related Values:

System Tick= 0.000948730468750 Seconds
Duration Small= 0.000061035156250 Seconds

104 Benchmarks-Ada

RSD-12-88

iSnbprogram Overhead (non-generic)
Number of Iterations = 10000 ¢ 10

Time Direction|# Passed Type | Sisze of |
(microsec.) Passed |in Call Passed |Passed Var|
| 2.9 | I o | I !
| 0.0 1 1 INTEGER |
1.8 o 1	INTEGER	
5.8 1_0 1	INTEGER	
0.0 I 10	INTEGER	
0.2 o 10	INTEGER	
14.0 1_0 10	INTEGER [
-6.2 I 100	INTEGER	;

208 .1 o 100 | INTEGER |

311.7 1_0 100 | INTEGER |

0.0 | 1 |ENUMERATION | |
1.2 (o] 1 |ENUMERATION |
5.7 1_0 1 |ENUMERATION |
0.5 I 10 |ENUMERATION | |
0.7 (o] 10 |ENUMERATION |
13.3 1_O 10 |ENUMERATION |
-5.17 I 100 |ENUMERATION | |
| 193.0 o 100 |ENUMERATION | |
| 301.4 1_0 100 |ENUMERATION | 1
| 0.0 1 1 |ARRAY of INTEGER | 1]
0.1 o 1 |ARRAY of INTEGER | 1|
-0.9 1_0 1 |ARRAY of INTEGER [1|
| -1.4 I 1 |ARRAY of INTEGER 1 10 |
1.5 o 1 |ARRAY of INTEGER | 10|
-0.4 1_0 1 |ARRAY of INTEGER | 10 |
-1.1 |1 | 1 |ARRAY of INTEGER | 100 |
1.1 o 1 |ARRAY of INTEGER [100 |
1.5 1_0 1 |ARRAY of INTEGER (100 |
-0.9 I | 1 |ARRAY of INTEGER | 10000 |
1.0 (o] 1 |ARRAY of INTEGER | 10000 |
-1.4 1_0 1 |ARRAY of INTEGER | 10000 |
-0.1 | 1 1 |RECORD of INTEGER | 1]
-2.5 o 1 RECORD of INTEGER | 1 |
-0.1 1_0 1 RECORD of INTEGER | 1 |
0.0 1 1 RECORD of INTEGER | 100 |
0.0 (o] 1 RECORD of INTEGER 100 |
0.0 1_0 1 RECORD of INTEGER 100 |
-1.3 I 1 |UNCONSTRAINED ARRAY 1 |
-0.9 (o] 1 |UNCONSTRAINED ARRAY 1 |
0.2 1_0 1 |UNCONSTRAINED ARRAY 1|
-1.1 I 1 |UNCONSTRAINED ARRAY 100
-1.0 (o] 1 UNCONSTRAINED ARRAY 100
0.0 1_0 1 |UNCONSTRAINED ARRAY 100
-2.0 I 1 UNCONSTRAINED ARRAY 10000
-1.4 (o} 1 |UNCONSTRAINED ARRAY 10000
-0.7 1_0 1 UNCONSTRAINED ARRAY 10000
0.0 1 1 |UNCONSTRAINED RECORD 1 |
0.2 o 1 |UNCONSTRAINED RECORD 1
0.0 1_0 1 UNCONSTRAINED RECORD 1
-1.0 | 1 UNCONSTRAINED RECORD | 100
0.0 (o] 1 |UNCONSTRAINED RECORD 100
0.0 1_0 1 |UNCONSTRAINED RECORD 100

Benchmarks-Ada 105

RSD-12-86

Subprogram Overhead (inline)
Number of Iterations = 10000 ¢ 10

Time |[Direction|# Passed Type | Sisze of |
(microsec.)| Passed |in Call Passed |Passed Var|
| 3.0 | 0 I |
| 0.0 | 1 1 | INTEGER | |
] 1.2 o 1 | INTEGER | |
| 5.9 1_0 1 | INTEGER | |
| 0.0 I | 10 | INTEGER | |
0.3 (o] 10 | INTEGER | |
14.0 1_0 10 | INTEGER | |
-6.2 I 100 INTEGER | |
208 .2 o] 100 | INTEGER | |
311.86 1_0 100 INTEGER | |
0.0 I 1 |ENUMERATION | |
1.8 o 1 |ENUMERATION | |
5.7 1_0 1 |ENUMERATION | |
0.6 1 10 |ENUMERATION | |
0.7 (o] 10 |ENUMERATION | |
13.2 1_0 10 |ENUMERATION | |
-5.7 I | 100 |ENUMERATION 1 |
192.9 o 100 |ENUMERATION | |
301.5 1_O0 100 |ENUMERATION | |
| 0.0 | I 1 |ARRAY of INTEGER | 1
0.1 o 1 |ARRAY of INTEGER | 1|
-0.8 1_0 1 |ARRAY of INTEGER | 1
| -1.5 I 1 |ARRAY of INTEGER | 10 |
1.5 (o] 1 |ARRAY of INTEGER | 10 |
-0.4 1_0 1 |ARRAY of INTEGER | 10 |
-1.0 1 1 |ARRAY of INTEGER | 100 |
1.1 (o] 1 |ARRAY of INTEGER | 100 |
1.5 1_0 1 |ARRAY of INTEGER | 100 |
-1.1 1 1 |ARRAY of INTEGER | 10000 |

1.1 o 1 |ARRAY of INTEGER 10000
-1.5§ 1_0 1 |ARRAY of INTEGER 10000

0.0 [I 1 |RECORD of INTEGER | 1|
-2.4 o 1 |RECORD of INTEGER 1

0.0 1_0 1 |RECORD of INTEGER 1

0.1 I 1 |RECORD of INTEGER | 100 |

0.0 o 1 |RECORD of INTEGER 100
-0.1 1_0 1 |RECORD of INTEGER 100
-1.3 I 1 |UNCONSTRAINED ARRAY 1
-0.7 o 1 |UNCONSTRAINED ARRAY 1

0.3 1.0 1 |UNCONSTRAINED ARRAY 1
-1.0 I 1 |UNCONSTRAINED ARRAY 100
-1.0 (o] 1 |UNCONSTRAINED ARRAY | 100

0.0 1_0 1 |UNCONSTRAINED ARRAY | 100
-2.1 | 1 1 |UNCONSTRAINED ARRAY 10000 |
-1.5 o 1 |UNCONSTRAINED ARRAY 10000 |
-0.8 1_0O 1 |UNCONSTRAINED ARRAY 10000 |

0.1 I 1 |UNCONSTRAINED RECORD 1

0.1 o 1 |UNCONSTRAINED RECORD 1
-0.1 1_0 1 |UNCONSTRAINED RECORD 1
-0.9 1 1 |UNCONSTRAINED RECORD | 100 |
-0.1 o] 1 |UNCONSTRAINED RECORD | 100

0.0 1_0 1 |UNCONSTRAINED RECORD | 100

108 Benchmarks-Ada

RSD-12-86

Subprogram Overhead (genmeric)

Number of Iterations = 10000 ¢ 10
Time Direction|# Passed| Type | Size of |
(microsec.) Passed |in Call | Passed |[Passed Var|
0.1 | | 0 | | |
1.4 1 1 | INTEGER | |
0.5 o 1 | INTEGER | |
-0.1 I1_0 1 INTEGER | |
0.1 1 10 | INTEGER | |
0.0 o 10 | INTEGER 1 |
11.7 1_0 10 | INTEGER | |
-0.1 I 100 INTEGER | |
149.1 o 100 | INTEGER | |
312.0 1.0 100 | INTEGER | |
| 1.5 | 1 | 1 |ENUMERATION | |
0.4 o 1 ENUMERATION | |
-0.1 1_0 1 |ENUMERATION 1 |
| 0.0 I | 10 |ENUMERATION | |
0.0 o | 10 |ENUMERATION | |
9.1 1.0 | 10 |ENUMERATION [[
-2.8 | I | 100 |ENUMERATION | |
153.7 (o] 100 |ENUMERATION |
308.3 1_0 100 |ENUMERATION |
-2.0 1 1 |ARRAY of INTEGER 1|
0.0 (o 1 |ARRAY of INTEGER 1 |
0.2 1_0 1 |ARRAY of INTEGER 1 |
.2.86 I 1 1 |ARRAY of INTEGER | 10 |
0.2 o 1 |ARRAY of INTEGER 10 |
-0.7 1_0 1 |ARRAY of INTEGER 10 |
-6.4 I | 1 |ARRAY of INTEGER | 100 |
0.6 o] 1 |ARRAY of INTEGER | 100
0.4 1_0 1 |ARRAY of INTEGER | 100
-1.3 | 1 |ARRAY of INTEGER 10000 |
0.1 o 1 |ARRAY of INTEGER 10000
0.0 I1_O 1 |ARRAY of INTEGER 10000
0.5 1 1 |RECORD of INTEGER 1 |
-0.2 o 1 |RECORD of INTEGER 1
0.1 1_O0 1 |RECORD of INTEGER 1
-0.4 I 1 |RECORD of INTEGER 100
| 0.2 o 1 RECORD of INTEGER 100
| -4.0 1_0 1 |RECORD of INTEGER 100

Benchmarks-Ada 107

RSD-12-86

Subproghram Overhead (cross package, non-generic)
Number of Iterations = 10000 * 10

Time |[Direction|# Passed Type | Size of |
(microsec.)| Passed |in Call Passed |[Passed Var|
l 46.1 | l 0 | |

52.5 | I (1 | INTEGER | 1
54.5 | O 1 | INTEGER | |
19.8 | 1_0 1 | INTEGER | |
60.1 | I | 10 | INTEGER | |
79.6 | o 10 | INTEGER | |

116.0 [1_0 10 | INTEGER | |
418.8	1 100	INTEGER	
470.0	o 100	INTEGER	
874.5	1_0 100	INTEGER	

52.7 | 1 [1 |ENUMERATION | |
54.5 (0] 1 |ENUMERATION | |
49.3 1_0 1 |ENUMERATION | |
59.9 1 10 |ENUMERATION | |
79.6 o 10 |ENUMERATION | |
115.9 1_0 10 |ENUMERATION | ;
403 .7 [I 100 |ENUMERATION [|
453.9 (o} 100 |ENUMERATION | |
842.3 1_0 100 |ENUMERATION | |
| 52.8 I | "1 |ARRAY of INTEGER | 1]
52.5 | (o] 1 |ARRAY of INTEGER 1
47.3 | 1_0 1 |ARRAY of INTEGER 1
48.5 | I [1 |ARRAY of INTEGER | 10 |
50.0 o 1 |ARRAY of INTEGER 10
44.7 1_0 1 |ARRAY of INTEGER 10

| 51.5 I | 1 |ARRAY of INTEGER 100 |
52.5 o 1 |ARRAY of INTEGER 100
48.9 1_0 1 |ARRAY of INTEGER 100
51.5 I 1 |ARRAY of INTEGER 10000 |
52.86 o 1 |ARRAY of INTEGER 10000 |
49 .2 1_0 1 |ARRAY of INTEGER 10000 |

| 51.1 I 1 |RECORD of INTEGER 1 |
51.1 (o] 1 |RECORD of INTEGER 1
52.86 1_0 1 |RECORD of INTEGER 1
52.6 I 1 |RECORD of INTEGER | 100 |
52.6 o 1 |RECORD of INTEGER 100
50.4 1_0 1 |RECORD of INTEGER 100
85.4 I 1 |UNCONSTRAINED ARRAY 1
78.1 (o 1 |UNCONSTRAINED ARRAY 1
73.8 1_0 1 |UNCONSTRAINED ARRAY 1
90.2 1 1 |UNCONSTRAINED ARRAY 100
82.6 o 1 |UNCONSTRAINED ARRAY 100
78.9 1_0 1 |UNCONSTRAINED ARRAY 100
90.2 1 1 |UNCONSTRAINED ARRAY 10000 |
81.1 (o) 1 |UNCONSTRAINED ARRAY 10000 |
78.1 I1_0O 1 |UNCONSTRAINED ARRAY 10000 |
52.6 I 1 |UNCONSTRAINED RECORD 1 |
57.9 o 1 |UNCONSTRAINED RECORD | 1 |
48.2 1_0 1 |UNCONSTRAINED RECORD | 1 |
52.6 I 1 |UNCONSTRAINED RECORD | 100 |
§7.9 0] 1 |UNCONSTRAINED RECORD 100 |
48.2 1_0 1 |

UNCONSTRAINED RECORD 100

108 Benchmarks-Ada

RSD-12-88

Subprogram Overhead (generic, cross package)

Number of Iterations = 10000 ¢ 10
Time |Direction|# Passed| Type | Sise of |
(microsec.)| Passed |in Call | Passed |[Passed Var|
I 45.9 | o | l l
| 21.9 | I 1 | INTEGER | |
23.1 | o 1 | INTEGER [|
26.3 | 1_0 1 | INTEGER | |
7.9 | 1 10 | INTEGER | [
81.9 | O 10 | INTEGER | |
104.2 | 1_O0 10 INTEGER | |
643.2 | I 100 | INTEGER | |
652.7 (o] 100 INTEGER | |
1164.8 1.0 100 | INTEGER |]
21.9 I | 1 |ENUMERATION | |
23.0 (o) 1 | ENUMERATION | |
26.3 1_0 1 | ENUMERATION | |
2.4 | 1 | 10 |ENUMERATION | |
74.6 | (o] 10 |ENUMERATION | |
96.5 | 1_0 10 |ENUMERATION | |
602 .1 I 100 |ENUMERATION | |
609.8 o 100 |ENUMERATION | |
1085.8 1_0 100 |ENUMERATION | |
20.6 | 1 1 |ARRAY of INTEGER [1
21.0 o 1 |ARRAY of INTEGER | 1 |
25.0 1_0 1 |ARRAY of INTEGER | 1 |
45.7 I 1 |ARRAY of INTEGER | 10 |
45.7 o 1 |ARRAY of INTEGER | 10 |
64.7 1_0 1 |ARRAY of INTEGER | 10 |
161.1 I 1 |ARRAY of INTEGER | 100 |
145.8 o 1 |ARRAY of INTEGER | 100 |
262.5 1_0 1 |ARRAY of INTEGER | 100 |
12507 .8 | 1 | 1 |ARRAY of INTEGER [10000 |
10756.0 o 1 |ARRAY of INTEGER | 10000 |
21481.0 1_0 1 |ARRAY of INTEGER | 10000 |
| 12.8 1 | 1 |RECORD of INTEGER | 1|
14.6 (o] 1 |RECORD of INTEGER | 1 |
16.9 1_0 1 |RECORD of INTEGER | 1 |
164.0 I 1 |RECORD of INTEGER | 100 |
153.6 o | 1 |RECORD of INTEGER | 100 |
263.2 1.0 | 1 |RECORD of INTEGER | 100 |

Benchmarks-Ada

109

RSD-12-88

Number of Iterations = 10000 ¢ 10

Dynamic Allocation in a Declarative Region

e e o e > = S = > —————————~ —————_— - ——————————— —————— — —

Time # Declared Type | Sigze of |
(microsec.) Declared | Object |
-3.3 1 Integer | |
-8.5 10 Integer |
-8.9 100 Integer |
3.1 1 String | 1 |
2.9 1 String | 10 |
| -0.8 1 String | 100 |
-4.5 1 Enumeration |
-8.0 10 : Enumeration |
-19.1 100 |Enumeration
-5.8 1 Integer Array 1 |
-3.8 1 Integer Array 10 |
-2.1 1 Integer Array | 100 |
0.1 1 Integer Array 1000 |
18.86 1 1-D Dynamically bounded Array 1 |
9.5 1 1-D Dynamically bounded Array | 10 |
25.1 1 2-D Dynamically bounded Array 1 |
22 .4 1 2-D Dynamically bounded Array 100 |
| 37.7 1 3-D Dynamically bounded Array | -1 |
38 .4 1 3-D Dynamically bounded Array 1000 |
-3.8 1 Record of Integer 1 |
-3.7 | 1 Record of Integer | 10 |
2.8 | 1 |[Record of Integer | 100 |

Note: Times reported include any deallocation required upon leaving the sc
of the declared variables.

110 , Benchmarks-Ada

RSD-12-88

Number of Iterations = 1000

Dynamic Allocation with NEW allocator

- ——— i ——— ————————————————— —————————————————— - ———— ——— - ——————————————— - - —

Time # Declared Type | Sizxe of |
(microsec.) Declared | Object |
310 1 Integer | 1 |
310 1 Enumeration | 1
310 1 |[Record of Integer | 1 |
320 1 Record of Integer | 5 |
320 1 Record of Integer | 10 |
340 1 Record of Integer | 20 |
400 1 Record of Integer | 50 |
510 1 Record of Integer | 100 |
310 1 String | S
310 1 String | 10 |
360 1 String | 100 |
310 1 Integer Array | 1 |
$30 1 Integer Array 10 |
510 1 Integer Array 100 |
2360 1 Integer Array 1000 |
410 | 1 1-D Dynamically Bounded Array 1 |
450 | 1 1-D Dynamically Bounded Array 10 |
430 1 2-D Dynamically Bounded Array 1 |
870 1 2-D Dynamically Bounded Array 100 |
490 1 3-D Dynamically Bounded Array 1 |
| 4830 1 3-D Dynamically Bounded Array 1000 |

Benchmarks-Ada 111

RSD-12-88

Number of Iterations = 10000

Exception Handler Tests

Exception raised and handled in a block

4 uSEC. User Defined, Not Raised
667 uSEC. User Defined
836 uSEC. Constraint Error, Implicitly Raised
821 uSEC. Constraint Error, Explicitly Raised
912 uSEC. Numeric Error, Implicitly Raised
826 uSEC. Numeric Error, Explicitly Raised
819 uSEC. Tasking Error, Explicitly Raised
Exception raised in a procedure and handled in the calling unit
16 uSEC. User Defined, Not Raised
736 uSEC. User Defined
900 uSEC. Constraint Error, Implicitly Raised
886 uSEC. Constraint Error, Explicitly Raised
891 uSEC. Numeric Error, Implicitly Raised
894 uSEC. Numeric Error, Explicitly Raised
883 uSEC. Tasking Error, Explicitly Raised

112 Benchmarks-Ada

RSD-12-88

Task Elaborate, Activate, and Terminate Time: Declared Object, No Type

Number of Iterations = 100
For test number 1
Task elaborate, activate, terminate time: 8.2 milliseconds.

Task Elaborate, Activate, and Terminate Time: Declared Object, Task Type

Number of Iterations = 100
For test number 1

Task elaborate, activate, terminate time: 8.2 milliseconds.

- - ——————— —— - — - ——— - ——— ————————————— ————— - -~ —————

Task Elaborate, Activate, and Terminate Time: NEW Object, Task Type
Number of Iterations = 100

For test number 1
Task elaborate, activate, terminate time: 8.9 milliseconds.

Benchmarks-Ada 113

RSD-12-88

Rendesvous Time: No Parameters Passed
Number of lIterations = 100

- —— — — ——————— - ———— - ————— — - —— —— ————— —— ———— ——————————— ———

114 Benchmarks-Ada

RSD-12-86

Number of Iterations = 10000

Clock function calling overhead : 95 microseconds.

Benchmarks-Ada 115

118

Number of

Iterations = 20000 ¢ 5§

TIME and DURATION math

Microseconds Ope
101.8 Time =
99 .1 Time =
99.2 Time :=
108 .4 Time :=
108.86 Time :=
108 .4 Time :=
118.1 Duration
0.5 Duration
0.5 Duration
0.8 Duration
0.6 Duration
0.6 Duration
0.9 Duration
0.2 Duration
0.5 Duration

RSD-12-88

ration
Var_time + Var_duration
Var_time - Var_duration
Var_duration + Var_time
Var_time - Const_duration
Var_time + Const_duration
Const_duration + Var_time
= Var_time - Var_time
= Var_duration + Var_duration
:= Var_duration - Var_duration
= Var_duration + Const_duration
= Var_duration - Const_duration
= Const_duration + Var_duration
= Const_duration - Var_duration
:= Const_duration + Const_duration
= Const_duration - Const_duration

Beachmarks-Ada

RSD-12-88

Delay Statement Test
Number of Iterations

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number

Desired delay time:
Actual delay time:

Benchmarks-Ada

10

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

Minimum Delay Vaiue
0

.000061035156250 seconds.
.0199584060903750 seconds.

2

.000122070312500 seconds.
.019958496093750 seconds.

3

.000183105468750 seconds.
.019958496093750 seconds.

4

.000244140625000 seconds.
.0199584906003750 seconds.

5

.000305175781250 seconds.
.019958496093750 seconds.

.000366210937500 seconds.
.019958496093750 seconds.

7

.000427246093750 seconds.
.019958496093750 seconds.

.000488281250000 seconds.
.0190958496093750 seconds.

.000549316406250 seconds.
.019958496093750 seconds.

10

.000610351562500 seconds.
.019958496093750 seconds.

11

.000671386718750 seconds.
.019958496093750 seconds.

12

.000732421875000 seconds.
.019958496093750 seconds.

13

.000793457031250 seconds.
.019958496093750 seconds.

14

.000854492187500- seconds.
.019958496093750 seconds.

15

.00091552734383750 seconds.
.019958496093750 seconds.

16

.000976562500000 seconds.
.019958406093750 seconds.

117

Delay Statement Test
Number of Iterations

case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number

Desired delay time:
Actual delay time:

118

[—]

0
0

0
0

0
0

0
0

0
0

0
0

0

o.

.003051757812500
.019958496093750

2
.003662109375000
.019005840680903750

3
.004272460937500
.019958496093750

4
.004882812500000
.0199584960903750

5
.005493164062500
.019058496093750

6
.006103515625000
.01990584906093750

7
.006713867187500
.0199058496093750

g
.007324218750000
.019958496093750

9
.007934570312500
.0190584906093750

10
.008544021875000
.019958496093750

11
.009155273487500

.019958496003750

12
.009765625000000
.019958496093750

13
.0103756976562500
.020068261718750

14

.010986328125000°

.020068261718750

15
.011506679687500
.029068261718750

16
.012207031250000
.0209068261718750

seconds.
seconds .

seconds.
seconds.

seconds.
seconds.

seconds.
seconds .

seconds.
seconds .

seconds.
seconds.

seconds.
seconds.

seconds .
seconds .

seconds.
seconds.

seconds.
seconds.

seconds .
seconds.

seconds.
seconds.

seconds.
seconds.

seconds .
seconds.

seconds .
seconds.

seconds.
seconds.

RSD-12-88

Benchmarks-Ada

RSD-12-86

Delay Statement Test
Number of Iterations

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number
Desired delay time:
Actual delay time:

For case number

Desired delay time:
Actual delay time:

Benchmarks-Ada

0.030517578125000
0.049987792968750

2
0.036621093750000
0.0490877902968750

3
0.042724609375000
0.059097558593750

4
0.048828125000000
0.059997558593750

5
0.054931640825000
0.0699046289062500

6
0.061035156250000
0.079956054687500

7
0.067138671875000
0.079956054687500

8
0.073242187500000
0.089965820312500

9
0.079345703125000
0.0899065820312500

10
0.085449218750000
0.0999075585937500

11
0.091552734375000

0.109085351562500°

12
0.007656250000000
0.100085351562500

13
0.1037507685625000
0.1199095117187500

14

0.1090863281250000-

0.119995117187500

15
0.115966796875000
0.120043847656250

16
0.122070312500000
0.1390053613281250

seconds .
seconds.

seconds.
seconds .

seconds.
seconds.

seconds .
seconds.

seconds .
seconds.

seconds .
seconds.

seconds.
seconds .

seconds .
seconds .

seconds .
seconds .

seconds.
seconds .

seconds .
seconds .

seconds .
seconds .

seconds.
seconds .

seconds.
seconds .

seconds.
seconds.

seconds.
seconds.

119

RSD-12-88

APPENDIX G

The following pages contain result tables for all of the tests run. These results
are for the DEC VAX Ada Compiler Version V.1.3 running with VMS 4.4 on a Vax
11/780. Since the results for the delay test are the same for this compiler as they are for
V.1.1, please refer to Appendix F for those results.

120 Benchmarks-Ada

RSD-12-86

Compiler Time Related Values:

System Tick= 0.0090948730468750 Seconds
Duration Small= 0.000081035156250 Seconds

Benchmarks-Ada 121

RSD-12-86

Subprogram Overhead (non-generic)
Number of Iteratiomns = 10000 * 10

- = - — ————— — ——— ————— — —— — ——— - ——— ————— —— —— ————

Time |[Direction|# Passed| Type | Sise of |
(microsec.)| Passed |in Call | Passed |Passed Var|
-0.8 | 0 | |
0.8 | 1 1 | INTEGER | |
-0.6 | o 1 | INTEGER |
0.8 | I_0 1 | INTEGER |
2.8 | 1 10 | INTEGER |
| 12.8 | o | 10 | INTEGER [l
| 17.9 | 1_0O | 10 | INTEGER | |
0.6 I 1 |ENUMERATION | |
-0.1 o 1 | ENUMERATION
-0.86 1_0 1 |ENUMERATION
[2.3 I 10 |ENUMERATION |
-0.1 o] 10 |ENUMERATION
17.6 1_0 10 |ENUMERATION
| -0.8 | 1 |ARRAY of INTEGER 1
| -0.2 o 1 |ARRAY of INTEGER 1|
| 0.1 I1_O 1 |ARRAY of INTEGER 1 |
0.4 I 1 |ARRAY of INTEGER | 10 |
-0.1 o] 1 |ARRAY of INTEGER 10 |
-0.2 1_0 1 |ARRAY of INTEGER 10 |
-0.2 I 1 |ARRAY of INTEGER | 100 |
-0.5 o 1 |ARRAY of INTEGER | 100 |
0.6 1_0 1 |ARRAY of INTEGER | 100 |
| -0.1 | 1 | 1 |ARRAY of INTEGER | 10000 |
0.0 o 1 |ARRAY of INTEGER | 10000 |
0.3 1_0 1 |ARRAY of INTEGER | 10000 |
0.1 I 1 |RECORD of INTEGER | 1|
-0.1 o 1 |RECORD of INTEGER | 1 |
0.2 1_0 1 |RECORD of INTEGER | 1 |
-0.2 I 1 |RECORD of INTEGER | 100 |
0.4 (o) 1 |RECORD of INTEGER | 100 |
-0.9 1_0 1 |RECORD of INTEGER | 100 |
0.2 I 1 |UNCONSTRAINED ARRAY | 1|
0.1 | O 1 |UNCONSTRAINED ARRAY | 1 |
0.1 | 1_0 1 |UNCONSTRAINED ARRAY | 1 |
-1.8 I 1 |UNCONSTRAINED ARRAY | 100 |
0.2 o 1 |UNCONSTRAINED ARRAY | 100 |
-1.4 1_0 1 |UNCONSTRAINED ARRAY | 100 |
0.5 1 1 |UNCONSTRAINED ARRAY | 10000 |
1.1 (o) 1 |UNCONSTRAINED ARRAY 10000 |
0.3 1_0 1 |UNCONSTRAINED ARRAY 10000 |
0.5 I 1 |UNCONSTRAINED RECORD 1 |
-0.7 o 1 |UNCONSTRAINED RECORD 1 |
-0.4 1_0 1 |UNCONSTRAINED RECORD 1 |
0.6 I 1 |UNCONSTRAINED RECORD | 100 |
-0.6 o 1 |UNCONSTRAINED RECORD 100 |
0.0 1_0 1 |UNCONSTRAINED RECORD 100 |

122 Benchmarks-Ada

RSD-12-86

Subprogram Overhead (inline)
Number of Iterations = 10000 + 10

- = - - - ———— - - — — - — - — - - . W . - - - - - . . - ——— - ———————— —

Time Direction|# Passed Type | Sise of
(microsec.) Passed |in Call Passed |Passed Var
| -0.4 (] |

1.0 1 1 | INTEGER |
-0.2 o 1 INTEGER |
-0.1 1_0 1 INTEGER |
| 2.4 1 | 10 | INTEGER | |
10.9 o 10 INTEGER
16.5 1_0 10 INTEGER
0.0 1 1 |ENUMERATION | |
-1.3 o 1 |ENUMERATION |
-0.9 I1_O 1 |ENUMERATION |
2.1 I 10 |ENUMERATION |
| 0.4 (o] 10 |ENUMERATION |
| 18.9 1_0 10 |ENUMERATION |
-0.5 I 1 |ARRAY of INTEGER 1 |
-0.2 o 1 |ARRAY of INTEGER 1 |
0.2 1_0 1 |ARRAY of INTEGER 1 |
0.0 I 1 |ARRAY of INTEGER 10 |
-0.6 | o | 1 |ARRAY of INTEGER 10 |
0.0 | 1_0 | 1 |ARRAY of INTEGER 10 |
-0.5 I 1 |ARRAY of INTEGER 100 |
-0.4 o 1 |ARRAY of INTEGER 100 |
0.4 1_0 1 |ARRAY of INTEGER 100 |
-0.38 I 1 |ARRAY of INTEGER | 10000 |
0.2 o 1 |ARRAY of INTEGER 10000 |
0.5 1_0 1 |ARRAY of INTEGER 10000 |
-0.7 I 1 |RECORD of INTEGER | 1
-0.1 (o) 1 |RECORD of INTEGER 1 |
0.5 1_0 1t |RECORD of INTEGER 1 |
0.1 I 1 |RECORD of INTEGER | 100 |
0.5 (0] 1 |RECORD of INTEGER | 100 |
-1.3 1_0 1 |RECORD of INTEGER | 100 |
-0.2 | 1 1 |UNCONSTRAINED ARRAY | 1|
-1.8 | o] 1 |UNCONSTRAINED ARRAY | 1 |
0.5 | 1_0 1 |UNCONSTRAINED ARRAY | 1|
-0.9 I 1 |UNCONSTRAINED ARRAY | 100 |
-0.4 o 1 |UNCONSTRAINED ARRAY 100 |
-1.0 1_0 1 UNCONSTRAINED ARRAY 100 |
-1.1 I 1 |UNCONSTRAINED ARRAY | 10000 |
0.3 o 1 |UNCONSTRAINED ARRAY 10000 |
0.7 1_0 1 |UNCONSTRAINED ARRAY 10000 |
1.6 I 1 |UNCONSTRAINED RECORD 1 |
0.6 o 1 |UNCONSTRAINED RECORD 1 |
-0.6 1_0 1 |UNCONSTRAINED RECORD 1 |
1.7 I 1 |UNCONSTRAINED RECORD 100 |
-0.1 (0] 1 |UNCONSTRAINED RECORD 100 |
-1.86 1_0 1 |UNCONSTRAINED RECORD 100 |

Benchmarks-Ada 123

RSD-12-88

Subprogram Overhead (generic)
Number of Iterations = 10000 ¢ 10

Time |[Direction|# Passed| Type | Sise of |
(microsec.)| Passed |in Call | Passed |Passed Var|
I 0.9 | 0 | l

0.2 I 1 INTEGER | |
1.1 o 1 | INTEGER | |
2.8 1_0 1 INTEGER | |
7.3 1 10 | INTEGER | |
8.5 o 10 | INTEGER |
15.7 1.0 10 | INTEGER |
-0.1 1 1 |ENUMERATION |
0.1 o] 1 |ENUMERATION

0.2 1_0 1 |ENUMERATION

7.4 | 10 |ENUMERATION |
8.9 o 10 |ENUMERATION

15.9 1_0 10 |ENUMERATION

-0.5 1 1 |ARRAY of INTEGER 1
0.0 (o) 1 |ARRAY of INTEGER 1
0.4 1_0 1 |ARRAY of INTEGER 1
-1.2 I 1 |ARRAY of INTEGER 10 |
0.1 o 1 |ARRAY of INTEGER 10
0.2 1_0 1 |ARRAY of INTEGER 10
-0.1 1 1 |ARRAY of INTEGER 100 |
-0.1 o 1 |ARRAY of INTEGER | 100 |
-0.1 1_0 1 |ARRAY of INTEGER | 100 |
-0.3 | 1 1 |RECORD of INTEGER | 1|
-0.5 o 1 |RECORD of INTEGER | 1|
-0.2 1_0 1 |RECORD of INTEGER | 1 |
-0.1 I 1 |RECORD of INTEGER | 100 |
0.0 o 1 |RECORD of INTEGER | 100 |
0.9 1_0 1 |RECORD of INTEGER | 100 |

124 Benchmarks-Ada

RSD-12-86

Number of

Subproghram Overhead (cross

Iterations

10000 o

10

package,

non-generic)

- - — —— — —— - — - - ——— - —— - - —— —— ——— ——— —— ——————————

Passed

Direction|# Passed

]in Call

()
-
BV N NONWRANNNENOORN=NNADRRONORARIWVPNO I = OO PWOOSNWWO

Benchmarks-Ada

o

(@]

o

o

o]

o

o

o

o

o

o

!

o

o

o

O == Q== Q== Q== O == QO = Qe Q= QO Ot QO mm Qo=

o]

Pk et Pk pd b et b fuh b ped Db (b puk Pub Pub Pk fud b b Pk ek fut et Pt b Gt Bb Pt b pt b

INTEGER

INTEGER

INTEGER

INTEGER

INTEGER

INTEGER

ENUMERATION
ENUMERATION
ENUMERATION
ENUMERATION
ENUMERATION
ENUMERATION
ARRAY of
ARRAY of
ARRAY of
ARRAY of
ARRAY of
ARRAY of
ARRAY of
ARRAY of
ARRAY of
ARRAY of
ARRAY of
ARRAY of
RECORD of
RECORD of
RECORD of
RECORD of
RECORD of
RECORD of
UNCONSTRAINED
UNCONSTRA INED
UNCONSTRA INED
UNCONSTRA INED
UNCONSTRA INED
UNCONSTRAINED
UNCONSTRA INED
UNCONSTRAINED
UNCONSTRAINED
UNCONSTRAINED
UNCONSTRA INED
UNCONSTRA INED
UNCONSTRAINED
UNCONSTRAINED
UNCONSTRAINED

INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER

ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY
ARRAY

ARRAY

RECORD
RECORD
RECORD
RECORD
RECORD
RECORD

10

10

10
100
100
100
10000
10000
10000

100
100
100

100
100
100
10000
10000
10000

100 |
100
100

125

Subprogram Overhead (generic,
Number of Iterations = 10000 ¢ 10

- — - - — —— —— - ————————— - ——————— — ———— — — . - -

Time Direction|# Passed Type
(microsec.) Passed |in Call Passed
15.0 | |]
20.3 I 1 | INTEGER
22.7 o 1 INTEGER
24 .4 1_0 1 INTEGER
84.4 1 | 10 | INTEGER
79 .4 o 10 | INTEGER
104 .4 1_0 10 | INTEGER
20.3 I 1 |ENUMERATION
22.8 (o] 1 |ENUMERATION
24.9 1_0 1 |ENUMERATION
64.6 I 10 |ENUMERATION
79.8 (0] 10 |ENUMERATION
103.6 1_0 10 |ENUMERATION
20.9 I 1 |ARRAY of INTEGER
21.1 o 1 |ARRAY of INTEGER
24.0 1_0 1 |ARRAY of INTEGER
45.2 I 1 |ARRAY of INTEGER
43.3 o 1 |ARRAY of INTEGER
61.0 1_0 1 |ARRAY of INTEGER
157.6 I 1 |ARRAY of INTEGER
159.7 (o] 1 |ARRAY of INTEGER
288.2 1_0 1 |ARRAY of INTEGER
21585.6 I 1 |ARRAY of INTEGER
215852.2 o 1 |ARRAY of INTEGER
42004 .3 1_0 1 |ARRAY of INTEGER
20.8 I 1 |RECORD of INTEGER
22.0 o 1 |RECORD of INTEGER
25.2 1_0O 1 |RECORD of INTEGER
| 153.8 | I 1 |RECORD of INTEGER
| 153.3 o 1 |RECORD of INTEGER
| 282.5 1_0 1 |RECORD of INTEGER

126

RSD-12-88

cross package)

—
o

Benchmarks-Ada

RSD-12-86

Number of Iterations = 10000 ¢ 10

Dynamic Allocation in a Declarative Region

Time |# Declared Type | Size of |
(microsec.)| Declared | Object |
0.5 1 Integer	
1.5 10 Integer	
1.0 1 String	1
0.4 1 String 10 |

1.6 1 String 100 |

4.0 1 |[Enumeration | [

1.0 10 Enumeration |

1.1 1 Integer Array 1 |

1.1 1 Integer Array 10 |

0.5 1 Integer Array 100 |

1.7 1 Integer Array 1000 |

| 1.5 1 Integer Array | 10000 |
8.3 1 Integer Array |100000 |

17.8 1 1-D Dynamically bounded Array | 1 |
15.2 1 1-D Dynamically bounded Array | 10 |

| 30.9 1 2-D Dynamically bounded Array | 1 |
| 21.1 1 2-D Dynamically bounded Array | 100 |
47.7 1 |3-D Dynamically bounded Array | 1 |
45.8 1 |3-D Dynamically bounded Array | 1000 |

0.9 1 |Record of Integer | 1 |

| 0.7 | 1 |Record of Integer | 10 |
| 1.8 | 1 |Record of Integer | 100 |

Note: Times reported include any deallocation required upon leaving the scope
of the declared variables.

Benchmarks-Ada 127

RSD-12-88

Number of Iterations = 1000

Dynamic Allocation with NEW allocator

- - - ——— ———————— - ——— —— - ——— - ———— - ———— ———— - ——————— —————— ——————— -

Time |# Declared Type | Size of |
(microsec.)| Declared | Object |
250 1 Integer | 1 |
240 1 Enumeration | |
250 1 |[Record of Integer | 1|
240 1 Record of Integer | 5 |
250 1 Record of Integer | 10 |
250 1 |[Record of Integer | 20 |
250 1 Record of Integer | 50 |
250 1 Record of Integer | 100 |
260 1 String | | S
260 1 String | 10 |
260 1 String | 100 |
250 | 1 Integer Array | 1 |
250 | 1 Integer Array | 10 |
240 | 1 Integer Array | 100 |
230 1 Integer Array | 1000 |
290 1 1-D Dynamically Bounded Array | 1 |
300 1 1-D Dynamically Bounded Array | 10 |
300 1 2-D Dynamically Bounded Array	1	
280 1 2-D Dynamically Bounded Array	100	
370 1 3-D Dynamically Bounded Array	1	
370 1	3-D Dynamically Bounded Array	1000

128 Benchmarks-Ada

RSD-12-88

Number of Iterations = 10000

Exception Handler Tests

Exception raised and handled in a block

3 uSEC. User Defined, Not Raised
414 oSEC. User Defined
532 uSEC. Constraint Error, Implicitly Raised
541 wSEC. Constraint Error, Explicitly Raised
599 uSEC. Numeric Error, Implicitly Raised
541 uSEC. Numeric Error, Explicitly Raised
524 uSEC. Tasking Error, Explicitly Raised
Exception raised in a procedure and handled in the calling unit
12 uSEC. User Defined, Not Raised
482 uSEC. User Defined
619 uwSEC. Constraint Error, Implicitly Raised
598 uSEC. Constraint Error, Explicitly Raised
597 uSEC. Numeric Error, Implicitly Raised
605 uSEC. Numeric Error, Explicitly Raised
593 uSEC. Tasking Error, Explicitly Raised

Benchmarks-Ada 129

130

RSD-12-88

Task Elaborate, Activate, and Terminate Time: Declared Object, No Type

Number of Iterations = 100
For test number 1
Task elaborate, activate, terminate time: 6.4 milliseconds.

Task Elaborate, Activate, and Terminate Time: Declared Object, Task Type
Number of Iterations = 100

For test number 1
Task elaborate, activate, terminate time: 6.6 milliseconds.

Task Elaborate, Activate, and Terminate Time: NEW Object, Task Type
Number of Iterations = 100

For test number 1
Task elaborate, activate, terminate time: 7.8 milliseconds.

Benchmarks-Ada

RSD-12-88

Rendesvous Time: No Parameters Passed
Number of Iterations = 100

Benchmarks-Ada 131

RSD-12-838

Number of Iterations = 10000

Clock function calling overhead : 89 microseconds.

132 Benchmarks-Ada

RSD-12-88

Number of Iterations

T IME

10000 ¢ 10

and DURATION math

Microseconds
91.2
91.6
90 .8
92.0
94 .3
0.4
0.8
0.9
0.8
0.9
1.1
0.9
0.8
Benchmarks-Ada

‘Time

Operation
Var_time + Var_duration

time - Var_duration
Var_duration + Var_time

time - Const_duration
Var_time - Var_time
Var_duration + Var_duration

Time
Time
Time

Duration
Duration
Duration
Duration
Duration
Duration
Duration
Duration
Duration

Var_

Var_

AERARRAR

Var_duration -

Var_duration

Var_duration + Const_duration

Var_duration -
Const_duration
Const_duration
Const_duration
Const_duration

Const_duration
+ Var_duration
- Var_duration
+ Const_duration
- Const_duration

133

VIHIIHIHHHIHIII\HHH\HIV

3 9015 02829 5486

